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Abstract: This research studies the data on air quality and construction activities from 29 January
2020 to 30 April 2020. The analysis focuses on three sample districts of Hangzhou’s Xiacheng,
Gongshu, and Xiaoshan districts. The samples, respectively, represent low-level, mid-level, and
high-level districts in the scale of construction projects. The correlative relationships are investigated,
respectively, in the periods of ‘pandemic lockdown (29 January 2020–20 February 2020)’ and ‘after
pandemic lockdown (21 February 2020–30 April 2020)’. The correlative equations are obtained.
Based on the guideline values of air parameters provided by the Chinese criteria and standards, the
recommended maximum scales of construction projects are defined. The numbers of construction
sites are 16, 118, and 311 for the Xiacheng, Gongshu, and Xiaoshan districts during the imposed
lockdown period, respectively, and 19, 88, 234, respectively, after the lockdown period. Because the
construction site is only one influential factor on the air quality, and the database is not large enough,
there are some limitations in the mathematical model and the management plan. Possible problem
solving techniques and future studies are introduced at the end of the research study.

Keywords: city management; air quality index; COVID-19; building construction sites; lockdown;
regression analysis

1. Introduction

At the end of December 2019, the Wuhan Center for Disease Control and Prevention
(CDC) detected an unknown type of pneumonia. Subsequently, it rapidly spread to other
regions and countries worldwide at the beginning of 2020 and continues to date (November
2021). On 11 March 2020, the World Health Organization (WHO) declared that the COVID-
19 caused by the new coronavirus SARS-Cov-2 had been characterized as a pandemic [1].
Control and safety measures were then introduced to reduce the spread and contain the
disease at the city and regional levels, if not at the national level. It has impacted both
economies and environments (Liu et al., 2020a) [2]. Urban development has been restricted
and slowed down because of the restriction of public transportation, person-to-person
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distancing, and restricted policies on non-essential industries. In such circumstances, as
suggested by [2], it is increasingly urgent and necessary to assess the environmental and
economic impact of the COVID-19 to inform decision-makers at all levels.

Air quality is a significant indicator of the environmental aspect and urban develop-
ment, especially during the prevalence of COVID-19. Current research studies indicated
that air quality and pollutant concentration affected the infection ratio of COVID-19 [3–7].
It was noted that the COVID-19 prevalence had a positive impact on air quality, which
showed some signs of improvement during the lockdown. Such effects were associated
with travel restriction measures, temporary closure of businesses, and the implementation
of large-scale remote working [8,9] Although air quality has been observed to increase in
some regions of the world through the comparison of conditions before and during the
prevalence of COVID-19 [10,11], it cannot be fully ascertained whether the decrease is due
to a result of the pandemic. Seasonal cycles and climate patterns are also potential causes
of air quality changes [2]. Many factors influence air quality, and earthwork could be one
of the crucially influential factors [12]. As the city of Hangzhou began gradual reopening,
more and more construction projects have begun, involving new construction projects and
those halted by the imposed lockdown measures. As air quality index and pollutant con-
centration are the most prominent indicators of air quality, building a proper mathematical
model that indicates the correlations between these parameters and construction sites is
critical in order to implement a pragmatic economic and urban reopening for Hangzhou.

Hangzhou is selected as a case due to its political and geographical importance, and
because of how it managed to contain the disease at an early stage. As the capital city of the
Zhejiang province of China, Hangzhou is a large city consisting of eight main districts with
an urban population of 7,590,000 and a vast construction industry. The city is characterized
with a high number of construction sites. The total gross output value of construction in
2019 was 68.20 billion dollars. The city’s floor space of the building under construction was
268.4 million square meters, and the completed area was 6.7 million square meters [13].
Additionally, the development level of the construction industry and construction project
distribution had significant differences at the district level. Xiaoshan district had the largest
scale of construction industry and projects, while the scale of the construction industry in
the downtown district was only 1/11 of Xiaoshan district, according to the report of the
Hangzhou Statistical Yearbook, 2019. Based on the huge scale of the construction industry
and the complex distribution of construction projects, a proper mathematical model based
on air quality can help the local government manage better, especially in this particular
period, or in future events of a similar nature.

Aim and Objectives

This paper aims to analyze the correlations between air quality indicators (i.e., air
quality index, pollutant concentration, PM10, and PM2.5) and the number of construction
sites in Hangzhou. This study provides an alternative construction site plan to decision-
makers. The investigation and analysis are based on data mining, involving the number
of construction sites, and several properties of air quality parameters to find potential
correlations. In light of this overarching aim, the study’s objectives are as follows:

• Collect data of the air quality index of Hangzhou city from 29 January 2020 to 30 April
2020, and information of construction sites, to analyze the correlative relationship
between air quality and the number of construction sites;

• Evaluate and visualize the data, and build a relevant mathematical model for the
guidelines on the number of construction sites;

• Discuss the probable reasons and provide solutions for improving the resiliency of
construction sites to pandemics.

At first, this research analyzes the relationship between air quality and building
construction sites in the literature review section. The selection of air indicators is based
on the criteria mentioned in the literature review. After processing the collected data and
the selection of sample districts, SPSS software is used to analyze the linear and non-linear
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regression. Finally, the results are provided, followed by a corresponding discussion, and
conclusions are made based on the findings and related to the study’s objectives. There
are some limitations of conducting research in the next step, such as the limited air quality
data and complex air monitoring sites. The research data are processed adequately before
the correlative analysis.

2. Literature Review: The Impact of Construction Sites on Air Quality

Numerous research studies in the literature analyze the impact of construction sites on
air quality. The case study in Qingyuan, China, found that the average daily concentration
of total suspended particulates (TSP), namely PM10 and PM2.5, surrounding a construction
site increased by 42.24%, 19.76%, and 16.27%, respectively [14]. The large diameter partic-
ulate matter is the most prominent pollutant caused by the construction site and mainly
contributed to the city’s dust [15,16]. In another case study of Germany’s construction
sites, Faber et al. (2015) found that the PM10 emissions from building construction sites
contribute to 44% of the total PM10 emissions from total construction activities in Germany.

Hence, construction sites result in many air pollutants and damage to air quality. Still,
the specific influential factor related to the construction site on air quality is much more com-
plicated. For instance, pollutant emissions can be caused by various mechanical processes,
including transporting and handling bulk materials, drilling, sawing, milling, compacting,
and grading the ground [17]. Additionally, the transportation of construction vehicles on
the surrounding dirty and unpaved temporary roads may lead to the same order of magni-
tude or even higher than those caused by other construction site activities [14,17,18]. For
instance, 6% of NOx pollutants and 10% of traffic-related PM emissions in Germany have
resulted from mobile construction vehicles [19]. In terms of the mechanical and thermal
building process, the combustion exhaust of machinery will increase particle and trace gas
emissions from construction sites [20]. In addition, influential factors from the external
environment will also affect the air quality in the vicinity of construction sites. Wind, hu-
midity, and temperature can affect pollutant emissions. Existing scholarly research found
that the pollutant emissions caused by construction sites have an imperatively positive
correlation with wind speed, relative humidity, and that they have a weakly correlativity
with temperature [21]. According to Araujo’s research [22], weather conditions could also
have a potential effect, but the correlation cannot be further proved due to limitations of the
size and complexity of the construction sites studied. Two factors of ‘air pollutant diffusion’
and ‘air quality parameters’ are discussed below.

2.1. Air Pollutant Diffusion

The diffusion law is an imperative aspect of research on building construction dust [14].
Different air diffusion methods directly impact the recording data of various climate
stations in Hangzhou. Firstly, studies about diffusion law found that pollutant disper-
sion occurs from construction sites, and that the pollutant concentration decays at in-
creasing distances or proximities [23]. In other similar studies of pollutant diffusion,
Hitchins et al. [24] determined the PM concentration at an increasing distance at two
sides of a road in Australia. They found that PM2.5 and ultrafine particles can decay
to around 50% of the maximum, occurring at 100–150 m from the road. Additionally,
according to the concentration results in weekly traffic conditions in Italy, it is reported by
Buonanno et al. [25] that PM10 concentration would decrease exponentially away from the
freeway. Secondly, wind can change the way of dispersion and affect the decay rate [23].
According to the measurement results of monitoring construction sites by Azarmi et al. [23],
the concentration level of PM2.5 and PM10 increase when wind direction is from con-
struction sites to the monitoring station. Another case study of Azarmi and Kumar [23] in
Haywards Heath in West Sussex, United Kingdom, indicated that the particular matters
emitted by the demolition process in construction sites are much more significant in the
downwind direction and decreased logarithmically with downwind distance.



Sustainability 2022, 14, 7075 4 of 20

All research studies considering the concentration of pollutants have defined locations
because construction sites’ location and the surrounding environment data pose some
uncertainties. For example, in Nakada and Urban’s case study of air quality in São Paulo
State, Brazil [9], the decrease in pollutant concentration in the main urban road was lower
than in the other analyzed areas. Their result is probably due to the effects of transportation
that was connected with several highways. Furthermore, the height of construction would
also have an impact, because it determined the emission source. Based on a numerical
simulation of dust dispersion at the urban building construction site by Wen [26], the
influence of construction dust from pollution sources in a high position on surrounding air
quality is much lower than that from pollution sources in a low position. This fact indicates
that the advantage of height is conducive to the rapid dilution of dust and reduces air
pollution in the surroundings.

2.2. Air Quality Parameters

Gabriele et al. drew attention to the fact that the risk of infection and death by the
COVID-19 pandemic could be associated with long-term exposure to air pollutants [7]. For
instance, for every 1 µm/m3 above the mean, the infection ratio increased by 2.7% for NO2
and 3.0% for PM10 [27]. Therefore, proper selection of air parameters is the imperative
precondition of a comprehensive and precise correlative mathematical model. The air
quality index (AQI) is selected here to indicate the overall urban air quality, which is widely
used by governmental environmental protection agencies and scientists worldwide [28].
The AQI refers to a combination number representing the total air quality and pollutant
concentration [29]. It is calculated by the concentrations of each main category of pollutants.
Other air quality parameters are selected based on the ‘Air Pollutant Guidelines’ provided
by WHO, involving particulate matter (PM), ozone (O3), nitrogen dioxide (NO2), and sulfur
dioxide (SO2) [1,30].

Particulate matter (PM) is a common proxy indicator for air pollution [31]. PM10
(≤ 10 µm) and PM2.5 (≤ 2.5 µm) are selected as air quality indicators in this research, as
they are two kinds of respirable particulate matter air pollutants mainly related to construc-
tion work. More importantly, they pose a formidable public health threat in cardiovascular
and respiratory disease, as well as in cancers [32,33], leading to approximately 4.2 million
premature deaths worldwide in 2016 [31]. In this situation, WHO air quality guidelines
provide strict and detailed guide values and interim targets for PM2.5 and PM10. Current
research results indicate that the PM2.5 and PM10 mainly generated by dust at the construc-
tions site would impact air quality to a certain degree [12,15–17,33–35]. In terms of PM2.5,
it normally suspends in the air for a longer time and has a longer and worse influence on
air quality than PM10 due to its small diameter [32]. Furthermore, PM2.5 has a seasonal
characteristic due to its seasonal impact of gardens and farms in the city [36]. In a case study
of construction sites and projects in London, the PM10 concentration in the working period
was about 2.2-fold higher when compared with the non-working period [16]. However,
according to the analysis result of case studies in Qingyuan city, the impact was limited
in a range [34]. The fact that PM10 concentration exceeds the limit is mainly caused by
the external atmospheric environment rather than the construction site itself (ibid). Par-
ticulate matter is more special and crucial during the course of the COVID-19 pandemic
as it is likely related to the infection ratio. Indeed, PM10 is suggested as an indicator
with relevance to the majority of the epidemiological data [30]. To a greater extent, PM10
has been an independent predictor of the spatial spread of COVID-19 [27]. For instance,
Gabriele et al. [7] analyzed the correlations between atmospheric pollutant concentration
and spatial-temporal distribution of cases and deaths. Their studies found that PM2.5 and
PM10 had a higher non-linear correlation than NO2 and other air parameters.

Furthermore, ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2) are air
pollutants that can have a marked effect on human health [31]. Their effects include
nose and throat irritation, lung inflammation, ischemic stroke, the triggering of asthma,
etc. [30,31,37–41]. The sources of these three air pollutants are complicated to identify. It
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is said that they are partly relative to the construction project, but mainly result from the
combustion of fuels in industry and vehicles [30,31,42]. In the combined impact of building
sites on air quality, these air quality parameters (i.e., air quality index, PM10, PM2.5, O3,
NO2, and SO2) would be selected in this research to provide a comprehensive and accurate
assessment of air quality.

Many scholars and institutions have regulated the guideline value or the limit value of
the pollutant concentrations. These are shown in Table S1 of Supplementary Materials, in-
dicating China’s ambient air quality standard, published by the Ministry of Environmental
Protection (MEP) in China [43]. Generally, most Chinese cities should be within the level-1
concentration limit, including Hangzhou city. In special cases, it can exceed the level-1
limit to some extent, but it cannot exceed the level-2 limit. Therefore, the level-1 and level-2
concentration limits are the primary and secondary references, respectively.

In addition, WHO has defined the guidelines and the interim target of air quality
parameters in the second edition of their report on ‘air quality guidelines for Europe’ [44].
The detailed values are shown in Table S2. The guideline value represents the health effect
that poses lower or no risk to the public. As highlighted by WHO [31], the interim target
combines the observation in the studies on long-term health effects and the necessity of
urban development. Based on the existing literature review on the topic, the impact of
construction sites on air quality and pollutant emissions are complicated and related to
multiple dimensional factors. Due to the limitation of the effect’s extent, construction sites
usually affect the air quality by environmental and constructional factors. In the same
environment and construction activity situation, a proper micro-management plan of the
construction sites (i.e., on numbers and locations) can help the local governments make
better decisions, especially during COVID-19 and similar disruptive events.

3. Methodology

This study aims to find the correlative relationship between seven air quality indicators
(i.e., the air quality index, PM2.5, PM10, O3, NO2, SO2, and CO) and the number of
construction sites in Hangzhou, China. The study is conducted at the district level, using
available data for comparative analysis. Firstly, the daily air quality data and construction
sites are available and collected from DATA.ZJ.GOV.CN [45,46]. The details of the data are
further discussed in the following section. In the next step, the data is processed to evaluate
the correlation. The comparison of the period, regression model, model verification, and
the guideline number of construction sites are revealed based on data processing results.
The procedures of the conducted research are shown in Figure 1 below.

Sustainability 2022, 14, x FOR PEER REVIEW 5 of 21 
 

 

stance, Gabriele et al. [7] analyzed the correlations between atmospheric pollutant concen-

tration and spatial-temporal distribution of cases and deaths. Their studies found that PM2.5 

and PM10 had a higher non-linear correlation than NO2 and other air parameters. 

Furthermore, ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2) are air 

pollutants that can have a marked effect on human health [31]. Their effects include nose 

and throat irritation, lung inflammation, ischemic stroke, the triggering of asthma, etc. 

[30,31,37–41]. The sources of these three air pollutants are complicated to identify. It is 

said that they are partly relative to the construction project, but mainly result from the 

combustion of fuels in industry and vehicles [30,31,42]. In the combined impact of build-

ing sites on air quality, these air quality parameters (i.e., air quality index, PM10, PM2.5, 

O3, NO2, and SO2) would be selected in this research to provide a comprehensive and 

accurate assessment of air quality. 

Many scholars and institutions have regulated the guideline value or the limit value 

of the pollutant concentrations. These are shown in Table S1 of Supplementary Materials, 

indicating China’s ambient air quality standard, published by the Ministry of Environ-

mental Protection (MEP) in China [43]. Generally, most Chinese cities should be within 

the level-1 concentration limit, including Hangzhou city. In special cases, it can exceed the 

level-1 limit to some extent, but it cannot exceed the level-2 limit. Therefore, the level-1 

and level-2 concentration limits are the primary and secondary references, respectively.  

In addition, WHO has defined the guidelines and the interim target of air quality 

parameters in the second edition of their report on ‘air quality guidelines for Europe’ [44]. 

The detailed values are shown in Table S2. The guideline value represents the health effect 

that poses lower or no risk to the public. As highlighted by WHO [31], the interim target 

combines the observation in the studies on long-term health effects and the necessity of 

urban development. Based on the existing literature review on the topic, the impact of 

construction sites on air quality and pollutant emissions are complicated and related to 

multiple dimensional factors. Due to the limitation of the effect’s extent, construction sites 

usually affect the air quality by environmental and constructional factors. In the same en-

vironment and construction activity situation, a proper micro-management plan of the 

construction sites (i.e., on numbers and locations) can help the local governments make 

better decisions, especially during COVID-19 and similar disruptive events. 

3. Methodology 

This study aims to find the correlative relationship between seven air quality indica-

tors (i.e., the air quality index, PM2.5, PM10, O3, NO2, SO2, and CO) and the number of 

construction sites in Hangzhou, China. The study is conducted at the district level, using 

available data for comparative analysis. Firstly, the daily air quality data and construction 

sites are available and collected from DATA.ZJ.GOV.CN [45,46]. The details of the data 

are further discussed in the following section. In the next step, the data is processed to 

evaluate the correlation. The comparison of the period, regression model, model verifica-

tion, and the guideline number of construction sites are revealed based on data processing 

results. The procedures of the conducted research are shown in Figure 1 below. 

 

Figure 1. Summary of research framework. 

3.1. Data Collection  

Figure 1. Summary of research framework.

3.1. Data Collection
3.1.1. Air Quality Indicators Collection

The selected air quality indicators correspond with China’s ambient air quality stan-
dard. The main air pollutant concentrations and air quality index (AQI) are selected as the
indicators in this research. The recorded data of these air parameters were collected from
16 climate monitoring sites. The specific data were accessible at the government website of
Zhejiang province [45]. The specific location of these monitoring sites is plotted in Figure 2.
All districts have at least one air quality monitoring site, and some include more than one
(see Table 1).
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Figure 2. The location of 16 climate monitoring sites in Hangzhou, China. (note: West Lake District is
Xihu District).

Table 1. Information about air quality monitoring sites at the district level.

District Number of Monitoring Sites and Stations

1. Shangcheng 1
2. Xiacheng 1

3. Xihu 5
4. Jianggan 2
5. Gongshu 2
6. Binjiang 2
7. Yuhang 2

8. Xiaoshan 1

For those districts with only one air quality monitoring station, the air quality data
from that monitoring station will be adopted for correlation research. In comparison, for
those districts with two or more air quality monitoring stations, the mean values of those
monitoring stations will be adopted for correlation analysis.

3.1.2. Construction Activity Collection

The Zhejiang Province Department obtains data of construction activity (2020b), in-
cluding in the city of Hangzhou, as well as all the construction projects in other cities of the
Zhejiang province. The data is sorted out in this step. During the investigated period, the



Sustainability 2022, 14, 7075 7 of 20

scales of the constriction projects of eight districts in Hangzhou city were recorded. The
data is summarized in Table 2.

Table 2. The scale of construction projects in each district.

District Shangcheng Xiacheng Xihu Jianggan Gongshu Binjiang Yuhang Xiaoshan

Construction
number, N 14–15 17–18 38–43 50–60 76–81 42–47 142–160 228–253

Area (km2) * 26.06 29.33 309.41 200 69.25 72.22 1228.41 1417.82

Density of
construction sites 0.537–0.576 0.580–0.614 0.123–0.139 0.25–0.3 1.10–1.17 0.582–0.651 0.116–0.130 0.161–0.178

* The areas of each district were provided by the Hangzhou government [47].

3.1.3. The Selection of Districts

Based on the detailed information of each district, Hangzhou’s eight districts could
be classified into three tiers, including high-level districts (Yuhang district and Xiaoshan
district), mid-level districts (Xihu district, Jianggan district, Gongshu district, and Binjiang
district), and the low-level districts (Shangcheng district and Xiacheng district), as shown
in Table 3.

Table 3. District tiers (Districts highlighted in yellow are selected samples).

High-Level Districts Yuhang District, Xiaoshan District

Mid-level districts Xihu district, Jianggandistrict, Gongshu district, Binjiang district

Low-level districts Shangcheng district, Xiacheng district

The high-level districts have the largest scale of construction projects and a significant
change in the number of construction sites, while the low-level districts had the least
number of construction sites and had minimal changes in the total number of construction
sites. The mid-level districts are intermediate between these two levels. Similarly, in the
area aspect, the high-level districts had the largest area, and the areas of low-level districts
were the smallest. Therefore, it is practical to select three samples to present each tier.
The selection is based on the availability and consistency of data related to this study.
The final selection includes the Xiacheng district, the Gongshu district, and the Xiaoshan
district, highlighted in Table 3 as sample districts of this research study. Figure 3 shows the
geographical locations of the construction sites in the selected districts.
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3.1.4. Timespan

As the impact of construction is different in the lockdown period, the timespan should
be specified. The air quality and construction site databases are continuous from 29 January
2020 to 3 April 2020. In this situation, this research is constrained in this timespan.

The lockdown of Hangzhou city is from 25 January 2020 to 20 February 2020, so the
research time would be divided into two parts, as follows: closure period, and after the
closure period. All construction activities were stopped during the lockdown period, so the
air pollutant concentrations were supposed to decrease in the closure period and recover to
increase after the closure.

3.1.5. Summary of Data Collection

This study uses a database of 93 samples of air quality data and construction site
numbers, including 24 samples before the lockdown period and 69 samples after the
period. The data is collected on the district level, which means that each district will have
an individual database. As mentioned in the section on district selection, the Xiacheng,
Gongshu, and Xiaoshan districts are selected for correlative analysis.

In this study, two sets of models are built in the period of lockdown and after lockdown,
respectively. For model verification, five samples are taken from 16 February 2020 to 20
February 2020, which are used for the model verification during the lockdown period.
Consequently, seven database samples from 24 April 2020 to 30 April 2020 are used for
the model verification after the lockdown period. Therefore, 18 samples and 63 database
samples are used for model training, respectively.
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3.2. Data Processing

The data processing was performed using IBM Statistical Product and Service Solutions
(SPSS—SPSS Version Number: R26.0.0.0, IBM Corp., New York, NY, USA). The IBM SPSS is
a computer statistical software package, which could perform many types of data-oriented
tasks and a huge range of statistical procedures [48]. In this research, the progress of
regression is carried out using SPSS, involving the scatter plots, coefficient analysis, etc.

The regression method of SPSS can be initially divided into two parts of ‘input re-
gression’ and ‘stepwise regression’. Moreover, the approach is divided into linear and
non-linear regression. Input regression includes all parameters in the correlative model,
while the stepwise method only uses the most influential parameter to build a model.
Thus, the input method can increase the R square of the result in the circumstance of the
disqualified accuracy of mathematical models. Still, the stepwise method can screen out
the most influential factors [48]. Multiple methods are used to provide a comprehensive
analysis. Non-linear input regression is the final modelling method, as it can produce
the model with the highest accuracy. Thus, all the results from four modelling methods
(stepwise linear regression, input linear regression, stepwise non-linear regression, and
input non-linear regression) will be listed to make a comparison.

3.2.1. Initial Analysis

The regression method of linear or non-linear will be determined by the result of the
Pearson correlative coefficient, and the performance of the scatter plot in this section. The
Pearson correlative coefficient indicates the linear correlation extent between two parame-
ters [49]. It will be used here to give an initial analysis of the extent of linear correlations.
The result of the Pearson correlative coefficient consists of the Pearson correlation coefficient
(PCC) and the value of significance (Sig.). Generally, the relationship between the extent of
linear correlation and the value of the Pearson correlation is demonstrated in Table 4.

Table 4. Pearson correlation coefficient (PCC).

Pearson Correlation Coefficient (PCC) 0.7�PCC<1 0.4�PCC<0.7 PCC<0.4

Extent of linear correlation Very strong Strong General

The value of significance presents the certainty that something will happen. Table 5
shows the certainty at each level of the value of significance.

Table 5. Value of significance (P).

Value of Significance (P) P�0.01 0.01<P�0.05 0.05<P

Certainty
99% 95% No significance

certaintySignificant certainty

Subsequently, the scatter plot shows the mutual changing trend of each parameter. In
terms of the objectives of this research, these methods can generally evaluate the correlative
relationship between the number of construction sites and each air quality parameter. In
many cases, the linear model could not fit the data. Thus, it is required to have non-linear
regression models [50]. As there is a weak linear correlation in this research, non-linear
regression will be used for modelling.

3.2.2. Regression Analysis

Four regression models will be created including stepwise linear regression, input
linear regression, stepwise non-linear regression, and input non-linear regression. The
stepwise regression method can select the most relevant variables from all input variables.
As the number of input variables decreases, the model becomes more concise, but the
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accuracy of the model drops. The input regression method uses all available variables as
the input, including those poorly correlated variables.

Kernel transformation is used in this study to build non-linear regression models. For-
mally, Kernel transformation provides an effective method to achieve non-linear regression
analysis [51]. Kernels can map complex non-linear data into a high-dimensional feature
space where linear regression analysis is available [52]. The kernel transformation for the
dataset Np = {x1, x2, x3, x4, x5, x6, x7} is expressed in the following steps [51]:

Np1 = {x1, x2, x3, x4, x5, x6, x7}
↓

Np2 =


x1

2, x2
2, x3

2, x4
2, x5

2, x6
2, x7

2,
x1x2, x1x3, x1x4, x1x5, x1x6, x1x7, x2x3, x2x4, x2x5,x2x6, x2x7,

x3x4, x3x5, x3x6, x3x7, x4x5, x4x6, x4x7, x5x6, x5x7, x6x7,
x1, x2, x3, x4, x5, x6, x7


The dataset Np2 is utilized in the non-linear regression model because the SPSS linear

regression is available. The air parameters analyzed in the non-linear regression are shown
in Table 6.

Table 6. Air parameters in the non-linear regression by kernel transformation.

Second Order Term

O3
2, PM102, CO2, NO2

2, PM2.52, SO2
2, AQI2

O3xPM10, O3xCO, O3xNO2, O3xPM2.5, O3xSO2, O3xAQI, PM10xCO, PM10xNO2,
PM10xPM2.5, PM10xSO2, PM10xAQI, COxNO2, COxPM2.5, COxSO2, COxAQI, NO2xPM2.5,

NO2xSO2, NO2xAQI, PM2.5xSO2, PM2.5xAQI, SO2xAQI.

First Order Term O2, PM10, CO, NO2, PM2.5, SO2, AQI

3.3. MAD and MAPE Verification of Model

Prediction errors are common and exist in almost all predicted results of forecasting
methods [53]. These prediction errors are estimated by computing the mean absolute
deviation (MAD) and mean absolute percentage error (MAPE), which are used to calculate
margin error from the predicted least square method of data [54]. Both approaches have
different concepts in performing calculations with different results.

• Mean Absolute Deviation

Mean absolute deviation (MAD) measures the accuracy of the prediction by averaging
the alleged error. The value of MAD can be calculated by Equation (1), as follows:

MAD =
∑
∣∣Nx − Np

∣∣
n

(1)

where Nx is the real construction sites number of the objective district, Np is the predictive
number of construction sites in objective district, and n is the number of validation group.

• Mean Absolute Percentage Error

Mean absolute percentage error (MAPE) can be calculated by the Equation (2), as follows:

MAPE =
∑
|Nx−Np|

Nx

n
× 100% (2)

where Nx is the real construction sites number of the objective district, Np is the predictive
number of construction sites in objective district, and n is the number of validation group.

3.4. Application of Correlative Model

After the production and verification of the correlative model, the model will be used
for estimating the recommended construction sites by inputting the recommended value
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of each air parameter. Additionally, the model’s performance at the same district level is
analyzed. If the performance is reasonable, the model can also indicate the recommended
number of construction sites for other districts that are in the same district level.

4. Result & Discussions
4.1. The Comparison of Time Period

The average level of air quality and air pollutant concentrations are shown in Supple-
mentary Materials of Table S1.

As shown in the table, most air parameters have increased after the lockdown period.
The AQIs of the three tiers of districts were all increased to some extent. The results show
that the air quality had been decreased since the lockdown of the city of Hangzhou was
canceled. Among these air parameter changes, NO2 had the most increase in these three
districts. Moreover, O3, PM10, and PM2.5 also increased to some extent. In this situation,
the distinction of the period is imperative for this research.

4.2. Model Result
4.2.1. Pearson Correlative Coefficient

The Pearson correlation coefficient refers to the degree of correlation between the
construction site numbers and each air quality indicator in this research. The result of the
Pearson correlative coefficient of the three tiers of districts are shown in Tables S6–S8 in
Supplementary Materials.

The high level of significance and the Pearson correlation coefficient are highlighted
by marks (* for 0.01 significance level, and ** for 0.05 significance level) and highlights,
respectively. Only CO and AQI have a robust linear correlation with the number of
construction sites of the Xiaoshan district in lockdown, with a significant certainty to have
happened. Other cases do not have substantial certainty or robust correlations. Generally,
the result is not good enough for linear regression from this analysis.

4.2.2. Linear Correlative Analysis by Scatter Plots

The findings are summarized in Figures S1–S6 in Supplementary Materials for both
time spans and three selected districts of the city of Hangzhou. The correlative scatter
plot can roughly indicate the correlative relationship. The x-axis and y-axis consist of each
parameter, including the construction site and air quality indicators. The scatter plot at the
intersection of each plot matrix represents the relative changes of its corresponding x-axis
parameters and y-axis parameters.

Therefore, the scatter plots in the first row and the first line of the scatter matrix indicate
the correlative relationship between the construction numbers and the air parameters. The
findings show the construction project scale in Xiacheng and Gongshu is small, especially
in the Xiacheng district during the lockdown period. This result is caused by the small
total number and the small change of the construction sites. Additionally, there is only a
handful of daily data during the lockdown period. The scatter plots’ changing trend does
not correspond to the linear correlation. As the scatter plot of the first row and first line of
the matrix are complicated, non-linear regression method should be used.

4.3. Regression Analysis

The SPSS statistics achieve the non-linear regression. In addition, the result of the
correlation model is shown in the following sub-sections.

4.3.1. Modelling Abstract

Tables S12–S17 in Supplementary Materials demonstrate the regression information
of the model, including modeling number, the correlative coefficient R and R2, the ad-
justed R2, and the standard error of the estimated. Models 1 and 2 are the results ob-
tained by stepwise and input multiple linear regression methods, respectively. Models
3 and 4 are the results obtained by the stepwise and input multiple non-linear regres-
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sion methods, respectively. In addition, the predictors of the models are listed below the
corresponding table.

Based on the regression results, model 4 has the largest R-value and R square, which
suggests that the multiple non-linear regression of the input method can lead to the most
relative correlations. The coefficient results of the non-linear regression analysis by input
methods are listed in the next section.

4.3.2. Correlative Coefficient

This series of tables (see Tables S18–S23 in Supplementary Materials) demonstrate
all the estimated regression coefficients of all the mathematical models which involve
non-standardized coefficients B and standard error.

The value of non-standardized coefficient B is the corresponding coefficient of each
parameter in the correlative equation. The approach helps to integrate the parameters and
coefficients and produce the correlative equation.

4.3.3. Correlative Equation by SPSS Stepwise Non-Linear Regression Analysis

The non-standardized coefficients of the best-simulated model indicated the correlative
equation coefficients. Therefore, the correlative equations of each district are shown in
Equations (A1) to (A6) in Appendix A.

4.4. MAD & MAPE Verification of Multiple Non-Linear Regression Models

The result of the MAD and MAPE verifications are shown in Table 7 below.
According to the results in Table 7, most of the mathematical models are not overfitting

because the differences between validation and training errors are not significant, except
for the model of the Xiacheng district in the lockdown period. The probable reason is the
small number of data groups in the lockdown period (only 18 groups of training data and
5 validation groups). The change in the number of construction sites in the Xiacheng district
is also small, contributing to the overfitting. The mathematical model can accurately predict
the correlative relationship in the Gongshu and Xiaoshan districts in the lockdown period
and after the lockdown, as the value of MAPE is less than 10% [47]. Although the correlative
relationships of Xiacheng district models are not accurate to a great extent, the value of
MAD is small (3.692 & 3.350). That may be caused by the small number of construction sites
in the Xiacheng district, so the cardinal number would be small, which will lead to smaller
errors and MAD, while the mathematical model had a great performance on Xiaoshan
district because the MAPE showed that the percentage errors were small (4.429% & 2.491%),
but MAD is larger than other districts.

Table 7. Model validation.

Period District
Real Construction
Site Number (Nx)

Predicted Construction
Site Number (Np)

Validation Error Training Error

MAPE MAD MAPE MAD

In the
lockdown

period

Xiacheng
district

17 15.890

21.716% 3.692 8.727% 1.473
17 17.389
17 20.880
17 23.730
17 23.349

Gongshu
district

81 78.646

2.051% 1.661 0.583% 0.472
81 78.318
81 81.456
81 80.599
81 83.412

Xiaoshan
district

247 258.056

4.429% 10.928 3.292% 8.222
247 259.811
247 256.686
246 259.761
247 254.495
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Table 7. Cont.

Period District
Real Construction
Site Number (Nx)

Predicted Construction
Site Number (Np)

Validation Error Training Error

MAPE MAD MAPE MAD

After the
lockdown

Xiacheng
district

17 13.706

19.708% 3.350 18.244% 3.254

17 14.734
17 10.714
17 13.721
17 16.564
17 14.146
17 11.962

Gongshu
district

77 81.825

6.789% 5.188 3.254% 2.544

77 81.482
77 82.809
77 81.638
76 80.405
76 80.116
76 83.041

Xiaoshan
district

229 221.845

2.491% 5.699 1.993% 4.738

229 221.252
229 225.082
229 236.101
229 226.919
229 224.449
228 220.660

4.5. Predicted Guidelines Value of Construction Sites in Three Tiers of Districts

The recommended values of the air quality index and the concentrations of each air
pollutants are provided in Table S1 in Supplementary Materials. The value of air indicators
at level-1 and level-2 are input into the model’s correlative equation as independent vari-
ables. Subsequently, the corresponding number of recommended construction sites can be
obtained, respectively.

Based on the results in Table 8, most of the data are invalid due to the deviation
between the predicted value and the real number of construction sites, while some of them
are negative. This was mainly caused by the impractical air guideline concentrations of
CO and SO2. According to the mean concentration level mentioned in Tables S3–S5 in
Supplementary Materials, most of the mean concentration of CO is less than 1 mg/m3 in
both periods, except in the Xihu district after the lockdown. Nevertheless, the guideline
concentration is 2 mg/m3 for CO in Table S1 of Supplementary Materials. It is similar for
SO2, as the concentration of SO2 of all districts fluctuate at 5 µg/m3, but the guideline
concentration is 50 µg/m3, which is much larger than the real concentration levels in
the two periods. It is imperative to reset the input value of the air parameters into the
correlative equations. The results of the reset are shown in Table 9.

Table 8. The guideline number of construction sites (original version).

Time Period In the Lockdown Period After the Lockdown Period

District Tiers Xiacheng
District

Gongshu
District

Xiaoshan
District

Xiacheng
District

Gongshu
District

Xiaoshan
District

Recommended number of
construction sites (level-1) −171.15 505.24 1107.12 −19.32 64.34 −78.10

Recommended number of
construction sites (level-2) −1903.02 −8961.85 3120.36 −407.58 −340.95 −4670.33

Table 9. Reset of guideline parameters as input values.

O3 PM10 CO NO2 PM2.5 SO2 AQI

100 µg/m3 50 1 mg/m3 40 µg/m3 35 10 µg/m3 50
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These values are based on the recorded air parameters and the guideline values in
the criteria. By inputting these values to each corresponding correlative equation, the
outcomes of the predicted number of construction sites are shown (see Table 10). The
findings can be used as the guideline values of each district tier. Moreover, we can take the
same mean absolute percentage error (MAPE) value as the range for the guideline number
of construction sites (i.e., the boundary value will be taken as an integer number).

Table 10. Recommended number of construction sites.

Time Period District Predicted Number of
Construction Sites (Np) MAPE Range of NP

In the lockdown
period

Xiacheng district 13.316 21.716% 10–16
Gongshu district 115.818 2.051% 113–118
Xiaoshan district 298.062 4.429% 285–311

After the
lockdown

Xiacheng district 16.094 19.708% 13–19
Gongshu district 82.364 6.789% 77–88
Xiaodhan district 228.768 2.491% 223–234

The range of recommended number of construction sites is provided in Table 10.
The Hangzhou government can probably control the construction site number in the
recommended range to enhance the management in the situation in terms of the efficacy of
the construction impact on air quality.

4.6. Performance of the Models in Other Districts That in the Same Tiers

With the input of the mean value of each air indicator into the corresponding equations,
the outputs of guideline numbers of construction sites are calculated. The results are
summarized in Table 11.

Table 11. The recommended number of construction sites in other districts.

Tiers District
Recommended Number

of Constriction Sites
(Lockdown)

Recommended
Number of

Constriction Sites
(After Lockdown)

Low-level districts Shangcheng district 15.89 15.24

Mid-level districts
Xihu district 77.61 78.36

Jianggan district 70.78 78.62
Binjiang district 77.99 79.27

High-level districts Yuhang district 262.92 221.76

Table 11 indicate that model performances were poor in other districts. The predicted
recommended number of construction sites was close to the sample district. Thus, it can be
argued that the models could not fit other districts in the same tiers.

4.7. Discussion of The Final Result

Although the construction activities were suspended during the lockdown period,
construction sites can also affect air quality by dust emissions. Wind can bring dust
to neighborhoods. Based on the correlative equations from Equations (A1) to (A6) in
Appendix A, Table 10 presents the difference in the recommended numbers of construction
sites in lockdown and after lockdown. The recommended number of construction sites in
lockdown and after lockdown periods represent the capacity of the largest scale of building
construction that the district could undertake, respectively. The difference in the number of
construction sites in the two periods also represents the impact of construction activities
on surrounding air quality. For instance, the impacts include the effect of 13 ongoing
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construction sites on the surrounding air as 16 construction sites without construction
activity to some extent in the Xiacheng district.

5. Further Discussions
5.1. Air Parameters Analysis in Correlative Mathematical Models

According to the literature review, PM10 and PM2.5 are closely related air parameters
with the number of construction sites. In later parts of the modeling study, the first and
third models show stepwise multiple linear and non-linear regression results, respectively.
The findings indicate the most influential factors in a statistical sense. The results verify that
only PM2.5 appeared among these most influential factors in the Gongshu and Xiaoshan
districts after the lockdown periods. The AQI could reveal the impact of construction sites
on the particulate matter (PM) from the sidewise, but it only appeared in the period models
after the lockdown.

The probable reason for this deviation is the limited influence of particulate matter
(PM) on the distance. Research by Yan et al. [14] found a similar characteristic. Addition-
ally, there are only one or two air quality monitoring sites in these three districts, and
the area of these three districts are 29.33 km2, 69.25 km2, 1417.83 km2, respectively [55].
Thus, the recorded air parameter value could not represent the real mean level, especially
of PM10 with limited dispersion in the air. Indeed, PM2.5 could have a better perfor-
mance in air dispersion than PM10, which is also evident in the result of the stepwise
multiple regression.

5.2. Comparison Analysis

The comparison results in the earlier sections demonstrated the increase of air pollutant
concentration after the lockdown period. However, it could not be fully proven that the
building construction activities led to this increase. According to the 2020’s Spring Festival
definition by the National Development and Reform Commission of China [56], the Spring
Festival rush of transformation started on 10 January 2020 and ended on 18 February 2020.
Due to the lockdown policies of the city of Hangzhou, the actual rushing back period
after the Spring Festival was started on 20 February 2020 when the lockdown period was
ended. Therefore, the phenomenon of the increase of air pollutant concentration may be a
comprehensive result of multiple sources, including construction activities, traffic pollutant
emissions, residents’ mobility, etc.

5.3. Poor Performance in Other Districts

Although the models indicated the correlative relationships and the guideline number
of construction sites in the sample district, the study results show that it is challenging to
apply the sample models to other districts of the same tiers, specifically in the mid-level
and high-level districts. The major probable reason for this phenomenon was the large
value of R square so that the model would fit data in the sample district to a greater extent.
Additionally, although there were some differences in daily data among eight districts, the
specific daily air quality data were close to a mean level on the same day. In this situation,
the predicted numbers of construction sites in other districts would only depend on the
real number of construction sites in each sample district.

5.4. Limitation of This Research & Future Studies

Based on the earlier discussions, other factors could affect air quality, such as wind,
rainfalls, humidity, etc. However, the scope of this study is only on the recorded value of air
quality concentration. Thus, the model and its predicted guideline number of construction
sites could only provide a general proposal for the city managers. Future studies are
expected to evaluate the comprehensive relationship between the construction sites and air
quality, considering more variables and more case study samples.

In addition, several improvements could be made to enhance the accuracy of the
research and reduce the deviation in the results. For instance, it is suggested to set up air
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quality monitoring sites or points near construction sites to record air quality directly and
more precisely. As the study shows, the locations of the air monitoring sites were also
influential, as results were affected by of wind and rainfalls. The air pollutant dispersion
study by Yan [14] introduces a monitoring method of up-downwind direction, which
combines the influence of wind, the reference points, and monitoring points set up on
eight sides of the wind. As the existing reference points, the recorded data could reveal the
impact of construction sites on air quality to a greater extent. Furthermore, the rainfalls
have an apparent inhibitory effect on dust dispersion [57]. Thus, we should only consider
air quality data on sunny and cloudy days and select more meteorological data for future
studies. Other data should include wind speed and direction, temperature, humidity, and
atmospheric pressure. These methods can decrease the effect of other influential factors.

6. Conclusions

In this research, the SPSS linear and non-linear multiple regression methods were
adopted to analyze the correlative relationship between air quality and the number of
construction sites. As an effect of lockdown, the research time was divided into two periods
based on the end of lockdown closure in the sample city of Hangzhou, China. To analyze
different district tiers, three samples of districts were selected. This approach helped to
have a more accurate discussion on comparisons and case study research. Comprehensive
indicators of O3, TSP (PM10 and PM2.5), CO, NO2, SO2, and AQI were selected in this
research to quantify and characterize the impact of air quality from building construction
sites comprehensively. The data of construction activities of each district were collected at
the same time.

The main conclusions of this research are summarized as the following four points:

• The air pollutant concentrations decreased during the lockdown period and started
to increase after the lockdown period. As all the construction activities were stopped
during the closure of the city of Hangzhou, the data shows that the building construc-
tion sites would increase the dust and air pollutant emissions. Specifically, NO2 had
the largest increase. It increased by more than 150% in all eight districts. Thus, we see
an opportunity to have limitations on construction sites and upgrade standards on
pollution levels for construction sites.

• The most influential air indicators screened by the SPSS stepwise regression method
are NO2, SO2, CO, and PM2.5. These are highlighted in AQI of two periods, in the
lockdown and after the lockdown time. The deviation between this result and the
literature review analysis was mainly caused by the limitation of the number and
location of air monitoring sites.

• The correlative equations for three sample districts were provided in the results section.
Subsequently, the recommended number of construction sites for the Xiacheng, Gongshu,
Xiaoshan districts were 10–16, 113–118, and 285–311, respectively, in the lockdown period,
and 13–19, 77–88, and 223–234, respectively, after the lockdown period.

• The performances of models and correlative equations were poor in other districts
that belong to the same tiers at the construction project level. The forecasting number
of construction sites was highly dependent on the real number of construction sites in
the sample districts.

The research findings show that the construction sites have an imperative impact on
the air quality in Hangzhou and at the district level. The study provides a guideline to
help the management of construction sites for local government based on the correlative
analysis. The current cases and studies show that construction management is mostly
based on the project itself within its lifecycle [58,59]. In this situation, this research can fill
the gap on the construction management processes at the macro-level (i.e., either city level
or district level), especially during special situations like the COVID-19 prevalence period.
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Appendix A Correlated Model

• In the lockdown period

For the Xiacheng district:

N1 = −3.509 + 0.025O3 + 9.975CO + 1.035NO2 + 1.692SO2 − 0.006(NO2)
2−

0.064(SO2)
2 − 0.002O3·NO2 + 0.003O3·SO2 − 0.001PM10·SO2 − 0.548CO·

NO2 + 0.004NO2·PM2.5− 0.043NO2·SO2 − 0.007PM2.5·SO2 + 0.001SO2·AQI
(A1)

For the Gongshu district:

N2 = 82.219 + 7.725CO− 2.210NO2 + 0.117PM2.5 + 2.186SO2

−4.375× 10−5(O3)
2 − 1.279(CO)2 − 0.730(SO2)

2 − 0.003O3
·NO2 + 0.001O3·PM2.5− 0.019PM10·NO2 − 1.943CO·NO2
+0.013CO·PM2.5 + 0.667NO2·SO2 + 0.010NO2·AQI

(A2)

https://www.mdpi.com/article/10.3390/su14127075/s1
https://www.mdpi.com/article/10.3390/su14127075/s1
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For the Xiaoshan district:

N3 = 294.222 + 0.05O3 − 57.723CO− 1.607NO2 + 0.249PM2.5− 4.927SO2

−0.287AQI − 0.001(O3)
2 + 15.398(CO)2 + 0.045(NO2)

2

−0.004(PM2.5)2 + 0.003O3·PM10 + 0.690O3·CO− 0.018O3
·NO2 − 0.253PM10·CO− 0.004PM10·NO2 + 0.221NO2·SO2 + 0.047SO2·AQI

(A3)

• After the lockdown period

For the Xiacheng district:

N1 = 14.725− 0.005O3 + 0.016PM10 + 9.206CO + 0.006NO2 − 0.234PM2.5
+0.051SO2 + 0.072AQI + 1.006× 10−5(O3)

2 − 7.026(CO)2 − 0.001(PM2.5)2

−0.029(SO2)
2 + 0.038O3·CO− 0.001O3·NO2 − 0.001O3·PM2.5− 0.001O3·SO2

+0.001O3·AQI − 0.024PM10·CO− 4.310× 10−5PM10·NO2 + 0.003PM10·SO2
−0.001PM10·AQI + 0.196CO·NO2 + 0.254CO·PM2.5 + 0.511CO·SO2
−0.334CO·AQI − 0.004NO2·SO2 − 0.003PM2.5·SO2 + 0.003PM2.5·AQI
+0.002SO2·AQI

(A4)

For the Gongshu district:

N2 = 91.825− 0.054O3 + 0.062PM10− 10.688CO− 0.271NO2 + 0.509PM2.5
−0.356SO2 − 0.316AQI − 1.194× 10−5(PM10)2 − 0.958(CO)2 − 0.005(NO2)

2

−0.002(PM2.5)2 − 0.037(SO2)
2 − 0.001(AQI)2 − 0.001O3·PM10 + 0.023O3·CO

+0.001O3·NO2 − 0.001O3PM2.5− 0.010O3·SO2 + 0.003O3·AQI
−0.132PM10·CO + 0.007PM10·NO2 − 0.004PM10·SO2 + 0.825CO·NO2
+0.286CO·PM2.5 + 0.749CO·SO2 − 0.394CO·AQI − 0.012NO2·PM2.5
−0.005NO2·SO2 − 0.002NO2·AQI − 0.033PM2.5·SO2 + 0.048SO2·AQI

(A5)

For the Xiaoshan district:

N3 = 253.375− 0.208O3 − 0.117PM10 + 7.083CO− 1.652NO2 + 0.583PM2.5
+4.943SO2 + 0.417AQI − 0.002(PM10)2 − 25.430(CO)2 + 0.012(NO2)

2

+0.005(PM2.5)2 − 0.185(SO2)
2 − 0.016(AQI)2 + 0.003O3·PM10

+0.102O3·CO− 0.007O3·NO2 − 0.005O3·PM2.5− 0.005O3·SO2 + 0.006O3·AQI
−0.665PM10·CO + 0.004PM10·NO2 + 0.050PM10·SO2 + 0.795CO·NO2
+1.328CO·PM2.5− 2.082CO·SO2 − 0.215CO·AQI − 0.031NO2·PM2.5
+0.087NO2·SO2 + 0.018NO2·AQI − 0.081PM2.5·SO2 + 0.013PM2.5·AQI
−0.078SO2·AQI

(A6)
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