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Abstract
In neurodegenerative diseases, changes in neuronal proteins in the cerebrospinal fluid and blood are viewed as potential bio-
markers of the primary pathology in the central nervous system (CNS). Recent reports suggest, however, that level of neuronal 
proteins in fluids also alters in several types of epilepsy in various age groups, including children. With increasing evidence 
supporting clinical and sub-clinical seizures in Alzheimer’s disease, Lewy body dementia, Parkinson’s disease, and in other less 
common neurodegenerative conditions, these findings call into question the specificity of neuronal protein response to neuro-
degenerative process and urge analysis of the effects of concomitant epilepsy and other comorbidities. In this article, we revisit 
the evidence for alterations in neuronal proteins in the blood and cerebrospinal fluid associated with epilepsy with and without 
neurodegenerative diseases. We discuss shared and distinctive characteristics of changes in neuronal markers, review their neu-
robiological mechanisms, and consider the emerging opportunities and challenges for their future research and diagnostic use.
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Abbreviations
CNS  Central nervous system
AD  Alzheimer’s disease
PD  Parkinson’s disease
LBD  Lewy body dementia
NF-L  Neurofilament light chain
SV2  Synaptic vesicle glycoprotein 2
SNAP-25  Synaptosomal-associated protein 25 kD
CSF  Cerebrospinal fluid
APP  Amyloid precursor protein

FTD  Front-temporal dementia
t-tau  Total tau
BACE1  β-Secretase amyloid cleaving enzyme
sAPP  Soluble amyloid precursor protein
EEG  Electroencephalography
GFAP  Glial fibrillary acidic protein
PSE  Poststroke epilepsy
AME  Autoimmune-mediated epilepsy
PNES  Psychogenic non-epileptic seizures
ASM  Antiseizure medication
TLE  Temporal lobe epilepsy
NSE  Neuron-specific enolase
NF-H  NF-heavy chain
HS  Hippocampal sclerosis
MAP2  Microtubule associate protein 2
NG  Neurogranin
EPSP  Excitatory postsynaptic potential
AP  Action potential

Introduction

Neurodegenerative diseases are characterized by pro-
gressive age-dependent death of neurons in the central  
nervous system (CNS) with related decline of specific 
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brain functions. Two distinctive features make neurons 
particularly susceptible to degeneration: (1) incompe-
tence for self-renewal and (2) deterioration in homeo-
static mechanisms over lifetime [1, 2]. With aging as 
the main risk factor, neurodegenerative diseases, which 
include increasingly common Alzheimer’s disease (AD) 
and associated dementias, Parkinson’s disease (PD), Lewy 
body dementia (LBD), and several less known conditions, 
are on the rise, with no cure currently available [3–5]. The 
lack of therapies is partly due to the shortage of mechanis-
tic data and effective means for early diagnosis, which, if 
attained, might facilitate medical interventions before the 
onset of neuronal damage and irreversible functional loss.

Post-mortem histopathological examination remains 
the gold standard for differential diagnosis of neurode-
generative diseases (Fig. 1). As the method is applied to 
brain autopsy, it is of no clinical or therapeutic value to 
patients. The commonly utilized brain imaging and neu-
rophysiological recordings while highly instructive for 
revealing anatomical and functional changes are of lim-
ited sensitivity for detecting subtle alterations during the 
early stages of pathology [6–10]. Cortical thinning and 
atrophy of selected brain regions, for instance, which are 
taken as imaging biomarkers of brain pathology in AD  
and LBD, appear at more advanced disease stages, indi-
cating a widespread degeneration of neurons [6, 11–15]. 

Fig. 1  Biomarkers of epilepsy and neuronal proteins. a, d–f Exam-
ples of readouts used for diagnosis of epilepsy. a EEG and 18F-FDG 
PET are utilized commonly for detecting super-synchronous electri-
cal activity (seizures) and mapping the location of the epileptic foci 
based on the level of glucose metabolism, respectively (top and bot-
tom panels). In EEG, epileptic seizures are registered as widespread 
neuronal synchrony recorded by multiple electrodes (E1-5), while 
PET imaging shows a reduction in glucose metabolism in the affected 
brain region, exemplified as left temporal lobe hypometabolism 
(HMB). TLE—temporal lobe epilepsy. Reproduced with permission 
from [26]. d T1-weighted MRI images comparing cortical thinning 
in chronic epilepsy: annualized rate in people with epilepsy, with 
disease duration of more (top) or less (bottom) than 5 years after the 

onset of the first seizure. Reproduced with permission [27]. e NeuN-
stained sections of hippocampi from patients with medial tempo-
ral lobe epilepsy with and without hippocampal sclerosis (left and 
right) without and with significant neuronal loss. Scale bars: 1 mm. 
Reproduced with permission from [28]. f Tau accumulation in TLE 
and hippocampal sclerosis: CA4 neurons labeled with neurofilament 
light-chain (NF-L) surrounded by pTau/AT8-positive synaptic-like 
processes in the cell body and axons, or dendritic marker MAP2. 
Reproduced with permission from [29]. b, c Schematic representation 
of physiological expression sites of neuronal proteins found in CSF 
and blood in epilepsy. NG neurogranin, APP amyloid precursor pro-
tein, NMDAR N-methyl-d-aspartate receptor, α-SYN α-synuclein, AP 
action potential, EPSP excitatory postsynaptic potential
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Likewise, changes in neuronal activity detected by elec-
troencephalography (EEG) reflect large-scale impairments 
of brain connectivity and neural synchrony, inferring a 
breakdown of long-range connections with disruptions 
in subcortical modulator influence [16–18]. Over recent 
years, a rapidly expanding portfolio of molecular biomark-
ers has shown major promise for the detection of early 
neurodegenerative processes, which include alterations 
in a variety of neuronal proteins and their autoantibod-
ies in the blood and cerebrospinal fluid (CSF) of patients 
[19–23]. These advances have transformed the basic tenets 
of diagnostics and clinical studies [20, 22, 24, 25], pav-
ing a way for new prognostic and treatment opportunities.

Notwithstanding major advantages, molecular biomarkers 
of neurodegenerative diseases have considerable limitations, 
which include relative specificity and significant variability 
of the readouts, partly because of the overt and latent comor-
bidities [21, 23, 30]. Among the latter, epilepsy is of key 
interest, partly due to the growing recognition of the effects 
of seizures on profiles of neuronal proteins in blood and CSF. 
Given the increasing evidence for alterations in neuronal pro-
teins in biological fluids associated with multiple types of 
seizures, there is a pressing need in elucidating their origin 
and interactions with established molecular biomarkers of 
epilepsy [31–33], as well as characterising their response to 
antiseizure medications (ASM) [34, 35]. In this study, we 
review changes in neuronal markers in CSF and blood in 
epilepsy with and without neurodegenerative diseases. We 
explore neurobiological mechanisms underlying alterations 
in molecular biomarkers and consider the emerging oppor-
tunities and challenges for their diagnostic and clinical use.

Molecular Biomarkers of Neurodegenerative 
Diseases: An Overview

In neurodegenerative diseases, an increase in the level of 
neuronal proteins and their fragments in CSF and blood 
are viewed as markers of injury and loss of nerve cells. 
Due to differential distribution in various neuronal com-
partments and the specific role played in pathobiology, 
some of the changes in neuronal proteins can provide addi-
tional clues about the type of pathology and the extent of 
the damage. Alterations in Aβ and tau, for instance, are 
explored primarily as indicators of amyloid and neurofi-
brillary tangle pathology and related neuronal loss, while 
the increase in α-synuclein, neurogranin, synaptic vesicle 
glycoprotein 2A and synaptosomal-associated protein 25 
kD (SNAP-25) are viewed as markers of synaptic dam-
age. The rise in neurofilament light chain (NF-L) level 
in fluids, on the other hand, is taken predominantly as a 
marker of axonal injury leading to a collapse of long-range 
connections [25] (Fig. 1).

In early preclinical and advanced stages of AD, most 
reports show a notable reduction in the level of Aβ1-42 in 
CSF and serum, with alternatively cleaved amyloid precur-
sor protein (APP) fragments also reduced compared to age 
matched controls [36–38]. The level of tau protein increases 
in the blood and CSF in several neurodegenerative condi-
tions (tauopathies), including AD, frontotemporal demen-
tia (FTD), PD and LBD, amyotrophic lateral sclerosis, and 
prion disease [30, 39, 40]. In AD and related dementias, 
total tau and phosphorylated tau (t- and p-tau, respec-
tively) in fluids are significantly higher compared with 
healthy controls, and correlate with the cognitive decline 
of patients, with very high levels of t-tau and p-tau in CSF 
predicting poor clinical outcomes [41–43]. An increase 
in α-synuclein is regarded mainly with synaptic loss and 
neuronal degeneration of PD and LBD, with a significant 
increase of this protein, also detected in biofluids [44, 45]. 
Like α-synuclein and tau protein, higher levels of NF-L 
were found in CSF and blood of multiple neurodegenerative 
diseases, which correlates with axonal breakdown [46–48]. 
In contrast to α-synuclein and some other proteins enriched 
in presynaptic terminals (i.e., BACE1 and SNAP-25), neu-
rogranin is a post-synaptic protein of glutamatergic neu-
rons, with its rise in blood and CSF taken as an indicator of 
damage and loss of dendritic spines [49, 50].

Despite important differences in their molecular pathol-
ogy and clinical presentation, neurodegenerative diseases 
share important aspects of their pathobiology, leading  
to neuronal death. Some neurodegenerative diseases also 
share comorbidities, which can influence the molecular  
pathology and profiles of biomarkers. With aging and neuro-
degenerative disease-related increase in the odds of epilepsy, 
the impact of seizures on neuronal protein changes has become 
of major research and clinical interest. In AD, for instance, 
the risk of seizures can be as high as 35–50% [51–56]. High 
incidences of seizures were also reported in corticoba-
sal degeneration, LBD, FTD, and PD [52, 54]. As detailed 
below, several types of epilepsy can alter levels of neuronal 
proteins in CSF and blood, which warrant comprehensive  
analysis to decide on their potential effects on profiles of 
molecular biomarkers of neurodegenerative diseases.

Aβ and Other APP Fragments in Biofluids 
of Epilepsy

It has long been known that AD and temporal lobe epi-
lepsy share several histopathological features, including  
neuronal injury, gliosis, inflammation, and amyloid 
pathology [57, 58]. Senile plaques have been described in 
autopsies of patients with epilepsy before the first report 
of plaques in AD brain samples [59], with higher incidents 
of age-related amyloid pathology reported in patients with  
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epilepsy than in age-matched controls without epilepsy [60].  
Histopathological analysis of amyloid plaques in temporal  
lobectomy specimens showed both diffuse and neuritic 
plaques, which were stained with Bodian and Congo red but  
not with Gallyas methods [60, 61]. These findings implied 
that despite shared morphology and inclusion of Aβ, senile  
plaques of epilepsy are devoid of fibrillary tangles.

While the mechanisms for the convergence of histopatho-
logical features of AD and epilepsy brain samples remain 
elusive, growing data imply that neuronal hyperactivity 
associated with seizures can influence APP processing, as 
reflected in changes of Aβ isoforms and fragments of soluble 
APP in CSF [62]. Shahim and co-workers compared levels 
of Aβx-38, Aβx-40, Aβx-42, Aβ1-42, and sAPP fragments 
in CSF of patients with single and repetitive generalized 
tonic–clonic and partial seizures, and non-convulsive status 
epilepticus (SE) [62] (Table 1). There were no overt differ-
ences in Aβ1-42 or sAPP between epileptic patients and con-
trols. However, in patients with repetitive partial seizures, 
the levels of Aβx-38 and Aβx-40 were higher compared to 
those with non-convulsive SE, single partial seizures, and 
controls, while the Aβx-42 was increased in both, patients 
with single and repetitive partial seizures relative to non-
convulsive SE. These findings suggest that the described 
alterations in APP fragments might result from changes 
in its processing without neurodegenerative pathology. 

Interestingly, a comparative analysis of Aβ1-42 and several  
other neuronal markers in the CSF of AD patients with and 
without epilepsy showed lower levels of this peptide in AD 
patients with epilepsy [63]. In the same study, levels of 
p-tau and t-tau in CSF were enhanced by epileptic activity 
in AD patients [63]. To investigate if alterations in neuronal 
proteins of CSF can differentiate prodromal late-onset AD 
with and without seizures, their variations were quantified 
and compared [64]. Although the results of this analysis 
showed no difference, there was a significant correlation  
of the dynamics of Aβ1-42 and Aβ1-40 in CSF with inter-
ictal epileptiform discharges and EEG delta activity. Over-
all, it emerges that while epileptic seizures per se do not  
alter Aβ1-40 and Aβ1-42 in CSF, in AD patients with  
epileptic seizures, the level of CSF Aβ1-42 is lower as com-
pared to those without seizures.

Tau in Biofluids of Epilepsy

Several reports have shown that the level of t-tau and p-tau 
is enhanced in the CSF and blood of patients with a sin-
gle episode of self-limiting [65, 66] or reoccurring seizures  
[67, 69] (Table 2). Comparison of tau, glial fibrillary acidic 
protein (GFAP), ubiquitin C-terminal hydrolase-1 and NF-L 
in blood drawn at baseline, immediately or post 2, 6, and 

Table 1  Alterations of Aβ42, Aβx fragments and sAPP in biofluids of epilepsy

sGTCS single generalized tonic–clonic seizure, rGTCS repetitive generalized tonic–clonic seizure, rPS repetitive partial seizure, sPS single par-
tial seizure, nSE non-convulsive status epilepticus, nS not specified, fS focal seizure

Epilepsy type Age (years) Gender, N Fluid Collection phase Response to seizures Ref.

sGTCs, rGTCs, rPS, sPS, nSE ~ 35 F = 12, M = 33 CSF Post-ictal Increase (Aβx38,40,42) [62]
nS, with AD
without AD

~ 71, ~ 74 F&M
364

CSF Inter-ictal Reduction in Aβ1-42 (in AD with epilepsy) [63]

fS, rare rGTCS
AD or without AD

~ 67, ~ 72 F&M
67

CSF Post-ictal Correlation (Aβ40, 42 in AD with epilepsy) [64]

Table 2  Alterations of tau protein in biofluids of patients with epilepsy

TC tonic–clonic, PSE post-stroke epilepsy, nS not specified seizure, LOE  late-onset  epilepsy of  unknown origin, SE status epilepticus, pGE  
primary generalized epilepsy, PE partial epilepsy, GCSE generalized convulsive status epilepticus

Epilepsy type Age (years) Gender, N Fluid Collection phase Response to seizures Ref.

TC ~ 32 F = 10, M = 10 Blood Ictal, Post-ictal,
0 h, 2 h, 6 h, 24 h

Increase, followed by a decrease [66]

PSE ~ 72 F = 41, M = 49 Blood Ictal, post-ictal,
0 h, 2 h, 24 h, 48 h, 

72 h, 3 months

Increase, followed by a decrease [70]

nS with AD ~ 63 F&M, 292 CSF Not specified Increase (correlated with risk of seizure) [69]
LOE ~ 70 F = 23, M = 17 CSF Inter-ictal, post-ictal Increase [67]
SE ~ 56 F = 18, M = 10 CSF Inter-ictal Increase in refractory SE [68]
pGE, PE, GCSE, nS ~ 1.40 F = 52, M = 65 CSF Post-ictal Increase [72]
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24 h after a tonic–clonic seizure, demonstrated that all mark-
ers were increased postictally and returned to normal levels 
within hours, with tau changes being most prominent [66]. 
The authors concluded that both self-limited and reoccurring  
tonic–clonic seizures can lead to neuronal injury with 
release of tau protein. Another report addressed the level 
of tau protein in the blood after acute symptomatic seizures 
and in poststroke epilepsy (PSE) caused by thrombectomy 
[70]. No patient included in this study had epilepsy before 
the intervention, with some of the treated patients devel-
oping acute symptomatic seizures while others developed 
PSE. As the number of patients in this study was low, the 
results need independent verification in larger cohorts. Tau 
changes in serum and CSF were analyzed and compared 
also between patients with autoimmune epilepsy, genetic 
generalized epilepsy, and psychogenic non-epileptic seizures 
(PNES) to find if they could assist in differential diagno-
sis [71]. Neither serum nor CSF tau differed between these 
groups, implying that tau increments in other studies could 
involve additional effects associated with seizures.

Tau profile has been also analyzed in SE using a lumbar 
puncture, with patients stratified based on their response to  
ASM, disabilities, and epilepsy outcomes [68]. The levels of  
t-tau and p-tau were elevated in most of the SE patients, 
with fluid t-tau values higher in drug-refractory cases com-
pared to those responsive to ASM [68]. In patients with 
especially high t-tau, the extent of tau increase correlated 
with the duration of SE. Analysis of the t-tau and p-tau 
variations and changes in their ratio in CSF collected 48 h 
after epileptic activity with tonic–clonic or secondary gen-
eralized seizures revealed that some patients with acute or 
remote symptomatic seizures showed altered t-tau levels 
with p-tau/t-tau ratio differing from controls [65]. As noted 
earlier, unlike Aβ1-42, the level of t-tau and p-tau in fluids 
was higher in AD cases with epilepsy [63]. It is interesting  

to note also that in patients with chronic temporal lobe epi-
lepsy (TLE), the level of t-tau in CSF was lower compared to 
healthy individuals, while p-tau showed no difference [73]. 
Measurements of the p-tau/t-tau ratio, on the other hand, 
yielded higher values in TLE, with changes correlating with 
the extent of the brain white matter loss. A meta-analysis 
of children affected by eight different neurological condi-
tions revealed that the concentration of t-tau was signifi-
cantly increased in epilepsy, similar to that in infectious and 
inflammatory diseases of the CNS, and showed the highest 
predictive accuracy for epilepsy and progressive encepha-
lopathy [72]. This report is of special interest as it excludes 
the effects of aging and related degenerative conditions on 
dynamics of neuronal and glial proteins in CSF and blood.

NF‑L in Biofluids of Epilepsy

NF-L is another neuronal protein explored as a biomarker  
of neurodegenerative diseases, with single episodes and 
reoccurring seizures causing its increase in CSF and blood 
[74–76] (Table 3). Like studies of tau protein, in blood  
samples drawn at baseline, immediately after a tonic–clonic 
seizure and following 2, 6, and 24 h, NF-L was significantly 
increased after seizures and returned to normal level within 
several hours [66]. Giovannini and co-workers analyzed 
changes in NF-L in SE and drug-resistant epilepsy patients 
and compared them with healthy controls [75]. SE patients 
showed higher serum NF-L versus patients with refractory 
epilepsy and controls without epilepsy. Of note, in patients 
with SE, alterations in serum NF-L showed a stronger correla-
tion with its changes in the CSF, as compared to t-tau protein.  
The increase in NF-L was more prominent in SE, extend-
ing beyond 24 h in refractory/super refractory SE, as well 
as in patients who died within 30 days, or who presented  

Table 3  Alterations of NF-L in biofluids of patients with epilepsy

SS single seizure, CE chronic epilepsy, PSE post-stroke epilepsy, fS focal seizures, TC tonic–clonic, WCE well-controlled epilepsy, DRE drug-
resistant epilepsy, PSE post-stroke epilepsy, GS generalized seizures, pGE primary generalized epilepsy, PE partial epilepsy, GCSE generalized 
convulsive status epilepticus, nS non-specified seizure

Epilepsy type Age (years) Gender, N Fluid Collection phase Response to seizures Ref.

SS, CE, PSE  ~ 53, ~ 51, ~ 72 F = 32, M = 30 Blood Post-ictal Increase (higher in PSE & CE vs 
SS)

[74]

fS, TC 19–59, 19–57 F&M, 89 Blood Inter-ictal Increase (higher in DRE vs WCE) [76]
SE, DRE  ~ 45, ~ 39 F = 14, M = 16

F = 13, M = 17
Blood Post-ictal, 24 h after seizures Increase (higher in SE vs DRE) [75]

PSE  ~ 72 F = 41, M = 49 Blood Ictal, post-ictal, 0 h, 2 h, 
24 h, 48 h, 72 h, 3 months

Increase [70]

Focal or diffuse slowing, GS  ~ 69 F = 10, M = 14 CFS Post-ictal Increase in anti-LGI-1 with epi-
lepsy

[77]

pGE, PE, GCSE, nS  ~ 1.40 F = 52, M = 65 CSF Post-ictal Increase [72]
Febrile seizure, nS  ~ 2 F = 35, M = 43 Blood Post-ictal None response [78]



 D. Negi et al.

1 3

worsening clinical outcomes. It is worth stressing that NF-L 
dynamics correlated with ASM response, duration of treat-
ment, and clinical outcomes, offering a potential readout 
for seizure-related neuronal damage and recovery [75]. An 
increase in NF-L has been also reported in a study compar-
ing drug-resistant with well-controlled epilepsy and healthy 
cohort [76]. Analysis of blood samples drawn during the 
clinical interictal period showed significantly higher levels 
of NF-L in patients with refractory epilepsy.

A comparative analysis of several neuronal and glial pro-
teins in adults with new-onset self-limiting seizures, chronic 
epilepsy, and PSE showed significant differences in NF-L 
between these conditions, with at least 2 years of follow-up 
demonstrating higher NF-L in PSE vs. self-limiting single 
seizure cases, and with overall levels of NF-L in patients 
with chronic epilepsy and PSE exceeding those in patients 
with single seizure episodes [74]. The same group assessed 
alterations in NF-L, tau, GFAP, S100, and neuron-specific 
enolase (NSE) in blood after incidents of symptomatic 
seizures in patients with a stroke leading to PSE [70]. No 
patient showed epilepsy before the ischemic stroke. The 
follow-up time (to death or last medical records review) of 
0–4.5 years revealed a 2-year estimated PSE risk of 5.3%. 
The levels of neuronal and glial proteins in the blood in 
epileptic patients were above the cohort median. However, 
the number of PSE cases in this report was small, warrant-
ing additional studies. Analysis of neuronal proteins (tau, 
Aβ42, and NF-L) in CSF were also carried out in patients 
with anti-leucine-rich glioma-inactivated 1 encephali-
tis (anti-LGI-1), AD, Creutzfeldt-Jakob’s disease, and 
primary psychiatric disorders [77]. The concentration of 
NF-L in AD and anti-LGI-1 encephalitis was comparable 
and higher than that in psychiatric disorders, but lower than 
in Creutzfeldt-Jakob’s disease. In anti-LGI-1 encephalitis 
presenting epilepsy, levels of NF-L were enhanced fur-
ther compared to cases without epilepsy [77]. Exami-
nation of NF-L in CSF of pediatric patients with epilepsy,  
brain tumor, infectious and inflammatory CNS disorders, 
static encephalopathy, movement disorders, miscellaneous 
disorders, and progressive encephalopathy groups with  
comparison to a control group showed that NF-L was higher 
in progressive encephalopathy, epilepsy, infectious and 

inflammatory disorders [72]. Importantly, t-tau, GFAP, and 
NF-L responded differently to these conditions.

It is interesting to note that in young children (6 months 
to 5 years), measurements of serum NF-L associated with 
febrile and epileptic seizures within a few hours after the 
convulsion revealed no difference as compared to age-
matched controls [78]. In multivariable analysis, age was the 
most important predictor of the rise in serum NF-L, followed 
by gender and C reactive protein. Studies of the correla-
tion between NF-L changes with the duration of seizures or 
the time elapsed from seizure onset to blood sampling have 
revealed no interactions [78]. A similar analysis of the phos-
phorylated NF-heavy chain (pNF-H) in children showed that 
prolonged febrile seizures cause a strong increase in serum 
pNF-H, while brief febrile seizures had no effects [79].

Other Neuronal Proteins in Biofluids 
of Epilepsy

Neurogranin and α-synuclein are other two neuronal pro-
teins explored as biomarkers of neurodegenerative diseases. 
Regulation of calmodulin activity in dendritic spines of 
glutamatergic synapses makes neurogranin an important 
molecular switch of synaptic plasticity [80, 81]. Associated 
with neurodegenerative diseases increase in neurogranin 
concentration in CSF and blood has therefore been viewed 
as a specific marker of disruption of synaptic integrity 
and plasticity. A recent report has shown that neurogranin 
changes in biofluids can distinguish epileptic seizures from 
psychogenic non-epileptic seizures (PNES) in adults [82] 
(Table 4). This carefully conducted study excluded from 
analysis patients with infectious disease, dementia, stroke, 
Creutzfeldt-Jacobs’s disease, and brain abscess, as well as 
patients with a history of traumatic brain injury that could 
cause neuronal damage or compromise the integrity of the 
blood–brain barriers. The results of this analysis showed 
that neurogranin levels in patients with epileptic seizures 
(confirmed with EEG data) were significantly higher than 
in PNES and non-epileptic controls [82].

As opposed to neurogranin, α-synuclein is enriched in 
presynaptic terminals of axons, with evidence suggesting 

Table 4  Alterations of neurogranin and α-synuclein of patients with epilepsy

TC tonic–clonic, GS generalized seizure, NG neurogranin, IE intractable epilepsy, NDE newly diagnosed epilepsy, NIE non-intractable epilepsy, 
sGTCS single generalized tonic–clonic seizure, rPS repetitive partial seizure, sPS single partial seizure

Epilepsy type Age (years) Gender, N Fluid Collection phase Response to seizures Ref.

TC, GS < 18 years F = 30, M = 19 Blood Interictal, post-ictal NG: increase [82]
IE, NDE, NIE 

sGTCS, rPS, sPS
17–68 F&M, 67 CSF, serum Post-ictal α-SYN: increase in IE patients [83]

Afebrile seizure ~ 8.9 F = 47, M = 68 Blood Post-ictal α-SYN: increase [84]
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its upregulation in neurons of preclinical models of epilepsy 
[85]. Clinical data show that α-synuclein level is increased  
in serum and CSF in children and adults with a history of sei-
zures, which does not respond to ASM [84, 83]. The results  
of comparative analysis of α-synuclein in serum and CSF of  
various subgroups of patients indicate that it is increased in  
cohorts with intractable epilepsy, whereas there was no dif-
ference in groups of patients with newly diagnosed or non- 
intractable epilepsy. These observations led the authors to  
conclude that the rise of α-synuclein in the serum and CSF  
may assist in the differential diagnosis of intractable epilepsy  
[83]. Choi and co-workers compared profiles of α-synuclein 
and cytokines in serum and exosomes in children with epi-
lepsy and acquired demyelinating disorders of CNS, with  
readouts assessed against healthy age-matched children.  
It was found that like in adults, the concentration of 
α-synuclein and IL-1β were increased in serum and exosomes 
collected within 48 h after seizures or after relapse of neuro-
logical symptoms of autoimmune demyelinating disorders as 
compared to age-matched controls, and correlated with the 
severity of epilepsy [84]. Of note, the level of α-synuclein 
in exosomes is closely related to its level in serum, implying 
that α-synuclein in both serum and exosomes could help in 
predicting the severity of children’s epilepsy.

Release of Neuronal Proteins and Exchange 
Between CSF and Blood

Although the increase of neuronal proteins in biological flu-
ids of patients with neurodegenerative diseases is viewed 
primarily in association with the breakdown of neurons and 
synaptic connections [25, 86], important questions remain 
over mechanisms underlying their changes related to sei-
zures, given the lack of evidence for neurodegeneration in 
most types of epilepsy [87–92]. It is tempting to speculate 
that the bulk of neuronal proteins released during epileptic 
hyperactivity might go through physiological pathways medi-
ating the secretion of neuropeptides, hormones, and trophic 
factors from nerve cells [86, 93–95]. Ample evidence also 
supports the potential involvement of intracellular endosomes 
in breaking out of proteins from neurons, via exosomes of 
endosomal origin as well as through budding and fission of 
the plasma membrane [96–98]. Like in neurodegenerative 
diseases, in chronic epilepsy, protein-containing endosomes 
can become abundant and associate with enhanced autophagy 
and protein secretion pathways [98, 99]. Importantly, the 
production and release of microvesicles can be promoted by 
a strong and persistent rise in intracellular  Ca2+ as well as 
by cell stress response, which are key characteristics of the 
pathobiology of epilepsy [100–102]. The prolonged rise of 
intracellular free  Ca2+ during intense neuronal activity, in 
fact, is required for induction of the physiological release of 

peptides, hormones, and trophic factors from neurons and 
other secretory cells [93–95, 103]. Finally, associated with 
epilepsy enhancement of protein degradation mechanisms 
with release of their fragments in the extracellular space [86, 
99, 104] could also contribute to the kinetic and the extent of 
the variations of neuronal markers in CSF and blood.

It should be noted that in addition to the rate of release 
from hyperactive and damaged neurons, changes in neu-
ronal proteins in CSF and peripheral circulation may 
be also influenced by the speed of their exchange between 
the two compartments, as well as by their degradation 
by extracellular proteases [105–107]. Along with widely 
accepted efflux routes of neuronal proteins from the 
CNS across compromised blood–brain barriers, in epi-
lepsy, they may also escape along the walls of brain arter-
ies and arterioles [106], basement membrane of capillaries 
[108, 109], as well as through glymphatic drainage routes 
[110, 111], which are subject to future research.

Summary and Future Directions

Epilepsy is among the most prevalent comorbidities of 
neurodegenerative diseases. Given the global aging popu-
lation and neurodegenerative diseases on the rise, their 
intersection with epilepsy has become of major research 
and clinical interest. Recent data suggest that the incidents  
of epilepsy in older age and patients with neurodegenera-
tive diseases are widely underrated, mainly due to poor 
screening and subclinical forms of epilepsy. The mount-
ing clinical evidence implies a complex and dynamic 
relationship between these morbidities, with both sub-
clinical and clinical seizures accelerating the progres-
sion and exacerbating outcomes of neurodegenerative  
diseases (Fig. 2).

Throughout this study, we discussed reports of changes 
in neuronal proteins in CSF and blood associated with dif-
ferent types of epilepsy with and without neurodegenera-
tive diseases. Based on the dynamics of neuronal markers 
in fluids and putative release mechanisms of peptides and 
proteins from neurons, as well as on the lack of evidence for 
neuronal degeneration in most types of epilepsy, it is reason-
able to assume that the transient changes of neuronal markers 
in CSF and blood related with self-limiting and tonic-clinic 
seizures could reflect (1) increase in protein metabolism and 
release from hyperactive neurons, (2) vesicular (exosomal) 
discharge from stressed and hyperactive neurons, and (3) sei-
zure-related changes in the rate of neuronal protein exchange 
between CSF and blood. In contrast, the strong and lasting 
increase of NF-L and tau in SE is likely indicate the extent of 
the cellular injury with degeneration and associated breakout 
of neuronal proteins.
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With growing recognition of the prevalence of sub-
clinical and clinical seizures in the most common neu-
rodegenerative diseases and increasing use of neuronal 
protein changes as disease biomarkers, addressing the 
underlying mechanisms and clinical implications are well 
warranted. Combined with studies of the effects of ASM 
on dynamics of neuronal proteins and neurodegenera-
tive process, the elucidation of the key mechanistic and 
translational aspects of neuronal biomarkers shared by 
epilepsy and neurodegenerative disease are likely to set 
us on a course to better diagnosis and therapies of these 
conditions.
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