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Perinatal depression is the most common psychiatric complication of pregnancy, with its detrimental
effects on maternal and infant health widely underrated. There is a pressing need for specific molecular
biomarkers, with pregnancy-related decline in brain-derived neurotrophic factor (BDNF) in the blood
and downregulation of TrkB receptor in the brain reported in clinical and preclinical studies. In this
review, we explore the emerging role of BDNF in reproductive biology and discuss evidence suggesting
its deficiency as a risk factor for perinatal depression. With the increasing evidence for restoration of
serum BDNF levels by antidepressant therapy, the strengthening association of perinatal depression
with deficiency of BDNF supports its potential as a surrogate endpoint for preclinical and clinical
studies.
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Introduction

Pregnancy invokes considerable adjustments in fundamental
physiological processes to ensure fetal development and delivery.
These changes are enabled by a complex interplay of neural and
hormonal mechanisms, which set off in the first trimester of ges-
tation, evolve during the pregnancy, and revert after parturition.
In most cases, functional adjustments associated with pregnancy
remain within physiological limits. Occasionally, however, some
of the changes exceed the range of normal variations, leading to
pathological states [1,2]. Impairments of mental health are
among the most common disease conditions related to preg-
nancy, which are through to be contributed to by alterations
in maternal hormones and their effects on brain mechanisms
[3]. Short-lived mood disturbances, known as ‘baby blues’, which
occur in 30-75% of postpartum women, are thought to be linked
with the dramatic decline in pregnancy hormones, whereas 10—
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15% of new mothers develop clinical depression [3,4]. In rare
cases (1 or 2 in 1000 births), childbirth-related intense neuro-
humoral stress is followed by postpartum psychosis, a medical
emergency warranting critical care [4].

Despite high incidents of perinatal mental disorders, under-
standing of their mechanisms and treatment options remain lim-
ited. Evidence from preclinical and clinical reports suggests that,
in addition to changes in gonad hormones, the odds of perinatal
mental disorders can be influenced by stress hormones, immune
and trophic factors, as well as genetic and environmental effects,
which merit systematic studies [3,5,6]. Over the past decade,
there has been growing interest in the complex interplay of mul-
tiple factors and their interactions, with the view of developing
diagnostic and predictive tests. Given its key role in neuronal
functions and alterations in several neuropsychiatric disorders,
BDNF received much interest as a potential biomarker [7-9].
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Research in preclinical models and clinical studies has shown
serum BDNF deficiency in major depression, with pharmacother-
apy and electroconvulsive therapy (ECT) restoring its levels and
activity [10-14], which correlates with the reversal of depression
symptoms [15,16]. These findings are also of major interest for
perinatal depression, given the symptomatic overlap with major
depressive disorders and rising evidence for a reduction in BDNF
level in the blood during pregnancy [17-23].

In this review, we explore the relationship between BDNF
changes in peripheral circulation with female reproductive func-
tion and postpartum depression. We revisit the key facets of the
biology of BDNF related to pregnancy and analyze clinical and
preclinical data suggesting an association between BDNF defi-
ciency and the disease. With the growing evidence for restora-
tion of serum BDNF by antidepressant therapy, the emerging
connection of depression with deficiency in this neurotrophin
support its potential as a surrogate endpoint for preclinical and
clinical studies of perinatal depression.

BDNF in the central nervous system and periphery
BDNF regulates a wide range of processes and mechanisms linked
with neuronal development, differentiation, and synaptic plas-
ticity, with its biology and functions in the normal and diseased
nervous system extensively reviewed elsewhere [24-26]. In the
central nervous system (CNS), BDNF is secreted mainly by neu-
rons, astrocytes, and microglia [27] (Figure 1). Although typically
considered as a neurotrophin acting on neurons via high-affinity
TrkB receptor and low-affinity neurotrophin receptor p75
(p7SNTR) [28-30], growing evidence suggest that the effects of
BDNF extend beyond neuronal mechanisms and the nervous
system, crossing blood-brain barriers (BBB) and acting at periph-
eral tissue and organs. Infusion of mature BDNF in the brain was
shown to pass rapidly across the BBB into the peripheral circula-
tion, at a rate similar to that of its absorption [31]. Although the
mechanistic details remain unclear, this process appears to be
mediated through saturable transport, is finely regulated, and
might be altered in various diseases [32,33].

Most BDNF in peripheral circulation is derived from the CNS,
with substantial amounts also secreted by peripheral cells,
including megakaryocytes of bone marrow [34], endothelial cells
[35,36], and immune cells (B and T lymphocytes, and mono-
cytes) [37]. Most circulating BDNF is taken up in and stored by
platelets, which release it upon demand [38,39] (Figure 1). The
expression of p75NTR in B lymphocytes suggests paracrine
effects of blood BDNF, with implications for humoral immunity
[40]. BDNF is also present in T helper (Th) 1 and Th2 cells, with
its activation of TrkB receptors of Thl cells stimulating the
release of cytokines (IFNy and IL12). By contrast, the production
of Th2 cytokines (IL4 and IL10) is nonresponsive to BDNF
[41,42]. Overall, these observations suggest that BDNF produced
in CNS can influence a variety of processes and functions at the
periphery, whereas changes in its level in peripheral circulation
can alter neural processes and mechanisms in the brain.

BDNF and female reproductive functions
Analysis of BDNF levels in the blood of different age groups and
genders showed significant variations [43]. In healthy adults,

the concentration of BDNF in serum was higher than in
plasma, with most of it stored in platelets. During aging, BDNF
concentration in the plasma of both men and women
decreases, whereas the amount of BDNF stored in platelets
remains stable. Measurements of BDNF in the plasma of adult
men and women showed that, when matched for the age and
weight, no differences could be detected. By contrast, the BDNF
content in platelets was higher in men, irrespective of weight
[43]. Assessment of BDNF variations during the menstrual cycle
showed that its level in plasma peaks during the follicular and
luteal phases, with concentrations falling during ovulation
[44]. Differences were also reported in platelet BDNF levels
between the first and second half of the menstrual cycle [45].
These alterations have been suggested to facilitate the onset of
pregnancy, as well as the formation of the placenta, through
effects of BDNF on trophoblast cells [46-48]. The expression
of BDNF and TrkB receptors in the ovary, as well as its presence
in the follicular fluid [49] and endometrium of the uterus [50],
support its role in pregnancy and fetal development. Accord-
ingly, reduced BDNF availability in follicular fluid in Val66Met
BDNF gene polymorphisms appears to be associated with infer-
tility and leads to poor outcomes of in vitro fertilization (IVF)
treatment [51].

Although substantial data indicate that BDNF levels in the
blood can be influenced by estrogen activity, the underlying
mechanisms remain elusive. The positive correlation of BDNF
and estradiol concentrations in the blood of nonpregnant
women, with both peaking during the periovulatory period
[52], implies that estrogen can positively regulate the BDNF level
in the blood. Such interpretation agrees with the presence of a
specific sequence homolog of estrogen response element in
BDNF gene, which could mediate the effects of estrogen [53].
Estrogen can also indirectly influence the production of BDNF
via activation of mitogen-activated protein kinase (MAPK) signal-
ing, which promotes BDNF transcription through stimulation of
cAMP-response element-binding protein (CREB) [54]. Regulation
of peripheral BDNF by female gonad hormones is also supported
by reports showing a reduction in its levels in amenorrhoeic
women, whereas hormone replacement therapy has restorative
effects [55,56]. Correlation studies of plasma BDNF with estradiol
and progesterone also showed a positive association, with the
gradual decline in gonad hormones during the onset of meno-
pause linked with a reduction in BDNF activity [55].

The results of preclinical studies support the regulatory role
of female gonad hormones, with BDNF transcription and trans-
lation significantly reduced in the brain of ovariectomized rats
[57]. Given the key role of BDNF in influencing the mecha-
nisms of cognition, memory, and mood [58], alterations in its
level and activity related to variations in gonad hormones could
contribute to subtle changes in mood and cognitive functions
during the menstrual cycle [59,60]. However, with the onset
of pregnancy, the relationship between estrogen and BDNF in
peripheral circulation reverses, with a dramatic rise in blood
estrogen paralleled by a decline in BDNF concentrations (Fig-
ure 1). As discussed below, the reduction in serum BDNF might
contribute to pregnancy-related adjustments in neuronal and
synaptic mechanisms, increasing the odds of developing
depression.
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Brain-derived neurotrophic factor (BDNF) in peripheral circulation and its relationship with changes in stress and gonad hormones, and Patient Health
Questionnaire 9 (PHQ-9) score of depression during pregnancy and early postpartum period. (a) Major cellular sources of peripheral (serum) BDNF. From left
to right: platelets (1-3), B and T cells (1,2) and monocytes, neurons, and microglia (1,2) and endothelium (1-4, endothelial cells of a capillary). (b) Dynamics of
serum cortisol [75], BDNF [76], and estradiol [77] concentrations and their relationship with PHQ-9 scores during pregnancy and after childbirth. PHQ-9 trace
reproduced with permission from [78]. (c) Major players and interactions of BDNF, stress and sex hormones. Arrows indicate the direction of the flow of BDNF,

cortisol, and estradiol. Abbreviations: GH, growth hormone, PI, placental.

BDNF and perinatal depression: Clinical evidence
Analysis of BDNF changes in serum during pregnancy revealed
its significant decline with recovery after childbirth [17,61]. Lon-
gitudinal measurements during the first, second, and third trime-
sters showed lower concentrations of BDNF, with complete
recovery at 4-11 weeks postpartum [17]. During pregnancy,
BDNF level in blood correlate positively with serotonin (5-HT),
and negatively with dehydroepiandrosterone sulfate (DHEAS),
estrogen, progesterone, and cortisol change [61].

Numerous questioners have been used to analyze the relation-
ship between serum BDNF and perinatal depressive symptoms

[20] (Table 1). Most of the reports found a significant association
between the reduction in serum BDNF and risk of developing
depression in pregnancy [18-22], as well as during the early post-
partum period [17,63-66]. A cross-sectional antenatal study
found lower BDNF by the 16th week of pregnancy correlated
with risks of depression, although with no association observed
with symptom intensity [18]. Two follow-up reports also found
a decrease in serum BDNF linked with depression by the 16th
gestational week [22] or earlier [62]. In a longitudinal analysis
during pregnancy and 4-11 weeks postpartum, the association
between BDNF and depression was only significant during the
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TABLE 1

5
Summary of the relationship of BDNF concentration in peripheral circulation and results of depression test in clinical studies”

Subjects  Age range Depression test Applied BDNF Measured  Depression score-BDNF correlation Refs
(N) during (ng/ml) during

81 27-43 MADRS (+), EPDS (+) 1111 1-17 PP Negative [19]
37 299+22 EPDS (+) PP 8.8 PP Negative, BDNF lower versus EPDS (—) [64]
303 285+1.9 EPDS (-) PP 14.3 PP Negative, BDNF higher versus EPDS (+) [64]
36 25+6 BDI (+) PP 1.8 PP Negative, BDNF lower versus BDI (—) [65]
36 25+5 BDI (-) PP 25 PP Negative, BDNF higher versus BDI (+) [65]
139 248+ 4 CES-D (¢) 1l-PP 12-16 I-1ll, PP Negative [17]
40 20-40 EPDS (+) 1I-PP 29 -PP Negative, BDNF lower versus EPDS (-) [61]
40 20-40 EPDS (-) INI-PP 126 I-PP Negative, BDNF higher versus EPDS (+) [61]
29 19-35 MINI (+) PP 2.08 +1.32 PP Negative [21]
161 19-35 MINI (—) PP 2.28 +1.31 PP No correlation [21]
280 18-35 PHQ-9 (+) Il 17.08-24.20 111l Negative, BDNF lower versus PHQ-9 (-) [18]
688 18-35 PHQ-9 (-) 1=l 17.37-25.85 -1l Negative, BDNF higher versus PHQ-9 (+) [18]
982 28.0+6.2 PHQ-9 (¢) 1111 216+6.3 - Negative [62]
58 Not specified APGAR (+) PP 19945 + 74.28 PP Negative, BDNF lower versus APGAR (-) [63]
45 Not specified APGAR (-) PP 2594 + 119.38 PP Negative, BDNF higher versus APGAR (+) [63]
25 29.08 £4.32 EPDI (+) PP 193.56 + 65.04 PP Negative, BDNF lower versus EPDI (-) [67]
93 27.25 £ 5.51 EPDI (-) PP 229.04 +73.41 PP Negative, BDNF higher versus EPDI (+) [67]

@ Tests used for scoring women for depression: APGAR, Appearance, Pulse, Grimace, Activity and Respiration; BDI, Beck’s Depression Inventory; CES-D, Centre for Epidemiological Studies
Depression; EPDI, Edinburgh Postnatal Depression Inventory; EPDS, Edinburgh Postnatal Depression Scale; MADRS, Montgomery—Asberg Depression Rating Scale; MINI, Mini International
Neuropsychiatric Interview; PHQ-9, Patient Health Questionnaire 9. (+) and (-) indicate presence or absence of depression, respectively.

 Roman numerals indicate trimesters during pregnancy; PP, postpartum.

third trimester, with the onset of depression predicted by low
BDNEF level during the second trimester [17]. In addition to these
reports, there were also studies showing weak trends of BDNF
changes in pregnancy with depression [61] or no association
[67] (Table 1).

Results of BDNF measurements after childbirth are consistent
with the association between BDNF deficiency and risk of depres-
sion, with the level of the neurotrophin in the cord blood signif-
icantly lower in mothers with signs of depression compared with
pregnant women without symptoms of depression [66]. Analysis
of BDNF 24-48 h and 6 weeks postpartum also showed reduced
BDNF levels in women with signs of depression [63]. A similar
study collected serum 24-48 h after delivery, with 3 months
follow-up, and showed that, in women who met criteria for post-
partum depression, BDNF was lower compared with those with-
out signs of depression [64]. Based on analysis of the threshold
level of BDNF decline associated with the onset of postpartum
depression, the authors proposed 12.0 ng/ml as a cut-off point
[64]. Gazal and coworkers studied correlation of changes in
BDNF with the severity of depression between 30 and 90 days
postpartum, with BDNF concentrations negatively correlating
with Beck Depression Inventory (BDI) scores [65] (Table 1). There
have been also reports of no association between BDNF levels
and depression at 6 weeks postpartum [68]. Of note, the associa-
tion between depression and BDNF appears to be specific to
mothers, because assessment of BDNF in fathers screened posi-
tive for perinatal depression (paternal) revealed no changes [19].

Given the role of BDNF in placental growth and ~twofold
higher numbers of delivery of low birth-weight (LBW) infants
in Black women, Christian and colleagues investigated the rela-
tionship between BDNF, depressive symptoms, and race [17].
In all tested women, serum BDNF declined from the first through
the third trimester of pregnancy and recovered after childbirth,
with its levels in the blood of Black women exceeding those of

White women during the first trimester, second trimester, and
postpartum period. Importantly, women delivering LBW infants
showed significantly lower levels of serum BDNF during the third
trimester, irrespective of race. Perinatal BDNF deficiency has been
also linked with gestational abnormalities, such as preterm birth
(PTB), intrauterine growth restriction (IUGR), and LBW [17,69].
Whether there is an association between these conditions and
perinatal depression remains to be shown.

BDNF and depression in preclinical models

Animal models have been increasingly used for studies of perina-
tal depression, which not only allow measurements of neuroen-
docrine and behavioral changes, but can also be used for specific
tests to gain mechanistic insights. By combining genetic, phar-
macological, and behavioral studies, it was reported that Val66-
Met SNP homozygote mice with reduced BDNF availability
showed increased anxiety-like behaviors over the prepubertal
period and early adulthood, as well as during the estrus phase
[70]. Analysis of the effects of expressional changes of the TrkB
receptor in the brain of ovariectomized rats with and without
supplementation of the estrogen precursor dehydroepiandros-
terone (DHEA) for 12 weeks revealed that DHEA (and estradiol)
increased TrkB expression and ameliorated depression symptoms
in sucrose preference and locomotor activity tests [56]. Behav-
ioral trials in mice at 28 days postpartum exposed to stress during
their first week of gestation, followed by immunohistochemical
analysis, demonstrated that gestational stress lowered the level
of hippocampal BDNF, without changing TrkB immunostaining
[71]. The expression of the p11 protein, which is controlled by
BDNF, was also decreased in the hippocampus of this model.
In the forced swim, tail suspension and elevated plus-maze para-
digms, Zhang and coworkers reported that, in ovariectomized
adult mice primed in hormone-simulated pregnancy (HSP), with-
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drawal of estradiol benzoate (EB) caused depression-like symp-
toms, an effect that was not observed in mice maintained on
EB [72]. Of note, BrdU staining of the hippocampal dentate area
of EB mice showed enhanced adult neurogenesis in the EB group,
whereas, in estrogen-withdrawal (EW) mice, the number of BrdU
neurons was reduced. In both EW and OVX mice, BDNF expres-
sion was also reduced compared with HSP and control groups
[72]. Another study in EW rats suggested that depression is
linked with enhanced galanin activity, with the expression of
GALR1 (but not GALR2/3) upregulated in the prefrontal cortex
(PFC) [73]. Silencing GALR1 by small interfering (si)RNA injected
bilaterally in PFC ameliorated signs of depression, an effect asso-
ciated with the downregulation of CREB-BDNF expression and
reduction in 5-HT levels in the PFC. These findings imply a com-
plex interplay between BDNF, GALR1, and 5-HT signaling in the
PFC of rats with EW-induced depression [73]. The role of BDNF
and TrkB signaling in the onset of depression is also supported
by the results of repeated restrain experiments in pregnant rats,
showing increased levels of adrenocorticotrophic hormone
(ACTH) and corticosterone in the blood, and a reduction in
BDNF and TrkB expression in the hippocampus [74]. The authors
speculated that a pregnancy-related decrease in BDNF level and
suppression of TrkB signaling might contribute to the develop-
ment of depression-like behavior.

Concluding remarks and outlook

Perinatal depression, which sets off during pregnancy or within
6-8 weeks after childbirth, is the most common cause of the
admission of women to a psychiatric unit. The arrival of the dis-
ease at this crucial time can have detrimental impact on the abil-
ity of mothers to relate, respond, and care for their infants,
thwarting the evolving maternal-infant relationship. Despite
high prevalence, screening for perinatal depression is not part
of routine examinations during pregnancy, to a large extent
because of the lack of rapid and specific tests. The standard diag-
nosis based on questionnaires comes with limited predictive
value and risk of false positives. With high incidents of neglected
cases of perinatal depression and concerns over stigma associated
with diagnosis of mental disorders, there is major need for cost-
effective and high predictive value biomarkers. As discussed
throughout this article, there is increasing clinical and preclinical
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