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Abstract

This work introduces a decision support framework, called Cyber Risk
Optimiser for Smart homeS (CROSS), which advises both smart home users
and smart home service providers on how to select an optimal portfolio of cy-
ber security controls to counteract cyber attacks in a smart home including
traditional cyber attacks and adversarial machine learning attacks. CROSS
is based on a multi-objective bi-level two-stage optimisation. In stage-one
optimisation, the problem is modelled as a multi-leader-follower game that
considers both security and economic objectives, where the provider selects
a security portfolio to protect both itself and its users, while rational attack-
ers target the weakest path. Stage-two optimisation is a Stackelberg security
game that focuses on additional user security controls under the remit of
smart home users. While CROSS can potentially be applied to other similar
use cases, in this paper, our aim is to address threats against artificial intel-
ligence (AI) applications as the use of AI in smart Internet of Things (IoT)
devices introduces new cyber threats to home environments. Specifically, we
have implemented and assessed CROSS in a smart heating use case in a
prototypical AI-enabled IoT environment that combines characteristics and
vulnerabilities currently present on existing commercial off-the-shelf (COTS)
devices, demonstrating the selection of optimal decisions.
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1. Introduction

Devices such as smart speakers, smart thermostats, security cameras
with face recognition, and in the near future, brain-computer interfaces and
elderly care companion robots are all empowered by AI algorithms to offer
competitive advantages over legacy technologies. AI can bring considerable
benefits, including energy efficiency, comfort, and even health. While we all
enjoy these benefits in our domestic lives, these technologies bear significant
risks and AI capabilities adversely affect our smart homes by increasing the
attack surface [1, 2]. In light of this, any provider of an AI service faces the
challenge of determining optimal security controls. Given the proliferation
of attacks against machine learning, the scope of this decision about security
controls is enlarged to include controls against adversarial machine learning
(AdvML).

In this paper, we propose an original decision support system, called
Cyber Risk Optimiser for Smart homeS (CROSS) aimed both at the users
and the smart home providers. CROSS selects an optimal portfolio of tradi-
tional cybersecurity and AdvML controls, henceforth referred to as security
controls, to counteract multi-stage attacks in the smart home supply chain.

CROSS considers the whole defence problem as a two-stage optimisation
problem1. In stage one, the provider selects an optimal security portfolio to
minimize risk and maximize profit, while users decide whether to accept the
service. In stage two, the provider recommends optimal user controls for
extra security, which may require user commitment. Users decide whether
to commit based on their preferences for quality of experience (QoE) and
security.

To the best of our knowledge, no prior work has focused on studying
the optimal security control problem for smart home users, which involves
both the users and the service provider. This problem is significant because
smart home devices, in particular those with AI capabilities, introduce new
cyber security threats to users who cannot plan an optimal defence strategy
alone. Thus, we consider the service provider who plays a significant role in
cybersecurity defence in the smart home environment.

The main contributions and challenges to our work are as follows:

• We solve the provider’s defence problem as a two-stage optimisation:

1Notice there are three optimisations in CROSS, because stage one also includes an
optimisation to determine maximal profit constraints, which are then used in the security
optimisation for the service provider.
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– Stage-one optimisation is modelled as a multi-leader-follower game
that considers both the security risks in a smart home, and the
smart home user preferences. In addition, we provide the max-
imal profit constraints to guarantee the provider’s target profit,
i.e. the provider is willing to provide the service only if the ex-
pected profit from users is not less than the target profit.

– Stage-two optimisation is formulated as a Stackelberg security
game, where the service provider suggests an optimal portfolio
of user controls as an additional layer of security for smart home
users based on their preferences. These controls must be imple-
mented by the users themselves and not by the service provider.

• The two-stage optimisation problem is a non-linear bi-level optimisa-
tion problem which is NP-hard. To solve such a problem, We use the
property of totally unimodular matrices and strong duality to convert
the non-linear bi-level optimisation into a tractable MICP for both
stage-one optimisation and stage-two optimisation. Thanks to the re-
cent advances in mixed-integer optimisation [3, 4], we can efficiently
solve a MICP using existing solvers (e.g. MOSEK version 9.2).

• There is a lack of case studies on control optimisation for smart home
security, including protecting devices that utilise AI technologies. Thus,
we create a realistic use case study of an AI-powered smart radi-
ator valve along with an exhaustive attack graph consisting of all
the required parameters (attack techniques and security controls). We
use such a use case study to assess the performance of the proposed
decision-support system CROSS.

The paper is structured as follows: we review related work in Section
2, covering topics such as security games, security investment and supply
chain, and adversarial machine learning attacks. Section 3 introduces the
system model, including attack graphs and security portfolios. We also pro-
vide a list of symbols in Table 1. In Section 3.3, we present the two-stage
defence problem, along with an example in Section 3.4. We then analyse
the optimality of the two-stage defence problem and present efficient solu-
tions in Section 4. To help readers better understand the two-stage defence
problem, we provide a case study in Section 5, which models a prototypical
AI-enabled Internet of Things (IoT) environment. Finally, we conclude our
paper in Section 6.
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2. Related Work

2.1. Security Games

Stackelberg game-theoretical approaches have been widely applied for
solving the security challenges, such as public safety (e.g. ARMOR [5] and
PROTECT [6]), wildlife protection (e.g. PAWS [7]), and particularly cyber-
security defence [8–15]. In such games, the defender acts first as a leader
who anticipates the best response of attackers and therefore commits to an
optimal defence strategy that maximises the defender’s payoff. Next, the
followers (attackers of potentially different types) observe the implemented
defence strategy and find the optimal attacking strategy to maximise their
payoffs accordingly. Moreover, in these security challenges, the defender al-
ways has limited security resources or budgets to protect all possible targets
or vulnerabilities at all times. In other words, the defender also wants to
minimise the expenditure on an optimal defence strategy. Thus these games
can be formulated as a multi-objective bi-level optimisation problem. One
highly relevant work to this paper is [8], where the cybersecurity defence
problem is modelled as a multi-objective bi-level Stackelberg game with a
probabilistic attack graph.

Further work in [10] provides a mathematical framework including both
a Markov chain and attack graphs to reason about time resilience for cy-
bersecurity and optimal defence. The models in [11, 12] have similar game-
theoretical approaches, but they only consider single-step attacks rather
than multi-step attack scenarios. Nevertheless, in all these papers, the au-
thors have not investigated the smart home supply chain problem that we
address in this paper. Moreover, they have not studied multiple attacker
types as well as multiple users to be protected by the recommended opti-
mal security portfolio. Other research that uses such security games to tackle
cybersecurity challenges includes: [14] that studies the optimal resource allo-
cation problem for packet selection and inspection to detect potential cyber-
threats; [16] that introduces a game-theoretic automatic intrusion response
engine; [17] that proposes another game-theoretic approach for determining
IT security investment levels, and [15] that uses a security game approach
to find the optimal number of honeypots to be placed in computer networks.

When a defender needs to face multiple attacker types, the security
games belong to a special class, known as Bayesian Stackelberg games. Such
a game may arise in a cybersecurity challenge because, for example, the de-
fender has uncertain knowledge about the attacker types who possess varying
capabilities to compromise the defender. Several solutions have been pro-
posed to solve a general Bayesian Stackelberg game efficiently [18–20]. More
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importantly, a recent study [9] applies the properties of totally unimodu-
lar matrices and strong duality to convert a cybersecurity game (Bayesian
Stackelberg game) into a tractable MICP. Such a scalable approach can
efficiently solve a cybersecurity game over large attacker graphs to find op-
timal security portfolios. A more detailed review of game theory applied to
security challenges is in [21].

Additionally, in [22], a network interdiction game between a vendor and
attacker in a drone delivery system was analysed, incorporating Prospect
Theory to capture subjective decision-making. However, the network inter-
diction is commonly used to analyse security games where the goal is to
disrupt or prevent the flow of resources through a network. In most cyber-
security problems it is not realistic to completely interdict an attack path.
Our approach focuses hence on mitigating security risks by implementing
security controls to reduce the success probability of attackers.

2.2. Security Investment and Supply Chain

The general problem of cybersecurity investment has been studied in a
handful of papers. One of the initial works is in [23] that the model considers
both the costs and benefits in the optimal security investment. As mentioned
in the previous section, the authors in [17] propose a game-theoretical ap-
proach for a firm determining IT security investment levels and compare it
to a decision theory approach. Further work [13] uses financial engineering
tools in IT security planning. Since then, there have been a number of stud-
ies [8–12, 24, 25] to address both the theoretical and practical cybersecurity
investment problems. In addition, [26] investigates the behavioural biases of
human decision-making in security investment problems.

The latest studies [27–29] are now focusing on security investment for
supply chains: [27] linearises the classic exponential function of the breach
probability to select optimal safeguards for Industry 4.0 supply chains; [28]
develops an efficient solution to simultaneously mitigate both the direct and
indirect propagated risks in a multi-tier supply chain; and [29] studies the
risk propagation problem with a two-echelon supply chain.

2.3. Adversarial machine learning (AdvML) attacks

Machine learning (ML) techniques have had huge success in a wide range
of applications we use today. The growing number of vulnerabilities in ML
introduces significant cybersecurity concerns, which have been studied by a
number of the AdvML literature, e.g. [30–39]. In [35], the authors first let
well-performed neural networks misclassify an image by applying a pertur-
bation. Later, researchers also discovered vulnerabilities in automatic speech
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recognition and voice controllable systems [36, 37]. Work in [38] showed how
to let a sign classifier identify stop signs as speed limits by physically adding
a crafted sticker to the stop sign. Since these studies have drawn a lot of
attention, there has been a significant number of surveys on security eval-
uation to AdvML [31, 32, 39] as well as defensive techniques [30, 33]. Most
recently, the MITRE association has published a knowledge base of adver-
sarial tactics, techniques, and real-world case studies for security groups
and academic researchers, called MITRE ATLAS [34]. These bespoke, to
AI systems, attacks are complementary to those in the MITRE ATT&CK
framework [40].

The AdvML techniques can be characterised with respect to the system
operation stages [30]. These attack techniques applied to the system’s train-
ing stage will attempt to adversely change or acquire the training data or
the ML model itself. Further, instead of tampering with the training data
or the model, the attack techniques applied to the system testing/inference
stage focus on generating adversarial examples as inputs to evade the clas-
sification. The consequences of a successful AdvML technique can be char-
acterised as the violations of integrity (data misclassification or confidence
reduction), availability (unacceptable speed or unusable outputs), confiden-
tiality (stolen model or data), and privacy (stolen personal identifiable in-
formation) [30, 31].

Similarly, the defence techniques, against AdvML, are also characterised
with respect to the system operation stages [30, 33]. In the training stages,
the defences against poisoning attacks include Data Sanitisation which re-
moves examples causing high error rates, and Robust Statistics which uses
constraints and regularisation to reduce potential distortion of the model.
In the testing/inference stages, several techniques improve the model ro-
bustness, such as Adversarial Training, Gradient Masking, Defensive Distil-
lation, Ensemble Methods, Feature Squeezing, and Reformers/Autoencoders.
In addition, it also includes randomisation mechanisms, such as Differential
Privacy. However, these defence techniques often cause performance over-
head and impacts on model accuracy [33]. We use direct and indirect costs to
evaluate these overheads and impacts for the defender choosing the security
portfolio. Moreover, the MITRE ATLAS summarises possible traditional
controls (e.g. staff training, antimalware, etc.) that can also help mitigate
the AdvML attacks.
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3. System Model

The CROSS model consists of three types of players: (i) the provider of
an AI service or product (we use these terms interchangeably), available to
smart home users. The provider (who acts as the defender) seeks to min-
imise its product’s security risks while economically maximising its profit.
(ii) smart home users – the potential clients of the provider; and (iii) an at-
tacker representing possible threat actors exploiting the product to achieve
adversarial goals. We also refer to this player as the attackers due to the
different attacker types studied. We propose a novel method to support the
provider as well as each user with optimal decisions necessary in the presence
of a cyber threat.

attack graph with
specific baseline
probabilities for
attack type 1

attack graph with
specific baseline
probabilities for
attack type i

attack graph with
specific baseline
probabilities for
attack type N

(S)ource
(T)arget

Figure 1: Modelling threat scenario using attack graphs.

Figure 1 illustrates the kind of threat scenario this paper addresses. Node
S represents the source, i.e. the initial state before any attack is launched.
Nodes C1 to CK are K possible consequences when the attacker has suc-
cessfully exploited the service, e.g. violations of integrity, availability, con-
fidentiality, or privacy [30]. Each will cause the corresponding loss to the
provider. Node T is an auxiliary sink node and does not represent any priv-
ileged state that could be compromised by the attacker. The consequence
nodes lead to this auxiliary sink node, allowing us to have a complete path
from the Source to the Target in the attack graph.

In addition, we consider N attacker types and, for each attacker type i,
we denote the probability of this type occurring by ai. This probability can
be drawn from either some threat intelligence or publicly available reports
on cyber attacks against smart homes. For example, the NCSC ’s Cyber
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Security Breaches Survey 2022 [41] provides general data on the types of
cyber-attacks faced by UK organisations, as well as their impact and re-
sponses. Moreover, the consumer protection group Which reported, using a
honeypot-based experiment, that a smart home could be exposed to more
than 12,000 hacking or unknown scanning attacks in a week [42]. In the
first half of 2021, cybersecurity company Kaspersky detected 1.5 billion IoT
attacks, partly attributing an increase over the previous year to the prolifer-
ation of smart home devices [43]. However, these works may not be detailed
enough for the service providers in the proposed decision support system.
The service providers should conduct their surveys to gain a more accurate
understanding of the probability of attack types against smart homes.

In Figure 1, we use rectangles to represent attack graphs, each graph
consisting of attack paths the attacker can traverse toward exploiting the
assets of the provider or the user. In Section 3.1, we will describe these at-
tack graphs. An example of an attack graph is also illustrated in Section 3.4.
Although different attacker types share the same attack graph, each type i
has a specific baseline success probability to exploit underlying vulnerabil-
ities when there is no defensive control to protect the product as a result
of its unique attacking capabilities. For example, the attacker could be an
expert in launching attacks against the AI applications of the smart home
services, thus having a higher success rate for those exploitation actions (i.e.
edges in the attack graph) that represent AdvML techniques. The highest
probability that attacker type i can successfully perform a whole sequence
of exploitation actions, which forms a complete attack path leading to con-
sequence node Ck, is denoted by ri,k. A formal definition of ri,k is later
given in (19). Notice that a successful attacker type can lead to multiple
consequences and one consequence can be caused by more than one attacker
type.

As a result, a consequence may cause a loss to the provider. Here, we
denote Rk as the highest success probability that the attacker can cause
consequence k, i.e. Rk = maxi{ri,k}. The security risk associated with con-
sequence Ck is defined as the product of Rk and the impacts Lossk (refereed
as the direct loss), defined in Equation (5). Such attacks may propagate to
users, where the user’s loss is defined in Equation (7).

We present a list of symbols in Table 1.
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Table 1: List of symbols

Symbol Description

Functions and Sets

Ak set of attacker types that can cause consequence k;
C set of all security controls;
C(e) subset of controls that are effective on edge e;
E set of edges;
L(c) the set of intensity levels of control c;
T set of target nodes
V set of nodes;

h, t functions that returns “head” and “tail” of an edge;

Constants

ai occurrence probability of attacker type i;
BD, BID direct and indirect cost budgets for the provider;
Costcl direct cost of control c at level l for the provider,;
IndirectCostcl indirect cost of control c at level l for the provider,;
IndCostclm indirect cost for the user type m of control c at level l;
K total number of consequences;
Lossk direct loss of the provider if consequence k happens;
N total number of attacker types;
M total number of user types;
l control level l;
πe(i) base-line probability of edge e being exploited by attacker type i;
pecl effectiveness of control c at level l on edge e;
pm premium paid (per user) by user type m;
Pm total profit gained from user type m;

P target profit of the provider;
Um the number of user type m who sign up with the offered service;
uI,m user m tolerance thresholds for indirect costs;
uUL,m user m tolerance thresholds for security risks;
userLosskm loss of user type m if consequence k happens;

Variables

c control c;
S the source – the initial state before any attack is launched;
s source node in an attack graph corresponding to an attack type;
Ck consequence k;
T auxiliary sink target node;
Ti,k target node of attacker type i causing consequence k;
x security portfolio x;
xcl binary indicator of control c at level l;
yik,e binary indicator whether attacker type i selects edge e to form an attack

path from s to the target node Ti,k.
D(x), ID(x) direct and indirect cost of security portfolio x for the provider;
Im(x) total indirect cost of portfolio x for user type m;
L(x) security risk for the provider given x;
Payoffm

user payoff of user type m;
Payoffm

provider payoff of the provider w.r.t. user type m;
pe(x) overall probability of a successful attack step associated with edge e

given x;
pi,e(x) overall probability of a successful attack step associated with edge e and

attacker type i, given security portfolio x;
ρik,e dual variable for edge e w.r.t. attacker type i targeting consequence k;
ri,k(x) highest probability that attacker type i will reach consequence Ck given

x;
Rk(x) highest probability that consequence k has been breached given x;
ULm(x) security risks for user type m, given x;
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3.1. Attack graphs

We use probabilistic attack graphs to model the security risk of the
provider and the users. Nodes in an attack graph represent the privilege
states of the attacker, and every edge represents an exploitation action which
allows the attacker to escalate his privilege state. Each edge is associated
with an exploitation risk (e.g. due to underlying vulnerabilities or lack of se-
curity controls), and the success rate of an exploitation action is determined
by both the effectiveness of applied security controls and the underlying vul-
nerabilities. In a privilege state, the attacker can select from one of the next
exploitation actions corresponding to directed edges leaving the state.

Such a probabilistic attack graph is defined as a directed multi-graphG =
(V, E , h, t, p, s, T ): V denotes the set of nodes; E denotes the set of edges; h, t
are functions that return head and tail of an edge; p is a function returning
success rate of exploiting actions (later see Equation (2)); and s, T are the
source node and the set of target nodes. The source node s in an attack
graph is the state where the corresponding attack type initialises attacks.
For example, node 0 in Figure 3(b). The target nodes T represent specific
systems or resources (i.e. privileged states) that an attacker may attempt to
compromise or gain access to. Once these targets are compromised, it leads
to the corresponding consequences. Please notice these target nodes T are
different from the (unique) sink node T , where all consequence nodes lead
to. For example, in the example illustrated in Figure 3, once attacker type
1 reaches node 3, it can cause consequence 1 and consequence 2. These two
consequence nodes connect to the sink node T .

3.2. Security portfolios

The provider seeks the optimal security portfolio to protect the smart
home product and users. A security portfolio includes traditional defensive
controls to mitigate security risks for both the product and users. For exam-
ple, access control, account management, patch management, antimalware
and anti-phishing software, physical security, etc. They can be found in any
traditional cybersecurity framework (e.g. CIS Controls [44]). In addition, we
consider novel defensive controls to mitigate, in particular, AdvML attacks.
For example, robust statistics, robust training and differential privacy, etc.
They are based on studies in [39] and ATLAS2 proposed by the MITRE
Association [34]. In Section 5, we will instantiate these controls as part of

2a knowledge base of AdvML tactics, techniques, and real-world case studies published
by the MITRE association.
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our case study and explain how CROSS selects them in a way that optimises
the payoff of the provider and the user in the different stages implemented.

The set of controls is denoted by C, and each control can be implemented
at different intensity levels signifying the degree of risk reduction. We let L(c)
denote the set of intensity levels of control c and a security portfolio can be
expressed using binary indicators xcl, where c ∈ C denotes a security control
(traditional or AdvML) and l ∈ L(c) denotes its intensity level.

If control c at intensity level l is selected, then xcl = 1; otherwise xcl = 0.
Since at most one intensity level of a security control can be implemented,
as this level represents a unique implementation of the control, the sum of
all levels of a control is less than or equal to one. We thus express a security
portfolio as follows:

xcl ∈ {0, 1}, ∀c ∈ C, l ∈ L(c);
∑

l∈L(c)

xcl ≤ 1,∀c ∈ C. (1)

A control can affect multiple edges of the attack graph, meaning that it can
stop an attack at different stages of it, and an edge can be augmented by
multiple controls, which mitigate security risk at this edge in a combined
way. We thus let C(e) denote the subset of effective controls on edge e. By
effective, we refer to controls that can be applied to this edge, positively
impacting this edge by reducing its security risk.

We let πe ≤ 1 represent the baseline success probability of the attacker
on unprotected edge e (i.e. when no control is applied on e). Implemented
security controls will further reduce the probability of a successful attack
step associated with that edge, and the attacker must defeat all implemented
controls to succeed finally. This is based on the assumption of independence
for security controls. This assumption leads to the multiplicative form in
equation (2) due to the distinct control mechanisms of different security
controls. However, for controls with a degree of correlation, the equation
can be extended to incorporate them by introducing a new control. Such an
assumption has been justified in [8]. Please refer to [8] for details. Thus, the
overall probability of a successful attack step associated with edge e, when
the provider is defended by the security portfolio x, is denoted by

pe(x) = πe
∏

c∈C(e),l∈L(c)

(peclxcl + (1− xcl)), (2)

where pecl is the effectiveness of control c at level l on edge e. Please note
that baseline probabilities and effectiveness of controls can be estimated
using threat intelligence datasets and surveyed data. For example, effec-
tiveness coefficients are estimated in [45], and [46] provides a formulation
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to estimate the baseline probabilities using Common Vulnerability Scoring
System (CVSS).

Since security controls are not cost-free, the provider has to consider:
(i) the monetary investment required to implement and maintain a security
portfolio; and (ii) the negative impacts on the provider when implementing
this portfolio, e.g. patch management may lead to significant downtime for
the provider. The direct and indirect costs of the provider are defined as:

D(x) =
∑

c∈C,l∈L(c)

xclCostcl, (3)

ID(x) =
∑

c∈C,l∈L(c)

xclIndirectCostcl, (4)

where Costcl and IndirectCostcl quantify the direct cost and the indirect
cost of control c at level l, respectively.

Recall that a successful attacker may cause multiple consequences to
both the provider and the user. We quantify the provider’s security risks
associated with these consequences denoted by L(x), and derived as follows:

L(x) =
K∑
k=1

Rk(x)× Lossk. (5)

Recall that Rk(x) represents the highest probability of the attacker caus-
ing consequence k out of K consequences given an implemented security
portfolio x, and Lossk quantifies a direct loss associated with consequence
k.

3.3. Two-stage Defence Problem

We consider the defence problem as a two-stage optimisation problem
illustrated in Figure 2. In stage one, the problem is modelled as a multi-
leader-follower game.

The provider is the single leader deciding the optimal security portfolio
that minimises the security risk L(x) subject to the budget constraints as
well as the maximal profit constraints.

The attackers and the users are both followers who do not directly com-
pete with each other. Although the attackers will attack both the provider
and the users, the users do not select any security control in stage one but
will decide whether to accept the service based on the control selection of
the provider. In stage two, the optimisation will select controls for the users
to implement.
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The (rational) attacker will attack the weakest path from the source to
the target to maximise its success probability based on its capabilities to
penetrate the defence. In addition, a security portfolio can mitigate prop-
agated security risks for the users; however, as mentioned, it also impacts
the user’s QoE. Some users may prefer good QoE; whereas others may want
a high-security level. Thus the users need to decide whether to accept the
service according to the security portfolio. The provider cooperates with the
users to find a security portfolio that satisfies that user, so as to maximise
the profits from the users.

Attackers
(multiple types)

Service Provider
Users

(multiple types)

Attack Techniques
(traditional & AdvML)

Attack Techniques
(traditional & AdvML)

Stage one: security 
portfolio

Stage one: accept service

Stage two: recommend 
user controls

Figure 2: A multi-leader-follower game.

In stage-two optimisation, CROSS will recommend an optimal portfolio
of user controls as an extra layer of security for the users. Apart from the
provider controls found in stage-one optimisation, these user controls are
security countermeasures that require the user’s commitment to applying.
In estimating the effectiveness of such a control, we need to take into account
the likelihood that the user will simply not follow the recommendation.

3.4. An example

We now provide an example to demonstrate the concepts of the frame-
work and to help the reader to understand the two-stage optimisation pro-
cess 3. The scenario is shown in Figure 3 (a), where each rectangle represents

3For the notations used in this section, please refer to Table 1. Model formal details
are provided in Section 4.
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the attack graph in Figure 3 (b). We assume two attacker types with occur-
rence probability a1 = 0.6 and a2 = 0.4. In the example, attacker type 1 can
cause two consequences C1 and C2 (node 3 of type 1 user can lead to node
C1 and C2); while attacker type 2 can only cause consequence C2 (node 3 of
type 2 user only leads to node C2). Suppose each control has a direct cost
of 1 and an indirect cost of 1. For the provider, consequence C1 has a direct
loss Loss1 = 20, and consequence C2 has a direct loss Loss2 = 10.

attack graph with
specific baseline
probabilities for
attack type 1

attack graph with
specific baseline
probabilities for
attack type 2

(S)ource

Part (a)

(T)arget

0

1 2

3

c1consequence 1

consequence 2

c2

c3, c4

c5 c4

c6

Part (b)

Figure 3: (a): Example model; (b): Attack graph of the example

Suppose attack path 0 → 2 → 3 includes attack steps that exploit one
or more AI functionalities of the provided service, while the other edges are
associated with conventional cyber-attacks. Let’s assume that attacker type
1 is an expert in performing attacks on the AI service offered by the provider.
Thus, attacker type 1 has a higher baseline probability to exploit the edges
associated with these attacks successfully: for attacker type 1 we hence set
baseline probabilities π0→2(1) = 0.9, π2→3(1) = 0.9 and πe(1) = 0.5 for all
other edges e. Attacker type 2 is assumed to be an overall expert of both
conventional cyber-attacks and attacks on the AI service: we set the baseline
probabilities πe(2) = 0.8 for all edges. We use the notations Low = 0.7,
Medium = 0.5, and High = 0.2 to represent three fixed levels of control
effectiveness. The effectiveness of controls is in Table 2:

Table 2: Effectiveness of controls

Controls c1 c2 c3 c4 c5 c6
Effectiveness Medium Medium High High Low Low

While minimising the service security risk, the provider also aims to
maximise profits. Thus, the provider wants as many users as possible to use
the service.
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Recall that a user decides whether to accept the service based on both
the security risk and QoE: we let uI,m, uUL,m denote the user type m tol-
erance thresholds for indirect costs (reduction of QoE) and security risks.
Furthermore, we set the indirect cost for each control equal to be 1 for each
user type and the user loss of consequence 1 and 2 to be 10 and 20, respec-
tively, for each user type. Notice that the loss of the user is different from
the direct loss of the provider.

Let’s consider two types of users:

• user type one prefers good QoE to high security: we let uI,1 = 2.
There are U1 = 10 type one users, and each pays an average premium
of p1 = 10, hence the total possible profit is P1 = 100.

• user type two prefers high security to good QoE: we set uUL,2 = 7.5.
Similarly, there are U2 = 10 type two users, and each pays an average
premium of p2 = 10, hence the total possible profit is P2 = 100 too.

Below we illustrate the two-stage optimisation for this particular exam-
ple. The optimisation below is mathematically justified later on in Section
4.

3.4.1. Stage-one optimisation – Pareto-front solutions

We set the target profit for the provider to be 100, P = 100, i.e. the
provider is willing to provide the service only if the profit is greater than
100. Hence the provider needs to satisfy at least one user type to provide
his service.

To compute the Pareto-front, we set the provider’s indirect budget BID

to be large and vary the direct cost budget BD in the range from 1 to 6.
The Pareto-front is presented in Figure 4 (a)-(c).

When BD = 1, the optimisation for the provider selects the portfolio [c4],
and the impact on QoE of both user types is 1. Hence, user type 1 is satisfied.
However, due to a high-security risk, user type 2 is not satisfied, resulting
in a total profit for the provider of 100. When the direct budget increases
to 2 (BD = 2), the optimal portfolio is [c4, c6], which further reduces the
security risks. In this case, user type 2 becomes satisfied as the security risk
is now less than the threshold, resulting in a total profit of 200. Next, when
the direct budget is larger (BD ≥ 3), the selected optimal portfolio is [c1, c4,
c6], which minimises the security risk but introduces a high impact on QoE.
User type 1 becomes not satisfied, and the total profit reduces back to 100.
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Figure 4: (a)-(c): Pareto-front for stage-one optimisation; (d): Pareto-front for stage-two
optimisation.

3.4.2. Stage-two optimisation

We now consider stage-two optimisation when stage-one optimisation
has selected portfolio [c1, c4, c6]. In this case, only user type 2 is satisfied,
resulting in a total profit of 100.

We consider six user controls: uc1 and uc2 on edge 0 → 3, uc3 and uc4
on edge 1 → 3, and uc5 and uc6 one edge 2 → 3. Please notice that these
controls are not shown on the edges in Figure 3(b). Each control has a direct
and an indirect cost equal to 1, and the effectiveness of user controls is in
Table 3:

Table 3: Effectiveness of user controls

Controls uc1 uc2 uc3 uc4 uc5 uc6
Effectiveness Medium Low Medium Low Medium Low

For user type 2 who prefers high security to good QoE, we set a larger
user indirect cost budget, where BI,2 = 6. To compute the Pareto-front
solutions, we let the direct costs for each user be in the range of 1 to 6.
The impacts on QoE and the loss for user types one and two are presented
in Figure 4 (d). When user direct budget BD,2 = 1, 2, the optimal security
portfolios are [uc1] and [uc1, uc3], respectively. Next, with a larger direct
cost budget, BD,2 = 3, the user type 2 who prefers high security has a
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more secure portfolio [uc1, uc2, uc3] to further reduce security risks. When
BD,2 ≥ 4, the optimal security portfolio is [uc1, uc2, uc3, uc5].

4. Optimality Analysis

In this section, we present the optimality analysis. Apart from minimising
the security risk, the provider also wants to maximise the profit from the
users. Thus, let’s first focus on the Stackelberg game between the provider
and the different user types. The result leads to a system of constraints
that ensure the maximal profit from the users. Next, we solve stage-one
optimisation to find an optimal security portfolio for the provider, given the
maximal profit constraints. Finally, we solve stage-two optimisation to find
an optimal security portfolio for the users.

4.1. Stackelberg game between the users and the provider

The provider’s goal of maximal profit can be modelled as a Stackelberg
game between the provider and the users, without considering the attacker.
The provider is the leader who first selects a security portfolio that reduces
the security risks while affecting the user’s QoE. The users are followers who
will decide whether to accept the service according to their preferences for
security risks and QoE, which are determined by the implemented security
portfolio.

Let’s distinguish all user types based on their preferences. Let M be the
total number of user types. The overall impacts of a security portfolio x on
the user’s QoE, which represents the user’s indirect cost experienced by the
user type m, are defined as follows:

Im(x) =
∑

c∈C,l∈L(c)

xclIndCostclm, (6)

where IndCostclm is the user indirect cost (impacts on QoE) imposed to
user type m from the selection of control c at implementation level l.

Moreover, if the attacker has successfully exploited the provider, these
attacks can propagate to the users. We express the type m user’s security
risks as follows:

ULm(x) =
K∑
k=1

Rk(x)× userLosskm. (7)

where userLosskm quantifies the loss for user m when consequence k occurs.
Note that userLosskm = 0, if the attacks cannot propagate to user type m
by exploiting consequence k.
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The equations above define a user preference in terms of the impacts
on QoE and how much security risk to tolerate. To model this the user’s
decision-making challenge, recall uI,m and uUL,m are the thresholds which
are the highest indirect cost and security risks that user type m is willing
to tolerate:

Im(x) ≤ uI,m, (8)

ULm(x) ≤ uUL,m. (9)

These thresholds should be decided based on the user’s preference: a user
type m who prefers good QoE will have a low threshold uI,m, and a user
type who prefers a low-security risk will have a low threshold uUL,m.

While using the service, user typem has a positive payoff Payoffm
user(x) >

0 if and only if both (8) and (9) hold, i.e. user type m accepts the security
risks and can tolerate the impacts on QoE. Otherwise, user type m has a
negative payoff. If the number of user type m who sign up with the offered
service is denoted by Um, and the provider gains an average of pm service
premium per user, then the total payoff of the provider is Pm = Um × pm
from user type m. If user type m rejects the service (i.e. at least one of (8)
and (9) does not hold), the payoffs of that user type and the provider are
zero.

Let Payoffm
provider(x) denote the payoff of the provider gained from user

type m. If user type m has a positive payoff (i.e. user type m accepts the
offered service), then Payoffm

provider(x) = Pm; otherwise Payoffm
provider(x) = 0,

i.e. no gain.
Here the objective of the provider is to find an optimal security portfolio

that maximises the sum of payoffs:

max
x

M∑
m=1

Payoffm
provider(x), s.t.: (1). (10)

Note that the maximisation here acts as a condition later in stage-one op-
timisation to guarantee the maximal profit for the provider. The security
risks and other objectives will be explicitly addressed in Section 4.2.

The provider aims to maximise his payoff. We let binary indicators tm
for m = 1, . . . ,M : tm = 1 indicate whether user type m will accept the
offered service; otherwise tm = 0. This payoff maximisation problem can be
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expressed as follows:

max
x,t

M∑
m=1

tm × Pm, (11)

s.t.: (1),

(Im(x) ≤ uI,m + (1− tm)× σ, (12)

ULm(x) ≤ uUL,m + (1− tm)× σ), ∀m = 1, . . . ,M. (13)

where σ > 0 is a large number.
For user type m, constrains (12) and (13) are equivalent to (8) and (9)

only if tm = 1; otherwise, constrains (12) and (13) are always satisfied. Also
if tm = 1, then (8) and (9) must be satisfied. In other words, tm = 1 ensures
that user type m will accept the offered service.

Next, we convert the maximisation above into a system of maximal profit
constraints. Let P > 0 be the provider’s target, i.e. the provider is willing
to provide the service only if the profit can be greater than or equal to the
target P . The objective function can be expressed as follows

∃tm,m = 1, . . . ,M :

M∑
m=1

tm × Pm ≥ P , (14)

and (1), ((12), (13), ∀m = 1, . . . ,M) hold. Later, in stage-one optimisation,
we use these maximal profit constraints to guarantee an optimal security
portfolio with at least P profit.

Remark 1. Notice that if no user accepts the service, it means that the
provider will not make any profit from the users, because no user is satisfied
with the QoE or the security risk. In such a scenario, the service provider
should re-evaluate the service it provides or the survey data on user prefer-
ences.

4.2. Stage-one Optimisation

The last section focused on the Stackelberg game between only the
provider and the users. Here we add the attacker to address the stage-one
defence problem of finding an optimal security portfolio for the provider.

Recall a consequence can be caused by multiple attacker types, and
Rk(x) denotes the highest probability of causing consequence k given an
implemented security portfolio x. We let Ak denote the set of all attacker
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types that can cause consequence k. Thus Rk(x) = maxi∈Ak
{ri,k(x)}, or

equivalently:

Rk(x) = min
τk

τk, s.t.: τk ≥ ri,k(x), ∀i ∈ Ak. (15)

where τk is an auxiliary variable.
Stage-one optimisation is as follows:

min
x,t

L(x), (16)

s.t.: (1), ((12), (13), ∀m = 1, . . . ,M), (14),

D(x) ≤ BD; ID(x) ≤ BID, (17)

Rk(x) ≥ ri,k(x), ∀i ∈ Ak, k = 1, . . . ,K. (18)

Recall (1) represents a security portfolio, and (12), (13) and (14) are maximal
profit constraints that ensure there is at least P profit for the provider.
Moreover, BD and BID are the budgets for direct costs and indirect costs.
Constraint (17) ensures that the selected security portfolio does not exceed
budgets. Finally, (18) is transformed from (15).

4.3. Solving Stage-one Optimisation

Recall ri,k(x) represents the highest probability that the attacker type i
will reach consequence Ck, which can be explicitly expressed as follows:

ri,k(x) = max
ωs→Ti,k

ai ×
∏

e∈ωs→Ti,k
,c∈C(e),l∈L(c)

πe(i)(peclxcl + 1− xcl), (19)

where ai is the occurrence probability of attacker type i, πe(i) is the baseline
success probability of attacker type i on edge e, and Ti,k ∈ T is the target
node in the attack graph of attacker type i causing consequence Ck, and
ωs→Ti,k

is a path from the source s to Ti,k.
Note that (19) is a non-linear maximisation problem. Here we give a

high-level summary of how to linearise and dualise this problem as presented
in [8]. We first translate the optimisation variable ωs→Ti,k

into new binary
variables yik,e ∈ {0, 1} for e ∈ E . For each edge e, a binary variable yik,e
represents whether the attacker type i selects that edge to form an attack
path. Equation (19) can be equivalently expressed as follows:

ri,k(x) = max
yik,e,e∈E

ai
∏
e∈E

(pi,e(x)yik,e + 1− yik,e), (20)

pi,e(x) = πe(i)
∏

c∈C(e),l∈L(c)

(peclxcl + 1− xcl), (21)
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subject to the linear flow conversion constraints and the binary constraints.
Please refer to Lemma 1 in [8]. Note that the flow conversion constraints
will ensure that the attack path is from the source node s to the target node
Ti,k.

The logarithm function, log(x), is strictly monotone for x > 0. Thus we
can convert the product in (20) into a sum:

log(ri,k(x)) = log(ai) + max
yik,e,e∈E

∑
e∈E

log(pi,e(x)yik,e + 1− yik,e). (22)

As yik,e is a binary variable: log(pi,e(x)yik,e + 1− yik,e) = 0 if yik,e = 0; else
if yik,e = 1, then log(pi,e(x)yik,e + 1 − yik,e) = log(pi,e(x)). Thus, the sum
can be further reduced to

log(ri,k(x)) = log(ai) + max
yik,e,e∈E

∑
e∈E

yik,e log(pi,e(x)). (23)

Similarly, log(pi,e(x)) can be translated into a linear function:

log(pi,e(x)) = log(πe(i)) +
∑

c∈C(e),l∈L(c)

xcl log(pecl), (24)

Because of Lemma 2 (totally unimodular matrices) in [8], the maximisa-
tion problem in (23) can be relaxed to a linear programming (LP) in which
the binary constraints (i.e. yik,e ∈ {0, 1}) are equivalent to yik,e ≥ 0 for all
e ∈ E .

Next, following [8], we can dualise the maximisation problem into a min-
imisation problem using strong duality in LP:

log(ri,k(x)) = log(ai) + min
ρik

(ρik,s − ρik,Ti,k
), (25)

subject to

ρik,t(e) − ρik,h(e) ≥
∑

c∈C(e),l∈L(c)

log(pecl)xcl + log(πe(i)), ∀e ∈ E . (26)

where ρik is a vector of dual variables for the attacker type i targeting
consequence k maximisation problem. The detailed conversions can be found
in [8].

Thus, constraint (18) is equivalent to

log(Rk(x))− log(ai) ≥ min
ρik

{ρik,s − ρik,Ti,k
: (26) holds} (27)
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for all i ∈ Ak, and k = 1, . . . ,K. This can be further relaxed to

∃ρik : log(Rk(x))− log(ai) ≥ ρik,s − ρik,Ti,k
, (28)

and (26) holds, ∀i ∈ Ak, k = 1, . . . ,K.
Next, we convert the problem into a standard MICP. Let zk = log(Rk(x))+

log(Lossk). Then the objective function can be expressed as a sum of expo-
nential functions:

L(x) =

K∑
k=1

Rk(x)× Lossk =

K∑
k=1

exp(zk). (29)

Definition 1. The exponential cone is a convex subset of R3 [47]:

Kexp = cl{(x1, x2, x3) : x1 ≥ x2 exp(x3/x2), x2 > 0}. (30)

Let λk, for k = 1, . . . ,K, be optimisation variables. Then, we can exactly
convert the problem into a MICP with exponential cones:

min
x,{ρik,i∈Ak,k=1,...,K},λ,z,t

K∑
k=1

λk, (31)

s.t.: (1), ((12), (13)∗, ∀m = 1, . . . ,M), (14), (17),

(zk − log(Lossk)− log(ai) ≥ ρik,s − ρik,Ti,k
, (32)

(26), ∀i ∈ Ak), ∀k = 1, . . . ,K,

(λk, 1, zk) ∈ Kexp, ∀k = 1, . . . ,K. (33)

Proposition 1. In (13)*, Rk(x) are replaced by λk/Lossk for k = 1, . . . ,K.

Proof. The conic constraint (33) is equivalent to the inequality λk ≥ exp(zk) =
Rk × Lossk. Thus, we have λk − vk = Rk × Lossk where vk ≥ 0 is a slack
variable. In (13), for user type m and tm = 1, the inequality constraint∑K

k=1Rk(x)× userLosskm ≤ uUL,m is equivalent to

K∑
k=1

λk/Lossk × userLosskm ≤ uUL,m +

K∑
k=1

vk/Lossk × userLosskm.

Thus, if a tighter inequality constraint
∑K

k=1 λk/Lossk × userLosskm ≤
uUL,m holds, then

∑K
k=1Rk×userLossk ≤ uUL,m also holds. Note that (13)

always holds if tm = 0.
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Furthermore, the proof of Proposition 2 later shows that an optimal so-
lution must have v∗k = 0 for all k = 1, . . . ,K. Thus,

∑K
k=1Rk×userLossk ≤

uUL,m and
∑K

k=1 λk/Lossk × userLosskm ≤ uUL,m are equivalent in the
defence problem.

Proposition 2. The conic constraint (33) is equivalent to the inequality
λk ≥ exp(zk). Minimising

∑K
k=1 λk subject to the conic constraints is equiv-

alent to minimise
∑K

k=1 exp(zk).

Proof. The inequality λk ≥ exp(zk) is equivalent to λk−vk = exp(zk) where
vk ≥ 0 is the slack variable, which is the same as in Proposition 1. As a
result, we have min

∑K
k=1 λk = min(

∑K
k=1 exp(zi)+vk). Since a minimisation

solution must have v∗k = 0, we have λ∗
k = exp(z∗k). Finally, since for all k,

λk ≥ exp(zk), we have min
∑K

k=1 λk = min
∑K

k=1 exp(zk).

The provider must be able to address multiple attacker types. In stage-
one optimisation, ai denotes the probability that the attacker is of type i.
The defence problem considers both the success probability ri,k with the
occurrence probability ai associated with an attacker of type i when finding
an optimal security portfolio. This is motivated by considering the case of
a powerful attacker type who is highly likely to exploit the provider suc-
cessfully. However, the provider may be less likely to face such a powerful
attacker type, i.e. a low ai.

If the provider is interested in the worst-case scenario, we can let ai =
1/N for all i = 1, . . . , N . In that case, the optimisation will focus on those
attacker types with the highest success probability.

4.4. Stage-two Optimisation

While stage-one optimisation focuses on the provider, stage-two optimi-
sation selects optimal portfolios of user controls to provide each user type
with an extra layer of security. These user controls need to be implemented
by the user, not the provider.

One may argue about combining the two stages into one single optimi-
sation. In such an optimisation, the optimal security portfolio would then
include both types of controls, i.e. the provider and user controls. However,
the provider cannot force the users to implement these user controls. If a
non-cooperative user refuses to implement the recommended user controls,
the whole security portfolio determined in the single optimisation scenario
becomes not optimal, resulting in increased security risks. For this reason,
we split the problem into two stages: stage-one optimisation finds the default
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optimal portfolio for the provider itself and all user types. Next, for each
user type, stage-two optimisation seeks an optimal security portfolio of user
controls to help further improve security for that user type.

Since the following variables in stage-two optimisation are similar to
those in stage-one optimisation, we do not repeat them in Table 1.

4.5. Solving Stage-two optimisation

First, let binary variables xcl express a portfolio of user controls: xcl = 1
indicates user control c at level l is selected; otherwise xcl = 0. The set of
user controls is denoted by C.

Note that stage-two optimisation focuses on further reducing propagated
security risks to the users. Hence, we only consider those consequences that
can propagate security risks to the users, and let K denote the set of those
consequences. For example, we have three possible consequences (C1, C2

and C3) considered in stage-one optimisation, and only consequence C2 may
propagate risks to the users. Note that all user types face the same set of
possible consequences. Then K = {C2}. In other words, userLosskm > 0 for
k ∈ K.

Similarly, we let ri,k(x;x) be the highest success probability associated to
attacker type i given the provider security portfolio x, expressed as follows:

ri,k(x;x) = max
ωs→Ti,k

ai
∏

e∈ωs→Ti,k
,c∈C,l∈L(c)

πe(i;x)× (peclxcl + 1− xcl) (34)

where πe(i;x) represents the baseline success probability of attacker type i
on edge e given the security portfolio x, and pecl is the effectiveness of control
c at level l on edge e. Thus, the highest probability to cause consequence
Ck ∈ K is denoted as Rk(x;x) = maxi∈Ak

{ri,k(x;x)}.
Because of varying preferences for security and QoE, user types have

different budgets for user controls. Next, we let BD,m and BI,m denote the
direct cost budget and the indirect cost budget for user type m.

Notice that the indirect cost budget BI,m is the threshold of the highest
impacts on QoE user type m will tolerate when adding user controls. It
depends on the applied security portfolio found in stage-one optimisation

Thus, the stage-two optimisation problem for user type m is as follows:
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min
x

ULm(x) =
∑
k∈K

Rk(x;x)× userLosskm, (35)

s.t.: xcl ∈ {0, 1},∀c ∈ C, l ∈ L(c);
∑

l∈L(c)

xcl ≤ 1, ∀c ∈ C, (36)

∑
c∈C,l∈L(c)

xclCostclm ≤ BD,m;
∑

c∈C,l∈L(c)

xclInCostclm ≤ BI,m; (37)

Rk(x;x) ≥ ri,k(x;x), ∀i ∈ Ak, k ∈ K. (38)

where (36) represents a security portfolio of user controls, (37) ensures the
direct and indirect budgets for user type m are not exceeded, and (38) is
converted from Rk(x;x) = maxi∈Ak

{ri,k(x;x)}.
Next, we convert the problem into a MICP. Here we only provide a

sketch of the conversions because stage-two optimisation is similar to stage-
one optimisation. Using strong duality and totally unimodular matrices,
we transform the maximisation problem (38) into a minimisation problem.
Then we convert the non-linear optimisation into a tractable MICP with
exponential cone constraints, which is expressed as follows:

min
x,{ρik,i∈Ak,k∈K},λ,z

∑
k∈K

λk, (39)

s.t.: (36), (37); (40)

(λk, 1, zk) ∈ Kexp,∀k ∈ K, (41)

(zk − log(userLosskm)− log(ai) ≥ ρik,s − ρik,Ti,k
, (42)

ρik,t(e) − ρik,h(e) ≥
∑

c∈C(e),l∈L(c)

log(pecl)xcl+

log(πe(i;x)),∀e ∈ E), ∀i ∈ Ak, k ∈ K, (43)

where zk = log(Rk(x;x))+ log(userLosskm) and λk are auxiliary variables,
and ρik are dual variables.

5. Case Study

This case study models a prototypical AI-enabled Internet of Things
(IoT) environment that combines characteristics and vulnerabilities cur-
rently present on existing commercial off-the-shelf devices. The purpose of
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Figure 5: Configuration of AI-enabled smart heating.

this case study is twofold: (i) to assess the performance and recommenda-
tions of CROSS to the provider of an AI service and (ii) to shed light on the
trade-offs emerging when protecting AI services deployed in smart homes
from not only traditional cyber attacks but also AdvML ones, which can be
available to the attacker when the traditional security controls have been
bypassed. In this use case, we focus on the user side; hence we ignore several
threats and controls which are more specific to the enterprise security of the
provider.

The provider is a manufacturer/seller of an AI-enabled heating tech-
nology for smart homes. Their product is a self-learning thermostat (SLT)
coupled with smart radiator valves (SRV). These devices were manufactured
to offer an individual, room-by-room heating control, by operating in con-
junction with a thermostat kit, and they can be easily managed through
a smartphone application. The provider’s objective is to design a security
control strategy that mitigates the associated cybersecurity risks while max-
imising financial profit. Figure 5 illustrates the scenario modelled.

The product is able to learn the user’s temperature preferences in dif-
ferent rooms and automatically adjust the target temperature in each one
(O7) based on whether they are present or not at home (I1b) and other con-
text (I2), such as time of day and energy price. The training of the machine
learning models of SLT, as well as firmware updates, require connection to
the manufacturer’s cloud (A3, A4), but a subset of smart features, such as
the human presence detection in each room happens on the SRV.

Based on this scenario, we have developed a simple attack graph (Fig-
ure 6), taking into account known vulnerabilities in similar commercial
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off-the-shelf devices. Table 4 presents the attack steps used in the attack
graph. Please note that SP represents the service provider and O1 rep-
resent the direct actuation of the smart radiator valve, which turns the
valve on or off. Node 0 represents the source when the system operates
normally (nor). Node 1 is the state where the home router (HR) has been
exploited. Edge 0 → 1 represents several possible attack actions, includ-
ing BRUTE HR, AUTH HR, and SE HR. Nodes 6 and 7 represent
integrity breaches (int): node 6 is an integrity breach on the cloud and
7 on the SRV. Edge 1 → 6 combines several attack actions forming a
ML poisoning attack path: IDOR SLT, PUB MAT, SE MC, INF API,
and POISON ML. Edge 1 → 7 represents two possible attack actions:
DREB SLT, and DREB SRV. Nodes 5 and 4 are the privilege states
where the provider’s and the SRV’s availability have been breached (ava).
Edge 0 → 4 combines several BT (Bluetooth) attack actions forming a BT
attack path: BT SLT, BT SN or BT SM. Moreover, edge 0 → 5 rep-
resents a DoS (Denial of Service) attack to MC i.e. DOS MC. Once the
provider has been breached, the security risk can propagate to the device
(i.e. edge 6 → 7 and 5 → 4). Node 2 represents a privilege state where
the SLT has been exploited through a BT attack (edge 0 → 2). Next,
two attack paths, insider attack and Evasion-ML attack, lead to node 3
where the provider’s confidentiality has been breached (con). Evasion-ML at-
tack is formed by multiple attack actions, including PUB MAT, SE MC,
INF API, REP MOD, and ATT INF. Possible security controls, includ-
ing both traditional and AdvML for these attacks are added in Figure 6;
details of their costs and effectiveness are in Table 5. Notice that Ed-U and
2FA-U are user controls, which should only be selected in stage two optimi-
sation. Since we assume the direct budget of the provider is large later in
stage-one optimisation (see Section 5.1), we omit the direct cost of controls.
The indirect costs of controls for the provider and the user are quantified in
a range of VL(VeryLow), L(Low), M(Medium), H(High), VH(VeryHigh),
representing costs 1, 2, 3, 4, 5, respectively. Similarly, the effectiveness
has five levels: V L(V eryLow) = 0.9, L(Low) = 0.7, M(Medium) = 0.5,
H(High) = 0.3, and V H(V eryHigh) = 0.1.

5.1. Stage-one Optimisation

Here we consider a single attacker type (i.e. a1 = 1) who can cause all five
possible consequences (see Figure 6). Moreover, we consider one user type 1
who prefers good QoE to a low-security risk (i.e. a large uUL,1). Notice that
the provider must satisfy user type 1.
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Figure 6: case study – attack graph.

The provider’s direct losses with respect to consequence C1 to C5 are 4,
2, 8, 15, 6, respectively. These values are educated guesses, which are meant
to reflect the idea that if the service provider experiences a compromise, it
would result in a large number of users being affected and therefore incurring
large losses for the service provider, and relatively small losses for the indi-
vidual user. These values are used to illustrate the optimisation solutions. In
practice, these values could be obtained through a survey conducted by the
service provider. As previously noted, there are several examples of surveys,
such as the NCSC ’s survey on the UK’s Cyber Security Breaches in 2022
[41], Which’s report on smart home cybersecurity, and Kaspersky ’s report
on IoT attacks. Nonetheless, the service providers should perform their own
surveys based on their specific services and users.
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Table 4: Attack Actions

Attack Description Attack Description

ATT INF Already knowing the model, the
attacker uses the inference API
to try to derive the most likely
current value of human presence
with an attribute inference at-
tack

AUTH HR Due to improper restriction
of excessive authentication at-
tempts, an attacker in range
can recover the PIN and access
the network (e.g., CVE-2021-
20635).

BRUTE HR Brute force attack for gaining
access to home WiFi network.

BT SLT Discover Bluetooth SLT devices
in the vicinity that should nor-
mally be undiscoverable (e.g.,
CVE-2020-15802). Known more
widely as BLURtooth attack.

BT SM The Bluesmacking attack uses
the L2CAP layer to transfer an
oversized packet to a Bluetooth
device for the purpose of de-
nial of service. (e.g., CVE-2006-
3146)

BT SN The Bluesnarfing attack in-
volves exploiting the OBEX
protocol to transfer information
from Bluetooth devices.

DREB SLT DNS Rebinding attack exploit-
ing SLT: Expose API via inter-
nal network with no authenti-
cation. Then, interact with the
API to alter target tempera-
tures on SLT (e.g., CVE-2018-
11315).

DREB SRV DNS Rebinding attack exploit-
ing SRV: Expose API via inter-
nal network with no authenti-
cation. Then, interact with the
API to alter target tempera-
tures on SRV (e.g., CVE-2018-
11315).

DOS MC A conventional denial of ser-
vice attack on the servers of the
Provider.

IDOR SLT Exploit system’s insecure di-
rect object references vulnera-
bility allowing user-supplied in-
put to access objects directly
(e.g., CVE-2020-8791).

INF API Identify and access inference
API provided to craft and test
different adversarial examples.

POISON ML Data poisoning attack at the
server so as to affect all users of
an AI device.

PUB MAT Search for publicly available
material, such as whitepapers
and publications on algorithms
used by the developers with the
aim to understand the AI engine
employed.

REP MOD By repeatedly querying the in-
ference API, an attacker can
replicate the machine learning
model as shown by [48].

SE MC Social engineering attacks tar-
geting access on the servers of
the Provider.

SE HR Social engineering attack tar-
geting access on the User’s home
router.
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Table 5: Costs and effectiveness of security controls.

Control Parameters Descriptions Control Parameters Descriptions

Security Controls – Parameters = (IndirectCostcl, IndCostcl,1, Effectiveness)

(Ed-S,

1)

(VL, 0,
L)

Staff training on protection
against social engineering at-
tacks delivered once per year.
Its effectiveness is found to drop
noticeably after the first six
months [49].

(Ed-S,

2)

(M, 0, M) Staff training on protection
against social engineering
attacks delivered every four
months, which is the point up
to which staff are still found to
be as effective at spotting at-
tacks as just after the previous
training iteration [49].

(Ed-U,

1) (user
control)

(0, VL ,
VL)

Low-commitment security
awareness activity recom-
mended to the users, for
example in the form of a video
[50]

(Ed-U,

2) (user
control)

(0, L, L) High-commitment security
training recommended to the
users, for example in the form
of a game [51].

(2FA-S,

1)

(L, 0, H) Standard two-Factor Authenti-
cation (2FA) for the provider’s
staff, for example through mo-
bile text message or app.

(2FA-S,

2)

(H, 0,
VH)

Advanced 2FA for the
provider’s staff, e.g. physi-
cally unclonable function based
two-factor authentication [52].

(2FA-U,

1) (user
control)

(0, M, H) Standard two-Factor Authenti-
cation (2FA) for the user access
to the SLT and SRV, for ex-
ample through mobile text mes-
sage or app.

(2FA-U,

2) (user
control)

(0, VH,

VH)
Advanced 2FA for the user ac-
cess to the SLT and SRV, e.g.
physically unclonable function
based two-factor authentication
[52].

(Pa-S,

1)

(L, VL,
L)

Patching policy of long provi-
sioning time (e.g. 30 days) to
minimise strain on company re-
sources, but with increased risk
of attacks prior to patch de-
ployment and associated repu-
tational damage [53].

(Pa-S,

2)

(M, L, M) Patching policy of short provi-
sioning time (e.g. 10 days) to
minimise risk of attacks prior to
patch deployment and associ-
ated reputational damage, but
at the cost of increased strain
on company resources [53].

(FnT, 1) (L, 0, M) Stateful firewall for network
traffic filtering.

(FnT, 2) (M, 0, H) Advanced firewall, e.g. allowing
detection of intrafirewall policy
anomaly rules [54].

(DoS, 1) (L, 0, M) IoT DoS mitigation for the
provider’s servers, using low-
cost deployment, such as as IoT
Honeypot-based [55].

(DoS, 2) (M, 0, H) Advanced IoT DoS mitigation
for the provider’s servers, e.g.
IoT-Middelware [56] or SDN
[57].

(DLP-strat,

1)

(L, 0, M) Data loss prevention strategy
prioritising insider threat man-
agement [58].

Adversarial Machine Learning Controls– Parameters = (IndirectCostcl, IndCostcl,1, Effectiveness)

(RoS, 1) (L, L, M) AI Robust Statistics that use
constraints and regularisation
techniques to reduce poten-
tial distortions of the learning
model caused by poisoned data
[30].

(RoI, 1) (L, L, M) Robust Improvement includ-
ing techniques such as “Ad-
versarial Training”, “Gradient
Masking”, “Defensive Distil-
lation”, “Ensemble Method”,
“Feature Squeezing”, and “Re-
formers/Autoencoders” [30].

(DiP, 1) (H, M, M) Differential privacy [30]. (PuB, 1) (M, 0, L) Detailed restrictions on pub-
lications, limiting information
to primarily high-level descrip-
tions of datasets and AI models
and techniques.

(PuB, 2) (H, 0, M) Organisation-wide ban on pub-
lication of datasets and AI
models and techniques.
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To study the Pareto-front solutions, we will assume the direct budget of
the provider is large, and we will vary the indirect budget and the threshold
of the highest indirect cost (BID, uI,1) for the provider and user type 1 in
the range of 0 to 30. We also assume the baseline probability of each edge
to be 0.9. Below, we present some significant solutions on the Pareto-front:

• When the indirect budget the threshold are small, i.e. (BID, uI,1) = (3, 3),
the optimisation will first protect those consequences with a high direct loss,
i.e. C4: SP=int and C3: SP=con. The optimal portfolio consists of controls
(Ed-S, 1) and (2FA-S, 1), resulting in the security risk of 17.53 with
R1 −R5=[0.81, 0.9, 0.57, 0.17, 0.90]. So far, consequences C4: SP=int and
C3: SP=con have been protected by effective controls.

• When (BID, uI,1) = (8, 8), the optimal portfolio adds controls (Pa-S, 1)

and (DoS, 1), resulting in the security risk of 8.76 with R1−R5=[0.41, 0.45,
0.28, 0.09, 0.45]. Control (Pa-S, 1) and (DoS, 1) can mitigate potential
attacks on BT, DREB and DoS attacks. So far, every consequence has been
protected by at least one control.

• As the indirect budget threshold increases up to (BID, uI,1) = (16, 16),
the optimal portfolio upgrades the existing control to a high level and also
adds AdvML controls. For example, at (BID, uI,1) = (16, 16), the security
portfolio is (Ed-S, 1), (2FA-S, 2), (FnT, 2),(Pa-S, 2), (RoI, 1), (DoS,
2), which reduces the security risk to 4.56 with R1 − R5=[0.41, 0.45, 0.14,
0.028, 0.081].

• As the indirect budget and the threshold further increase, more controls
are added to the security portfolio. At (BID, uI,1) = (30, 30), the security
portfolio includes all the provider controls with the highest intensity level,
which results in the security risk of 3.25 with R1 − R5=[0.41, 0.45, 0.03,
0.004, 0.08].

5.2. Stage-two optimisation

In stage two, the provider can select a portfolio of user controls to provide
the user with an extra layer of security. Suppose, in stage-one optimisation,
the indirect budget and the threshold are (BID, uI,1) = (26, 15). The optimal
security portfolio is (Ed-S, 2), (2FA-S, 2), (FnT, 2),(Pa-S, 2), (RoI,
1), (DoS, 2), (DiP, 1), (RoS, 1), (DLP-strat, 1), resulting in a security
risk of 3.28 with R1 −R5=[0.41, 0.45, 0.025, 0.0051, 0.081]. Moreover, I1 =
9 < uI,1. Thus, we have BI,1 = 6 for stage-two optimisation.
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Suppose, for example, both user controls Ed-U and 2FA-U have direct-
cost 0, i.e. the user does not need to pay for these two user controls, and the
user’s loss with respect to consequences C1 and C2 are both 5. Consequences
C3 to C5 only impact the service provider and are therefore not taken into
account in the second stage optimisation. In stage-two optimisation, the
provider will recommend user controls (Ed-U, 2) and (2FA-U, 1) resulting
in the security risk of 2.09 with R1 −R2=[0.2835, 0.135].

6. Conclusion

We proposed a novel decision support system to help service providers
and users select optimal portfolios of security controls to counteract cyber
attacks in the smart home supply chain. The proposed system considers the
important roles of both the service provider and the users in determining
optimal security portfolios and utilises a multi-objective bi-level two-stage
optimization approach, where the first stage focuses on the role of the service
provider in securing devices, and the second stage focuses on the user. The
system also incorporates financial and security constraints, and different user
and attacker profiles. We demonstrated the effectiveness of the proposed
system through a case study of an AI-powered smart radiator valve.

We noticed that the optimisation results depend on the parameters of
the user and the attacker profiles. Therefore, inaccurate data may result
in sub-optimal security portfolios. In addition, our assumption of complete
rationality of both users and attackers may not always hold in real-world
scenarios, as users may deviate from the best response and undermine the
optimal defence strategy. Moreover, partially rational attackers may affect
the survey data and reduce the effectiveness of the optimal security portfo-
lio against rational attackers. Furthermore, our game assumes cooperative
users. However, in reality, some users may not cooperate and may even de-
activate controls proposed by the provider. Future work should address this
behaviour and consider the inclusion of a regulator or governmental body to
ensure security standards are met. Thus, future work will focus on validat-
ing the framework in real-world scenarios experiments, collecting data, and
testing the system in different smart home environments and devices, with
different rationality of user and attacker profiles, to evaluate its performance,
adaptability, and robustness. The objective is to improve the feasibility and
usefulness of the proposed decision support system in real-world smart home
supply chains.
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