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a b s t r a c t 

This work introduces a decision support framework, called C yber R isk O ptimiser for S mart home S 

(CROSS), which advises both smart home users and smart home service providers on how to select an op- 

timal portfolio of cyber security controls to counteract cyber attacks in a smart home including traditional 

cyber attacks and adversarial machine learning attacks. CROSS is based on a multi-objective bi-level two- 

stage optimisation. In stage-one optimisation, the problem is modelled as a multi-leader-follower game 

that considers both security and economic objectives, where the provider selects a security portfolio to 

protect both itself and its users, while rational attackers target the weakest path. Stage-two optimisation 

is a Stackelberg security game that focuses on additional user security controls under the remit of smart 

home users. While CROSS can potentially be applied to other similar use cases, in this paper, our aim is to 

address threats against artificial intelligence (AI) applications as the use of AI in smart Internet of Things 

(IoT) devices introduces new cyber threats to home environments. Specifically, we have implemented and 

assessed CROSS in a smart heating use case in a prototypical AI-enabled IoT environment that combines 

characteristics and vulnerabilities currently present on existing commercial off-the-shelf (COTS) devices, 

demonstrating the selection of optimal decisions. 

© 2023 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Devices such as smart speakers, smart thermostats, security 

ameras with face recognition, and in the near future, brain- 

omputer interfaces and elderly care companion robots are all em- 

owered by AI algorithms to offer competitive advantages over 

egacy technologies. AI can bring considerable benefits, including 

nergy efficiency, comfort, and even health. While we all enjoy 

hese benefits in our domestic lives, these technologies bear sig- 

ificant risks and AI capabilities adversely affect our smart homes 

y increasing the attack surface ( Bispham et al., 2019; Yan et al., 

022 ). In light of this, any provider of an AI service faces the chal-

enge of determining optimal security controls. Given the prolifera- 

ion of attacks against machine learning, the scope of this decision 

bout security controls is enlarged to include controls against ad- 

ersarial machine learning (AdvML). 

In this paper, we propose an original decision support system, 

alled C yber R isk O ptimiser for S mart home S (CROSS) aimed both 
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t the users and the smart home providers. CROSS selects an op- 

imal portfolio of traditional cybersecurity and AdvML controls, 

enceforth referred to as security controls, to counteract multi- 

tage attacks in the smart home supply chain. 

CROSS considers the whole defence problem as a two-stage 

ptimisation problem 

1 . In stage one, the provider selects an op- 

imal security portfolio to minimize risk and maximize profit, 

hile users decide whether to accept the service. In stage two, 

he provider recommends optimal user controls for extra secu- 

ity, which may require user commitment. Users decide whether to 

ommit based on their preferences for quality of experience (QoE) 

nd security. 

To the best of our knowledge, no prior work has focused on 

tudying the optimal security control problem for smart home 

sers, which involves both the users and the service provider. This 

roblem is significant because smart home devices, in particular 

hose with AI capabilities, introduce new cyber security threats to 

sers who cannot plan an optimal defence strategy alone. Thus, we 
1 Notice there are three optimisations in CROSS, because stage one also includes 

n optimisation to determine maximal profit constraints, which are then used in 

he security optimisation for the service provider. 
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onsider the service provider who plays a significant role in cyber- 

ecurity defence in the smart home environment. 

The main contributions and challenges to our work are as fol- 

ows: 

• We solve the provider’s defence problem as a two-stage opti- 

misation: 

• Stage-one optimisation is modelled as a multi-leader- 

follower game that considers both the security risks in a 

smart home, and the smart home user preferences. In ad- 

dition, we provide the maximal profit constraints to guaran- 

tee the provider’s target profit, i.e. the provider is willing to 

provide the service only if the expected profit from users is 

not less than the target profit. 

• Stage-two optimisation is formulated as a Stackelberg secu- 

rity game, where the service provider suggests an optimal 

portfolio of user controls as an additional layer of security 

for smart home users based on their preferences. These con- 

trols must be implemented by the users themselves and not 

by the service provider. 

• The two-stage optimisation problem is a non-linear bi-level op- 

timisation problem which is NP-hard. To solve such a problem, 

we use the property of totally unimodular matrices and strong 

duality to convert the non-linear bi-level optimisation into a 

tractable MICP for both stage-one optimisation and stage-two 

optimisation. Thanks to the recent advances in mixed-integer 

optimisation ( Lubin, 2017; Morán R et al., 2012 ), we can effi- 

ciently solve a MICP using existing solvers (e.g. MOSEK version 

9.2). 

• There is a lack of case studies on control optimisation for smart 

home security, including protecting devices that utilise AI tech- 

nologies. Thus, we create a realistic use case study of an AI- 

powered smart radiator valve along with an exhaustive attack 

graph consisting of all the required parameters (attack tech- 

niques and security controls). We use such a use case study to 

assess the performance of the proposed decision-support sys- 

tem CROSS. 

The paper is structured as follows: we review related work 

n Section 2 , covering topics such as security games, security in- 

estment and supply chain, and adversarial machine learning at- 

acks. Section 3 introduces the system model, including attack 

raphs and security portfolios. We also provide a list of sym- 

ols in Table 1 . In Section 3.3 , we present the two-stage defence

roblem, along with an example in Section 3.4 . We then anal- 

se the optimality of the two-stage defence problem and present 

fficient solutions in Section 4 . To help readers better under- 

tand the two-stage defence problem, we provide a case study 

n Section 5 , which models a prototypical AI-enabled Internet 

f Things (IoT) environment. Finally, we conclude our paper in 

ection 6 . 

. Related work 

.1. Security games 

Stackelberg game-theoretical approaches have been widely ap- 

lied for solving the security challenges, such as public safety 

e.g. ARMOR ( Pita et al., 2008 ) and PROTECT ( Shieh et al., 2012 )),

ildlife protection (e.g. PAWS ( Fang et al., 2016 )), and particularly 

ybersecurity defence ( Durkota et al., 2015; Fielder et al., 2016; 

houzani et al., 2019; 2016; Sawik, 2013; Van ̌ek et al., 2012; Zhang 

nd Malacaria, 2021; 2022 ). In such games, the defender acts first 

s a leader who anticipates the best response of attackers and 

herefore commits to an optimal defence strategy that maximises 

he defender’s payoff. Next, the followers (attackers of potentially 
2 
ifferent types) observe the implemented defence strategy and find 

he optimal attacking strategy to maximise their payoffs accord- 

ngly. Moreover, in these security challenges, the defender always 

as limited security resources or budgets to protect all possible tar- 

ets or vulnerabilities at all times. In other words, the defender 

lso wants to minimise the expenditure on an optimal defence 

trategy. Thus these games can be formulated as a multi-objective 

i-level optimisation problem. One highly relevant work to this 

aper is Khouzani et al. (2019) , where the cybersecurity defence 

roblem is modelled as a multi-objective bi-level Stackelberg game 

ith a probabilistic attack graph. 

Further work in Zhang and Malacaria (2022) provides a 

athematical framework including both a Markov chain and 

ttack graphs to reason about time resilience for cybersecu- 

ity and optimal defence. The models in Fielder et al. (2016) ; 

houzani et al. (2016) have similar game-theoretical approaches, 

ut they only consider single-step attacks rather than multi- 

tep attack scenarios. Nevertheless, in all these papers, the au- 

hors have not investigated the smart home supply chain prob- 

em that we address in this paper. Moreover, they have not stud- 

ed multiple attacker types as well as multiple users to be pro- 

ected by the recommended optimal security portfolio. Other re- 

earch that uses such security games to tackle cybersecurity chal- 

enges includes: Van ̌ek et al. (2012) that studies the optimal 

esource allocation problem for packet selection and inspection 

o detect potential cyber-threats; Zonouz et al. (2013) that in- 

roduces a game-theoretic automatic intrusion response engine; 

avusoglu et al. (2008) that proposes another game-theoretic 

pproach for determining IT security investment levels, and 

urkota et al. (2015) that uses a security game approach to find the 

ptimal number of honeypots to be placed in computer networks. 

When a defender needs to face multiple attacker types, the se- 

urity games belong to a special class, known as Bayesian Stack- 

lberg games . Such a game may arise in a cybersecurity challenge 

ecause, for example, the defender has uncertain knowledge about 

he attacker types who possess varying capabilities to compro- 

ise the defender. Several solutions have been proposed to solve 

 general Bayesian Stackelberg game efficiently ( Jain et al., 2011; 

aruchuri et al., 2008; Yin and Tambe, 2012 ). More importantly, 

 recent study ( Zhang and Malacaria, 2021 ) applies the proper- 

ies of totally unimodular matrices and strong duality to convert 

 cybersecurity game (Bayesian Stackelberg game) into a tractable 

ICP. Such a scalable approach can efficiently solve a cybersecurity 

ame over large attacker graphs to find optimal security portfolios. 

 more detailed review of game theory applied to security chal- 

enges is in Do et al. (2017) . 

Additionally, in Sanjab et al. (2017) , a network interdiction 

ame between a vendor and attacker in a drone delivery system 

as analysed, incorporating Prospect Theory to capture subjective 

ecision-making. However, the network interdiction is commonly 

sed to analyse security games where the goal is to disrupt or pre- 

ent the flow of resources through a network. In most cybersecu- 

ity problems it is not realistic to completely interdict an attack 

ath. Our approach focuses hence on mitigating security risks by 

mplementing security controls to reduce the success probability 

f attackers. 

.2. Security investment and supply chain 

The general problem of cybersecurity investment has been 

tudied in a handful of papers. One of the initial works is in 

ordon and Loeb (2002) that the model considers both the costs 

nd benefits in the optimal security investment. As mentioned in 

he previous section, the authors in Cavusoglu et al. (2008) propose 

 game-theoretical approach for a firm determining IT security in- 

estment levels and compare it to a decision theory approach. Fur- 
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her work ( Sawik, 2013 ) uses financial engineering tools in IT se- 

urity planning. Since then, there have been a number of studies 

 Chronopoulos et al., 2017; Fielder et al., 2016; Khouzani et al., 

019; 2016; Panda et al., 2020; Zhang and Malacaria, 2021; 2022 ) 

o address both the theoretical and practical cybersecurity invest- 

ent problems. In addition, Abdallah et al. (2021) investigates the 

ehavioural biases of human decision-making in security invest- 

ent problems. 

The latest studies ( Li and Xu, 2020; Sawik, 2020; 2021 ) 

re now focusing on security investment for supply chains: 

awik (2020) linearises the classic exponential function of the 

reach probability to select optimal safeguards for Industry 4.0 

upply chains; Sawik (2021) develops an efficient solution to si- 

ultaneously mitigate both the direct and indirect propagated 

isks in a multi-tier supply chain; and Li and Xu (2020) stud- 

es the risk propagation problem with a two-echelon supply 

hain. 

.3. Adversarial machine learning (AdvML) attacks 

Machine learning (ML) techniques have had huge success 

n a wide range of applications we use today. The grow- 

ng number of vulnerabilities in ML introduces significant cy- 

ersecurity concerns, which have been studied by a num- 

er of the AdvML literature, e.g. Biggio and Roli (2018) ; 

arlini et al. (2016) ; Chakraborty et al. (2021) ; The MITRE Cor- 

oration. MITRE ATLAS (2021) ; Gu et al. (2017) ; Liu et al. (2018) ;

itropakis et al. (2019) ; Szegedy et al. (2013) ; Tabassi et al. (2019) ;

hang et al. (2017) . In Szegedy et al. (2013) , the authors first

et well-performed neural networks misclassify an image by ap- 

lying a perturbation. Later, researchers also discovered vul- 

erabilities in automatic speech recognition and voice control- 

able systems ( Carlini et al., 2016; Zhang et al., 2017 ). Work in

u et al. (2017) showed how to let a sign classifier identify stop 

igns as speed limits by physically adding a crafted sticker to 

he stop sign. Since these studies have drawn a lot of attention, 

here has been a significant number of surveys on security evalua- 

ion to AdvML ( Biggio and Roli, 2018; Liu et al., 2018; Pitropakis 

t al., 2019 ) as well as defensive techniques ( Chakraborty et al., 

021; Tabassi et al., 2019 ). Most recently, the MITRE association 

as published a knowledge base of adversarial tactics, techniques, 

nd real-world case studies for security groups and academic re- 

earchers, called MITRE ATLAS ( The MITRE Corporation. MITRE AT- 

AS, 2021 ). These bespoke, to AI systems, attacks are complemen- 

ary to those in the MITRE ATT&CK framework ( The MITRE Corpo- 

ation, 2022 ). 

The AdvML techniques can be characterised with respect to the 

ystem operation stages ( Tabassi et al., 2019 ). These attack tech- 

iques applied to the system’s training stage will attempt to ad- 

ersely change or acquire the training data or the ML model itself. 

urther, instead of tampering with the training data or the model, 

he attack techniques applied to the system testing/inference stage 

ocus on generating adversarial examples as inputs to evade the 

lassification. The consequences of a successful AdvML technique 

an be characterised as the violations of integrity (data misclassi- 

cation or confidence reduction), availability (unacceptable speed 

r unusable outputs), confidentiality (stolen model or data), and 

rivacy (stolen personal identifiable information) ( Biggio and Roli, 

018; Tabassi et al., 2019 ). 

Similarly, the defence techniques, against AdvML, are also char- 

cterised with respect to the system operation stages ( Chakraborty 

t al., 2021; Tabassi et al., 2019 ). In the training stages, the de-

ences against poisoning attacks include Data Sanitisation which 

emoves examples causing high error rates, and Robust Statistics 

hich uses constraints and regularisation to reduce potential dis- 

ortion of the model. In the testing/inference stages, several tech- 
3

iques improve the model robustness, such as Adversarial Training, 

radient Masking, Defensive Distillation, Ensemble Methods, Feature 

queezing , and Reformers/Autoencoders . In addition, it also includes 

andomisation mechanisms, such as Differential Privacy . However, 

hese defence techniques often cause performance overhead and 

mpacts on model accuracy ( Chakraborty et al., 2021 ). We use di- 

ect and indirect costs to evaluate these overheads and impacts for 

he defender choosing the security portfolio. Moreover, the MITRE 

TLAS summarises possible traditional controls (e.g. staff training, 

ntimalware, etc.) that can also help mitigate the AdvML attacks. 

. System model 

The CROSS model consists of three types of players: (i) the 

rovider of an AI service or product (we use these terms inter- 

hangeably), available to smart home users. The provider (who 

cts as the defender) seeks to minimise its product’s security risks 

hile economically maximising its profit. (ii) smart home users –

he potential clients of the provider; and (iii) an attacker repre- 

enting possible threat actors exploiting the product to achieve ad- 

ersarial goals. We also refer to this player as the attackers due to 

he different attacker types studied. We propose a novel method to 

upport the provider as well as each user with optimal decisions 

ecessary in the presence of a cyber threat. 

Fig. 1 illustrates the kind of threat scenario this paper ad- 

resses. Node S represents the source, i.e. the initial state be- 

ore any attack is launched. Nodes C 1 to C K are K possible conse- 

uences when the attacker has successfully exploited the service, 

.g. violations of integrity, availability, confidentiality, or privacy 

 Tabassi et al., 2019 ). Each will cause the corresponding loss to the 

rovider. Node T is an auxiliary sink node and does not represent 

ny privileged state that could be compromised by the attacker. 

he consequence nodes lead to this auxiliary sink node, allowing 

s to have a complete path from the Source to the Target in the 

ttack graph. 

In addition, we consider N attacker types and, for each at- 

acker type i , we denote the probability of this type occurring by 

 i . This probability can be drawn from either some threat intelli- 

ence or publicly available reports on cyber attacks against smart 

omes. For example, the NCSC ’s Cyber Security Breaches Survey 

022 ( The National Cyber Security Centre, 2022 ) provides general 

ata on the types of cyber-attacks faced by UK organisations, as 

ell as their impact and responses. Moreover, the consumer pro- 

ection group Which reported, using a honeypot-based experiment, 

hat a smart home could be exposed to more than 12,0 0 0 hack- 

ng or unknown scanning attacks in a week ( Which, 2021 ). In the

rst half of 2021, cybersecurity company Kaspersky detected 1.5 bil- 

ion IoT attacks, partly attributing an increase over the previous 

ear to the proliferation of smart home devices ( PYMNTS, 2021 ). 

owever, these works may not be detailed enough for the ser- 

ice providers in the proposed decision support system. The ser- 

ice providers should conduct their surveys to gain a more accu- 

ate understanding of the probability of attack types against smart 

omes. 

In Fig. 1 , we use rectangles to represent attack graphs, each 

raph consisting of attack paths the attacker can traverse toward 

xploiting the assets of the provider or the user. In Section 3.1 , we

ill describe these attack graphs. An example of an attack graph 

s also illustrated in Section 3.4 . Although different attacker types 

hare the same attack graph, each type i has a specific baseline 

uccess probability to exploit underlying vulnerabilities when there 

s no defensive control to protect the product as a result of its 

nique attacking capabilities. For example, the attacker could be an 

xpert in launching attacks against the AI applications of the smart 

ome services, thus having a higher success rate for those exploita- 

ion actions (i.e. edges in the attack graph) that represent AdvML 
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Fig. 1. Modelling threat scenario using attack graphs. 
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echniques. The highest probability that attacker type i can suc- 

essfully perform a whole sequence of exploitation actions, which 

orms a complete attack path leading to consequence node C k , is 

enoted by r i,k . A formal definition of r i,k is later given in (19) .

otice that a successful attacker type can lead to multiple conse- 

uences and one consequence can be caused by more than one 

ttacker type. 

As a result, a consequence may cause a loss to the provider. 

ere, we denote R k as the highest success probability that the at- 

acker can cause consequence k , i.e. R k = max i { r i,k } . The security

isk associated with consequence C k is defined as the product of 

 k and the impacts Loss k (refereed as the direct loss ), defined in 

q. (5) . Such attacks may propagate to users, where the user’s loss 

s defined in Eq. (7) . 

We present a list of symbols in Table 1 . 
Table 1 

List of symbols. 

Symbol Description 

Functions and Sets 

A k set of attacker types that can cause consequence k

C set of all security controls; 

C(e ) subset of controls that are effective on edge e ; 

E set of edges; 

L (c) the set of intensity levels of control c; 

T set of target nodes 

V set of nodes; 

h , t functions that returns “head” and “tail” of an edge

Constants 

a i occurrence probability of attacker type i ; 

B D , B ID direct and indirect cost budgets for the provider; 

Cost cl direct cost of control c at level l for the provider,; 

IndirectCost cl indirect cost of control c at level l for the provider

IndCost clm indirect cost for the user type m of control c at lev

K total number of consequences; 

Loss k direct loss of the provider if consequence k happen

N total number of attacker types; 

M total number of user types; 

l control level l; 

πe (i ) base-line probability of edge e being exploited by 

p ecl effectiveness of control c at level l on edge e ; 

p m premium paid (per user) by user type m ; 

P m total profit gained from user type m ; 

P target profit of the provider; 

U m the number of user type m who sign up with the 

u I,m user m tolerance thresholds for indirect costs; 

u UL,m user m tolerance thresholds for security risks; 

userLoss km loss of user type m if consequence k happens; 

4 
.1. Attack graphs 

We use probabilistic attack graphs to model the security risk of 

he provider and the users. Nodes in an attack graph represent the 

rivilege states of the attacker, and every edge represents an ex- 

loitation action which allows the attacker to escalate his privilege 

tate. Each edge is associated with an exploitation risk (e.g. due 

o underlying vulnerabilities or lack of security controls), and the 

uccess rate of an exploitation action is determined by both the 

ffectiveness of applied security controls and the underlying vul- 

erabilities. In a privilege state, the attacker can select from one of 

he next exploitation actions corresponding to directed edges leav- 

ng the state. 

Such a probabilistic attack graph is defined as a directed multi- 

raph G = (V, E, h , t , p, s, T ) : V denotes the set of nodes; E denotes
 ; 

; 

,; 

el l; 

s; 

attacker type i ; 

offered service; 

( continued on next page ) 
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Table 1 ( continued ) 

Symbol Description 

Variables 

c control c; 

S the source – the initial state before any attack is launched; 

s source node in an attack graph corresponding to an attack type; 

C k consequence k ; 

T auxiliary sink target node; 

T i,k target node of attacker type i causing consequence k ; 

x security portfolio x ; 

x cl binary indicator of control c at level l; 

y ik,e binary indicator whether attacker type i selects edge e to form an attack path from s to the target node T i,k . 

D (x ) , ID (x ) direct and indirect cost of security portfolio x for the provider; 

I m (x ) total indirect cost of portfolio x for user type m ; 

L (x ) security risk for the provider given x ; 

Payoff
m 
user payoff of user type m ; 

Payoff
m 
prov ider payoff of the provider w.r.t. user type m ; 

p e (x ) overall probability of a successful attack step associated with edge e given x ; 

p i,e (x ) overall probability of a successful attack step associated with edge e and attacker type i , given security portfolio x ; 

ρik,e dual variable for edge e w.r.t. attacker type i targeting consequence k ; 

r i,k (x ) highest probability that attacker type i will reach consequence C k given x ; 

R k (x ) highest probability that consequence k has been breached given x ; 

UL m (x ) security risks for user type m , given x ; 

t

a

t  

s  

s

e

s

a

c

n

n

e

i

q

3

s

d

p

m

p

s

r

m

t

o

M

I

s

t

p

 

p

r

c

x

a

w  

p

c

t  

o

x

A

t  

b

t

o

t

r

a

e

b

t

n

c

i

c

t

d

K

d

s

r

w

P

t

v

S

m

n

c

he set of edges; h , t are functions that return head and tail of 

n edge; p is a function returning success rate of exploiting ac- 

ions (later see Eq. (2) ); and s, T are the source node and the

et of target nodes. The source node s in an attack graph is the

tate where the corresponding attack type initialises attacks. For 

xample, node 0 in Fig. 3 (b). The target nodes T represent specific 

ystems or resources (i.e. privileged states) that an attacker may 

ttempt to compromise or gain access to. Once these targets are 

ompromised, it leads to the corresponding consequences. Please 

otice these target nodes T are different from the (unique) sink 

ode T , where all consequence nodes lead to. For example, in the 

xample illustrated in Fig. 3 , once attacker type 1 reaches node 3, 

t can cause consequence 1 and consequence 2. These two conse- 

uence nodes connect to the sink node T . 

.2. Security portfolios 

The provider seeks the optimal security portfolio to protect the 

mart home product and users. A security portfolio includes tra- 

itional defensive controls to mitigate security risks for both the 

roduct and users. For example, access control, account manage- 

ent, patch management, antimalware and anti-phishing software, 

hysical security, etc. They can be found in any traditional cyber- 

ecurity framework (e.g. CIS Controls ( Center for Internet Secu- 

ity, 2021 )). In addition, we consider novel defensive controls to 

itigate, in particular, AdvML attacks. For example, robust statis- 

ics, robust training and differential privacy, etc. They are based 

n studies in Pitropakis et al. (2019) and ATLAS 2 proposed by the 

ITRE Association ( The MITRE Corporation. MITRE ATLAS, 2021 ). 

n Section 5 , we will instantiate these controls as part of our case 

tudy and explain how CROSS selects them in a way that optimises 

he payoff of the provider and the user in the different stages im- 

lemented. 

The set of controls is denoted by C, and each control can be im-

lemented at different intensity levels signifying the degree of risk 

eduction. We let L (c) denote the set of intensity levels of control 

and a security portfolio can be expressed using binary indicators 

 cl , where c ∈ C denotes a security control (traditional or AdvML) 

nd l ∈ L (c) denotes its intensity level. 

If control c at intensity level l is selected, then x cl = 1 ; other- 

ise x cl = 0 . Since at most one intensity level of a security control
2 A knowledge base of AdvML tactics, techniques, and real-world case studies 

ublished by the MITRE association. 

m

p

m

5

an be implemented, as this level represents a unique implemen- 

ation of the control, the sum of all levels of a control is less than

r equal to one. We thus express a security portfolio as follows: 

 cl ∈ { 0 , 1 } , ∀ c ∈ C, l ∈ L (c) ;
∑ 

l∈L (c) 

x cl ≤ 1 , ∀ c ∈ C. (1) 

 control can affect multiple edges of the attack graph, meaning 

hat it can stop an attack at different stages of it, and an edge can

e augmented by multiple controls, which mitigate security risk at 

his edge in a combined way. We thus let C(e ) denote the subset 

f effective controls on edge e . By effective, we ref er to controls 

hat can be applied to this edge, positively impacting this edge by 

educing its security risk. 

We let πe ≤ 1 represent the baseline success probability of the 

ttacker on unprotected edge e (i.e. when no control is applied on 

 ). Implemented security controls will further reduce the proba- 

ility of a successful attack step associated with that edge, and 

he attacker must defeat all implemented controls to succeed fi- 

ally. This is based on the assumption of independence for se- 

urity controls. This assumption leads to the multiplicative form 

n Eq. (2) due to the distinct control mechanisms of different se- 

urity controls. However, for controls with a degree of correla- 

ion, the equation can be extended to incorporate them by intro- 

ucing a new control. Such an assumption has been justified in 

houzani et al. (2019) . Please refer to Khouzani et al. (2019) for 

etails. Thus, the overall probability of a successful attack step as- 

ociated with edge e , when the provider is defended by the secu- 

ity portfolio x , is denoted by 

p e (x ) = πe 

∏ 

c∈C(e ) ,l∈L (c) 

(p ecl x cl + (1 − x cl )) , (2) 

here p ecl is the effectiveness of control c at level l on edge e . 

lease note that baseline probabilities and effectiveness of con- 

rols can be estimated using threat intelligence datasets and sur- 

eyed data. For example, effectiveness coefficients are estimated in 

chilling and Werners (2016) , and Aksu et al. (2017) provides a for- 

ulation to estimate the baseline probabilities using Common Vul- 

erability Scoring System (CVSS). 

Since security controls are not cost-free, the provider has to 

onsider: (i) the monetary investment required to implement and 

aintain a security portfolio; and (ii) the negative impacts on the 

rovider when implementing this portfolio, e.g. patch management 

ay lead to significant downtime for the provider. The direct and 
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Fig. 2. A multi-leader-follower game. 

Fig. 3. (a): Example model; (b): Attack graph of the example. 
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ndirect costs of the provider are defined as: 

 (x ) = 

∑ 

c∈C,l∈L (c) 

x cl Cost cl , (3) 

D (x ) = 

∑ 

c∈C,l∈L (c) 

x cl IndirectCost cl , (4) 

here Cost cl and IndirectCost cl quantify the direct cost and the 

ndirect cost of control c at level l, respectively. 

Recall that a successful attacker may cause multiple conse- 

uences to both the provider and the user. We quantify the 

rovider’s security risks associated with these consequences de- 

oted by L (x ) , and derived as follows: 

 (x ) = 

K ∑ 

k =1 

R k (x ) × Loss k . (5) 

ecall that R k (x ) represents the highest probability of the attacker 

ausing consequence k out of K consequences given an imple- 

ented security portfolio x , and Loss k quantifies a direct loss as- 

ociated with consequence k . 

.3. Two-stage defence problem 

We consider the defence problem as a two-stage optimisation 

roblem illustrated in Fig. 2 . In stage one, the problem is modelled 

s a multi-leader-follower game. 

The provider is the single leader deciding the optimal security 

ortfolio that minimises the security risk L (x ) subject to the bud- 

et constraints as well as the maximal profit constraints. 
6 
The attackers and the users are both followers who do not di- 

ectly compete with each other. Although the attackers will attack 

oth the provider and the users, the users do not select any se- 

urity control in stage one but will decide whether to accept the 

ervice based on the control selection of the provider. In stage two, 

he optimisation will select controls for the users to implement. 

The (rational) attacker will attack the weakest path from the 

ource to the target to maximise its success probability based on 

ts capabilities to penetrate the defence. In addition, a security 

ortfolio can mitigate propagated security risks for the users; how- 

ver, as mentioned, it also impacts the user’s QoE. Some users may 

refer good QoE; whereas others may want a high-security level. 

hus the users need to decide whether to accept the service ac- 

ording to the security portfolio. The provider cooperates with the 

sers to find a security portfolio that satisfies that user, so as to 

aximise the profits from the users. 

In stage-two optimisation, CROSS will recommend an optimal 

ortfolio of user controls as an extra layer of security for the users. 

part from the provider controls found in stage-one optimisation, 

hese user controls are security countermeasures that require the 

ser’s commitment to applying. In estimating the effectiveness of 

uch a control, we need to take into account the likelihood that 

he user will simply not follow the recommendation. 

.4. An example 

We now provide an example to demonstrate the concepts of 

he framework and to help the reader to understand the two-stage 



Y. Zhang, P. Malacaria, G. Loukas et al. Computers & Security 130 (2023) 103250 

Table 2 

Effectiveness of controls. 

Controls c 1 c 2 c 3 c 4 c 5 c 6 

Effectiveness Medium Medium High High Low Low 
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Table 3 

Effectiveness of user controls. 

Controls uc 1 uc 2 uc 3 uc 4 uc 5 uc 6 

Effectiveness Medium Low Medium Low Medium Low 
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ptimisation process 3 . The scenario is shown in Fig. 3 (a), where 

ach rectangle represents the attack graph in Fig. 3 (b). We as- 

ume two attacker types with occurrence probability a 1 = 0 . 6 and 

 2 = 0 . 4 . In the example, attacker type 1 can cause two conse-

uences C 1 and C 2 (node 3 of type 1 user can lead to node C 1 and

 2 ); while attacker type 2 can only cause consequence C 2 (node 3 

f type 2 user only leads to node C 2 ). Suppose each control has a

irect cost of 1 and an indirect cost of 1. For the provider, conse- 

uence C 1 has a direct loss Loss 1 = 20 , and consequence C 2 has a

irect loss Loss 2 = 10 . 

Suppose attack path 0 → 2 → 3 includes attack steps that ex- 

loit one or more AI functionalities of the provided service, while 

he other edges are associated with conventional cyber-attacks. 

et’s assume that attacker type 1 is an expert in performing attacks 

n the AI service offered by the provider. Thus, attacker type 1 has 

 higher baseline probability to exploit the edges associated with 

hese attacks successfully: for attacker type 1 we hence set base- 

ine probabilities π0 → 2 (1) = 0 . 9 , π2 → 3 (1) = 0 . 9 and πe (1) = 0 . 5

or all other edges e . Attacker type 2 is assumed to be an over-

ll expert of both conventional cyber-attacks and attacks on the AI 

ervice: we set the baseline probabilities πe (2) = 0 . 8 for all edges.

e use the notations Low = 0 . 7 , Medium = 0 . 5 , and High = 0 . 2 to

epresent three fixed levels of control effectiveness. The effective- 

ess of controls is in Table 2 : 

While minimising the service security risk, the provider also 

ims to maximise profits. Thus, the provider wants as many users 

s possible to use the service. 

Recall that a user decides whether to accept the service based 

n both the security risk and QoE: we let u I,m 

, u UL,m 

denote the

ser type m tolerance thresholds for indirect costs (reduction of 

oE) and security risks. Furthermore, we set the indirect cost for 

ach control equal to be 1 for each user type and the user loss of

onsequence 1 and 2 to be 10 and 20, respectively, for each user 

ype. Notice that the loss of the user is different from the direct 

oss of the provider. 

Let’s consider two types of users: 

• user type one prefers good QoE to high security: we let u I, 1 = 

2 . There are U 1 = 10 type one users, and each pays an average

premium of p 1 = 10 , hence the total possible profit is P 1 = 100 .

• user type two prefers high security to good QoE: we set u UL, 2 = 

7 . 5 . Similarly, there are U 2 = 10 type two users, and each pays

an average premium of p 2 = 10 , hence the total possible profit 

is P 2 = 100 too. 

Below we illustrate the two-stage optimisation for this partic- 

lar example. The optimisation below is mathematically justified 

ater on in Section 4 . 

.4.1. Stage-one optimisation – Pareto-front solutions 

We set the target profit for the provider to be 100, P = 100 , i.e.

he provider is willing to provide the service only if the profit is 

reater than 100. Hence the provider needs to satisfy at least one 

ser type to provide his service. 

To compute the Pareto-front, we set the provider’s indirect bud- 

et B ID to be large and vary the direct cost budget B D in the range

rom 1 to 6. The Pareto-front is presented in Fig. 4 (a)-(c). 
3 For the notations used in this section, please refer to Table 1 . Model formal 

etails are provided in Section 4 . 

s

b

p

7 
When B D = 1 , the optimisation for the provider selects the port- 

olio [ c 4 ], and the impact on QoE of both user types is 1. Hence,

ser type 1 is satisfied. However, due to a high-security risk, user 

ype 2 is not satisfied, resulting in a total profit for the provider of 

00. When the direct budget increases to 2 ( B D = 2 ), the optimal

ortfolio is [ c 4 , c 6 ], which further reduces the security risks. In this

ase, user type 2 becomes satisfied as the security risk is now less 

han the threshold, resulting in a total profit of 200. Next, when 

he direct budget is larger ( B D ≥ 3 ), the selected optimal portfolio 

s [ c 1 , c 4 , c 6 ], which minimises the security risk but introduces a

igh impact on QoE. User type 1 becomes not satisfied, and the 

otal profit reduces back to 100. 

.4.2. Stage-two optimisation 

We now consider stage-two optimisation when stage-one opti- 

isation has selected portfolio [ c 1 , c 4 , c 6 ]. In this case, only user

ype 2 is satisfied, resulting in a total profit of 100. 

We consider six user controls: uc 1 and uc 2 on edge 0 → 3 , uc 3 
nd uc 4 on edge 1 → 3 , and uc 5 and uc 6 one edge 2 → 3 . Please

otice that these controls are not shown on the edges in Fig. 3 (b).

ach control has a direct and an indirect cost equal to 1, and the 

ffectiveness of user controls is in Table 3 : 

For user type 2 who prefers high security to good QoE, we set 

 larger user indirect cost budget, where B I, 2 = 6 . To compute the 

areto-front solutions, we let the direct costs for each user be in 

he range of 1 to 6. The impacts on QoE and the loss for user types

ne and two are presented in Fig. 4 (d). When user direct budget 

 D, 2 = 1 , 2 , the optimal security portfolios are [ uc 1 ] and [ uc 1 , uc 3 ],

espectively. Next, with a larger direct cost budget, B D, 2 = 3 , the 

ser type 2 who prefers high security has a more secure portfolio 

 uc 1 , uc 2 , uc 3 ] to further reduce security risks. When B D, 2 ≥ 4 , the

ptimal security portfolio is [ uc 1 , uc 2 , uc 3 , uc 5 ]. 

. Optimality analysis 

In this section, we present the optimality analysis. Apart from 

inimising the security risk, the provider also wants to maximise 

he profit from the users. Thus, let’s first focus on the Stackel- 

erg game between the provider and the different user types. The 

esult leads to a system of constraints that ensure the maximal 

rofit from the users. Next, we solve stage-one optimisation to find 

n optimal security portfolio for the provider, given the maximal 

rofit constraints. Finally, we solve stage-two optimisation to find 

n optimal security portfolio for the users. 

.1. Stackelberg game between the users and the provider 

The provider’s goal of maximal profit can be modelled as a 

tackelberg game between the provider and the users, without 

onsidering the attacker. The provider is the leader who first se- 

ects a security portfolio that reduces the security risks while af- 

ecting the user’s QoE. The users are followers who will decide 

hether to accept the service according to their preferences for 

ecurity risks and QoE, which are determined by the implemented 

ecurity portfolio. 

Let’s distinguish all user types based on their preferences. Let M

e the total number of user types. The overall impacts of a security 

ortfolio x on the user’s QoE, which represents the user’s indirect 
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Fig. 4. (a)-(c): Pareto-front for stage-one optimisation; (d): Pareto-front for stage-two optimisation. 
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ost experienced by the user type m , are defined as follows: 

 m 

(x ) = 

∑ 

c∈C,l∈L (c) 

x cl IndCost clm , (6) 

here IndCost clm is the user indirect cost (impacts on QoE) im- 

osed to user type m from the selection of control c at implemen- 

ation level l. 

Moreover, if the attacker has successfully exploited the provider, 

hese attacks can propagate to the users. We express the type m 

ser’s security risks as follows: 

L m 

(x ) = 

K ∑ 

k =1 

R k (x ) × userLoss km 

. (7) 

here userLoss km 

quantifies the loss for user m when conse- 

uence k occurs. Note that userLoss km 

= 0 , if the attacks cannot 

ropagate to user type m by exploiting consequence k . 

The equations above define a user preference in terms of the 

mpacts on QoE and how much security risk to tolerate. To model 

his the user’s decision-making challenge, recall u I,m 

and u UL,m 

are 

he thresholds which are the highest indirect cost and security 

isks that user type m is willing to tolerate: 

 m 

(x ) ≤ u I,m 

, (8) 

L m 

(x ) ≤ u UL,m 

. (9) 

hese thresholds should be decided based on the user’s preference: 

 user type m who prefers good QoE will have a low threshold 

 I,m 

, and a user type who prefers a low-security risk will have a 

ow threshold u UL,m 

. 

While using the service, user type m has a positive payoff

ayoff
m 

user (x ) > 0 if and only if both (8) and (9) hold, i.e. user type

 accepts the security risks and can tolerate the impacts on QoE. 

therwise, user type m has a negative payoff. If the number of 

ser type m who sign up with the offered service is denoted by 

 m 

, and the provider gains an average of p m 

service premium per 

ser, then the total payoff of the provider is P m 

= U m 

× p m 

from 

ser type m . If user type m rejects the service (i.e. at least one of

8) and (9) does not hold), the payoffs of that user type and the 

rovider are zero. 

Let Payoff
m 

prov ider (x ) denote the payoff of the provider gained 

rom user type m . If user type m has a positive payoff (i.e. user
8 
ype m accepts the offered service), then Payoffm 

prov ider (x ) = P m 

; 

therwise Payoffm 

prov ider (x ) = 0 , i.e. no gain. 

Here the objective of the provider is to find an optimal security 

ortfolio that maximises the sum of payoffs: 

ax 
x 

M ∑ 

m =1 

Payoff
m 

prov ider (x ) , s.t.: (1) . (10) 

ote that the maximisation here acts as a condition later in stage- 

ne optimisation to guarantee the maximal profit for the provider. 

he security risks and other objectives will be explicitly addressed 

n Section 4.2 . 

The provider aims to maximise his payoff. We let binary indica- 

ors t m 

for m = 1 , . . . , M: t m 

= 1 indicate whether user type m will

ccept the offered service; otherwise t m 

= 0 . This payoff maximi- 

ation problem can be expressed as follows: 

max 
x,t 

M ∑ 

m =1 

t m 

× P m 

, (11) 

.t.: (1) , 

I m 

(x ) ≤ u I,m 

+ (1 − t m 

) × σ, (12) 

L m 

(x ) ≤ u UL,m 

+ (1 − t m 

) × σ ) , ∀ m = 1 , . . . , M. (13) 

here σ > 0 is a large number. 

For user type m , constrains (12) and (13) are equivalent to 

8) and (9) only if t m 

= 1 ; otherwise, constrains (12) and (13) are

lways satisfied. Also if t m 

= 1 , then (8) and (9) must be satisfied.

n other words, t m 

= 1 ensures that user type m will accept the 

ffered service. 

Next, we convert the maximisation above into a system of max- 

mal profit constraints. Let P > 0 be the provider’s target, i.e. the 

rovider is willing to provide the service only if the profit can be 

reater than or equal to the target P . The objective function can be 

xpressed as follows 

 t m 

, m = 1 , . . . , M : 

M ∑ 

m =1 

t m 

× P m 

≥ P , (14) 

nd (1) , ( (12), (13) , ∀ m = 1 , . . . , M) hold. Later, in stage-one opti-

isation, we use these maximal profit constraints to guarantee an 

ptimal security portfolio with at least P profit. 
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emark 1. Notice that if no user accepts the service, it means that 

he provider will not make any profit from the users, because no 

ser is satisfied with the QoE or the security risk. In such a sce- 

ario, the service provider should re-evaluate the service it pro- 

ides or the survey data on user preferences. 

.2. Stage-one optimisation 

The last section focused on the Stackelberg game between only 

he provider and the users. Here we add the attacker to address 

he stage-one defence problem of finding an optimal security port- 

olio for the provider. 

Recall a consequence can be caused by multiple attacker types, 

nd R k (x ) denotes the highest probability of causing consequence 

 given an implemented security portfolio x . We let A k denote the 

et of all attacker types that can cause consequence k . Thus R k (x ) =
ax i ∈A k { r i,k (x ) } , or equivalently: 

 k (x ) = min 

τk 

τk , s.t.: τk ≥ r i,k (x ) , ∀ i ∈ A k . (15) 

here τk is an auxiliary variable. 

Stage-one optimisation is as follows: 

min 

x,t 
L (x ) , (16) 

.t.: (1) , ((12) , (13) , ∀ m = 1 , . . . , M) , (14) , 

D (x ) ≤ B D ; ID (x ) ≤ B ID , (17) 

 k (x ) ≥ r i,k (x ) , ∀ i ∈ A k , k = 1 , . . . , K. (18) 

ecall (1) represents a security portfolio, and (12), (13) and (14) are 

aximal profit constraints that ensure there is at least P profit for 

he provider. Moreover, B D and B ID are the budgets for direct costs 

nd indirect costs. Constraint (17) ensures that the selected secu- 

ity portfolio does not exceed budgets. Finally, (18) is transformed 

rom (15) . 

.3. Solving stage-one optimisation 

Recall r i,k (x ) represents the highest probability that the attacker 

ype i will reach consequence C k , which can be explicitly expressed 

s follows: 

 i,k (x ) = max 
ω s → T i,k 

a i ×
∏ 

e ∈ ω s → T i,k 
,c∈C(e ) ,l∈L (c) 

πe (i )(p ecl x cl + 1 − x cl ) , (19) 

here a i is the occurrence probability of attacker type i , πe (i ) is

he baseline success probability of attacker type i on edge e , and 

 i,k ∈ T is the target node in the attack graph of attacker type i

ausing consequence C k , and ω s → T i,k 
is a path from the source s to

 i,k . 

Note that (19) is a non-linear maximisation problem. Here we 

ive a high-level summary of how to linearise and dualise this 

roblem as presented in Khouzani et al. (2019) . We first trans- 

ate the optimisation variable ω s → T i,k 
into new binary variables 

 ik,e ∈ { 0 , 1 } for e ∈ E . For each edge e , a binary variable y ik,e rep-

esents whether the attacker type i selects that edge to form an 

ttack path. Equation (19) can be equivalently expressed as fol- 

ows: 

 i,k (x ) = max 
y ik,e ,e ∈E 

a i 
∏ 

e ∈E 
(p i,e (x ) y ik,e + 1 − y ik,e ) , (20) 

p i,e (x ) = πe (i ) 
∏ 

c∈C(e ) ,l∈L (c) 

(p ecl x cl + 1 − x cl ) , (21) 

ubject to the linear flow conversion constraints and the binary 

onstraints. Please refer to Lemma 1 in Khouzani et al. (2019) . Note 
9 
hat the flow conversion constraints will ensure that the attack 

ath is from the source node s to the target node T i,k . 

The logarithm function, log (x ) , is strictly monotone for x > 0 .

hus we can convert the product in (20) into a sum: 

og (r i,k (x )) = log (a i ) + max 
y ik,e ,e ∈E 

∑ 

e ∈E 
log (p i,e (x ) y ik,e + 1 − y ik,e ) . (22) 

s y ik,e is a binary variable: log (p i,e (x ) y ik,e + 1 − y ik,e ) = 0 if y ik,e =
 ; else if y ik,e = 1 , then log (p i,e (x ) y ik,e + 1 − y ik,e ) = log (p i,e (x )) .

hus, the sum can be further reduced to 

og (r i,k (x )) = log (a i ) + max 
y ik,e ,e ∈E 

∑ 

e ∈E 
y ik,e log (p i,e (x )) . (23) 

imilarly, log (p i,e (x )) can be translated into a linear function: 

og (p i,e (x )) = log (πe (i )) + 

∑ 

c∈C(e ) ,l∈L (c) 

x cl log (p ecl ) , (24) 

Because of Lemma 2 (totally unimodular matrices) in 

houzani et al. (2019) , the maximisation problem in (23) can 

e relaxed to a linear programming (LP) in which the binary 

onstraints (i.e. y ik,e ∈ { 0 , 1 } ) are equivalent to y ik,e ≥ 0 for all

 ∈ E . 

Next, following Khouzani et al. (2019) , we can dualise the max- 

misation problem into a minimisation problem using strong dual- 

ty in LP: 

og (r i,k (x )) = log (a i ) + min 

ρik 

(ρik,s − ρik,T i,k 
) , (25) 

ubject to 

ik, t (e ) − ρ
ik, h (e ) 

≥
∑ 

c∈C(e ) ,l∈L (c) 

log (p ecl ) x cl + log (πe (i )) , ∀ e ∈ E . (26) 

here ρik is a vector of dual variables for the attacker type i target- 

ng consequence k maximisation problem. The detailed conversions 

an be found in Khouzani et al. (2019) . 

Thus, constraint (18) is equivalent to 

og (R k (x )) − log (a i ) ≥ min 

ρik 

{ ρik,s − ρik,T i,k 
: (26) holds } (27) 

or all i ∈ A k , and k = 1 , . . . , K. This can be further relaxed to 

 ρik : log (R k (x )) − log (a i ) ≥ ρik,s − ρik,T i,k 
, (28) 

nd (26) holds, ∀ i ∈ A k , k = 1 , . . . , K. 

Next, we convert the problem into a standard MICP. Let z k = 

og (R k (x )) + log ( Loss k ) . Then the objective function can be ex- 

ressed as a sum of exponential functions: 

 (x ) = 

K ∑ 

k =1 

R k (x ) × Loss k = 

K ∑ 

k =1 

exp (z k ) . (29) 

efinition 1. The exponential cone is a convex subset of R 

3 

OSEK ApS (2020) : 

 exp = cl { (x 1 , x 2 , x 3 ) : x 1 ≥ x 2 exp (x 3 /x 2 ) , x 2 > 0 } . (30) 

Let λk , for k = 1 , . . . , K, be optimisation variables. Then, we can

xactly convert the problem into a MICP with exponential cones: 

min 

x, { ρik ,i ∈A k ,k =1 , ... ,K} ,λ,z,t 

K ∑ 

k =1 

λk , (31) 

.t.: (1) , ((12) , (13) ∗, ∀ m = 1 , . . . , M) , (14) , (17) , 

(z k − log ( Loss k ) − log (a i ) ≥ ρik,s − ρik,T i,k 
, (32) 

26) , ∀ i ∈ A k ) , ∀ k = 1 , . . . , K, 

λk , 1 , z k ) ∈ K exp , ∀ k = 1 , . . . , K. (33) 
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roposition 1. In (13) ∗, R k (x ) are replaced by λk / Loss k for k =
 , . . . , K. 

roof. The conic constraint (33) is equivalent to the inequal- 

ty λk ≥ exp (z k ) = R k × Loss k . Thus, we have λk − v k = R k × Loss k 
here v k ≥ 0 is a slack variable. In (13) , for user type m and t m 

= 1 ,

he inequality constraint 
∑ K 

k =1 R k (x ) × userLoss km 

≤ u UL,m 

is equiv- 

lent to 

K 
 

k =1 

λk / Loss k × userLoss km 

≤ u UL,m 

+ 

K ∑ 

k =1 

v k / Loss k × userLoss km 

. 

hus, if a tighter inequality constraint 
∑ K 

k =1 λk / Loss k ×
serLoss km 

≤ u UL,m 

holds, then 

∑ K 
k =1 R k × userLoss k ≤ u UL,m 

lso holds. Note that (13) always holds if t m 

= 0 . 

Furthermore, the proof of Proposition 2 later shows that an 

ptimal solution must have v ∗
k 

= 0 for all k = 1 , . . . , K. Thus,
 K 
k =1 R k × userLoss k ≤ u UL,m 

and 

∑ K 
k =1 λk / Loss k × userLoss km 

≤
 UL,m 

are equivalent in the defence problem. �

roposition 2. The conic constraint (33) is equivalent to the inequal- 

ty λk ≥ exp (z k ) . Minimising 
∑ K 

k =1 λk subject to the conic constraints 

s equivalent to minimise 
∑ K 

k =1 exp (z k ) . 

roof. The inequality λk ≥ exp (z k ) is equivalent to λk − v k = 

xp (z k ) where v k ≥ 0 is the slack variable, which is the same 

s in Proposition 1 . As a result, we have min 

∑ K 
k =1 λk = 

in ( 
∑ K 

k =1 exp (z i ) + v k ) . Since a minimisation solution must have 

 

∗
k 

= 0 , we have λ∗
k 

= exp (z ∗
k 
) . Finally, since for all k , λk ≥ exp (z k ) ,

e have min 

∑ K 
k =1 λk = min 

∑ K 
k =1 exp (z k ) . �

The provider must be able to address multiple attacker types. In 

tage-one optimisation, a i denotes the probability that the attacker 

s of type i . The defence problem considers both the success prob- 

bility r i,k with the occurrence probability a i associated with an 

ttacker of type i when finding an optimal security portfolio. This 

s motivated by considering the case of a powerful attacker type 

ho is highly likely to exploit the provider successfully. However, 

he provider may be less likely to face such a powerful attacker 

ype, i.e. a low a i . 

If the provider is interested in the worst-case scenario, we can 

et a i = 1 /N for all i = 1 , . . . , N. In that case, the optimisation will

ocus on those attacker types with the highest success probability. 

.4. Stage-two optimisation 

While stage-one optimisation focuses on the provider, stage- 

wo optimisation selects optimal portfolios of user controls to pro- 

ide each user type with an extra layer of security. These user con- 

rols need to be implemented by the user, not the provider. 

One may argue about combining the two stages into one single 

ptimisation. In such an optimisation, the optimal security port- 

olio would then include both types of controls, i.e. the provider 

nd user controls. However, the provider cannot force the users to 

mplement these user controls. If a non-cooperative user refuses 

o implement the recommended user controls, the whole security 

ortfolio determined in the single optimisation scenario becomes 

ot optimal, resulting in increased security risks. For this reason, 

e split the problem into two stages: stage-one optimisation finds 

he default optimal portfolio for the provider itself and all user 

ypes. Next, for each user type, stage-two optimisation seeks an 

ptimal security portfolio of user controls to help further improve 

ecurity for that user type. 

Since the following variables in stage-two optimisation are sim- 

lar to those in stage-one optimisation, we do not repeat them in 

able 1 . 
10 
.5. Solving stage-two optimisation 

First, let binary variables x cl express a portfolio of user controls: 

 cl = 1 indicates user control c at level l is selected; otherwise x cl = 

 . The set of user controls is denoted by C . 
Note that stage-two optimisation focuses on further reducing 

ropagated security risks to the users. Hence, we only consider 

hose consequences that can propagate security risks to the users, 

nd let K denote the set of those consequences. For example, we 

ave three possible consequences ( C 1 , C 2 and C 3 ) considered in 

tage-one optimisation, and only consequence C 2 may propagate 

isks to the users. Note that all user types face the same set of pos-

ible consequences. Then K = { C 2 } . In other words, userLoss km 

> 0 

or k ∈ K . 

Similarly, we let r i,k ( x ; x ) be the highest success probability as- 

ociated to attacker type i given the provider security portfolio x , 

xpressed as follows: 

 i,k ( x ; x ) = max 
ω s → T i,k 

a i 
∏ 

e ∈ ω s → T i,k ,c∈ C ,l∈L (c) 

π e (i ; x ) × ( p ecl x cl + 1 − x cl ) (34) 

here π e (i ; x ) represents the baseline success probability of at- 

acker type i on edge e given the security portfolio x , and p ecl is

he effectiveness of control c at level l on edge e . Thus, the highest 

robability to cause consequence C k ∈ K is denoted as R k ( x ; x ) =
ax i ∈A k { r i,k ( x ; x ) } . 

Because of varying preferences for security and QoE, user types 

ave different budgets for user controls. Next, we let B D,m 

and B I,m 

enote the direct cost budget and the indirect cost budget for user 

ype m . 

Notice that the indirect cost budget B I,m 

is the threshold of the 

ighest impacts on QoE user type m will tolerate when adding 

ser controls. It depends on the applied security portfolio found 

n stage-one optimisation 

Thus, the stage-two optimisation problem for user type m is as 

ollows: 

min 

x 
UL m 

(x ) = 

∑ 

k ∈ K 
R k ( x ; x ) × userLoss km 

, (35) 

.t.: x cl ∈ { 0 , 1 } , ∀ c ∈ C , l ∈ L (c) ;
∑ 

l∈L (c) 

x cl ≤ 1 , ∀ c ∈ C , (36) 

∑ 

c∈ C ,l∈L (c) 

x cl Cost clm 

≤ B D,m 

;
∑ 

c∈ C ,l∈L (c) 

x cl InCost clm 

≤ B I,m 

; (37) 

 k ( x ; x ) ≥ r i,k ( x ; x ) , ∀ i ∈ A k , k ∈ K . (38) 

here represents a security portfolio of user controls, ensures the 

irect and indirect budgets for user type m are not exceeded, and 

38) is converted from R k ( x ; x ) = max i ∈A k { r i,k ( x ; x ) } . 
Next, we convert the problem into a MICP. Here we only pro- 

ide a sketch of the conversions because stage-two optimisation 

s similar to stage-one optimisation. Using strong duality and to- 

ally unimodular matrices, we transform the maximisation prob- 

em (38) into a minimisation problem. Then we convert the non- 

inear optimisation into a tractable MICP with exponential cone 

onstraints, which is expressed as follows: 

min 

x , { ρ ik ,i ∈A k ,k ∈ K } , λ, z 

∑ 

k ∈ K 
λk , (39) 

.t.: (36) , (37) ;

 λk , 1 , z k ) ∈ K exp , ∀ k ∈ K , (40) 

 z k − log ( userLoss km 

) − log (a i ) ≥ ρ ik,s − ρ ik,T i,k 
, (41) 
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Fig. 5. Configuration of AI-enabled smart heating. 
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ik, t (e ) − ρ
ik, h (e ) 

≥
∑ 

c∈ C (e ) ,l∈L (c) 

log ( p ecl ) x cl + 

log ( π e (i ; x )) ,∀ e ∈ E ) , ∀ i ∈ A k , k ∈ K , (42) 

here z k = log ( R k ( x ; x )) + log ( userLoss km 

) and λk are auxiliary 

ariables, and ρ ik are dual variables. 

. Case study 

This case study models a prototypical AI-enabled Internet of 

hings (IoT) environment that combines characteristics and vulner- 

bilities currently present on existing commercial off-the-shelf de- 

ices. The purpose of this case study is twofold: (i) to assess the 

erformance and recommendations of CROSS to the provider of an 

I service and (ii) to shed light on the trade-offs emerging when 

rotecting AI services deployed in smart homes from not only tra- 

itional cyber attacks but also AdvML ones, which can be available 

o the attacker when the traditional security controls have been 

ypassed. In this use case, we focus on the user side; hence we 

gnore several threats and controls which are more specific to the 

nterprise security of the provider. 

The provider is a manufacturer/seller of an AI-enabled heat- 

ng technology for smart homes. Their product is a self-learning 

hermostat (SLT) coupled with smart radiator valves (SRV). These 

evices were manufactured to offer an individual, room-by-room 

eating control, by operating in conjunction with a thermostat kit, 

nd they can be easily managed through a smartphone application. 

he provider’s objective is to design a security control strategy that 

itigates the associated cybersecurity risks while maximising fi- 

ancial profit. Fig. 5 illustrates the scenario modelled. 

The product is able to learn the user’s temperature preferences 

n different rooms and automatically adjust the target tempera- 

ure in each one (O7) based on whether they are present or not 

t home (I1b) and other context (I2), such as time of day and en-

rgy price. The training of the machine learning models of SLT, as 

ell as firmware updates, require connection to the manufacturer’s 

loud (A3, A4), but a subset of smart features, such as the human 

resence detection in each room happens on the SRV. 

Based on this scenario, we have developed a simple attack 

raph ( Fig. 6 ), taking into account known vulnerabilities in sim- 

lar commercial off-the-shelf devices. Table 4 presents the attack 

teps used in the attack graph. Please note that SP represents 

he service provider and O1 represent the direct actuation of the 

mart radiator valve, which turns the valve on or off. Node 0 

epresents the source when the system operates normally ( nor ). 
11
ode 1 is the state where the home router (HR) has been ex- 

loited. Edge 0 → 1 represents several possible attack actions, in- 

luding BRUTE_HR, AUTH_HR , and SE_HR . Nodes 6 and 7 repre- 

ent integrity breaches ( int ): node 6 is an integrity breach on 

he cloud and 7 on the SRV. Edge 1 → 6 combines several attack 

ctions forming a ML poisoning attack path: IDOR_SLT, PUB_MAT, 

E_MC, INF_API , and POISON_ML . Edge 1 → 7 represents two pos- 

ible attack actions: DREB_SLT , and DREB_SRV . Nodes 5 and 4 are 

he privilege states where the provider’s and the SRV’s availability 

ave been breached ( ava ). Edge 0 → 4 combines several BT (Blue-

ooth) attack actions forming a BT attack path: BT_SLT, BT_SN or 

T_SM . Moreover, edge 0 → 5 represents a DoS (Denial of Service) 

ttack to MC i.e. DOS_MC . Once the provider has been breached, 

he security risk can propagate to the device (i.e. edge 6 → 7 and

 → 4 ). Node 2 represents a privilege state where the SLT has 

een exploited through a BT attack (edge 0 → 2 ). Next, two at- 

ack paths, insider attack and Evasion-ML attack, lead to node 

 where the provider’s confidentiality has been breached ( con ). 
vasion-ML attack is formed by multiple attack actions, includ- 

ng PUB_MAT, SE_MC, INF_API, REP_MOD , and ATT_INF . Possible 

ecurity controls, including both traditional and AdvML for these 

ttacks are added in Fig. 6 ; details of their costs and effective- 

ess are in Table 5 . Notice that Ed-U and 2FA-U are user con- 

rols, which should only be selected in stage two optimisation. 

ince we assume the direct budget of the provider is large later 

n stage-one optimisation (see Section 5.1 ), we omit the direct 

ost of controls. The indirect costs of controls for the provider and 

he user are quantified in a range of VL(VeryLow), L(Low), 
(Medium), H(High), VH(VeryHigh) , representing costs 1, 

, 3, 4, 5, respectively. Similarly, the effectiveness has five levels: 

 L (V eryLow ) = 0 . 9 , L (Low ) = 0 . 7 , M (M edium ) = 0 . 5 , H (H igh ) = 0 . 3 ,

nd V H (V eryH igh ) = 0 . 1 . 

.1. Stage-one optimisation 

Here we consider a single attacker type (i.e. a 1 = 1 ) who can

ause all five possible consequences (see Fig. 6 ). Moreover, we con- 

ider one user type 1 who prefers good QoE to a low-security risk 

i.e. a large u UL, 1 ). Notice that the provider must satisfy user type 

. 

The provider’s direct losses with respect to consequence C 1 to 

 5 are 4, 2, 8, 15, 6, respectively. These values are educated guesses, 

hich are meant to reflect the idea that if the service provider ex- 

eriences a compromise, it would result in a large number of users 

eing affected and therefore incurring large losses for the service 

rovider, and relatively small losses for the individual user. These 
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Table 4 

Attack actions. 

Attack Description Attack Description 

ATT_INF Already knowing the model, the attacker uses the inference 

API to try to derive the most likely current value of human 

presence with an attribute inference attack 

AUTH_HR Due to improper restriction of excessive authentication 

attempts, an attacker in range can recover the PIN and 

access the network (e.g., CVE-2021-20635). 

BRUTE_HR Brute force attack for gaining access to home WiFi network. BT_SLT Discover Bluetooth SLT devices in the vicinity that should 

normally be undiscoverable (e.g., CVE-2020-15802). 

Known more widely as BLURtooth attack. 

BT_SM The Bluesmacking attack uses the L2CAP layer to transfer an 

oversized packet to a Bluetooth device for the purpose of 

denial of service. (e.g., CVE-2006-3146) 

BT_SN The Bluesnarfing attack involves exploiting the OBEX 

protocol to transfer information from Bluetooth devices. 

DREB_SLT DNS Rebinding attack exploiting SLT: Expose API via internal 

network with no authentication. Then, interact with the API 

to alter target temperatures on SLT (e.g., CVE-2018-11315). 

DREB_SRV DNS Rebinding attack exploiting SRV: Expose API via 

internal network with no authentication. Then, interact 

with the API to alter target temperatures on SRV (e.g., 

CVE-2018-11315). 

DOS_MC A conventional denial of service attack on the servers of the 

Provider. 

IDOR_SLT Exploit system’s insecure direct object references 

vulnerability allowing user-supplied input to access 

objects directly (e.g., CVE-2020-8791). 

INF_API Identify and access inference API provided to craft and test 

different adversarial examples. 

POISON_ML Data poisoning attack at the server so as to affect all 

users of an AI device. 

PUB_MAT Search for publicly available material, such as whitepapers 

and publications on algorithms used by the developers with 

the aim to understand the AI engine employed. 

REP_MOD By repeatedly querying the inference API, an attacker can 

replicate the machine learning model as shown by 

Wallace et al. (2020) . 

SE_MC Social engineering attacks targeting access on the servers of 

the Provider. 

SE_HR Social engineering attack targeting access on the User’s 

home router. 

Table 5 

Costs and effectiveness of security controls. 

Control Parameters Descriptions Control Parameters Descriptions 

Security Controls – Parameters = ( IndirectCost cl , IndCost cl , 1 , Effectiveness) 

(Ed-S, 1) ( VL , 0, L) Staff training on protection against social 

engineering attacks delivered once per year. 

Its effectiveness is found to drop noticeably 

after the first six months ( Reinheimer et al., 

2020 ). 

(Ed-S, 2) ( M , 0, M) Staff training on protection against social 

engineering attacks delivered every four months, 

which is the point up to which staff are still 

found to be as effective at spotting attacks as just 

after the previous training iteration 

( Reinheimer et al., 2020 ). 

(Ed-U, 1) 
(user control) 

(0, VL , VL) Low-commitment security awareness activity 

recommended to the users, for example in 

the form of a video ( Heartfield et al., 2016 ) 

(Ed-U, 2) 
(user control) 

(0, L , L) High-commitment security training recommended 

to the users, for example in the form of a game 

( Hart et al., 2020 ). 

(2FA-S, 1) ( L , 0, H) Standard two-Factor Authentication (2FA) for 

the provider’s staff, for example through 

mobile text message or app. 

(2FA-S, 2) ( H , 0, VH) Advanced 2FA for the provider’s staff, e.g. 

physically unclonable function based two-factor 

authentication ( Gope and Sikdar, 2018 ). 

(2FA-U, 1) 
(user control) 

(0, M , H) Standard two-Factor Authentication (2FA) for 

the user access to the SLT and SRV, for 

example through mobile text message or app. 

(2FA-U, 2) 
(user control) 

(0, VH, VH) Advanced 2FA for the user access to the SLT and 

SRV, e.g. physically unclonable function based 

two-factor authentication ( Gope and 

Sikdar, 2018 ). 

(Pa-S, 1) ( L , VL , L) Patching policy of long provisioning time (e.g. 

30 days) to minimise strain on company 

resources, but with increased risk of attacks 

prior to patch deployment and associated 

reputational damage ( Morgner et al., 2020 ). 

(Pa-S, 2) ( M , L , M) Patching policy of short provisioning time (e.g. 10 

days) to minimise risk of attacks prior to patch 

deployment and associated reputational damage, 

but at the cost of increased strain on company 

resources ( Morgner et al., 2020 ). 

(FnT, 1) ( L , 0, M) Stateful firewall for network traffic filtering. (FnT, 2) ( M , 0, H) Advanced firewall, e.g. allowing detection of 

intrafirewall policy anomaly rules ( Togay et al., 

2021 ). 

(DoS, 1) ( L , 0, M) IoT DoS mitigation for the provider’s servers, 

using low-cost deployment, such as IoT 

Honeypot-based ( Anirudh et al., 2017 ). 

(DoS, 2) ( M , 0, H) Advanced IoT DoS mitigation for the provider’s 

servers, e.g. IoT-Middelware ( Sicari et al., 2018 ) or 

SDN ( Ahmed and Kim, 2017 ). 

(DLP-strat, 
1) 

( L , 0, M) Data loss prevention strategy prioritising 

insider threat management ( Alneyadi et al., 

2016 ). 

Adversarial Machine Learning Controls – Parameters = ( IndirectCost cl , IndCost cl , 1 , Effectiveness) 

(RoS, 1) ( L , L , M) AI Robust Statistics that use constraints and 

regularisation techniques to reduce potential 

distortions of the learning model caused by 

poisoned data ( Tabassi et al., 2019 ). 

(RoI, 1) ( L , L , M) Robust Improvement including techniques such as 

“Adversarial Training”, “Gradient Masking”, 

“Defensive Distillation”, “Ensemble Method”, 

“Feature Squeezing”, and 

“Reformers/Autoencoders” ( Tabassi et al., 2019 ). 

(DiP, 1) ( H , M , M) Differential privacy ( Tabassi et al., 2019 ). (PuB, 1) ( M , 0, L) Detailed restrictions on publications, limiting 

information to primarily high-level descriptions 

of datasets and AI models and techniques. 

(PuB, 2) ( H , 0, M) Organisation-wide ban on publication of 

datasets and AI models and techniques. 

12 
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Fig. 6. case study – attack graph. 
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alues are used to illustrate the optimisation solutions. In prac- 

ice, these values could be obtained through a survey conducted 

y the service provider. As previously noted, there are several ex- 

mples of surveys, such as the NCSC ’s survey on the UK’s Cyber Se- 

urity Breaches in 2022 ( The National Cyber Security Centre, 2022 ), 

hich ’s report on smart home cybersecurity, and Kaspersky ’s report 

n IoT attacks. Nonetheless, the service providers should perform 

heir own surveys based on their specific services and users. 

To study the Pareto-front solutions, we will assume the direct 

udget of the provider is large, and we will vary the indirect bud- 

et and the threshold of the highest indirect cost (B ID , u I, 1 ) for the

rovider and user type 1 in the range of 0 to 30. We also assume

he baseline probability of each edge to be 0.9. Below, we present 

ome significant solutions on the Pareto-front: 

• When the indirect budget the threshold are small, i.e. 

(B ID , u I, 1 ) = (3 , 3) , the optimisation will first protect those con-

sequences with a high direct loss, i.e. C 4 : SP = int and C 3 :

SP = con. The optimal portfolio consists of controls (Ed-S, 1) 
and (2FA-S, 1) , resulting in the security risk of 17.53 with 

R 1 − R 5 = [0.81, 0.9, 0.57, 0.17, 0.90]. So far, consequences C 4 : 

SP = int and C 3 : SP = con have been protected by effective con-

trols. 

• When (B ID , u I, 1 ) = (8 , 8) , the optimal portfolio adds controls

(Pa-S, 1) and (DoS, 1) , resulting in the security risk of 

8.76 with R 1 − R 5 = [0.41, 0.45, 0.28, 0.09, 0.45]. Control (Pa-S, 
1) and (DoS, 1) can mitigate potential attacks on BT, DREB 

and DoS attacks. So far, every consequence has been protected 

by at least one control. 

• As the indirect budget threshold increases up to (B ID , u I, 1 ) = 

(16 , 16) , the optimal portfolio upgrades the existing control 

to a high level and also adds AdvML controls. For example, 

at (B ID , u I, 1 ) = (16 , 16) , the security portfolio is (Ed-S, 1) ,
(2FA-S, 2) , (FnT, 2) , (Pa-S, 2) , (RoI, 1) , (DoS, 
2) , which reduces the security risk to 4.56 with R 1 − R 5 = [0.41,

0.45, 0.14, 0.028, 0.081]. 

• As the indirect budget and the threshold further increase, more 

controls are added to the security portfolio. At (B ID , u I, 1 ) = 

(30 , 30) , the security portfolio includes all the provider controls 

with the highest intensity level, which results in the security 
risk of 3.25 with R 1 − R 5 = [0.41, 0.45, 0.03, 0.004, 0.08]. s

13 
.2. Stage-two optimisation 

In stage two, the provider can select a portfolio of user con- 

rols to provide the user with an extra layer of security. Suppose, 

n stage-one optimisation, the indirect budget and the threshold 

re (B ID , u I, 1 ) = (26 , 15) . The optimal security portfolio is (Ed-S,
) , (2FA-S, 2) , (FnT, 2) , (Pa-S, 2) , (RoI, 1) , (DoS,
) , (DiP, 1) , (RoS, 1) , (DLP-strat, 1) , resulting in a se-

urity risk of 3.28 with R 1 − R 5 = [0.41, 0.45, 0.025, 0.0051, 0.081]. 

oreover, I 1 = 9 < u I, 1 . Thus, we have B I, 1 = 6 for stage-two opti-

isation. 

Suppose, for example, both user controls Ed-U and 2FA-U have 

irect-cost 0, i.e. the user does not need to pay for these two 

ser controls, and the user’s loss with respect to consequences C 1 
nd C 2 are both 5. Consequences C 3 to C 5 only impact the service 

rovider and are therefore not taken into account in the second 

tage optimisation. In stage-two optimisation, the provider will 

ecommend user controls (Ed-U, 2) and (2FA-U, 1) result- 

ng in the security risk of 2.09 with R 1 − R 2 = [0.2835, 0.135]. 

. Conclusion 

We proposed a novel decision support system to help service 

roviders and users select optimal portfolios of security controls 

o counteract cyber attacks in the smart home supply chain. The 

roposed system considers the important roles of both the ser- 

ice provider and the users in determining optimal security port- 

olios and utilises a multi-objective bi-level two-stage optimiza- 

ion approach, where the first stage focuses on the role of the ser- 

ice provider in securing devices, and the second stage focuses on 

he user. The system also incorporates financial and security con- 

traints, and different user and attacker profiles. We demonstrated 

he effectiveness of the proposed system through a case study of 

n AI-powered smart radiator valve. 

We noticed that the optimisation results depend on the pa- 

ameters of the user and the attacker profiles. Therefore, inaccu- 

ate data may result in sub-optimal security portfolios. In addition, 

ur assumption of complete rationality of both users and attack- 

rs may not always hold in real-world scenarios, as users may de- 

iate from the best response and undermine the optimal defence 

trategy. Moreover, partially rational attackers may affect the sur- 
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ey data and reduce the effectiveness of the optimal security port- 

olio against rational attackers. Furthermore, our game assumes co- 

perative users. However, in reality, some users may not cooperate 

nd may even deactivate controls proposed by the provider. Future 

ork should address this behaviour and consider the inclusion of 

 regulator or governmental body to ensure security standards are 

et. Thus, future work will focus on validating the framework in 

eal-world scenarios experiments, collecting data, and testing the 

ystem in different smart home environments and devices, with 

ifferent rationality of user and attacker profiles, to evaluate its 

erformance, adaptability, and robustness. The objective is to im- 

rove the feasibility and usefulness of the proposed decision sup- 

ort system in real-world smart home supply chains. 
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