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The association mechanism between the main operation parameters and multi-physical fields of the
large-scale vertical mill system is unclear, which leads to the difficulty in optimizing operation parame-
ters to improve the performance of large vertical mill systems. To investigate the mechanism of multi-
physical field coupling in the operation of the large vertical mill, the numerical simulation method is
constructed by coupled CFD-DPM model to calculate the finished product quality, the simulation results
were in good agreement with the actual operation results. Based on the Kriging surrogate model, a multi-
objective optimization framework for large vertical mills is proposed. Finally, the multi-objective opti-
mization design of LGM large vertical mills is carried out. Combined with CFD-DPM coupling method
is developed, design variables and output responses are determined. The Kriging method is used for cor-
relation analysis. The multi-objective optimization function was established. The NSGA-II. optimization
algorithm was used to update the surrogate model and obtain the optimal solution, and the optimized
operating parameters increased the vertical mill yield by 5.34% and the specific surface area by 9.07%.
The maximum relative error between the simulated value and the optimized value is 2.02% through
numerical calculation, which verifies the superiority of the optimization method of large vertical mill
for performance improvement.
� 2023 Society of Powder Technology Japan Published by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A large vertical mill is a piece of major equipment in cement,
mining, building materials, metallurgy, chemical industry, and
other industries. Large vertical mills integrate the functions of dry-
ing, crushing, grinding powder selection, and transportation. The
technological process is a typical coupling process integrating fluid,
particles, temperature, and other multi-physical fields [1,2]. When
the vertical mill is running, a large-scale particle–fluid coupling
system is formed inside it. The complex structure of the cavity
space inside a large vertical mill leads to a strongly coupled
fluid-particle multiphase flow as a whole. There are also the sud-
den expansion jets at the nozzle ring, cylindrical winding flow at
a certain angle of attack, shrinking flow in the gravity classification
zone, and forced vortex flow in the centrifugal separation zone. The
above reasons lead to an unclear correlation mechanism between
the fluid field patterns of gas and solid mixtures. The existing cal-
culation models and methods are difficult to describe the coupling
relationships between these parameters [3].

The large-scale vertical mill system has complex turbulent
motion in its operation. To address this challenge, we must con-
sider factors in multidiscipline, including computational fluid
dynamics, multiphase flow theory, aerodynamics, etc. Algebraic
stress models, k-e models, RNG k-e models and Reynolds stress
models are usually used [4]. Scholars have studied the flow field
characteristics of vertical mills. Bhasker [5] described the meshing
process of vertical mill fluid simulation and used the gas–solid
two-phase flow method to simulate the vertical mill and obtain
the complete trajectory of the gas–solid two-phase flow from the
inlet to the outlet of the vertical mill. Kozołub et al. [6] used the
hybrid Euler-Lagrange method to establish a numerical calculation
model of the gas–solid two-phase bi-directional coupling. They
simulated the flow state in a cyclone separator under high-speed
particle load. Vuthaluru et al. [7] used the Eulerian-Eulerian
method to affect multiphase flow in a simplified model. Dou
et al. [8] used CFD to simulate the flow field of a vertical mill
and analyzed the causes of considerable differential pressure in
the vertical mill.
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The study of the flow field cannot carry out multidimensional
coupling analysis of the system, so scholars began to study the cou-
pled particle–fluid system. Toneva et al. [9] used particle image
velocimetry to study the particle motion in the size range of
29�573 lm in a gas–solid two-phase flow in a mill cavity separa-
tor and found that the particle motion in the grinding zone was not
affected by the circumferential velocity of the separator. Mori et al.
[10] used symbolic distance functions and immersed boundary
methods to simulate arbitrarily shaped wall boundaries in gas–
solid two-phase flows and demonstrated the applicability of the
coarse-grained discrete element method in complex-shaped
domains by comparing experimental and numerical analysis
results. Zamani et al. [11] used a two-way coupled Euler-
Lagrange method to study the corrosion phenomenon of bends
due to gas–solid two-phase turbulent flow and found that the par-
ticle rotation strongly influence the corrosion rate. The particle
rotation had a significant influence on the particle movement path.
Carlos et al. [12] investigated a computational fluid dynamics dis-
crete element method for interacting between gas-particle flow
and non-homogeneous catalytic chemical reactions encountered
in large complex particle–fluid equipment. It was found that the
slip velocity and axial gas dispersion of the system were directly
related to the formation of particle clusters. Elsayed et al. [13] sim-
ulated the effect of four different dust discharge structures on the
internal flow field of complex particle–fluid equipment and found
that there were errors of 10% and 35% in the Euler number and cut
particle size, respectively. Liu et al. [14] used the two-way coupling
method. The discrete phase DPM model was used to study and
analyze the classification and screening characteristics of particles
from three aspects: velocity field, pressure field and discrete phase
distribution.

In summary, there are a series of challenges and difficulties in
optimizing and controlling the operating parameters of large verti-
cal grinding systems, which have a complex internal structure and
involve the coupling of multiple physical fields such as gas, solid
particles, and heat transfer. Euler’s method can be used to simulate
the coupling of continuous medium and fluid for the vertical mill’s
internal particles and simulate the particle phase’s flow state. Still,
it can’t get the trajectory of particles. DPM method can obtain the
trajectory of particles, but it consumes sunstantial computational
resources, so it is difficult to simulate a large-scale particle–fluid
system. The CFD-DPM coupling model simulates the internal flow
field of the system. DPM model simulates the movement of parti-
cles in the flow field, and the particles in the flow field are modeled
and tracked as packages to reduce the demand for computing
resources and improve computing efficiency.

In this paper, a large vertical mill was taken as the research
object. We investigate the effects of operating parameters on the
powder particle classification and particle size distribution, and
the fineness of finished products under the particle–fluid coupling
effect. And the optimization method of the operating parameters.
Based on Computational Fluid Dynamics (CFD), the Discrete Phase
Model (DPM) is used to calculate the trajectory of particles in the
flow field numerically. A multi-objective optimization model for
large vertical mill operating parameters is established based on
the Kriging surrogate model method. Finally, the operation param-
eters of an LGM large vertical mill are optimized. The optimization
results show that the method is effective.

The contents of this paper are organized as follows: Section 1
briefly introduces the structure of large vertical mill and designs
a multi-objective optimization framework for a large vertical mill
based on CFD-DPM. Section 2 describes the numerical model of
the granular fluid system based on CFD-DPM. Section 3 introduces
the DOE experimental design. In Section 4, the Kriging method is
introduced and cross-verified, which proves the feasibility of Krig-
ing method. Section 5 designs the optimized process. In Section 6,
2

an example is verified and the results are analyzed. Chapter seven
summarizes the work done.
2. A multi-objective optimization framework of large vertical
mill based on CFD-DPM

2.1. Working principle of large vertical mill

A large vertical mill comprises tens of thousands of parts, and
its complex particle–fluid system parameters include mechanical,
electrical, hydraulic, and other disciplines. It has a complex model
structure, many monitoring operation points, and a long product
life cycle, making it challenge to develop and design the system,
process and assemble the parts and maintain the equipment. This
paper uses a large vertical mill as the research object for numerical
simulation. Its grinding roller is a flat cone roller loaded with
curved arms. The grinding roller device adopts the arrangement
of four grinding rollers, and the main roller and the auxiliary roller
are symmetrically distributed. The main structure of the physical
model is shown in Fig. 1.

The structure of a large vertical mill is complex, so its geometric
model is constructed after reasonable simplifying the physical
model without affecting the calculation accuracy. According to
the physical model structure size, the geometric model of the cen-
tral part of the vertical mill is built. The main part comprises the
shell, powder selecting device, rolling device, and air inlet device.
The components of the main structure that do not influence the
numerical calculation results are discarded to simplify the
calculation.

The main working principle of the vertical mill is as follows: the
motor drives the grinding disc to rotate through the reducer, and
the materials are fed to the grinding disc rotating in the mill by
the airlock feeding equipment. Under the action of centrifugal force
and friction force, the materials move to the periphery of the grind-
ing disc and enter the grinding roller table. The material retaining
ring outside the grinding disc makes the materials form a material
layer (i.e., powder grinder). With the rotation of the grinding disc,
the grinding roller grinds, presses and grinds the materials on the
grinding disc. In this process, some large-particle materials fall into
the scraping cavity under the grinding disc through the annular
nozzle. The scraping plate of the scraping cavity scrapes the mate-
rials to the slag outlet along with the rotation of the grinding disc
and then re-feeds them into the vertical mill for grinding through
the external circulation equipment (i.e., external circulation of the
vertical mill). Due to the action of the circulating fan, the hot air
entering the mill passes through the annular nozzle around the
grinding disc at a speed of 40�80 m/s to bring the ground materi-
als to the upper part of the grinding machine. The enlarged upper
shell of the grinding machine makes the large particle materials
fall to the grinding disc for re-grinding due to the slow wind speed.
Fine particles enter the dynamic and static classifier together with
the airflow for thickness separation. Coarse particles return to the
center of the millstone from the blanking cone for grinding again
(i.e., the internal circulation of the vertical mill). Then fine particles
are discharged out of the mill along with the airflow, and collected
by the dust collector to obtain the product.
2.2. A multi-objective optimization approach of large vertical mill
based on CFD-DPM

A numerical simulation method is an effective tool for analyzing
the gas–solid two-phase flow system. In the CFD-DPM method, the
gas phase is regarded as a continuous fluid, and the discrete phase
can be solved by tracking the particle trajectory. In this paper, the
coarse-grained non-analytical CFD-DPM model is used in the



Fig. 1. Structure diagram of key components of vertical mill.
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simulation analysis, which reduces the demand for calculation and
improves the calculation efficiency.

This study aims to improve the output and production effi-
ciency of a large vertical mill by optimizing its operational param-
eters. This paper takes a large vertical mill in LGM as the object, a
numerical calculation method of particle–fluid coupling system in
large vertical mill based on CFD-DPM theory, and a multi-objective
optimization method of operating parameters of large vertical mill
based on Kriging are proposed. Based on the Kriging surrogate
model and genetic algorithm, the optimization framework of oper-
ation parameters of a large vertical mill based on Kriging is estab-
lished. The multi-objective parameter optimization framework of
large vertical mill operation is shown in Fig. 2.

A multi-objective optimization process based on CFD-DPM is
organized as follows.

Step1:Numerical model of the granular fluid system based on
CFD-DPM.

The discrete particle model of computational fluid dynamics is
used for numerical simulation and analysis, especially when cou-
pled DPM is used, which involves a large number of particle calcu-
lations. To reduce the calculation amount and shorten the
calculation cycle, the parcel can effectively improve the calculation
efficiency. Finally, the numerical simulation results are compared
with the actual values to verify the accuracy of the simulation.

Step2:DOE experimental design and Latin hypercube sampling.

DOE can select the ideal initial sample point with fewer test
runs, low cost and short period, and can effectively approximate
the unknown objective function. Latin hypercube sampling can
make the samples evenly distributed in space.
3

Step3:Kriging surrogate model and its cross-validation.

The Kriging model is an unbiased estimation model to predict
the response of unknown test points through the information of
known test points. After forecasting the model, the accuracy and
feasibility of the model can be determined by cross-validation.

Step4:Optimization model and an optimization process based
on Kriging.

The optimization process is designed based on the Kriging
model, and the multi-objective optimization of a large vertical mill
is carried out by combining with the NSGA-II algorithm.

3. Numerical model of granular fluid system based on CFD-DPM

3.1. CFD-DPM coupling method

3.1.1. CFD numerical model
As a typical complex particle–fluid system, the structural layout

of the nozzle ring, gravity classification zone, and centrifugal sep-
aration zone in the internal cavity of a large vertical mill is unclear
concerning the fluid field pattern of the gas and solid mixture. It is
difficult to accurately describe the coupling relationship between
these parameters by using the existing calculation models and
methods. This paper uses a coupled CFD-DPM model to simulate
the internal flow field of the system numerically.

The standard k-e turbulence model is a two-equation vortex-
viscosity model, mainly used to solve the vortex viscosity coeffi-
cient lt [15] The transport equation for turbulent kinetic energy
k is solved by equation derivation and the transport equation for
dissipation rate e is obtained by physical reasoning following the
structural form of the turbulent kinetic energy equation, and the



Fig. 2. A multi-objective optimization framework of a large vertical mill based on CFD-DPM.

R. Huang, Y. Ma, H. Li et al. Advanced Powder Technology 34 (2023) 104014
turbulent kinetic energy and dissipation rate transport equations
are expressed as [16].
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where li, l
�
i and l

�
k respectively represent the velocity of the fluid

mass in Cartesian coordinates, xiand xk respectively represent coor-
dinates in different directions,l is the fluid viscosity, lt is turbulent
viscosity coefficient, Ce1 and Ce2 are usually taken as default con-
stants of 1.44 and 1.92 respectively, the turbulent Prandtl numbers
for turbulent kinetic energy and dissipation rate are divided into
rk ¼ 1:0 ,re ¼ 1:3.

3.1.2. DPM theoretical model
The fluid movement with two or more different phases is called

multiphase flow. The complex particle–fluid system of a vertical
mill is a gas–solid coupled multiphase flow system. Depending
on the treatment of the medium, the large-scale particle–fluid sys-
tem can be described by a two-fluid model or a particle trajectory
model. The two-fluid model is suitable for dense-phase particle
flow, where the particles are considered as a continuous medium
mixed with the gas phase in the Eulerian coordinate system. Unlike
dense-phase particle flow, which treats solid particles as fluid-like,
4

the particle trajectory model treats solid particles as discrete media
and examines their motion in the Lagrangian coordinate system. In
the case of small volume fractions of particles in the computational
fluid domain, the discrete phase model is chosen to avoid the dif-
fusion problem of the numerical solution. The calculation shifts
from global averaging to local transients. While the computational
accuracy is higher compared to the two-fluid model. Hence the
particle trajectory model is used for the numerical analysis.

The particles in the mill are mainly subject to the joint action of
gravity, traction, buoyancy and other forces. The forces follow
Newton’s second law, and the trajectory of the discrete particles
is predicted by integrating the force balance, and the differential
equation of motion is written [17].

mp
d u!p

dt
¼ mp

u!� u!p

sr
þmp

g! qp � q
� �
qp

þ F
! ð4Þ

Where mp is the discrete phase particle mass; u!pis the particle

velocity; u!is the gas continuous phase velocity;qpis the particle

density;qis the continuous phase density; F
!
is the additional for-

ce;mp u!� u!p=sr
� �

is the particle drag; sris the particle relaxation

time expressed as sr ¼ qpd
2
p=18l

� �
� 24=CdReð Þ, (l is the gas molec-

ular viscosity; dpis the particle diameter;Cdis the particle traction
coefficient; Re is the relative Reynolds number defined as

Re ¼ qdp u!p � u!�� ��� �
=l

h i
).
3.1.3. Coarse-grained non-analytical CFD-DPM coupling method
The gas–solid two-phase flow field in the vertical mill cavity

was simulated by using the Eulerian-Lagrangian approach to build
a multiphase flow model numerically. The vertical mill complex
granular-fluid system belongs to the gas–solid coupling multi-
phase flow system. In the CFD-DPM interphase coupling, The par-
ticle trajectory model uses the Eulerian-Lagrangian approach to
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treat solid particles as discrete media, and describes their motion
by tracking and calculating particle traces in the Lagrangian coor-
dinate system. In the case of small particle volume fraction in the
computational fluid domain, the discrete phase model can avoid
the diffusion problem of numerical solution, and the calculation
shifts from the overall average to the local instantaneous. The
gas flow inside the cavity is non-viscous gas non-constant flow
(i.e., non-stationary flow), and the gas phase is considered as a con-
tinuous medium in the Eulerian coordinate system [18,19]. Dis-
crete media is in the Lagrangian coordinate system, adopting the
DPM model. The movement of particles was described by tracking
and calculating their trajectories. The two phases are coupled, the
exchange of momentum, mass and energy between discrete and
continuous phases, and the continuous phase is solved for the tur-
bulent non-constant Reynolds-averaged Navier-Stokes equations
based on the solver. When the iterations converge, the discrete
phase is introduced to solve the particle trajectory equations, and
the particle source term of the continuous phase is updated for
the next iteration until the coupling converges. Fig. 3 shows the
flow chart of the coupling calculation.

When using coupled DPMs in numerical simulations, the mass
flow rate of particle injection is often a necessary and relevant
input parameter. It determines the absolute value of the DPM
source, as the mass flow rate can be converted into the number
of particles injected per unit of time. Faced with the problem that
the complex particle–fluid system is stuck or even unable to calcu-
late. When a large number of particles are involved in the system,
the parcel can reduce the calculation amount and shorten the cal-
culation cycle. Parcel represents a fraction of the total continuous
mass flow rate (in a stable trace) or a fraction of the total mass flow
rate released in a time step. Because it has a specific particle size,
the calculation treats it as a coarse-grained model whose fluid flow
Fig. 3. Flow chart of CFD-DP
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trajectory uses a relaxation time appropriate to the individual par-
ticles (relaxation time is the ratio of particle momentum to drag)
and helps converge [20]. Therefore, no single parcel will signifi-
cantly affect on the flow, and sufficient parcels should be arranged
to generate statistical samples to represent the whole range of par-
ticle behavior.

3.2. Fluid domain and network model

The numerical simulation method is used to solve the flow
problem. In addition to the differential equations used to describe
the fluid motion, it is also necessary to determine its definite solu-
tion conditions. The definite solution conditions of unsteady flow
are composed of boundary and initial conditions. The gas phase
inlet boundary condition is set to velocity inlet with a single inlet
area of 2.34 m2, and the outlet boundary type is set to free outlet
(outflow). The discrete phase particles are generated from the sur-
face of the grinding disc. The tracking particles are calcium carbon-
ate with a density of 2 800�3 400 kg/m3 taking 3 000 kg/m3. The
solid phase inlet boundary is defined as a trap, the particle injector
type is a model surface jet source with a mass flow rate of 25 kg/s
（The actual feeding speed of the large vertical mill is 90 t/h, and
the mass flow rate of the particle syringe model surface injection
source is set to 25 kg/s after unit conversion, which is the model
condition setting in the simulation system.）, and the particle out-
let boundary is defined as an escape. The parcel number in the
DPM model is selected in model settings, not limited by the actual
particle number. Parcel is to collect particles for calculation, in the
face of complex particles-fluid system numerical calculation pro-
cessing is large, there is a problem that the calculation process is
stuck or even unable to calculate, especially when a large number
of particles are involved in the system, the amount of calculation
M coupling calculation.
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can be reduced and the calculation cycle is shortened with the help
of Parcel. Parcel represents a portion of the total continuous mass
flow (in a steady trace) or a portion of the total mass flow released
in a time step. We select constant-mass, and define a parcel mass
as 2.5 � 10–5 kg. Fig. 4 (a) shows the flow field domain model.
The number of ejected particles per second is 25/2.5 � 10–5.

The solution method uses an implicit pressure–velocity coupled
solution based on a pressure solver, with a low number of iterative
steps and a fast convergence rate. In the interphase coupling calcu-
lation, the discrete phase and the continuous phase interact and
transfer among momentum, mass and energy. Each time step is
solved iteratively. The calculation is finished when the two-phase
calculation results reach the convergence standard. The Green-
Gauss Cell Based algorithm was selected for the gradient algo-
rithm. The second-order format is selected for the pressure phase
difference format., The spatial discrete schemes are all calculated
by the second-order upwind scheme. The relaxation factor adopts
the default value to ensure the stability and convergence of the
calculation.

Due to the complex spatial structure of the model, a partitioned
meshing method is used to ensure the quality of the meshing, with
different regions being divided into structured or unstructured
meshes depending on the structure and calculation accuracy
requirements, with the regions connected by interfaces. The mesh
quality is reflected in the rationality of the mesh geometry. The
degree of mesh distortion will reduce the accuracy of numerical
calculations. In order to improve the accuracy of the calculation,
we ensure both the reasonable division of the mesh and a reason-
able transition of the fluid between the guide blade and the rotor
blade. The rotor blade and the guide blade around the mesh
encrypt the processing. Fig. 4 (b) shows the Fluid domain grid
model.
3.3. Calculation model of specific surface area

Specific surface area is another important indicator to measure
the fineness of powder products, usually divided into volume-
specific surface area Sv(m2/m3) and mass-specific surface area
Sw(m2/kg; m2/g). We have Sv ¼ qpSw (qpfor particle density) corre-
spondence, expressed as a unit volume or mass of powder particles
with a total surface area. The national standard value for silicate
Fig. 4. Vertical m
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cement specific surface area is no<300 m2/kg. The larger the value,
the finer the powder particles.

To count the number of particles in different particle size
ranges, we can describe the distribution of powder particle sizes
by tabulating or making frequent and cumulative distribution dia-
grams and also by using analytical mathematical functions to gen-
eralise and describe the distribution pattern of powder particle
sizes.

The Rosin-Rammler distribution function is based on the study
of probability and statistical theory, through the cement, coal pow-
der and other fine powder material crushing experiments and
summed up the exponential function. In line with the R-R distribu-
tion of the particle group, sieve residual cumulative distribution
function can usually be expressed as [21].

R Dð Þ ¼ 100 exp � D=Deð Þn	 

%ð Þ ð5Þ

where R(D) represents the cumulative mass percentage of the sieve
residue when the particle size is D. When D = De, the cumulative
mass percentage of the sieve residue R(De) = 100/e% = 0.368, the cor-
responding particle size is the characteristic particle size of the par-
ticle population De, the characteristic particle size can roughly
reflect the coarseness of the powder; n is the uniformity coefficient,
which is used to characterize the width of the particle size distribu-
tion range.

For theoretical analysis, the exponential function R(D) was lin-
earized by taking twice logarithms.

lg lg 100=R Dð Þð Þ½ � ¼ n lgDþ C ð6Þ

C ¼ lg lg e� n lgDe

In the X-Y coordinate system, such that Y ¼ lg lg 100=R Dð Þð Þ½ � ;
X ¼ lgD ; the Rosin-Rammler equation was transformed into a lin-
ear (or approximately linear) solution. Linear regression analysis
was used to obtain the slope n, the intercept C, and the linear cor-
relation coefficient r. The characteristic particle size De was
obtained through the intercept C.

When a powder can be expressed as a function, an analytical
solution for a specific surface area can be obtained. By integrating
the frequency distribution function, the particle accumulation dis-
tribution function can be obtained for any Di � Diþ1 range. By
deriving the particle under-screen accumulation distribution func-
tion, the frequency distribution function can be obtained
ill flow field.
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f Dð Þ ¼ 1� R Dð Þ½ �0 ¼ n=Dn
e

� �
e� D�Deð ÞnDn�1 ð7Þ

The integration of the frequency function for particle size D
(equivalent diameter of the specific surface area of the particle)
in the interval (0 � 1) gives

Sv ¼ qpSw ¼ usv=De
� � Z 1

0
Dn�2=Dn�1

e

� �
e� D=Deð ÞndD ð8Þ

where usv is the specific surface area shape factor.
The formula for calculating the specific surface area of the

Rosin-Rammler distribution function is obtained by simplifying
the integral and has an approximate solution when n ¼ 0:7 � 2:5
(positive and negative errors < 2:5%).

Sv ¼ qpSw ¼ 1:065 usv=De
� �

exp 1:795=n2� � ð9Þ
3.4. Validation of numerical calculation method

Following the above method, numerical calculations are carried
out, and the results are compared with the experimental vertical
mill operation data. The experimental data in this paper comes
from the developed mining equipment industrial internet plat-
form, which has realized the whole process condition monitoring
of the large vertical mill. The vertical grinding condition is set to
the speed of the powder separator 110 r/min, the inlet and outlet
pressure difference is 3 523 Pa, and the system air volume is
415.1 m3/h. A comparison of the experimental data with the
numerical calculation data is shown in Table 1.

Based on the above theory, numerical simulations were carried
out with the same operating parameters. The distribution of parti-
cles escaping from the outlet is counted, and the analytical solution
of its specific surface area is 402.33 m2/kg. The relative error with
the experimental value is 3.08%. The two primary sources of errors
are the difference between the simplified calculation model and
the actual physical model, and the approximation error in the cho-
sen specific surface area calculation model. The experiments and
simulations are in good agreement and can be used with the
numerical calculation of the sampling points in establishing the
proxy model.

3.5. DOE experimental design and Latin hypercube sampling

Design of Experiments (DOE) is a mathematical and statistical
method widely used in product development, quality control, pro-
cess optimization and other areas. To construct the surrogate
model, DOE is the first step. The two purposes of DOE include (1)
selecting the ideal initial sample points with fewer runs, lower
cost, and shorter cycle time, and (2) effectively predicting the
unknown objective function. The choice of DOE directly affects
the construction cost of the approximation model and the accuracy
of the approximation. Common DOEs are Latin Hypercube design
(LHD), Optimal Latin Hypercube design (Opt LHD), Full Factorial
Design (FFD), Fractional Factorial Design (FFD), Orthogonal Exper-
imental Design (OED) and Central Composite Design (CCD), etc.
[22] To obtain the desired experimental results, the selection of
the initial sample points is essential. A small number of initial sam-
ple points will reduce the approximation accuracy of the proxy
model. At the same time, too many sample points will result in
repeated calculations that do not reflect the efficiency of the proxy
Table 1
Comparison of experimental data with numerically calculated data.

Working conditions Measured values Simulation calculations

Specific surface area m2/kg 415.1 402.33
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model in the optimization design process. Sample points should be
evenly distributed throughout the design space to avoid the super-
position of sample points within the same level. In this paper, Opt
LHD is used for sampling.
4. Kriging surrogate model and its cross-validation

4.1. Kriging surrogate model

Kriging method [23] is a regression algorithm for spatial model-
ing and prediction of random processes according to covariance
function, and it is an unbiased estimation model with the smallest
variance. A stochastic process represents the relationship between
the objective function and design variables. The response ŷ xð Þ of
unknown sample points can be predicted by a linear combination
of responses of known sample points. The Kriging has the following
equation.

ŷ xð Þ ¼ f xð Þ þ Z xð Þ ð10Þ

where f xð Þ is a known function of x and represents a global approx-
imate simulation,Z xð Þ is a stochastic process model with a mean of 0
and variance r2 created by quantifying data observations and data
correlations, and x represents the design variables.

The covariance of Z xð Þ is:

cov Z xið Þ; Z xj
� �	 
 ¼ r2

Yn
k¼1

Rk hk; dkð Þ ð11Þ

where hk is the model parameters to be determined, n is the number
of design variables, dk is the k dimensional distance between sample
points, and Rk hk;dkð Þ is the correlation function. Commonly used
correlation functions are: Gaussian function, exponential function,
spline function, linear function, etc.
4.2. Leave-One-Out Cross-Validation

In this paper, we use Leave-One-Out cross-validation [24] to
assess the accuracy of the initial kriging model, as this procedure
allows us to evaluate the accuracy of the model without sampling
any points other than those used to fit the model. The basic princi-
ple of Leave-One-Out cross-validation is to omit an observation y
(x(i)) and make a prediction based on only n-1 sampled points.
We can then obtain a cross-validated observation prediction,
e.g.,ŷ�i x ið Þ� �

; and a cross-validated standard error of the prediction,
e.g.,̂s�i x ið Þ� �

. The subscript –i indicates that the observation i was
not used in building the kriging model. These two quantities can
be used to calculate standard amounts to determine whether the
initial kriging model is valid.

Sr ¼ y x ið Þ� �� ŷ�i x
ið Þ� �
=ŝ�i x ið Þ� �	 
 ð12Þ

where Sr is called the standardized cross-validation residual. If Sr
lies in the interval [-3, +3] and interval [-80, +80], the confidence
level of the kriging model is approximately 99.7%, which means that
the model is valid. We selected 31 samples by LHS code to build the
initial kriging model in this case.

Fig. 5 shows the results of the diagnostic tests for the initial
kriging model. In Fig. 5, the observed versus cross-validated predic-
tions are plotted. The points will lie on the 45�line if the model is
good. As shown in Fig. 5, the 31 samples are largely distributed
around the 45�line. In Fig. 5 (b) and (d), it is more evident that
the standardized cross-validation residuals for all 31 samples are
in the interval [-1.5, +1.5] and interval [-40, +40], respectively, so
the initial kriging model is satisfactory.



Fig. 5. Diagnostic tests for the Kriging model.
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5. Multi-objective optimization process based on Kriging

5.1. Multi-objective optimization process

In multi-objective optimization problems, there are usually
conflicting relationships between the objective functions and no
individual solution can optimize all the objectives at the same
time, with the optimal solution being the solution set. The mathe-
matical model is shown below.

min F xð Þ ¼ f 1 xð Þ; f 2 xð Þ; . . . . . . ; f m xð Þ½ �T ð13Þ

s:t:
gi xð Þ 6 0; i ¼ 1; . . . . . . ;p
hj xð Þ ¼ 0; j ¼ 1; . . . . . . ; q
lk 6 xk 6 uk; k ¼ 1; . . . . . .n

8><
>: ð14Þ

where: gi(x) � 0 is the inequality constraint, hj(x) = 0 is the equation
constraint, lk � xk � uk represents the upper and lower bounds of the
variables xk are lk and uk respectively, and the decision vector � is
sought in the decision space such that F(x) is minimized when the
above two types of constraints are satisfied. In this experiment,
the objective functions were yield and specific surface area, respec-
8

tively. The yield and specific surface area were sought as the max-
imum value. Therefore, in function setting process, the f(x)
representing yield and specific surface area were taken as a nega-
tive value, and the opposite number was taken after the minimum
value was obtained as the maximum value of these two objective
functions.

Fig. 6 shows the multi-objective optimization framework for
large vertical mill operating parameters. The specific optimization
process is as follows.

Step 1 Sampling using the optimal Latin hypercube method to
obtain a uniformly distributed sample.
Step 2 Calculate a Kriging surrogate model between the design
variables and the objective function by coupling CFD-DPM to
the sample.
Step 3 Determine whether the combined surrogate model
meets the accuracy requirements; if it does, proceed to the next
step; if it does not, return to step 1.
Step 4 Optimization based on the combined surrogate model,
using the NSGA-II algorithm on the MATLAB platform to obtain
optimization results.



Fig. 6. Multi-objective optimization framework for large vertical mill operating parameters.
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Step 5 Determine whether the optimization result meets the
performance index requirements of the vertical mill. If so, the
optimization is completed; if not, return to step 1.

5.2. Non-dominated sorting genetic Algorithm-II(NSGA-II)

The multi-objective optimization of vertical mill operating
parameters is a complex problem with nonlinearities multimodal-
ity and discontinuities. CFD-DPM can obtain the value of the objec-
tive function, but derivative (gradient) information is not easily
available. Genetic algorithms based on natural selection theory
use only the value of the objective function, with no gradient infor-
mation. This feature makes genetic algorithms an effective search
mechanism for running parametric multi-objective optimization
[25].
9

Fig. 7 shows the general process of the genetic algorithm.
Firstly, initialize the population. Order all individuals in a non-
dominated relationship and assign a fitness value. Then, the next
generation population is generated by selection, crossover, and
mutation operators. The size is recorded as N.

The new population is merged with the parent, and then a ser-
ies of non-dominated sets (F(1), F(2), . . ., F(n)) are generated by
non-dominated sorting. The crowding degree is calculated, and
appropriate individuals are selected to form the new parent popu-
lation. If F(1) is less than N, the next dominant set F(2) is added to
the new parent population until the population size exceeds N, and
the crowding degree of the finally added non-dominant set indi-
viduals is sorted, and the appropriate individuals are selected to
make the number of the new parent population reach n. Then a
new offspring population is generated by genetic operators.



Fig. 7. Overall flow chart of NSGA-II algorithm.
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6. Case study

The proposed Kriging model is applied to the multi-objective
optimization design of vertical mill operating parameters and com-
pared with the simulation results to verify the practical effect of
the proposed Kriging model on the optimization of vertical mill
parameters.

6.1. Description of the problem

The complex particle–fluid system has many monitoring oper-
ating points and operating parameters. There are many parameters
in the operation of a large vertical mill, such as feed rate, air intake
rate, rotation speed, powder output, water consumption, powder
particle size, etc., and the coupling relationship among the param-
eters is highly complex. The influence mechanism of each operat-
ing parameter on the system flow field and the result of powder
separation is unknown. Through the analysis of the numerical cal-
culation results, it is known that the inlet air speed, the rotational
speed of the powder separator, and the outlet temperature of the
vertical mill are the key parameters that mainly affect the produc-
tion capacity, the production efficiency, and the production quality
of the equipment.

The inlet air velocity is recorded as A. The fineness of the pow-
der is an important indicator of the quality of the finished product.
The powder particles can be collected as qualified products only
10
after gravity and centrifugal classification. The inlet air velocity is
the main parameter that determines the particle size of the cen-
trifugal classification cut, which directly affects the powder’s parti-
cle size distribution and the fineness of the finished product.
According to the actual physical model, the air velocity can be
set at the 12 � 15 m/s.

The rotating speed of the classifier is recorded as B. The rotating
speed of the powder separator is another main parameter that
determines the particle size of centrifugal classification cutting.
The value changes have the most obvious influence on the surface
area of the finished product. According to the running power of the
powder separator, the rotating speed is set in the range of 80 � 150
r/min.

The outlet temperature of the vertical mill is recorded as C.
With a specific air volume and speed of the separator, the outlet
temperature affects the circulating load of the equipment. When
the load decreases, the outlet temperature rises, and the grinding
efficiency increases. Temperature also affects the pressure distri-
bution in the mill. Keep the inlet temperature unchanged, and
set the outlet temperature according to the temperature difference
between the inlet and the outlet, with the value ranging from
80 � 120�C.

The production (kg/s) and the surface area of the finished pro-
duct (m2/kg), which can evaluate the production efficiency and
quality of a large vertical mill, are the optimization targets. Note
as D and E, respectively. A set of operating parameters represented
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by each initial sample point were taken as independent working
conditions. A numerical model of particle–fluid-temperature
multi-physical field coupling was established for simulation calcu-
lation. Based on the simulation results, the values of D for the pro-
duction rate and E for the fineness of the finished product for
different working conditions of the large vertical mill are obtained.
The results are used as the initial same points’ response values to
construct the proxy model.

In summary, the multi-objective optimization problem for ver-
tical mill operating parameters can be described as presented in
Table 2.
6.2. Analysis of experimental design results

Pareto diagrams, main effect plots and interaction effect plots
were produced from the experiment results to examine the
response of the two objectives of yield and specific surface area
to the experimental design variables for analysis.

Pareto diagrams, in the form of a percentage chart according to
the test results, intuitively reflects the influence and contribution
degree of each factor to each response after sample fitting, also
known as factor contribution rate chart. In Pareto diagrams, design
variables are marked in blue for positive relationships with
response values and in red for negative relationships. Fig. 8 gives
a Pareto diagram of the response of each output. The yield is
expressed as D. The image shows that the inlet air velocity A and
the outlet temperature C have a positive effect on the yield D.
The speed of the separator B has a negative effect on the yield D,
with A and B contributing the most to the yield D, with C having
a smaller effect on the yield D. The surface area is expressed as E,
Table 2
Optimization notes.

Function/variable Description Quantity

Minimize -D & -E Negative output
and negative specific surface
of the product

–

Design
variable

[A, B, C] Air inlet velocity,
Outlet temperature,
Speed of the separator

[15, 110,
100]

Constraint
condition

12 < A < 25
80 < B < 150
80 < C < 120

Fig. 8. Pareto diagram of
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with the greatest contribution of factor B, the second influence of
factor A, and the lesser influence of factor C. Factors B and C have
a positive effect on the surface area, while factor A has a negative
effect.

In multilevel, multi-factor experimental designs, the Main
Effects Graph is used to describe the degree of influence of a single
factor on the response at each level. The larger the value of the
main effect indicates, the greater the influence of the factor on
the response, as shown in Fig. 9 that is, the main effects graph of
inputs A, B, C and responses D and E. From the image, the effect
of each input and each corresponding effect between the same Par-
eto is consistent, with inputs A and B having a greater impact on
responses D and E, and C having a smaller effect on the two
responses.

The interaction effect diagram reflects the relationship and
influence of the interaction between two factors on the response.
The curves are the main principle effect diagrams of one factor at
different levels of the other factor on the response. Combining
the Pareto diagram with the main effect diagram, the interaction
between input A, which has the greatest effect on response D,
and input B, which has the greatest effect on response E, and the
other inputs are analyzed, as shown in Fig. 10. This is the interac-
tion effect diagram for each response’s main effect factors. The
degree of non-parallelism reflects the strength of the interaction.
From the image, we can see that for response D, there is an inter-
action between its main influencing factors; for response E, there is
an interaction between B-C and B-A, and the interaction effect is
stronger.
6.3. Analysis of optimization results

Optimize the objective functions D and E, and the Pareto opti-
mal solution set is obtained. The EDM post-processing module
receives the distribution of corresponding solutions between
design factors and output responses. The distribution of the corre-
sponding solutions between the design factor and the output
response is obtained by the EDM post-processing block, as shown
in Fig. 11 and Fig. 12, respectively, the Pareto solution set EDM
plots of input and response.

Due to the contradictory nature of the two objectives, achieving
the optimum solution for the output and finished product surface
area is impossible. According to the optimization results, under the
condition that both the specific surface area and the output can get
the output response.



Fig. 9. Main effect diagram of target response.

Fig. 10. Interaction effect diagram.
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Fig. 12. Output Pareto deset EDM plot of response.

Fig. 11. Pareto solution set EDM plot of design variables.

Table 3
Comparison of initial working conditions and optimization results.

Input and response Initial
value

Optimization
results

Amount of
change

Wind speed A (m/s) 15.00 17.14 14.27%
Rotational speed B (r/min) 110.00 146.47 33.15%
Outlet temperature C (�C) 100.00 107.78 7.78%
Output D (kg/s) 20.60 21.70 5.34%
Specific surface area E (m2/kg) 382.33 417.00 9.07%
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large values, a group of solutions is selected from the Pareto opti-
mal solution set and used as compromise solutions. The compar-
ison of input and response before and after optimization is
shown in Table 3. Increasing the speed of the separator, the inlet
air speed and the outlet temperature in the feasible interval can
effectively improve the output and fineness of the finished product,
and the selected optimal solution increases the output by 5.34%
Fig. 13. Cumulative sieve residual distribution and R-R fitting
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and the specific surface area of the finished product by 9.07%. After
determining the optimization solution, the values of the parame-
ters were entered into a numerical calculation model for
simulation.
6.4. Validation of optimization results

According to the output optimization results, we change the
parameters for numerical simulation. The inlet air speed was set
to 17.14 m/s, the separator speed was set to 146.47 m/s, and the
outlet temperature was set to 107.78 �C. All other parameters were
kept constant. The massive escaping of particles from the outlet
was analysed in Fluent. The ratio of the powder mass to the calcu-
lation time yield D (kg/s) was calculated to be 22.01 kg/s. By gen-
erating a discrete phase sample report, the cumulative sieve
residue distribution curve of particles under the corresponding
working conditions and the R-R double logarithm fitting particle
size distribution function are obtained, as shown in Fig. 13.
curves for standard and optimized working conditions.



Table 4
Validation of simulation optimization results.

Optimization objectives Optimization
results

Simulation
results

Relative
error

Output D (kg/s) 21.70 22.01 1.43%
Specific surface area E

(m2/kg)
417.00 425.41 2.02%

R. Huang, Y. Ma, H. Li et al. Advanced Powder Technology 34 (2023) 104014
According to the linear regression fitting result Y = 1.2511X-
1.9383, R2 = 0.9912, the characteristic particle size can be calcu-
lated from Equation 2–23,De is 18.19 lm, the characteristic particle
size is brought into Equation (9) to obtain the calculated specific
surface area is 425.41 m2/kg, as shown in Table 4 that is the com-
parison between the simulated and predicted values, with the
maximum relative error of 2.02%,which is a high reliability, indi-
cating that it is feasible to establish surrogate model instead of
numerical simulation calculation.

7. Conclusion

The numerical simulation of large vertical mill involves the
complex coupling of large-scale particles and fluids, which has a
large amount of calculation and a long calculation cycle, which
cannot meet the requirements of optimization calculation, and
there is a problem that the correlation mechanism between key
operating parameters and multi-physics morphology is not clear,
and the optimization efficiency of equipment operating parame-
ters can be improved with the help of approximate models.

For the optimization of operating parameters of large vertical
mills, this paper determines the optimization design variables
and multiple optimization objectives according to the modeling
and numerical simulation requirements of large vertical mills,
takes the three key process parameters of vertical mill inlet air
speed, powder separator speed and outlet temperature as the opti-
mization design variables, takes the output and the specific surface
area of the finished powder as the optimization goals, and applies
the optimal Latin hypercube experimental design method to ran-
domly select the initial sample points in the design space.

In this paper, a numerical calculation method for internal parti-
cle–fluid coupling system of large vertical mills based on CFD-DPM
theory and a multi-objective optimization method for operating
parameters of large vertical mills based on kriging are proposed,
and the response value of sample points is calculated by multi-
physics coupling simulation technology, and a Kriging surrogate
model between optimization targets and influencing factors is con-
structed to study the optimization of operating parameters of ver-
tical mills.The NSGA-II was used to update the surrogate model
and obtain the optimal solution, and the optimized operating
parameters increased the vertical mill yield by 5.34% and the speci-
fic surface area by 9.07%.According to the optimization results, the
powder selection efficiency of the large vertical mill was opti-
mized, and the maximum relative error between the simulated
value and the optimized value was obtained by numerical calcula-
tion, which verified the superiority of the optimization method of
the large vertical mill for performance improvement, so as to real-
ize the application of the operation parameters and key compo-
nents optimization design of the large vertical mill in engineering.
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