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1.  INTRODUCTION

Predictions of how climate change will affect rainfall
in the Sahara Desert are varied and lack consensus. In
its most recent report, the Intergovernmental Panel on
Climate Change (IPCC) suggested that there are likely
to be 18% reductions in the median precipitation
response for the 2080–2099 period compared to
1980–1999 for the northern Sahara (18° N, 20° E to
30° N, 65° E) from December to May (Christensen et
al. 2007). However, for farther south, the IPCC report
stated that it is unclear how rainfall in the Sahel, the
Guinean Coast and the southern Sahara will evolve.
There are some indications that, for instance in the
Sahel, rainfall may increase as a result of increasing

carbon dioxide levels leading to enhanced vegetation
growth and moisture levels (Claussen et al. 2003). If
the latter proves to be the case, it may lead to in-
creased frequencies of outbreaks of the desert locust
Schistocerca gregaria (Forskål 1775), since locusts
require moist soil for their eggs to incubate, and their
migratory behaviour is adapted to take them towards
areas where it has recently rained, so that they can
feed on green vegetation and breed when mature.
Predictions of what is likely to happen, even with a
quantitative rainfall link, are difficult and will need to
take account of spatiotemporal variation. For instance,
desert locust outbreaks are initiated by gregarisation
of solitary forms (see below, this section), which can
take place in a variety of areas, not only in the Sahara
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Desert (in zones where rainfall has been predicted to
decrease, e.g. N of 18° N, remain as they are currently,
or increase), but also on the Red Sea coast, the Horn
of Africa, the Arabian peninsula and east as far as
western India (see Fig. 3 of Cheke & Tratalos 2007).

In common with other locusts, the desert locust ex-
hibits 2 distinct behavioural phases, the solitary phase,
when individuals actively avoid one another, and the
gregarious phase, when they form marching hopper
bands (mass aggregations of flightless nymphs) and
swarms capable of devastating crops (Uvarov 1966,
1977, Simpson 1999). Changes from the solitary to the
gregarious phase are the result of a complex interaction
of factors—including high rainfall allowing high sur-
vival rates, the type and distribution of the vegetation
(Babah & Sword 2004), and behaviour, with the factor
that finally leads to the change being an increase in the
rate at which hairs on the locusts’ back legs are touched
by other locusts in a group (Simpson et al. 2001). In the
solitary phase, the insects typically occur at low densi-
ties across a recession area, which extends for 16 mil-
lion km2 across the whole of the arid regions of North
Africa, across the Middle East to northwest India. The
locusts only migrate into the wider domain of the ‘in-
vasion area’ (29 million km2) frequented by swarms
(Fig. 1) once they have begun to gregarise. A sharp in-
crease in the number of swarms over a period of months
forms an upsurge, which can lead to plagues lasting
several years, before populations decline into periods of
recession, when individuals are typically in the solitary
phase (see Bennett 1975).

Due to the reliance of locusts on moistened soil for
incubation and green vegetation for food in usually
arid areas, some researchers have proposed that re-
gional fluctuations in rainfall are the primary influence
on locust numbers (see Pedgley 1981, Bennett 1975).
However, theoretical studies by Cheke (1978), Blackith
& Albrecht (1979), Cheke & Holt (1993, 1996) and Holt
& Cheke (1996a) indicated that the population fluctua-
tions of the desert locust may be due to endogenous
dynamics. In contrast, Farrow & Longstaff (1986)
argued that migration tended to prevent the carrying
capacity of the environment ever being exceeded and
that endogenous models would therefore do little to
explain locust population dynamics. More recently,
Magor et al. (2007) proposed that a general reduction
in locust activity since 1965 has occurred due to a
change in rainfall patterns brought about by a more
restricted north–south oscillation of the Inter-Tropical
Convergence Zone. Vallebona et al. (2008) showed a
link between desert locust upsurges in West Africa,
where breeding usually occurs during June to Sep-
tember but can also be from October to January of
the following, after a stronger than normal westerly
mid-latitude circulation there in March, followed by a
weakened African Easterly Jet and a strengthened
moisture advection from April to May.

Although many non-statistical case studies have
been conducted on historical examples of migration
and breeding sequences in the desert locust, few stud-
ies have applied statistical modelling to the large-scale
spatio-temporal dynamics of the species. What work
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Fig. 1. Schistocerca gregaria. Desert locust invasion and recession areas, showing data on 1° grid squares reported as infested 
with swarms for the month of peak abundance (May 1945)
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has been done (Waloff & Green 1975, Waloff 1976,
Cheke & Holt 1993, Holt & Cheke 1996b) has used data
aggregated at the spatial scale of a country, or large
territories within countries, and the temporal scale of
1 yr. Since these publications have appeared, the FAO
SWARMS dataset has become available. This database
is a compilation of observations recorded by an exten-
sive network of locust control personnel over a 58 yr
period (1930–1987), gridded at 1° resolution. As such,
it constitutes the most spatio-temporally complete in-
formation for any insect pest, with 58 yr of monthly
data at 1° resolution covering the entire geographical
range of the species (Magor & Pender 1997).

Given the complexity of the biology of the desert locust
(see Cheke 1978 and Roffey & Magor 2003 for details of
parameter estimates needed for population models), it is
difficult to formulate clear-cut theoretical models whose
predictions can be tested; therefore, at this stage, we
prefer to consider only phenomenological models.

Using autoregressive integrated moving average
(ARIMA) models, we analysed monthly data on the
number of 1° grid squares with reported swarms and
hopper bands of desert locusts during the period
1930–1987. First of all, we examined the dynamics of
the locust data alone and then incorporated an index of
monthly rainfall into the analyses. Through this we
tested whether it is possible to predict locust plagues
using endogenous data alone or if there is a need to
incorporate rainfall into the modelling process to pro-
duce realistic forecasts. If the latter proved to be neces-
sary, then it would form the basis for future tests of
how predicted rainfall changes under future climate
change scenarios might affect locust abundance.

This study is the first to apply a statistical time series
modelling approach to analyse desert locust popula-
tion dynamics throughout the geographical range of
the species. It is also the first to examine desert locust
dynamics at a resolution smaller than a national or very
large territorial level.

2.  METHODS

A time series of 696 counts of the monthly number of
1° grid squares reported as infested with desert locust
swarms, from 1930 to 1987, throughout the desert
locust distribution area, i.e. the recession and invasion
areas combined (Fig. 1), was produced from a GIS from
the original files used to compile the FAO SWARMS
datasets (Healey et al. 1996, J. Magor pers. comm.). An
equivalent series for desert locust hopper bands was
also generated.

No smoothing or interpolation was applied to the
data. An interval of 1 mo, rather than a generation, was
chosen for the analysis, as it matched the original data

and as there is no standard period for a locust gen-
eration, which varies between ca. 7 wk and several
months (Pedgley 1981). Furthermore, phase changes,
and hence changes in the number of swarming locusts,
can occur over much shorter periods. Data for the
whole distribution area were modelled as one time
series, as locusts are extremely mobile and are able to
travel many thousands of kilometres in a single gener-
ation (e.g. Magor et al. 2007 documented migration
from Saudi Arabia to Mauritania).

To examine the influence of rainfall on desert locust
population dynamics, a time series of monthly rainfall
totals for the desert locust recession area was also
calculated for 1928–1987.

The rainfall data were derived from a 0.5° global
land surface precipitation dataset, acquired from the
Climate Research Unit (CRU) of the University of East
Anglia (UEA) (see New et al. 2000). These data were
taken only from the desert locust recession area (Fig. 1),
rather than from the whole of the insect’s range,
because in recession years locusts are not typically
found in the invasion area and therefore would not be
able to breed with the arrival of suitable rains in that
area. Furthermore, precipitation levels are relatively
high in the invasion area, and rainfall is therefore
unlikely to be a limiting factor there. Although these
data were derived using spatial interpolation tech-
niques from point observations, as we were modelling
locust observations amalgamated over the whole range
of the insect, we believe that they serve as a suitable
proxy for real monthly variations in rainfall affecting
overall locust abundance.

There are many grid squares where locusts have
never been recorded breeding, and so it could be
argued that the true breeding range of the species is
mostly restricted to those squares where they have
been known to breed. To take account of this, a
monthly rainfall time series was produced for recession
area grid squares which have at some time been
reported as hosting breeding locust populations or
locust hoppers, and results obtained for rainfall for the
whole recession area checked against results obtained
using these data.

The model selection strategy was to derive purely
endogenous ARIMA models of the series and to exam-
ine the effect of adding lagged rainfall data as exoge-
nous variables. In the case of the hopper bands data,
lagged data from the swarms series were also included
as exogenous variables, to represent parent genera-
tions. ARIMA models of the series were selected on the
basis of an examination of autocorrelation and partial
autocorrelation functions (ACF and PACF, respec-
tively) using standard techniques (e.g. see Chatfield
1997). The effect of the inclusion of rainfall data, and
locust swarms data in the case of the hopper bands

231



Clim Res 43: 229–239, 2010

models, was tested using the significance levels of
each variable and the effect on the Bayesian informa-
tion criterion (BIC) value for the model, using back-
ward stepwise techniques.

An ARIMA model consists of a forecasting equation
which may include previous lags in the series, or
‘autoregressive’ terms, and lags of the forecast errors,
or ‘moving average’ terms. A time series which needs
to be differenced to be made stationary is said to be an
‘integrated’ version of a stationary series (Box & Jenk-
ins 1976). The notation used to describe an ARIMA
model is of the form (p d q)(P D Q)S. The first set of
parentheses represents the non-seasonal part of the
model, with p the order of an autoregressive process, d
the order of differencing and q the order of a moving
average process. The second set of parentheses repre-
sents the seasonal component, where P is the order of
a seasonal autoregressive process, D the order of sea-
sonal differencing and Q the order of a seasonal mov-
ing average process. S represents the length of the
seasonal period (Diggle 1990, Chatfield 1997).

The ACF measures the correlation between values
at each point in a series and values at lags prior to that
point (Box & Jenkins 1976, Diggle 1990, Chatfield
1997). This information is further used to calculate the
PACF, the correlation remaining between each point
and lag in the series after the influences of all closer
lags have been removed. The BIC is calculated as
–2ln(L) + ln(n)k, where L is the likelihood function
based on the residuals from the model, n is the number
of residuals and k is the number of free parameters
(Schwarz 1978, Wei 1990). This value therefore takes
into account both the fit of the model and its parsi-
mony, and should be as low as possible.

The modelling techniques developed were phenome-
nological, in the sense that they were neither constrained
within a theoretical framework nor analysed mechanis-
tically in relation to a multitude of variables such as
vegetation density and condition, soil types, temperature

and hydrology. We were interested in seeing what could
be concluded from time series analyses of the locust data
alone and then in testing whether inclusion of the main
factor in locust survival, i.e. rainfall, improved the predic-
tive power of phenomenological models derived from
the time series analyses.

It should be borne in mind that sampling error may
confound the results of ARIMA modelling, and that the
locust data analysed here are based on coverage of
vast areas of territory by locust control personnel, as
well as from reports of locust infestations from other
sources. Furthermore, the time series analysed are not
a direct measure of locust abundance, but rather indi-
cate the area that they covered during a given month.
Both factors should be taken into account when inter-
preting the results of the analysis. However, although
there is unlikely to be a strict proportional relationship
between this series and actual abundance, a review
of the literature suggests a generally good correspon-
dence between the numbers of grid squares occu-
pied and the abundance of swarming locusts (e.g. see
Pedgley 1981).

3.  RESULTS

3.1.  Time series analyses and ARIMA modelling of
locust swarms data

The locust swarms data showed a series of increases
from very low to high levels. The latter were often
maintained for several years and were followed by
declines (Fig. 2), which suggested a high degree of ser-
ial correlation. Although it may appear from the time
series that locust plagues are becoming a thing of the
past, this series does not show the plague which devel-
oped between 1988 and 1989, the recent (2003–2005)
locust outbreak or the major locust upsurges in 1992–
1994 and 1997–1998, data for which were unavailable
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Fig. 2. Schistocerca gregaria. Number of 1° grid squares reported as infested with desert locust swarms, 1930–1987, as a 
monthly time series I, and mean numbers summarised by month (inset, in which error bars show ±2 SE)
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in gridded form. For information on recent events, see
Magor et al. (2007) or Mullié (2009, their Fig. 114a),
who presented time series of non-gridded data of num-
bers of territories infested with swarms up to and
including 2006. Summarising the gridded data by
month showed some evidence of seasonality, with
higher values for April–July, October and November
than for January–March, August, September and
December (Fig. 2, inset).

A square-root transformation for the locust data was
used for the models to achieve equality of variance and
a normal distribution (this was preferred to a logarith-
mic transformation, as 0 values meant that logarithms
could only be calculated after adding an arbitrary
constant to the series).

A 25 mo lag ACF of this square-root-transformed
time series showed a high degree of autocorrelation,
the most significant correlate being at lag 1 (Fig. 3),
with additional periodicity revealed by significant pos-
itive lags in the PACF at lags 3, 5, 9 and 11 mo, and sig-
nificant negative lags at 13, 14 and 25 mo (Fig. 3). All of
these lags were also found to be significant in PACFs of
untransformed data, in addition to many other lags
(data not shown). Autocorrelations of both untrans-
formed and transformed series remained significant
over more than 100 lags, well in excess of what would
be expected given the level of autocorrelation at lag 1.

An ARIMA model based purely upon endogenous
factors was developed first. The data were seasonally
differenced to take account of seasonal factors and to
make the series stationary, and a square-root transfor-
mation was applied. An analysis of the ACF of these
square-root-transformed data, in which only the first
seasonal lag (at 12 mo) was significant, suggested a
seasonal moving average process (SMA1). This was
confirmed by an ARIMA (0 0 0)(0 1 1)12 model, which

showed that the SMA1 term was highly significant (p <
0.01). An ACF and a PACF of the residuals from this
model suggested the presence of mixed autoregressive
(AR) and moving average (MA) processes. AR1 and
MA1 terms were therefore incorporated, and both
emerged as highly significant (p < 0.01). An AR2 term
was also added, as it had been found to be significant
in the PACF and was also highly significant in the
resulting model. On the basis of these results, the final
model selected was of the form (2 0 1)(0 1 1)12, in
which all terms were highly statistically significant.
This model is shown as Model 1 in Table 1. An ACF of
the residuals from this model was similar to what
would be expected from random data, and therefore
suggested that the model was suitable. Additional
endogenous parameters were not found to be statisti-
cally significant and also led to an increase in the BIC
value.

Equivalent modelling techniques applied to untrans-
formed data provided models with poorer fits which
were less successful at accounting for the autocorrela-
tion structure of the series. Equivalent models using an
ln + 1 transformation gave similar results from auto-
correlation analysis but a poorer fit to the data, when
measured by the correlation between the real and pre-
dicted values (0.94 < 0.96; results not shown).

3.2.  Inclusion of rainfall data

The lagged rainfall data were seasonally differenced
and added to the endogenous (2 0 1)(0 1 1)12 model of
square-root-transformed data. In a model incorporat-
ing rainfall at lags 0 (the current month) to lag 12, lags
4 to 12 all had highly significant positive coefficients,
and lag 1 had a significant negative coefficient (Table 1,
Model 2). When added to this model, rainfall lags more
remote than lag 12 carried a statistically significant
coefficient in only 1 case (lag 22) and in all cases had
little effect on the other coefficients and brought about
an increase in the BIC value. The removal of rainfall at
lags 2 and 3 from Model 2 produced a model in which
all terms were significant (Table 1, Model 3).

In this model, rainfall at lags 0 and 1 carried negative
coefficients of similar size, and rainfall at lags 4 to 12
carried positive coefficients of similar size. In order to
obtain a more parsimonious model, the individual rain-
fall lags added to the (2 0 1) (0 1 1)12 endogenous
model were replaced by averages of rainfall at lags 0 to
1 and at lags 4 to 12 (Table 1, Model 4). This model
gave the lowest BIC of all models tested. In comparison
with an equivalent model in which the same rainfall
lags were modelled separately, the coefficient for the
average of the rainfall lags 0 and 1 terms was almost
identical to the sum of the coefficients for these terms
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in the earlier model (–0.0000161 and –0.0000160
respectively), whereas the coefficient for the moving
average of lags 4 to 12 was only ca. 6% lower than
the sum of their coefficients in the earlier model
(0.0001013 < 0.0001072).

There was no temporal trend in the residuals of any
of the models incorporating rainfall, and ACFs indi-
cated that there was little significant autocorrelation in
the residuals, which was confirmed by the Box-Ljung
statistics at each lag (Ljung & Box 1978).

The residuals from the purely endogenous Model 1
were generally larger throughout the length of the
series than those from models incorporating rainfall,
which can be seen from an examination of 12-monthly
and 6-yearly averages of the absolute differences in
the residuals (Fig. 4).

Replacing the rainfall series used in Models 2 to 4 with
equivalent data restricted to grid squares where locust
breeding or hoppers had been reported produced very
little change in the models (BICs for models equivalent to
2, 3 and 4 = 2490.7, 2479.9, 2424, respectively).

The relationship between rainfall and square-rooted
locust data was examined for evidence of hetero-
scedasticity, such as that described by Cheke & Holt
(1993). The same moving average of lags 4 to 12 as
used in Model 4 was plotted against values of the
dependent locust series, for both undifferenced and
seasonally differenced data. Little evidence was found

for a heteroscedastic response in either of these plots.
R-square values were 0.05 for the undifferenced and
0.17 for the differenced series.

3.3.  Analyses of the first and second halves of the
series

To test the robustness of Models 1 to 4, each model
was calculated separately for the first and second
halves of the locust series (i.e. 1930–1958, 1959–1987).
In all 8 models, all variables carried the same sign as
they had in the equivalent model for the whole time
series. In these 8 models, the coefficient for the AR1
term ranged from 1.05 to 1.59, the AR2 term from –0.6
to –0.06, the MA1 term from 0.26 to 0.73 and the SMA1
term from 0.82 to 1. For the models of the first half of
the series, all endogenous variables were always sig-
nificant, whereas in models of the second half of the
series, only the AR1 term was significant, except in the
case of the purely endogenous model, where the SMA
term was highly significant. The moving average of
rainfall at lags 4 to 12 had a highly significant positive
coefficient in both models in which it was included,
and the other 4 models including rainfall showed at
least 4 rainfall variables at lags 4 to 12, significantly
positively correlated (p < 0.05) with the dependent
series.
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Table 1. Summary of ARIMA Models 1 to 4. The endogenous elements in the models were derived from a time series of the square
root of the number of 1° grid squares reported anywhere as infested with desert locust swarms in every month, 1930–1987; thus,
the time step (t) = 1 mo. All rainfall data were derived from a similar time series of monthly rainfall totals for the desert locust re-
cession area, 1928–1987. Coefficients for rainfall variables have been multiplied by 108. Parentheses: 95% confidence intervals,
*p < 0.05, **p < 0.01, ***p < 0.001, ns: not significant. AR: autoregressive; MA: moving average; SMA: seasonal moving average; 

Rain: rainfall; Log: log likelihood; BIC: Bayesian information criterion

Parameter MODEL 1 MODEL 2 MODEL 3 MODEL 4

AR 1 1.524 (1.338, 1.711)*** 1.459 (1.301, 1.617)*** 1.449 (1.287, 1.61)*** 1.441 (1.279, 1.603)***
AR 2 –0.535 (–0.715, –0.355)** –0.47 (–0.622, –0.318)** –0.459 (–0.616, –0.303)** –0.452 (–0.608, –0.296)**
MA 1 0.671 (0.503, 0.839)*** 0.646 (0.506, 0.785)*** 0.634 (0.491, 0.778)*** 0.628 (0.484, 0.771)***
SMA 1 0.899 (0.878, 0.92)*** 0.906 (0.884, 0.928)*** 0.908 (0.886, 0.93)*** 0.907 (0.885, 0.928)***
Rain t –683 (–1025, –341)* –862 (–1164, –560)**
Rain t-1 –482 (–870, –94) ns –743 (–1047, –439)*
Rain t-2 313 (–111, 737) ns
Rain t-3 628 (171, 1085) ns
Rain t-4 1393 (912, 1874)** 951 (615, 1287)**
Rain t-5 1708 (1205, 2211)*** 1279 (904, 1654)***
Rain t-6 1721 (1210, 2232)*** 1320 (910, 1730)**
Rain t-7 1483 (975, 1991)** 1140 (707, 1573)**
Rain t-8 1340 (854, 1826)** 1037 (605, 1469)*
Rain t-9 1470 (1006, 1934)** 1253 (817, 1689)**
Rain t-10 1526 (1096, 1956)*** 1363 (952, 1774)***
Rain t-11 1372 (982, 1762)*** 1253 (873, 1633)**
Rain t-12 1206 (860, 1552)*** 1130 (790, 1470)***
Rain t to t-1 –1612 (–2092, –1132)***
Rain t-4 to t-12 10152 (8063, 12241)***

Log likelihood –1211.12 –1190.56 –1191.55 –1192.66
BIC 2448.36 2492.1 2481.03 2424.5
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3.4.  Predictions of the models

To test the predictive power of the models, forecasts for
the square-root-transformed locust series were produced
for the period 1959–1987, using each of the models cal-
culated only for the 1930–1958 period. These models did
not use any locust data after 1958 but did use the rainfall
series from 1959–1987 as an input to the forecast for this
period. The same process was conducted using the
purely endogenous Model 1, but in this case the forecast
did not incorporate any rainfall data.

The above forecasts were also produced using the
equivalent models calculated from data for the period
from January 1930 to November 1963, the latter being
the first month after the halfway point at which the
number of grid squares reported as infested with
swarms dropped to zero. Models incorporating rainfall
data produced more accurate forecasts than those
using only half of the previous history of the time series
(Fig. 5). However, models based on data up to 1958
predicted much higher abundance than the more real-
istic models using locust data up to November 1963.

3.5.  ARIMA modelling of a hopper bands time
series, 1930–1987

Using the same techniques used for the swarms
series, an endogenous ARIMA model of the square-

rooted hopper bands series was selected, with the
best model being of the form (1 0 1) (1 1 1)12 (BIC =
2410). To this model the lagged values of the swarms
series were added (to represent parent generations)
and, in a series of backward stepwise models, lags
1, 2, 4 and 8 were consistently found to be statisti-
cally significant. In all models, swarms data at lags
1, 2 and 4 carried positive coefficients and at lag 8
a negative coefficient, and no other lags were sta-
tistically significant in models containing swarms
data at these lags. Adding these 4 lags as indepen-
dent variables in the hopper bands ARIMA model
brought about an improvement in the BIC value
(2203 < 2410).

The effect of adding rainfall at lags 0 to 12 to the
model was then tested using backward stepwise tech-
niques. Rainfall at lags 1, 2 and 10 consistently
emerged as carrying significant positive coefficients,
and the introduction of these 3 variables together
reduced the BIC to 2190 (Table 2). No other rainfall
lags were found to be significant when these 3 vari-
ables were included. Further endogenous or exoge-
nous inputs were not significant when introduced into
this model.

Using rainfall only from grid squares where hopper
bands or breeding locusts had been reported resulted
in the selection of an equivalent model to that using
rainfall from the whole recession area, but with a
slightly poorer fit (BIC = 2190.9).
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4.  DISCUSSION

Although it did not examine the precise mechanisms
driving changes in abundance, the phenomenological
approach used here has identified the key roles of both
endogenous factors and rainfall in determining the size
of the territory occupied by locust swarms and hopper
bands across the entire range of the species. As such, it
offers hope for the better prediction of the effect of
future changes in rainfall patterns on the locust prob-
lem and goes beyond approaches such as those by
Vallebona et al. (2008), which are limited to examining
locust upsurges arising under specific circumstances
over relatively small, albeit important, areas (West
Africa only) of the breeding range of the species.

The ARIMA models indicated an average generation
time of approximately 4 mo, which fits with what is
known about the biology of the insect, as swarming
desert locusts generally undergo between 2 and 3 gen-
erations per year (Waloff 1976). For the swarms series,
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Table 2. ARIMA model of the monthly number of 1° grid
squares reported as infested with desert locust hopper
bands, 1930–1987. Coefficients for rainfall variables have
been multiplied by 108. Time step (t) = 1 mo (see Methods for
details). Parentheses: 95% confidence intervals. *p < 0.05, 

**p < 0.01, ***p < 0.001

Parameter Coefficient

Autoregressive 1 0.252 (0.177, 0.326)***
Moving average 1 –0.307 (–0.38, –0.235)***
Seasonal autoregressive 1 0.15 (0.1, 0.202)**
Seasonal moving average 1 0.829 (0.799, 0.861)***
Swarms lag 1 0.367 (0.337, 0.397)***
Swarms lag 2 0.185 (0.153, 0.217)***
Swarms lag 4 0.075 (0.042, 0.108)*
Swarms lag 8 –0.082 (–0.109, –0.056)**
Rainfall at t-1 1105 (827, 1382)***
Rainfall at t-2 1192 (916, 1466)***
Rainfall at t-10 672 (406, 939)*

Log likelihood = –1059.14
Bayesian information criterion = 2189.96

Fig. 5. Fitted values for models incorporating the same independent variables as Models 1 to 4 (white lines; see Table 1), along-
side the series modelled (black lines: square-root-transformed monthly number of 1° grid squares reported as infested with
swarms). Each model was calculated using data for the period January 1930 to November 1963. Fitted values for December 1963 

to December 1987 are predictions from these models; Models 2 to 4 incorporate observed rainfall data for these years
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rainfall lags more remote than lag 3 appear to be the
most important predictors of future swarms, whereas
for the hopper bands series, rainfall at lags 1 and 2 and
swarms at lags 1, 2, 4 and 8 appeared to be the most
important factors. These results suggest a process in
which swarms produced in the previous generation
breed on rains arriving approximately 2 or 3 mo later,
to produce hopper bands after approximately 4 mo.
These in turn may give rise to a second swarming
generation in subsequent months.

Since the inclusion of rainfall variables improved the
fit of purely endogenous ARIMA models, these analy-
ses have clearly shown that desert locust population
dynamics at an intercontinental scale are at least partly
driven by rainfall, but have also indicated that endo-
genous control is important. However, as the time step
was only 1 mo, which is less than the generation time
of the locusts, autocorrelations at lag 1, and perhaps
lags 2 to 3, would be expected. Nevertheless, there
was also evidence for a substantial degree of ‘memory’
in the dynamics, with the ACF of the series showing
significant lags up to 100 mo. The PACF is a measure
of autocorrelation at lag k that takes account of auto-
correlations at lags <k, so significance in the PACF
shows endogenous control not explained simply by the
1 mo time step. These results agree with findings by
Cheke & Holt (1993), who found significant lags when
analysing annual data on the number of territories
infested by locust swarms.

For the swarms series, adding moving averages of
rainfall at lags 0 to 1 and 4 to 12 produced a better
model, even allowing for a decrease in parsimony
resulting from the inclusion of these variables. Further-
more, incorporation of rainfall terms into predictive
models provided more realistic predictions. However,
the differences in BIC values between the best fitting
endogenous model for swarming locusts and those
incorporating rainfall data were small. Furthermore,
in the hopper bands model, the addition of data on
swarming populations, representing parent genera-
tions, reduced the BIC value considerably, and the
swarms variables remained significant after the intro-
duction of rainfall data into the model.

The presence of significant negative lags in the
PACF of the locust series may indicate delayed density
dependence (Holyoak 1994). The negative coefficient
for the lag 8 swarms data in ARIMA models of the
hopper bands series and the negative AR2 term in the
swarms series models may also indicate delayed den-
sity dependence. This could be due to factors such as
scarcity of food, increasing toxicity of food species
exposed to several generations of high locust abun-
dance, the build-up of predators (Smith & Popov 1953,
Hudleston 1958, Pradhan 1961, Greathead 1966,
Mullié 2009), reduced fecundity of locust populations

with a long history in the gregarious phase (as sug-
gested by Waloff 1976), a tendency for inappropriate
migrations in very gregarious populations (e.g. see
Rosenberg & Burt 1999) or a time delay in the response
of humans in controlling locust populations. Greathead
(1966) argued that natural predators may act as a con-
trol on low density populations and may be important
in bringing about declines, but would be unable to
have much impact at the height of plagues. The effi-
cacy of insecticidal control is unclear. Rainey et al.
(1979) argued that new developments in control meth-
ods since the 1960s were effective in preventing
plagues, but Waloff (1976, 1979) pointed out that the
termination of only 4 plagues (those between 1950 and
1962) could be ascribed to control measures.

Examination of the residuals from the purely endo-
genous Model 1 and the endogenous + rainfall Models
2 to 4 showed that they all performed relatively poorly
during periods of upsurge and decline, all suggesting
more stable dynamics than occur in reality. This was
especially noticeable for forecasts calculated using
data from 1930–1958, where relatively high popula-
tions were predicted throughout the period 1959–
1987. This may indicate the possibility of chaotic shifts
during these periods, in which the system can shift
unpredictably from relatively stable dynamics to peri-
ods of relatively rapid increase or decline in numbers.
However, an examination of Fig. 5 does show that
models incorporating rainfall data can predict up-
surges and declines with some degree of success. The
1967–1968 and 1986–1987 upsurges were predicted,
and the decline to low abundance during 1984 and
1985 was also forecasted, and especially well by
Model 3. High abundance during 1979 was also suc-
cessfully forecasted. Better models were produced for
the swarms series ARIMA models when the locust data
were square-root transformed. Using a square-root
transformation on the data also tended to increase the
degree of first-order autocorrelation and reduced the
degree to which more remote lags were found to be
significant in autocorrelation analysis. This indicates
that at relatively high abundance upward or down-
ward shifts in numbers tend to be greater than at low
population levels.

It should be borne in mind that no data on solitary
locust populations were included in these models. This
was due to the unreliability of the available data, espe-
cially during the period up to the late 1950s, when
regular surveys for solitary populations were not con-
ducted (Magor & Pender 1997). Furthermore, whereas
swarms and hopper bands are conspicuous events,
likely to be reported by local people and observed by
locust survey and control personnel, solitarious locusts
will often have gone unnoticed. It is perhaps due to the
absence of data on solitary populations in the models

237



Clim Res 43: 229–239, 2010

that rainfall at remote lags (at 12 mo, for example) was
found to be significant in models in which more recent
data on locust abundance were included. These results
may imply that rain falling 12 mo previously, may,
through its effect on the abundance of successive gen-
erations of solitary locusts, produce an effect on the
abundance of gregarious populations in the current
month. This may constitute evidence against the
swarm continuity hypothesis, the theory that breeding
by a few gregarious, swarming populations remaining
during recession periods is responsible for locust
upsurges, as opposed to a build-up and gregarisation
of solitarious populations (Hemming et al. 1979, Rainey
& Betts 1979). The relatively poor performance of
ARIMA models during periods of upsurge also sug-
gests a role for solitarious populations. However, the
fact that the dynamics of swarming populations could
be modelled with a fair degree of success using
endogenous data only from swarming populations is
consistent with the swarm continuity hypothesis, but
does not necessarily lend it support.

In the swarms data models, rainfall at lags 0 and 1
was negatively correlated with swarms data for the
current month. This may seem to be a surprisingly
counter-intuitive result, given that the survival of hop-
per populations may in some cases be due to the arrival
of rainfall. However, what is known about locust eco-
logy suggests that new swarms would most often be
produced as a result of rainfall at lags more remote
than lag 1 (Bennett 1976, Pedgley 1981). Secondly, it is
known that both hopper bands and swarming popu-
lations tend to become increasingly solitary when
vegetation is dense, as they are no longer crowded into
just a few bushes and thus the gregarisation process is
disrupted, and therefore an increase in vegetation due
to rainfall may reduce gregarious populations. Thirdly,
swarming populations are thought to be more seden-
tary when environmental conditions remain suitable,
and would therefore be less likely to be observed.
Finally, movements, growth rates and survivorship are
likely to be reduced by lower temperatures, which may
be brought about by higher rainfall.

Taking into account these 4 points, a negative rela-
tionship between rainfall at lags 0 and 1 and the num-
ber of grid squares reported as infested with swarms
might be expected. Non-significant relationships be-
tween rainfall at lags 2 and 3 and swarms in the cur-
rent month are perhaps due to a combination of these
negative effects and the positive effect of rainfall on
locust breeding and survivorship.

This study suggests that desert locust dynamics are
influenced by endogenous factors and rainfall, and
that broad patterns of locust upsurges and declines can
be forecast with some degree of success using data on
only these factors. Also, once predictions of likely cli-

mate changes throughout the recession area can be
made with more confidence than at present, our results
could be helpful in forecasting whether locust plagues
will become more or less frequent. For instance, if the
forecasts of increased precipitation over important
desert locust habitats in the Sahara along a west–east
belt at about 20° N on the basis of the AB1 scenario
(Hulme et al. 2001) are realised, then locust upsurges
are likely to become more frequent.
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