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ABSTRACT 

A recent stream of theoretical development investigates new forms of organizing as bundles of novel solutions to 

the universal problems of organizing: how to allocate organizational problems to organizational participants, and 

how to integrate participants’ resulting efforts. In this paper, we add to this debate by reframing organizational 

attention allocation as a concatenation of self-organizing, micro-structural mechanisms linking multiple 

participants to multiple problems, thereby forming an attention network. In particular, we argue that, when 

managerial hierarchies are absent and authority is decentralized, visible acts of attention allocation become a 

fundamental coordination mechanism by which participants provide information to each other on how to 

integrate their efforts. We theorize that the observed structure of an organizational attention network is 

generated by the concatenation of four interdependent micro-mechanisms: Focusing, Reinforcing, Mixing, and 

Clustering. In a statistical analysis of attention networks in a large open-source software project, we found 

support for the four hypotheses about the self-organizing dynamics of the observed network associating 

organizational problems (software bugs) and organizational participants (volunteer contributors). We discuss the 

implications of attention networks for theory and practice by emphasizing the self-organizing character of 

organizational problem solving. We discuss the generalizability of our theory to a wide set of organizations where 

participants can choose which problems to allocate attention to and where the outcomes of these choices are 

publicly visible. 
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INTRODUCTION 

A distinctive line of theoretical development examines organizations as systems of coordinated activities 

performed by multiple participants to solve multiple problems (Cohen et al. 1972, Galbraith 1973, Thompson 

1967, Puranam 2018, Raveendran et al. 2020). Typically, this line of research starts with the assumption that 

individual goals are often inconsistent, ambiguous, or simply untraceable, links between actions and 

consequences are unclear, and participation in problem solving is fluid and evolving (March and Olsen, 1976). 

Consequently, organizations are viewed as social arenas that strive to design coordination mechanisms that 

reduce these sources of uncertainty to stabilize problem-solving and achieve organizational functioning (Cohen 

et al. 1972, Nadler and Tushman 1997, Padgett 1980, Padgett, Lee and Collier, 2003, Ocasio, 2012). 

Available research on traditional organizations suggests a variety of such stabilizing mechanisms of coordination, 

including hierarchy-based structures (Mintzberg, 1979), exogenous distribution of tasks and activities (Galbraith 

1973), organizational routines (Becker and Knudsen 2005) systems of formal incentives (Kretschmer and 

Puranam 2008) and decision-making architectures (Christensen and Knudsen 2010). All these examples assume 

that organizations are purposefully designed to exert direct managerial control over basic organizing principles 

such as division of labor, integration of effort, and the exercise of authority.  

Despite these efforts, we know significantly less about how problem-solving activities self-organize in absence of 

direct authority exerted through managerial hierarchy and predefined task-allocation decisions (Lee and 

Edmondson 2017, Puranam et al. 2014). In recent developments of organizational theory and design, the term 

“self-organizing” describes the emergence of organizational structure as the result of spontaneous, evolving and 

interdependent interactions among participants and problems in a condition of decentralized, loose or even 

absent authority (Lee and Edmonson 2017, Massa and O’Mahony 2021). Examples of self-organizing dynamics 

are frequent in today’s work arrangements, ranging from crowdsourcing (Majchrzak et al. 2021) to digital 

encyclopedias (Arazy et al., 2016, 2020), corporate experiments with “holacracy” (Robertson, 2015) and open-

source online software platforms -  the specific setting that we examine in this study (e.g., von Krogh and von 

Hippel 2006). 
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How do organizations control the process of problem allocation to participants in absence of a formal hierarchy 

providing an exogenous source of authority? Furthermore, how do organizations provide crucial information to 

participants to guide them in coordinating their work in absence of a formal workflow system? We seek to 

answer these questions by examining directly how coordination emerges endogenously to stabilize the relation 

between fluid streams of participants and problems (Cohen et al., 1972). In particular we argue that, in new 

forms of organizing – which are often driven by distributed communities (Gulati et al. 2012), built on 

architectures for decentralized collaborations (Fjeldstad et al. 2012) and populated by problems seeking the 

attention of problem-solvers (Haas et al. 2015, Piezunka and Dahlander, 2015) – activities are coordinated due to 

the visible, public and transparent acts by which active participants allocate attention to available problems.  

We conceptualize organizational attention allocation as a concatenation of self-organizing, microstructural 

mechanisms based on the mutual interdependence between participants and problems. While traditional views of 

organizational design treat interdependence as a condition involving participants (or agents) and problems (or 

tasks) as separate entities (Puranam et al. 2012), our work draws from a more general view of participants and 

problems in organizations as standing in a dual relation of mutual dependence (Breiger 1974, Breiger and Mohr 

2004, Tasselli and Kilduff 2021). This mutual dependence arises because, at any given moment, acts of attention 

allocation between participants and problems generate informational cues and create contingencies that influence 

how other actors might allocate their attention further. Rather than the design of explicit mechanisms for 

integration of effort between participants, attention allocation itself is the stimulus triggering further behavioral 

responses from other participants, such that organizations are coordinated by the very same processes that their 

members perform (Padgett and Powell 2012). 

Conceptually, this process of allocation of attention may be seen as embedded in a relational structure involving 

two categories of interdependent entities: ‘participants’ and ‘problems’ (Carley 1991). We represent this system as 

a rectangular matrix where rows are participants, columns are problems and individual cells contain information 

about participants allocating attention to problems. We call this system an attention network. Unlike prior attempts 

to understand organizational networks as the informal representation of social or workflow relationships 
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between participants (e.g., Kilduff and Brass 2010), the focus of our argument is that attention networks capture 

instead the emergence of self-organizing, interdependent mechanisms that stabilize decisions of attention 

allocation to problems in contexts characterized by lack of managerial control. We propose that the emergence 

of attention networks is generated by the concatenation of four basic micro-structural mechanisms, nested into 

each other in increasing order of complexity: attention focusing, attention reinforcing, attention mixing, and 

attention clustering. Attention focusing captures the tendency of participants to repeatedly allocate attention to the 

same issues, following a logic of familiarity. Attention reinforcing captures the tendency of participants to allocate 

attention to problems that already attracted a high degree of attention, following a logic of popularity. Attention 

mixing captures the interaction between the activity of participants and the popularity of problems, so that a 

disassortative mixing effect would indicate that participants that are more active are less attracted by popular 

problems, following a logic of devaluation. Finally, attention clustering captures the tendency of participants to 

extend their attention to future problems located in the vicinity of current problems, following a logic of 

proximity. We frame these mechanisms as theoretically grounded hypotheses, nested in each other in order of 

increasing complexity to extend our understanding of how attention represents a fundamental coordination 

mechanism in organizations.  

We test these arguments through the empirical analysis of the evolutionary dynamics of organizational attention 

networks within a large open-source software project actively developed and maintained by a global community 

of participants. Given the “anarchistic” character of open-source productions (Lerner and Tirole 2001, p. 821), 

this empirical setting is appropriate and uniquely useful for our current purpose. Because development platforms 

that support open-source productions are explicitly designed to shape the allocation of collective attention, 

information on problems (called “software bugs”) is reported (in a page called “bug report”) and stored in virtual 

spaces (called “bug repositories” or “bug trackers”) that participants (volunteer “software developers”) may 

access freely at any time. An attention allocation event is recorded whenever a participant allocates attention to a 

problem by intervening on (or “touching”) the corresponding bug report.  
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Our work contributes to contemporary research on organizations in at least three ways. First, we contribute to 

the literature on the microstructural perspective to organization design (Barney and Felin, 2013, Puranam 2018) 

by identifying organizational attention allocation as a self-organizing microstructure that replaces classical 

coordination mechanisms in traditional bureaucracies. A growing body of research investigates how participants 

follow self-organizing principles to collaborate (Deichmann et al., 2021; Fjeldstad et al. 2012), increase creativity 

(Majchrzak et al. 2021) and mobilize collective resources (Massa and O’Mahony 2021). However, no available 

research specifies the structural micro-mechanisms through which visible acts of attention allocation allow 

participants to solve the organizing problems of division of labor and integration of effort to achieve work 

coordination. Our empirical analysis – conducted, to the best of our knowledge, at an unprecedented level of 

detail – sheds light on the self-organizing dynamics by which visible acts of attention allocation produced by 

problem-solving agents provide necessary information to other agents that are self-selecting into problems to 

solve, revealing crucial complementarities between the solutions to the problems of task allocation and provision 

of information (Puranam 2018). 

Second, we provide further insight to the scholarly debate on new forms of organizing (Lee and Edmondson 

2017, Puranam et al. 2014) by focusing on an emerging empirical setting - open-source software communities - 

as an exemplary and theoretically-relevant case study that reveals how the universal problem of task allocation is 

solved – in absence of direct managerial control – by the information provided by participants’ visible acts of 

attention allocation. Our study shows that the mechanisms of attention allocation that our theory postulates 

remain stable and clearly detectable after controlling for formal structures imposed by software modules, which 

help participants to search for problems that are better aligned with their interests and skills (Von Krogh et al. 

2003). Furthermore, the results of our study address the known problem of under-provision of effort for 

“mundane but necessary” tasks that may easily escape collective attention in systems where a few popular 

problems attract a disproportionate share of attention (Puranam 2018, Lakhani and von Hippel 2003). We argue 

that the tendency of very active participants to divert their attention away from popular problems is fueled by a 

logic of devaluation, whereby some problems become less interesting to the highly engaged participants once a 

threshold of popularity is crossed. 
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Third, we contribute to the attention-based view (Ocasio 1997, 2011, Ocasio et al. 2022) by extending the 

original behavioral intuition that individual choices in organizations are influenced by the focus of attention of 

visible and relevant others (March and Olsen 1976, Ocasio 2011). We show that attention allocation is the 

product of “socially endogenous inferences” (Zuckerman 2012, p. 227) that give rise to an attention network, 

connecting and giving structural form to the relation between participants and problems (Cohen et al. 2012, 

Ocasio 2012) - an intuition originally discussed in seminal work on the Garbage Can Model (Cohen et al. 1972)1. 

When organizations are characterized by fluid participation that involves a constant churning of people and 

problems (March and Olsen 1984, p. 746), we show that the cumulative structural dynamics that we hypothesize 

leave “traces” that stabilize the link between participants and problems to form the attention network that we 

observe. 

THE MICROSTRUCTURAL MECHANISMS OF SELF-ORGANIZING 

The notion of organizations as systems of interdependent activities connecting participants (or agents) to 

problems (or tasks) was explicit in classic theories of organizations (e.g., March and Simon, 1958, Cohen et al., 

1972), and is still central in contemporary theories of organization design (e.g., Puranam et al., 2014, Puranam, 

2018, Raveendran et al. 2020). As explained by March and Simon (1993, p. 2), “Organizations are systems of 

coordinated action among individuals and groups whose preferences, information, interests, or knowledge 

differ.” Classic theories of organizations emphasize the idea that boundedly-rational participants make decisions 

 
1 The self-organizing nature of attention networks that we introduce is deeply rooted in the basic behavioral premises of the 

Garbage Can Model (Cohen et al., 1972; March and Olsen, 1976). First, a key element of our theory hinges on the constant 

churning (“fluid participation” in Cohen et al.’s work) of organizational participants and problems - and hence opportunities 

for attention allocation. Second, participants in self-organizing contexts are likely to face a high degree of goal ambiguity 

(“problematic preferences” in Cohen et al.’s work), given the marginal role that managerial hierarchies and formal incentive 

structures play in the model. When these two conditions prevail, “attention focus, rather than utility, seems to explain much 

of the behavior” (March and Olsen, 1976: 15). In line with our hypotheses, decision-making becomes therefore less 

dependent on traditional rational choice logics, and more dependent on context-specific and situated attention allocation 

dynamics (Ocasio, 2012). As March and Olsen (1976:26) state: “What happens depends on how the situation fits into a 

mosaic of simultaneous performances involving other individuals, other places, other concerns, and the phasing of other 

events.” Our theorizing of attention networks builds on this seminal work to provide a precise operational specification of 

the network principles and mechanisms of situated attention according to which attention allocation decisions are sensitive 

to the situational and structural context (Ocasio, 1997). 
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based on information characterized by a high degree of ambiguity (Galbraith, 1973, March and Olsen, 1976).  

For example, goals are often ill-defined and inconsistent across different organizational levels, causal connections 

between actions and their consequences are difficult to fully ascertain, and participation in problem-solving 

activities is characterized by frequent ebbs and flows that may affect the stability of outputs (Cohen et al 1972). 

Within this perspective, the “universal problem of organizing” – composed by division of labor and integration 

of effort – constitutes a continual process by which information is made less ambiguous as a result of 

coordinated actions of individual organizational participants (Puranam et al., 2012). 

Traditionally, organization design scholars have focused on hierarchy as a critical mechanism for solving the 

problem of organizing (Keren and Levhari 1979, Mintzberg 1979, Padgett 1980). The provision of authority 

embedded in a hierarchical structure provides an effective mechanism for dividing work, allocating tasks, and 

giving necessary information for workflow coordination. However, the nature of work has significantly shifted in 

recent years. Organizational structures have become increasingly flatter, managerial authority has become 

significantly decentralized, and digital technology now allows for a great variety of ways to coordinate work (Lee 

and Edmondson 2017, Raveendran et al. 2020, Reitzig 2022). As a result, organizations strive to find new ways to 

tackle the problem of organizing while taking into account the recent shift in the nature of work (Puranam et al 

2014). We contribute to this debate by bringing to bear the concept of organizational attention in contexts in 

which participants self-select into available problems to solve (Ocasio 1997, 2011, Ocasio and Joseph 2005). 

In organization theory, there is widespread acknowledgment that attention is one of the bases for structuring 

individual behavior (March and Olsen 1976, p. 15; see also recent developments in attention-based views, e.g., 

Ocasio 2011). This research claims that what organizational participants do depends at least partly on the 

problems to which they devote their attention (Ocasio 1997, p. 188). However, this literature typically 

emphasized characteristics of problems competing for attention, such as length and breadth (Haas et al. 2015), 

urgency (Sullivan 2010), and degree of supplied information (Hansen and Haas 2001). Alternatively, the emphasis 

of previous work has been on the costs of (mis)coordination that (sub-)optimal communication between 

participants involves (for a recent review of this literature, see Prat and Dessein 2016). The self-organizing 
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mechanisms of attention allocation that we introduce emphasize, instead, the fundamental dependence among 

individual acts of attention allocation connecting multiple participants to multiple problems. This 

interdependence arises because, at any given moment, the set of potential attention allocation opportunities is 

too large to be searched exhaustively by any individual participant (Simon 1978, p. 502). Consequently, under 

conditions of information transparency, distributed acts of attention allocation generate visible traces that reveal 

implicit participants’ preferences and may thus be used as informational cues (Podolny 2001) to guide further 

attention allocation decisions by other participants, thereby providing vital information to their peers who strive 

to integrate and coordinate their efforts (Puranam 2018, Puranam et al. 2014). 

What are – specifically – the structural mechanisms that drive and regulate these interdependent acts of attention 

allocation in organizations? Building on Schelling (1998, pp. 32-33), we define a micro-structural mechanism as a 

plausible hypothesis that explains the effect of a collective phenomenon (attention allocation, in our case) in 

terms of interaction between elementary agents (organizational participants and problems, in our case). Each 

specific mechanism that we hypothesize gives rise to a distinct, albeit interdependent attention structure – i.e., a 

determinant of the process by which participants choose to allocate their attention to problems (Ren and Guo 

2011). Taken together, these mechanisms concatenate to form a dynamic attention network, in which edges 

connecting the nodes of an attention network are generated by individual, time-stamped events connecting 

participants to problems2. Overall, our set of hypotheses connects micro-level interdependencies to the aggregate 

structure of organizational attention3. 

 
2 Of note, our notion of attention network differs from previous attempts at conceptualizing attention using a network 

perspective. For example Rhee and Leonardi (2018) looked at communication networks (i.e., social networks where nodes 
are people and edges are communication instances between people) and conceived attention as an actor-based attribute (i.e., 
a concentration index capturing the degree to which social actors pay uniform attention to all communication edges they are 
tied to, or concentrate their attention on a subset of these edges). On the contrary, our conceptualization of attention 
network entails a bipartite relation connecting participants to problems, and our structural micro-mechanisms define exactly 
in what ways participants allocate attention to problems. 

3 To facilitate exposition, the four hypotheses are introduced and discussed sequentially. In the empirical models, the four 

mechanisms concatenate to generate the organizational attention network that is actually observed. A useful way to interpret 
the hypotheses, thus, is as an interdependent set of interdependent claims about the relational micro-structures that regulate 
observed patterns of association between multiple participants and multiple problems.  
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Attention focusing  

In an organizational world increasingly characterized by constant change in the sets of participants, problems, 

and decision opportunities, attention allocation cannot be reduced to a stable set of individual preferences 

(March 1991), because the choice set of organizational decision-makers is not defined ex-ante (Knudsen and 

Levinthal 2007)4. Allocating attention involves investing “energy, effort and mindfulness” (Ocasio 1997, p. 189) 

on a limited sample of problems selected from a larger population of problems. As an investment decision, the 

allocation of attention is only partially reversible because of the inertia determined by cognitive costs related to 

search, information acquisition, and learning (Conlisk 1996, Gabaix et al. 2006, Simon 1978). These problem-

specific costs increase the likelihood that organizational participants will allocate their attention to more familiar 

problems. Consequently, what individuals focus their attention on is also likely to depend on what they become 

more familiar with. According to this “logic of familiarity,” attention tends to become more focused over time as 

organizational participants distribute attention over a progressively narrower and relatively well-known set of 

issues (Levinthal and March 1993, p. 97). This expectation is consistent with available evidence on the effects of 

familiarity and experience on ease of recall of instances produced by classic experimental studies of choice under 

uncertainty (Tversky and Kahneman 1974).  

In the presence of problem-specific (cognitive and learning) costs, the higher the participants’ focus on familiar 

problems, the lower the cognitive cost of processing problem-specific information and recognizing problem-

specific solutions (Reagans et al. 2005). Repeated attention granted to familiar problems gives rise to behavioral 

routines and related forms of recurrent behavior and habitual problem-solving that stabilize the relation between 

organizational problems and solutions to narrow the focus of attention (Cohen 2012). According to this view, 

our first hypothesis is consistent with classic predictions of behavioral theories of the firm about the reinforcing 

effects of familiarity on problem-solving behavior (Cyert and March 1963), and with more recent studies inspired 

 
4 As March usefully explains (1991, p. 109): “Individuals attend to some things and thus do not attend to others. The 
attention devoted to a particular decision by a particular potential participant depends on alternative claims on attention. 
Since those alternative claims are not homogenous across participants and change over time, the attention every particular 
decision receives can be both quite unstable and remarkably independent of the properties of the decision.”  
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by this theoretical tradition (Christensen and Knudsen 2020) that investigate endogenous specialization as 

sustaining the division of labor in organizations. In the empirical context of our study, this prediction would be 

exemplified by a situation in which software developers decide to focus repeatedly on contributing to solve the 

same bugs – thereby increasing their task-based specialization – rather than seeking to engage a wider set of bugs. 

Building directly on these considerations, Hypothesis 1 provides the baseline expectation – based on a logic of 

familiarity – for the hypotheses that we develop next: 

H1 (Attention focusing hypothesis): Participants are more likely to allocate attention to organizational problems that have attracted 

their attention in the past. 

Attention reinforcing  

Attention focusing explains why participants are more likely to allocate their attention to familiar problems, but it 

does not explain what problems are more likely to attract attention in the first place, or how attention as a 

sampling mechanism actually works. Theories of selective attention have long recognized that salience affects the 

likelihood that a problem will receive attention (DiPrete and Eirich 2006, Taylor and Fiske 1978). Salience is 

partly an outcome of frequency-dependent social dynamics activated by the number of others who are visibly 

paying attention to the same problem, or issue (Salganik et al. 2006). In situations where acts of attention 

allocation performed by others are directly observable, attention allocation is subject to the tendency of 

popularity to breed popularity, i.e., to the law of accumulative advantage (Powell et al. 2005).  

Attention-based accumulative advantage arises because popularity is interpreted as a signal of intrinsic interest, 

worth, attractiveness, and appropriateness. As Smith observes (2011, p. 64): “Increasing instances of a particular 

and, importantly, observable outcome signal the appropriateness of that outcome.” The consequence of 

cumulative advantage of this kind is that attention allocation becomes progressively more concentrated on a 

limited number of issues or cases. The structural signature of this attention-reinforcing process is a skewed 

distribution of attention: few problems attract the attention of many, and most problems attract little or no 

attention at all. Similar forms of preferential attachment have been investigated in a variety of settings (Barabasi 

and Albert 1999, Dahlander and McFarland 2013, Powell et al. 2005). Studies of preferential attachment in social 
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networks demonstrate that popular individuals are more likely to attract ties from other individuals – and hence 

become more popular (Merton 1968, Rivera et al. 2010).  

In the more specific context of organizational attention, this general insight helps us to identify two meaningful 

sources of attention reinforcing, or cumulative advantage of popular problems. The first relates to the fact that 

the number of organizational participants allocating their attention to a problem increases the visibility of the 

problem. Participants may decide to allocate their attention to already popular problems to demonstrate their 

expertise, increase their reputation, or claim legitimate membership in their reference community (Dahlander and 

O’Mahony 2011, Shah 2006, Tajfel and Turner 1986). For example, popular problems may become public arenas 

where software developers become recognized as trustworthy and willing and able to contribute to problems of 

general interest for the project. A second source of attention reinforcing derives from the fact that participants 

engaging with popular problems have access to a larger and more diverse pool of knowledge. For example, 

allocating attention to popular problems allows software developers to access the experience of a larger sample 

of peer developers and learn from their experience and problem-solving practices (Boh et al. 2007, Reagans et al. 

2005). Hypothesis 2 – based on a logic of problem popularity – summarizes this argument: 

 H2 (Attention reinforcing hypothesis): Participants are more likely to allocate attention to popular organizational problems. 

Attention mixing  

However reasonable as a general tendency describing the allocation of collective attention, reinforcing does have 

mitigating factors. There is empirical evidence, for example, that certain people tend to avoid choosing items of 

increasing popularity because they believe that their faddish character will make them transitory and short lived 

(Berger and LeMens 2009). Similarly, empirical studies have documented the systematic tendency of individuals 

to reduce their interest in an issue when the interest expressed by others in that same issue peaks (Berger and 

Heath 2008). 

We argue that attention reinforcing is mitigated by a logic of devaluation of popular problems, and that the 

extent to which this happens depends on a specific characteristic of organizational participants, i.e., their level of 

activity. This particular argument hinges on assumptions about the mixing properties of attention networks – i.e., 
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about the correlation between the relational characteristics of problems and participants. In our case, we expect 

attention allocation patterns to exhibit a disassortative mixing dynamic5, as the attention of active participants 

spreads over less popular problems compensating, in part, for the tendency toward concentration induced by 

attention reinforcing.  

Evidence of disassortativity in bipartite networks (like, for example, networks connecting individuals and issues) 

is widespread. Shang et al. (2010) have found evidence of disassortative mixing in the bipartite network affiliating 

participants in an internet-based recommender system website to music they play: very active consumers of 

music tended to listen to music tracks that few other users would select. Along similar lines, Grujić and Tadić 

(2009) report evidence of disassortative mixing in the bipartite network affiliating users and movies in a popular 

internet-based movie database: users who recommend many movies, recommend movies that are not 

recommended by many other users. In a recent study of Wikipedia – the open online encyclopedia – Lerner and 

Lomi (2020a) find that particularly active contributors (i.e., individuals with a high volume of editing experience) 

are less likely to modify articles that receive many edits from other contributors. In consequence, more active 

users seem to dedicate a larger share of their attention to less popular articles than less active users. These 

empirical studies report patterns of disassortative mixing in large bipartite systems composed of individuals and 

items competing for their attention, such as music tracks, movies, and webpages. In organizational attention 

networks, we expect disassortative mixing to be the outcome of a tendency whereby active people (i.e., people 

who pay attention to many items) are likely devalue popular items that become less interesting, at least to some 

participants, once a threshold of popularity is crossed (Berger and Heath 2008, Kovács and Sharkey 2014). In the 

context of organizational problem solving, the decline of interest in popular problems following devaluation is 

 
5 Reference to well-established network-analytic concepts might help to describe efficiently the mixing properties of 
attention networks (Newman 2002, 2003; Newman and Park, 2013;  Pastor-Satorras et al. 2001). An attention network is 
assortative if active participants (participants who pay attention to many problems) are attracted by popular problems 
(problems that attract the attention of many participants). On the contrary, an attention network is disassortative if active 
participants allocate their attention to less popular problems. We note that the concept of assortativity we adopt is specific 
to 2-mode networks – networks defined only between distinct classes of objects (Lerner and Lomi, 2020b) - and differs from 
the more common concept of assortativity – or assortative mixing as used in game theory (Bergstrom, 2003) where 
networks are typically social, i.e., they connect objects within the same class. In the empirical context of our research 
disassortativity characterizes the consequence of the structural mechanism of 'mixing' that we introduce. 
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likely to be more pronounced for active participants whose available attention is more severely constrained by 

the intensity of their engagement (Kahneman 1973). While popularity of problems may be attractive to the 

average participant due to the potential increase in learning opportunities – as postulated in our Attention 

reinforcing hypothesis (H2) – it may also trigger effort-reducing cognitive heuristics (Tversky 1972) in more active 

participants. Popularity of problems may also strengthen social psychological effects such as diffusion of 

responsibility that depends directly on the number of participants already attracted to an issue (Darley and Latané 

1968). Active participants with limited attention may then divert away from engaging with problems that: (i) 

require more intense computation and sense-making efforts to integrate a multitude of contributions from 

different participants (Castellaneta and Zollo 2014, Criscuolo et al. 2017), and (ii) seem to garner sufficient 

attention to guarantee their eventual resolution. Participants with extensive experience and limited attention 

might thus be more likely to focus on issues where their marginal contribution has higher impact. Consequently, 

active participants are likely to divert their attention away from popular problems.  

More generally, our third hypothesis identifies a specific class of mechanisms that may be responsible for the 

endogenous emergence of division or labor and roles in organizations – a core concern in contemporary 

behavioral theories of organizations (Christensen and Knudsen, 2020; Knudsen and Srikanth, 2014). Hypothesis 

3 – following a logic of devaluation – summarizes this argument: 

H3 (Attention mixing hypothesis). Active organizational participants are less likely to allocate attention to popular organizational 

problems. 

Attention clustering 

Thus far, we have concentrated on behavioral tendencies of individuals (focusing, H1), characteristics of 

problems (reinforcing, H2), and on the direct interaction between individuals and problems (mixing, H3). But 

organizational participants are linked to each other also indirectly through their joint affiliation to problems that 

attract their attention (Carley 1991, Conaldi and Lomi 2013) – a necessary outcome of what Breiger (1974) 

identified as the duality of participants and problems in organizations. It is possible, therefore, that the indirect 

connection between problems and participants will make other proximate problems more likely to attract 
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attention in the future. Our reasoning on this issue is firmly rooted in the classic behavioral insight that decision 

makers actively construct their choice set – and search is indeed a central aspect of organizational problem 

solving (Knudsen and Levinthal 2007). Organizational participants are more likely to allocate their attention to 

issues located in the neighborhood of issues that have attracted their attention in the past (Cyert and March 1963, 

Simon 1959). Building on this view, more recent research has identified a number of powerful factors that 

contribute to constrain the range of problemistic search in the neighborhood of current problems and solutions 

(Jung and Lee 2016). This view of search requires the definition of some notion of “neighborhood,” so that the 

concept of “local search” may be specified (Stuart and Podolny 1996). To this end, suppose that two participants 

i1 and i2 are attracted by (i.e., allocate their attention to) the same problem m2 at time t1. Suppose, further, that i2 

(but not i1) is also attracted by a second problem m1.  In this situation (i.e., at time t1) problem m1 is in the 

neighborhood of participant i1 because i1 can reach m1 indirectly through the path {i1 ⎯ m2 ⎯ i2 ⎯ m1}6.  If, at time t2 

(>t1) participant i1 decides to allocate attention to problem m1 located in her neighborhood thus defined, then she 

generates a closed structure, or a “cluster” of two participants connected to the same two problems7. Unlike the 

more common forms of clustering, or “closure,” in social networks involving three nodes (Bearman et al. 2014, 

Faraj and Johnson 2011, Shore et al. 2015), attention clustering involves pairs of participants allocating their 

attention jointly to the same pairs of problems forming a localized, and thus proximate, attention cluster.  

We have established that the extent to which a problem may be considered “proximate” for a participant 

depends on the reachability of that problem through indirect connections with other participants. Attention 

clustering captures precisely the preferential tendency of participants to allocate their attention to more 

proximate problems – problems present in their neighborhood. This argument is consistent with the definition 

of “local search” that is central in behavioral theories of organizations (Cyert and March 1963, Levinthal and 

March 1993, Knudsen and Levinthal 2007). In the context of our study this prediction would translate into a 

 
6 This path indirectly connecting a participant to a problem through another participant is called a three-path in the analysis of 

bipartite networks (Wang et al. 2013). A three-path is the shortest possible indirect path linking a participant and a problem 
in a bipartite network. As such, the notion of three-path provides the analytical basis for an unambiguous definition of 
“neighborhood” (see also Pattison and Robins (2002) for a similar discussion in the context of social networks).   
7 The closed structure connecting two participants to the same two problems is called a four-cycle in the analysis of bipartite 

networks (Wang et al. 2013). The four-cycle is the analytical analogue of triadic closure in social networks.  
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situation in which (pairs of) developers are more likely to extend prior collaborations to future bugs. In our 

context, once two developers have allocated attention the same bug, they develop a shared understanding of that 

problem and a common ground for allocating shared attention to further problems (Lin et al. 2014). As a 

consequence, they will tend to find new bugs attracting their shared attention, thereby extending their prior 

problem-solving collaborations (Feld 1981: 1019). Hypothesis 4 – following a logic of problem proximity – 

summarizes our discussion: 

H4 (Attention Clustering): Participants tend to form attention clusters by allocating their attention to future problems in the 

neighborhood of their current problems.  

Tables 1 and 2 summarize the substantive implications of our mechanisms in the modern organizational 

environment, providing contextual examples in contemporary business and society, as well as underlying 

behavioral logics and resulting structural configurations. These examples suggest the possibility to generalize the 

interpretation of our mechanisms and hypotheses to multiple types of organizations beyond the specific 

empirical context. Table 3 instead summarizes from a formal perspective the four constructive mechanisms 

underlying our hypotheses. For each hypothesis, the table reports the antecedent configuration (at time t1) in the 

left column, the change (“next event”) prediction consistent with each mechanism in the central column, and the 

resulting (predicted) final configuration (at time t2) in the right column.   

--- Insert Tables 1-3 about here --- 

RESEARCH DESIGN AND METHODS 

Empirical setting  

We study the dynamics of attention allocation in the Apache HTTP Server - a large and successful Free/Open 

Source Software (F/OSS) project. The term F/OSS typically refers to software products released under a license 

that allows inspection, use, modification and redistribution of the original software source code (Crowston et al. 

2012). Developing teams (Lee and Cole 2003, Crowston and Scozzi 2008) contribute private effort to the 

production of what is effectively a public good (Spaeth et al. 2008, Von Krogh et al. 2012). Developers can be 

unpaid volunteers (Hars and Ou 2002, Lakhani and Wolf 2005), or paid by third parties (Henkel 2006, Stam 
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2009, Rolandsson et al. 2011). Their motivations vary widely and change over time (Von Krogh et al. 2012), 

ranging from ideological belief (Haruvy et al. 2003, Stewart and Gosain 2006) to pure enjoyment-based, intrinsic 

motivation (Lakhani and Wolf 2005), and to labor market signaling (Bitzer et al. 2017). Coordination happens 

mostly – if not only – online (Raymond 1999, Crowston and Scozzi 2008) and the distribution of attention is 

typically affected by the modular nature of the software (Baldwin and Clark 2006, Lerner and Tirole 2002), with 

developers concentrating their attention and activities on specific modules better aligned with their interests and 

skills, when not overviewing the overall code structure.  

Open-source projects use instant messaging and mailing lists for technical discussions and support, code 

repositories for storing shared versions of the source code, and bug tracking systems for monitoring and tackling 

problems with the software (commonly referred to as software “bugs"). We consider the tackling of bugs – i.e., 

the actions aimed at resolving software problems that cause computer programs to behave in unintended and 

undesirable ways – as one of the most important activities affecting the quality of the software development 

process (Zhang and Kim 2010). 

We are interested in understanding the mechanisms regulating the allocation of attention to organizational 

problems – an essential precursor to problem solving. Bug fixing absorbs a considerable amount of participants’ 

attention (Crowston and Scozzi 2008). Indeed, the collective attention allocated to software bugs represents an 

important quality and reliability signal of the project (Crowston et al. 2003). Given the absence of centralized 

control and direct access to bug reports, developers typically self-manage the allocation of attention. Bug 

repositories provide an occasion for coordinating the highly decentralized activities of developers and for 

channeling collective attention. 

Apache HTTP server is one of the most popular web server software, serving approximately 33% of all existing 

websites8. The development and maintenance of Apache HTTP server is overviewed by a Project Management 

Committee chaired by a Vice President. Members of the committee are appointed among the developers who 

 
8 Based on information reported by W3Techs (last access on January 30th 2023): 

https://w3techs.com/technologies/overview/web_server 

  

https://w3techs.com/technologies/overview/web_server
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have acquired significant merit in the project with their contributions. More generally, within Apache HTTP server 

– and all other projects overviewed by the Apache Software Foundation (ASF) – the right of contributors to 

modify the software is assigned by the community of developers and earned by showing commitment and active 

engagement. The ASF clarifies that all developers contribute to the project in their personal capacity – regardless 

of work affiliation (ASF 2022a, 2022b). Newcomers looking for ways to contribute to a project are explicitly 

encouraged by the ASF (2022a) to tackle a problem reported in the bug repository that stimulates their own 

interest. Given the freedom that developers experience when contributing to solve tasks in a very modular 

structure, the extensive reliance on volunteer participants and the complete transparency of their attentional 

processes, we think Apache represents a particularly apt environment for testing our hypotheses.  

Data 

We extracted the complete sequence of attention allocation events connecting project participants to software 

bugs stored in the official bug repository of the Apache HTTP server. Our sample includes all the bugs ever 

reported on releases 2.X of the software from the first bug report (March 2001) until the end of the observation 

period (March 2013). During the observation period a total of 13,526 actions by 4,338 unique developers on 

6,000 distinct bug reports were recorded. Information on each individual event is exact to the second. Thus, the 

data set we constructed contain information on real-time attention allocation events observed throughout the life 

history of the project9.   

We adopt the definition of developer provided by ASF as individuals who “contribute to a project in the form of 

code or documentation. They take extra steps to participate in a project, are active on the developer mailing list, 

participate in discussions, provide patches, documentation, suggestions, and criticism” (ASF 2022b). In the rest 

of the paper, we use the generic term organizational “participants” to refer to ‘developers’ and the term 

organizational “problems” to refer to ‘software bugs’. We collected the raw data by parsing the individual, 

publicly available, web pages of all bug reports included in the repository with the web-crawler software Bicho 

 
9 A dynamic visualization of the data we analyze in the empirical part of the study may be accessed by following the link: 
https://zenodo.org/record/7564503. The actual data we collected and used in the analysis are publicly available and may be 
found at the following address: https://github.com/juergenlerner/eventnet/tree/master/data/apache. 

https://zenodo.org/record/7564503
https://github.com/juergenlerner/eventnet/tree/master/data/apache
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(Robles et al. 2009). In detail, a participant encountering a problem while running or developing the software 

usually starts the bug-reporting process and opens a bug report that is included as a new page in the bug 

repository. The repository provides the tracking infrastructure for describing, triaging, and resolving software 

bugs. A bug report is organized into a collection of pre-defined fields supplying information such as the name of 

the module, operating system, and release number that the bug affects. Bug reports also make the history of past 

actions visible and accessible to all participants. Fields in a bug report are populated when the report is first 

generated, and then updated by individual developers.  

Dependent Variable 

An attention allocation event linking participant i to problem m at time t is recorded whenever participant i 

modifies a field in (“touches”) the bug report associated with problem m. The set of all observed attention 

allocation events represent the organizational attention network. What makes the organizational attention 

network a “network” is the aggregate structure of dependences that links individual acts of attention allocation. 

Our analysis focuses on the modeling of the time to the next observed attention allocation event conditional on 

the sequence of past events. More precisely, the dependent variable is the instantaneous probability of observing 

an attention allocation event linking a participant to a problem conditional on: (i) characteristics of the 

participant; (ii) characteristics of the problem, and (iii) the history of interaction between participants and 

problems within the project. 

Independent Variables 

It is possible to identify three broad sets of covariates included in our model. The first set includes covariates 

specifying the effect of direct theoretical interest that take the form of network statistics directly linked to our 

hypotheses. These covariates are defined exclusively in terms of sequences of attention allocation events linking 

participants and problems. Attention allocation sequences are inherently dynamic, thus the covariates of 

theoretical interest vary over time. The second set includes control covariates that account for a variety of other 

factors that may affect the probability of observing attention allocation events. Control covariates may refer to 

characteristics of participants or problems and may be time-constant or change over time in a way that does not 



20 
 
 

depend on the history of attention allocation events. The third set of covariates includes interaction effects 

between control covariates and network effects.  

Attention allocation mechanisms. We provide a verbal description of the statistics connected to the 

attentional mechanisms specified in the hypotheses. Then we describe the covariates included in the model to 

control for additional factors affecting the attention allocation events. Following the formal definition of 

“attention network,” in Appendix A we develop the mathematical notation necessary to provide the formal 

definition of all the effects included in our empirical model specifications, which we now describe informally.   

We start by defining Cumulative attention as a default, and therefore not directly hypothesized, attentional 

mechanism that serves as the basis for identifying the more specific mechanisms linked to our hypotheses. 

Cumulative attention simply involves a positive feedback mechanism regulating individual patterns of attention 

allocation. This generic baseline mechanism is commonly found in systems of social interaction characterized by 

increasing inequality in activities, outcomes and attainment (Merton 1973, Powell et al. 2005). Cumulative attention 

provides a useful baseline mechanism for modeling attention networks: it captures participants' average 

propensity to change their current level of attention to the project as a function of their history of participation 

(see Equation A.1 in Appendix A). A positive effect of Cumulative attention would provide evidence of self-

reinforcing motivation to contribute attention: participants currently contributing a high level of attention to the 

project will be more likely to contribute an even higher level of attention in the future10.  

According to the Attention focusing hypothesis (H1), participants are more likely to allocate their attention to a 

problem if they have allocated their attention on the same problem in the past. A positive effect of Attention 

focusing would indicate that the greater is the number of attention allocation events connecting a participant to a 

specific problem, the higher is the likelihood of observing additional events reinforcing this connection (see 

equation A.3 in Appendix A). 

 
10 All the statistics are time-weighted according to a time decay parameter defined in equation A.2 in Appendix A. In this 

way, more recent events have a heavier weight on the prediction of the next event – a weight that progressively decreases for 
events in the more distant past.   
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According to the Attention reinforcing hypothesis (H2), popular problems are more likely to attract further 

attention, and hence become even more popular. To test this hypothesis, we define Attention reinforcing as a 

positive feedback effect driving the tendency of high levels of attention to generate further attention (see 

equation A.4 in Appendix A). A positive effect of Attention reinforcing would indicate that higher levels of attention 

received by a problem in the past, will lead to a higher likelihood of receiving an even more attention in the 

future – a sort of “popular for being popular” effect. 

Attention mixing is defined as an interaction between cumulative attention and attention reinforcing (see equation 

A.5 in appendix A). A negative effect of Attention mixing would imply disassortativity, according to which active 

participants are less likely to allocate attention to more popular problems. At the project level, the consequence 

of disassortativity would be to divert (or disassociate) the attention of active participants away from popular 

problems to less popular ones. This is the specific prediction summarized in Hypothesis 3. 

The fourth hypothesis involves Attention clustering (H4), a mechanism that stabilizes the association between 

participants and problems by “locking” the flow of attention within local clusters. We represent Attention clustering 

as the number of bipartite four-cycles (see Equation A.6 in Appendix A). A positive effect of Attention clustering 

would imply that participants tend to cluster their attention around shared problems over time. We call this effect 

attention “clustering” because bipartite systems cannot have closed cycles of odd length like, for example, the 

closed triangles that are commonly used to measure clustering tendencies in social networks (Newman and Park 

2003)11. As we explained, attention clustering captures the local character of search by predicting that participants 

are more likely to extend their attention to problems located in the neighborhood of problems that are currently 

attracting their attention.    

Control factors. The probability of observing an attention allocation event may be affected by a number of 

additional factors related to: (i) characteristics of participants; (ii) characteristics of problems; (iii) organization 

 
11 Like clustering defined for 1-mode (social) networks, clustering for bipartite networks involves path shortening behavior 

(or “closure”):  the difference is that in bipartite networks, path shortening closes an open three-path connecting a 
participant indirectly to a problem through another problem and another participant (see equations A.6b and A.6c in 
Appendix A for the formal definition of 3-path. See also Table 1, bottom left panel for an intuitive graphical representation). 
Four-cycles are the most basic form of closure in bipartite systems (Wang et al. 2013).   
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structure, and (iv) interaction between these various factors and the observed sequences of attention allocation 

events. In our models, we include control variables at each of these levels. We define Experienced participants as an 

indicator variable taking value 1 for participants that were already active during previous release cycles of the 

project, and zero otherwise. Other conditions being equal, a positive effect would provide evidence that 

experienced participants are more likely to allocate their attention to problems. The variable Institutional 

participants is introduced to capture formal role differentiation. Participants are considered “institutional” if they 

use an email address ending with the official Apache domain (i.e., apache.org): in such case, the Institutional 

participant indicator variable equals 1, otherwise it is 0. There were 86 institutional participants out of 6,193 

participants present during the observation period. A positive effect associated with this indicator variable 

implies that institutional participants are more likely to allocate their attention to problems.  

The community of participants structured around the project has several ways to channel attention on problems. 

Examples include the assignment of problem priority and severity levels. Participants willing to allocate their 

attention to a specific problem assign a priority level ranging from 1 (highest priority problems) to 5 (lowest 

priority problem) to it. Assigning a priority level is an attempt to communicate how urgently participants would 

like to fix specific problems, and hence to direct their attention to them. We use this information to construct an 

ordinal problem priority indicator that we use to control for the potential differential attractiveness of problems 

assigned to different levels of priority. A negative effect associated to Problem priority would indicate that problems 

with high priority tend to attract additional attention (because problems with priority = 1 are high priority 

problems). Participants also assign a severity level to each software bug on a seven-point scale ranging from 

“enhancement” (a request for new features) to “blocker” - a bug that effectively prevents further development of 

the software. Assigning a severity level is an attempt to communicate how urgently bugs need to be fixed, and 

hence to direct attention to crucial problems. For example, if a problem has “blocker” status, then it must 

absolutely be fixed before the next release or project milestone. We use this information to construct a Problem 

severity indicator variable taking the value 1 if the problem is classified as a “blocker” and 0 otherwise. A positive 

estimate of the parameter associated with problem severity would suggest that severe problems tend to receive 

additional attention.  
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Problem latency is the age of a problem measured in days, i.e., the age of the problem computed for each active 

problem as the difference between the current time and the last time in which the problem was first reported - or 

reopened (Cohen et al. 1972). Problem latency is defined formally in Appendix A (Equation A.7). Problem resolved 

takes the value 1 when a problem status is changed to “resolved” and 0 otherwise. When this happens, the 

problem remains visible but is no longer “active.” This time-varying indicator variable allows us to control for 

the decrease in attention over problems after they are resolved. A negative effect would indicate that attention 

allocation events are less likely to be performed on problems that are collectively considered resolved. Note that 

our design admits that resolved problems may be reopened in the future. For example, a software bug considered 

resolved might reappear in a subsequent release of the software. For this reason, attention allocated to resolved 

problems is likely to decrease, but does not necessarily or permanently drop to zero.  

Problem recognition counts the number of comments associated with a problem. We include this variable to control 

for the differential propensity of problems to attract attention as a function of the discussion that problems 

generate. Many comments left by software users on a problem could signal that a problem is of general interest 

for the community at large. In turn, that could attract differential attention of the participants. Problem recognition is 

defined formally in Appendix A (Equation A.8) 

F/OSS projects vary greatly in the extent to which they contain formal elements of organizational structure 

related to modularity. The necessity to adopt a modular structure increases as a function of the size and 

complexity of a project. Apache HTTP server, for example, is sufficiently large to sustain a formalized modular 

organization of its code. Examples of such modules include the “core" code, software extensions, and the 

corresponding software documentation. The software code is devoted to the basic processing of HTTP requests 

and responses. Each of the modules extends this basic functionality with a specific feature. For example, the 

module mod ssl provides Apache HTTP server with cryptographic capabilities now almost universally used by web 

servers. Alongside the software code composing core and modules, the code repository of the project contains 

software documentation that developers write and maintain as the project evolves. A software bug can affect the 

software as a whole, i.e., in multiple areas of the code base, across core and multiple modules. A software bug 
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can affect only the core, one of the modules, or the documentation. Furthermore, a software bug may be 

reported as affecting the “build” - i.e., the compilation of the source needed before execution - as well as the 

installation procedure of the software. To assess the extent to which the modular structure of the project affects 

our results we assigned each software problem to one of five categories representing the different modules. This 

is the variable Module. The first category (omitted) includes all software bugs identified as affecting the software 

globally and serves as a baseline category. The second category includes all software bugs affecting the core 

module of Apache HTTP server. The third category includes all software bugs affecting build and installation of the 

software. The fourth category includes all software bugs affecting software documentation. The fifth category 

includes all software bugs affecting one of the other non-core modules of Apache HTTP server. 

We incorporate information on the modular structure of the project by including Preferential modularity as a 

covariate controlling for the tendency of participants to work preferentially on problems within the same 

module. The interpretation of organizational structure provided by Cohen et al. (1972) is perfectly consistent 

with our quasi-experimental representation of Preferential modularity as an exogenous constraint on the access that 

solutions carried by participants have to problems that the project generates. A positive Preferential modularity 

effect would indicate that attention allocation events are more likely to occur within the same module where they 

occurred in the past. In other words, a positive estimate would provide evidence that participants tend to allocate 

their attention within individual modules. Preferential modularity is defined formally in Appendix A (Equation A.9). 

Participant-specific and problem-specific covariates may affect the probability of observing attention allocation 

events both directly, as well as indirectly through their interaction with the attention network. For this reason, in 

the empirical analysis we report in the next section we control for interaction effects that may reveal specific 

ways in which attributes of problems and participants interact with one another and with problem solving 

sequences. We define Attention clustering within modules as an interaction effect between Module and Attention 

clustering, because we want to investigate how formal organizational structure affects attention clustering between 

participants. A negative estimate of the coefficient associated with Attention clustering within modules would reveal a 

tendency of participants to cluster their attention on problems across modules. Attention clustering within modules is 

defined formally in Appendix A (Equation A.10). 
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Finally, Time inactive records for each participant i the time difference between the current time and the last time i 

was active in addressing any problem. We include time inactive to control for participants who are formally in 

the risk set, but do not actively contribute to the collective problem-solving process. Time inactive will make 

participants with long inactivity time hardly influence the estimation of other model effects. Time inactive is 

formally defined in equation A.11, Appendix A. 

Table 4 summarizes the control factors included in the empirical model specifications, the class of objects to 

which factors pertain, the reason for inclusion, and the units of measurement. Mathematical definitions are 

reported in Appendix A. 

--- Insert Table 4 about here --- 

Relational Event Models 

The relational event model that we implement in the empirical part of the paper exploits the full information 

contained in the sequence of time-stamped attention allocation events, and in their exact time ordering (Butts 

2008, Perry and Wolfe 2013). The specific relational event model we adopt is described in detail and tested 

extensively in Lerner and Lomi (2020b). 

The generating mechanisms represented in the model are defined in terms of event sequences that preserve the 

temporal information of individual problem-solving attempts. We use a Cox proportional intensity model 

incorporating both static and history-dependent covariates (Andersen and Gill 1982). We adopt well-established 

partial likelihood inference procedures to estimate the parameters of interest (Perry and Wolfe 2013). Appendix 

B provides additional background and information on the specification, estimation, interpretation, and 

evaluation of the relational event models. The model is estimated using the eventnet software 

(https://github.com/juergenlerner/eventnet) and the R package “Survival” Version 3.4-0 (Therneau 2022). 

The complete information contained in the history of the attention network during the observation period was 

used to construct the vector of time-varying statistics, the “effects” described in the prior section. More 

specifically, a risk set including all participants and all problems recorded in our dataset is built and used to draw 

https://github.com/juergenlerner/eventnet
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a sample of non-realized events needed for estimation (see Appendix B for details). When determining the event 

sequence used to construct our statistics, we note that some problems enter the risk set as they are reported, but 

no action is ever taken to solve them. Furthermore, to be defined the Time inactive control factor requires a 

second action to be taken by a participant at any point during the observation period. Thus, the event sequence 

used for estimation ends up consisting of 11,599 attention allocation events by 1,890 participants on 5,543 

problems. The effects we estimate specify how the next attention allocation event (the dependent variable of the 

model) depends on specific configurations of time-structured sequences of past events. Parameter estimates tell 

the direction, magnitude, and significance of the theory-based mechanisms, and the effect of the control factors.  

RESULTS 

Analysis 

The results of the analysis are reported in Table 5. Model 0 (Null Model – M0) is the benchmark model defined 

only in term of cumulative activity for each individual participant. According to Model 0, the next attention 

allocation event depends only on the history of past events. As a null model, Model 0 is considerably more 

challenging for alternative models than a model with no parameters. Model 1 (Attribute control model- M1) is the 

baseline model controlling only for attributes of the problems and the participants. According to M1 individual 

attention allocation events are independent and affected only by attributes of the participants and the problems, 

but do not dependent in any specific way from prior events. Model 2 (Attention network model - M2) introduces the 

effects of theoretical interest and is the focus of our discussion. Model 3 (Organization structure model - M3) 

examines the robustness of the estimates of theoretical interest when we consider element of formal 

organizational structure present in the project. Heuristically, the goodness of fit diagnostics reported at the 

bottom of the table indicate that the models estimated are significant, and that the full model (Model 3) improves 

significantly on the null model (Model 0), and on intermediate models – after accounting for differences in 

degrees of freedom. 

-- Insert Table 5 about here -- 

The effects of control factors included in Model 1 are numerically stable across specifications and are generally 
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consistent with our expectations. We discuss them briefly. Institutional participants and Experienced participants are 

significantly more likely to engage in attention allocation activities. For example, experienced participants are 

more than 148% more likely than non-experienced participants to allocate attention on problems within the 

project (exp(0.91) = 2.484). However, after one month of inactivity the probability than an inactive participant 

(Time inactive) will contribute again drops by approximately 39% (because exp(-0.0163*30) = 0.61).  

Problems labelled “high priority" (Problem priority) do not have a significantly higher chance of attracting attention 

from participants. Severe problems (Problem severity) are approximately 15% more likely to attract attention. The 

longer a problem remains in the system (Problem latency), the less likely it is to attract attention. Problem resolved 

are predictably less likely to attract further attention. Because resolved problems may be eventually reopened, 

however, the odds of attracting further attention decline by almost 80% (because exp(-1.4596) = 0.23), but do 

not drop to zero immediately – a result echoing a “garbage can” view of organizational problems as recursive 

(Cohen et al. 1972, p. 10), and never quite resolved once and for all (Fioretti and Lomi 2010). Finally, a long list 

of comments attached to a bug report may be interpreted as a signal that a bug is being recognized by the 

community as particularly interesting, complex or worthy of discussion (Hooimeijer and Weimer 2007, Arya et al. 

2019). The positive and significant effect of Problem recognition confirms this expectation: an increase in one 

standard deviation in the number of comments increases the hazard of generating additional attention by 41% 

(because exp(0.3430) = 1.41).  

We now concentrate the focus of our discussion on Model 2 which incorporates the effects of theoretical 

interest. As an aid to interpretation, we note that significantly positive (negative) effects increase (decrease) the 

rate of events connecting participants to problems according to the mechanism generating the event sequence 

associated with the effect12.  

Attention focusing (H1). We hypothesized that participants working on specific problems will be more likely to 

 
12 Because the network-dependent effects are standardized, the interpretation of their magnitude is carried out in terms of 

standard deviations from mean. Standardization is useful in this case because the sample size and the way the covariates are 
constructed makes statistical significance alone unhelpful to evaluate the magnitude and strength of the effects of theoretical 
interest. 
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focus their attention on those problems in the future. We argued that this form of inertia in the attachment of 

participants to problems is important because it induces specialization, and because it stabilizes patterns of 

organizational attention. Because Attention focusing also sustains faster learning, attention focusing helps 

participants to develop skills that are, at least in part, problem specific. Estimates support the focusing 

hypothesis: An increase by one standard deviation in the level of attention that a participant has allocated to one 

specific problem prior to his current decision point, increases the odds that they will decide to pay attention to 

the same problem again by 23% (exp(0.2150) = 1.234).   

Attention Reinforcing (H2). Hypothesis 2 summarizes our prediction that popular problems – problems 

attracting the attention of many participants – are more likely to attract additional attention in the future. As we 

have discussed, Attention reinforcing may be due to uncertainty about the quality of a problem such as, for example, 

its level of difficulty, or it may be the consequence of participants’ attempts to gain access to a broader pool of 

knowledge by joining conversations attended by many other participants. We found strong support for the 

Attention reinforcing hypothesis: An increase by one standard deviation in the level of attention that a problem has 

received within the community increases the odds that the same problem will attract further attention by 

approximately 15% (because exp(0.1354) = 1.145). 

Attention mixing (H3). The results support our hypothesis for Attention mixing: the negative and significant 

coefficient shows that the attention that active participants allocate to popular problem is reduced, indicating a 

tendency for disassortativity. A participant that is by one standard deviation more active than the average 

participant, will experience a decrease in the attention reinforcing effect by approximately 3% (exp(-0.0320) = 

0.97). That is – for such a participant – a problem that has received one standard deviation more attention in the 

past has the odds of receiving attention by that participant increased only by approximately (15-3)% = 12%. A 

participant that is more active than average by approximately 42 events will exhibit no preferential tendency to 

allocate attention to more popular problems (exp(-0.0320*6) = 0.83, will offset the 15% increase in the attention 

that a more popular problem receives from a participant with average activity). Other conditions equal, this 

results show that very active participants will exhibit a preferential tendency against popular problems. Figure 1 
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provides a graphical examination of this mitigation effect, by showing to what extent the marginal effect of 

Attention reinforcing decreases the more Cumulative attention increases. 

Attention clustering (H4). We hypothesized that participants are more likely to allocate attention to problems 

in the neighborhood of their current problems. Attention clustering captures the tendency of participants to 

extend their current collaborative experience to future problems located in their neighborhood. Results provide 

solid support for the Attention clustering hypothesis (H4). An increase by one standard deviation in the number of 

three-paths indirectly connecting a participant to a problem will increase by slightly less than 4% the odds that this 

participant will address this problem directly in the future (exp(0.0349 = 1.355). This effect may seem small, but – 

considering that a participant-problem pair can be indirectly connected by a high number of three-paths – even 

one extra event closing a three-path could have a large impact on the number of 4-cycles, or attention clusters, 

that are generated.    

Table 6 summarizes the qualitative implications of our findings. Hazard ratios in Table 6 are calculated based on 

the estimates of Model 2 in Table 5 under ceteris paribus assumptions. Consequently, the figures discussed in the 

text and summarized in the table are provided as an aid to a heuristic interpretation of the estimated parameters in 

the light of our hypotheses. 

-- Insert Table 6 about here -- 

Supplementary sources of structuring in organizational attention networks 

Attention focusing, reinforcing, mixing and clustering may be viewed as intended consequences of attention 

structures shaped, at least in part, by formal organization design (Ocasio and Joseph, 2005). We entertain this 

possibility, in a supplementary analysis that accounts for the formal elements inherent in the organizational 

structure of the project. Doing so allows us to assess the role of formal structure in matching interests and skills 

of participants to characteristics of problems as an alternative explanation for the allocation of attention – and 

hence for the self-organizing nature of attention networks. Such structure in open-source software projects takes 

the form of modularity (Baldwin and Clark 2006).  
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Modularity allows different functional areas to be developed almost independently, thus speeding the evolution 

of the global software system. In more general terms, modularity exemplifies a case of “specialized access - or an 

attempt to force solutions to specialize in the kinds of problems that can be associated to them" (Cohen et al. 

1972, p. 6). In open-source software projects, the primary function of modularity is to help participants search 

efficiently for opportunities to contribute aligned with their interests and skills (MacCormack et al. 2006). For 

this reason, modularization is a common organizing principle in open-source software projects (Von Krogh et al. 

2003), but it is particularly salient in Apache HTTP server which is one of the largest open-source software in 

existence. Because of its size and complexity, the overall project is parsed into modules that reflect major 

functional areas of the software.  

Model 3 incorporates the effects of modularity. The modularity effects should be interpreted with respect to the 

omitted baseline category (“software bugs affecting the software as a whole”). The effect of Preferential modularity 

(ratio of the participant’s past contributions that are allocated to problems in the same module as the focal 

problem) reveals a strong tendency of participants to concentrate their attention on problems within software 

modules. According to the estimates of Model 3 participants are approximately 51% more likely to allocate 

attention to problems within the same module (exp(0.4094) = 1.51). Interpreted in tandem with the effect of 

Attention focusing, the effect of Preferential modularity implies a tendency towards specialization within modules, in 

accordance with the general expectation that participants tend to allocate attention to problems that belong to 

their area of expertise.  

Accounting for elements of formal structure organizing problems by skills and interests of participants does not 

affect the significance, strength, or direction of the mechanisms underlying our hypotheses. Therefore, our 

results seem to be extendable to contexts where the “rules of the game” (Ocasio 1997) allow for some degree of 

specialized access to problems – at least in its “upper limits” of who may attend to what (March and Olsen 1976, 

p. 40) – instead of the more general unsegmented access typical of organized anarchies (Cohen et al. 1972, 

Ocasio 2012). Attention focusing, reinforcing, mixing and clustering continue to operate once the effect of 

organizational structure on the allocation of attention is accounted for. Thus, empirical evidence is stacked 
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against the intuitive explanation emphasizing individual interests and personal skills as the main drivers of 

attention. What our results reveal is that individual interests and skills as reflected in the modular structure of the 

project, do not explain away how software developers allocate their attention to software problems. This 

conclusion is strengthened further by the effect of Attention clustering within modules that we include to account for 

the tendency of participants with similar interest and skills to be attracted by the same problems with the same 

module. The effect is far from statistical significance – a noteworthy outcome given sample size. This means that 

patterns of extended collaboration captured by Attention clustering cannot be simply explained away by similarity of 

individual interests among participants. 

Additional Robustness Checks 

To further establish the validity of our results in a variety of situations where the allocation of attention is 

potentially driven by alternative (self-) organizing logics, we performed a series of additional robustness checks. 

Specifically, we tested whether the self-organizing patterns of attention structures are sensitive to different levels 

of intensity (or effort) in attention allocation. Furthermore, we checked if our results are affected by different 

empirical interpretations of the theoretical assumption of “attention scarcity” postulated in classic behavioral 

(Simon 1947), attentional (Ocasio 2012) and garbage-can theories (Cohen et al. 1972). In particular, we checked 

whether the attention network mechanisms operate differently in presence of higher problem crowding, which 

denotes higher scarcity of collective attention (Piezunka and Dahlander 2015). Finally, we checked the sensitivity 

of our results to some alternative definitions of our sampling strategy, by excluding a) problems that are 

reopened once solved and b) events produced by extremely active participants. In all cases, the main substantive 

patterns of our results remain robust. Further details about the specific tests and the respective tables of 

additional results can be consulted in Appendix C of our supplementary material. 

DISCUSSION  

Through the lens of attention networks, the space of possibilities for the allocation of attention in organizations 

appears as potentially very large, but almost completely empty.  The attention allocation events that are actually 

observed cover only a very small sub-space of the events that may be possible. The subnetwork of observed 
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events is small, and highly structured by the theoretical mechanisms of attention allocation that we have 

postulated. This general conclusion resonates clearly with classic behavioral theories of organization (Cyert and 

March, 1963; Levinthal and March, 1993; Ocasio, 2011; Simon, 1947), but also bears important implications for 

contemporary theories of organizational attention, and for future research on the allocation of attention within 

organizations. We conclude with a discussion of the theoretical contributions of the study, its practical 

implications, limitations, and future directions. 

Contributions to theory and research.  

We need theories of organizations that bring renewed focus on the investigation of contemporary 

organizational environments – including crowdsourced production, holacracies and bossless organizations 

– in which individuals have increasing independence in choosing the tasks and issues they contribute to, 

and in which their activities are often publicly visible to other organizational members (e.g., Puranam et al. 

2014, Alexy et al. 2021). In these contexts, problem-solving activities take place under conditions of high 

decentralization of authority, fluid participation, and variable attention lent by volunteer participants. 

Under conditions in which managerial hierarchies and organizational systems of task allocation and 

control are weak or absent, visible acts of attention allocation become a fundamental stabilization 

mechanism by which participants provide information to each other about how to coordinate their efforts. 

Considering attention as a resource that connects participants and problems in a relation of mutual 

constitution brings to the fore the issue of its role in enabling coordination in self-organizing contexts 

(Hansen and Haas, 2001; Ocasio and Hoffman, 2001).  

In this paper, we address these core theoretical concerns by reframing socially transparent acts of attention 

allocation as a microstructural coordination mechanism allowing organizational participants to provide 

information to each other about organizing work around available problems. This study contributes to the 

scholarly debate on the micro-foundations of organization design, i.e., “the micro-level processes, 

behaviors, and interactions that aggregate to yield the organization’s overall structure” (Raveendran et al. 

2020: 829; for further discussion of the micro-foundations of social networks, see Tasselli, Kilduff and 
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Menges 2015). These micro-foundational interactions between participants and problems are not based on 

exogenous task allocation decisions or pre-determined workflows that participants know ex ante. Instead, 

they emerge from participants’ efforts to coordinate work as they face ambiguous task demands and fluid 

organizational boundaries and observe how their peers operate. In this sense, our analytical framework is 

consistent with a view of boundedly-rational participants who learn about their interests and uncertain 

future preferences by interacting with actual problems attracting their attention (March and Olsen 1976), 

in a context where “contributors do not know if their efforts will result in a suitable working product” 

(Von Krogh et al. 2003, p. 1219). By investigating the emergence of attention networks as the byproduct 

of interdependent acts of attention allocation, our work responds to recent calls for a better 

“understanding [of] the involvement of agents in the design process […] in scenarios in which the tasks 

are not clear-cut.” (Raveendran et al 2020: 829) and resonates with the idea that “interdependence is 

endogenous to the organization design process […] because it arises during agent interactions” 

(Raveendran et al 2020: 831).  

It’s worth noting that our study hinges on the assumption that organizational participants have access to 

transparent information about how others allocate their attention. Observability underlies the formation of 

“socially endogenous inferences” (Zuckerman 2012) upon which we base our theorizing and facilitates the 

emergence of stigmergic coordination - i.e., “implicit coordination mediated by changes to a shared work 

product” (Rezgui and Crowston 2018, p. 1; Moffett et al. 2021). This feature of our study reveals an important 

implication for the debate on the micro-structural approach to organization design, insofar as “we would expect 

the process of search for new forms of organizing to stabilize around clusters of complementary solutions” 

(Puranam 2018: 155). In particular, we show that the transparency of attention constitutes a valuable 

complementary solution to task allocation via self-selection, because it provides the necessary informational cues 

for participants to coordinate their effort, and thus for attention networks to self-organize and dynamically 

emerge in organizations. 

We introduced the notion of attention networks to emphasize the self-organizing character of 
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organizational problem solving. Our emphasis, specifically, is not on the static characterization of this 

network, but on the interdependent mechanisms of its transformation and emergence (Gibson 2012, 

Padgett and Powell 2012). The operational concept of attention network that results from our set of 

hypotheses provides an illustration of how contemporary organizations are to some extent defined, and 

transformed, by the very activities that their members perform, resonating with the idea “auto-catalysis” 

(Padgett 2018, Padgett et al. 2003, Padgett and Powell 2012). Every visible act of attention allocation 

involves the creation of new connections between participants and problems, and hence implies change in 

the organizational structure via change in the activities and issues that organizational participants choose 

to focus on. Hence “structure” and “change” are constructs that can only be understood in reference to 

one another: they represent a duality that entails the concept of organizing itself. If traditional firms and 

societies have been described as “centralized, bureaucratic, and inflexible” (Thompson 1967, p. 108), self-

organizing contexts allow individuals to broaden their “range of aspirations” (p. 114) by giving the 

freedom to allocate time and effort to issues that are prioritized by the individuals themselves. Our set of 

connected hypotheses shows that the mechanisms linking people to problems and tasks follow a structural 

logic that, accumulating over time, contributes to shape organizational problem solving.  

Interestingly, as shown in the models that we have specified and estimated, the microstructural 

mechanisms associated with each individual hypothesis concatenate to generate the dynamic attention 

network that we actually observe. Not only, as predicted and tested by structuralist sociologists (e.g., Blau 

1960, Freeman 1978), social interactions between individuals follow network patterning – being subjected 

to structural properties and regularities – but, as we discover, also the very relations connecting 

organizational participants and the tasks they perform are exposed to structural mechanisms that can be 

interpreted and measured from a network perspective. We have shown that this result is unaffected by 

observable individual characteristics of the participants (e.g., their experience and institutional affiliation), 

intrinsic features of the problems (e.g., their level of difficulty), and by the effect of formal (exogenous) 

organizational structures that regulate the matching between individual skills and problem characteristics 

(i.e., the project modules).  
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Implications for practice 

Our study bears implications for managers and practitioners interested in the design of self-organizing and 

distributed productions. Far from being confined to the world of open-source software projects, self-

organizing is becoming increasingly popular also in the context of traditional corporate organizations, 

where the pressure to give employees and managers freedom in self-selecting into tasks is often associated 

with the aim to stimulate collective creativity and empower idea generation (e.g., Cross et al. 2021; see also 

Table 2 for concrete examples on the generalizability of our hypotheses). However, attempts to give 

personnel more independence often find internal resistance from decision makers, who are afraid of losing 

control over their workforce’s activities. How can organizations and managers find the right balance 

between giving freedom to organizational members to self-allocate time and attention to problems, and 

still managing to keep control over decision making and problem solving? As shown by our results, this 

tension is at least partly misplaced. Attention tends to self-organize following structural patterns, thus 

finding, in serendipitous ways, its own order. More specifically, our mechanism of attention mixing seems 

particularly important as it mitigates the effect of attention reinforcing by distributing the attention of active 

participants over a broader set of problems. Concretely, this mechanism helps the sustainability of 

crowdsourced production systems, which are characterized by the presence of a large number of diverse 

issues that may easily escape attention, while a limited number of popular issues tend to attract a 

disproportionate share of collective attention (Huberman et al. 2009). In these settings, survival depends 

crucially on the willingness of a community of volunteers to allocate attention to “mundane but necessary 

tasks” (Lakhani and von Hippel, 2003: 923). Yet these tasks are essential to the survival of the project, 

although they are neither popular, nor capable of motivating repeated engagement (Shah 2006). Moreover, 

the disassortative patterns of attention mixing distributes collective attention over a larger set of problems, 

tackling well-known problems of under or over-provision of effort for certain tasks – an outcome that 

students of organizations have struggled to find a solution for despite very detailed and extensive research 

(Faraj and Johnson 2011; Puranam 2018, Stewart 2005, von Krogh et al. 2012).  
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Limitations and conclusions  

This study has several limitations, and two deserve special attention as they invite future research to follow clear 

directions. The first limitation relates to the empirical scope of the study, which assumes that acts of attention 

allocation are transparent to other peer participants. This scope condition applies to most arguments based on 

“social transparency” (Stuart et al. 2012) and “ambient awareness” (Leonardi 2015), or free access to information 

on the behavior, opinion, orientation or evaluation that might reveal the preferences of others. The scope of our 

study is thus relevant to a wide range of contexts designed precisely to support information sharing through 

social media functionalities. Examples of self-organizing forms that rely on transparency as a condition for 

information provision (Puranam et al. 2014) include external (Piezunka and Dahlander 2015) and internal 

(Deichmann et al. 2021) crowdsourcing platforms for idea development; enterprise-based systems of 

collaboration, such as internal communities of practice (Haas et al. 2015), platform-based systems of 

decentralized problem solving such as open-source software (Von Krogh and Von Hippel 2006) and distributed 

innovation (Kogut and Metiu 2001). Clearly, the realism of the assumptions underlying our hypotheses decreases 

as the opacity of information about what others do increases. However, the confidence in the generalizability of 

our hypotheses derives not only by the growing diffusion of new forms of organizing, but also by the general 

tendency to make traditional organizations increasingly more open and transparent. These tendencies are 

diffusing from emergent online communities to established corporate entities (e.g., Dahlander and Magnusson 

2005, Fosfuri et al. 2008), including the cases of the Zappos “holacracy” (Robertson 2015), examples of ‘agile’ 

organizational networks (Tasselli and Caimo 2019), or the cases of Valve and Morningstar documented by Lee 

and Edmondson (2017). Our arguments extend to a wide set of contexts in which participants decide to allocate 

attention to “many problems seeking solutions” (Haas et al. 2015, p. 681) and where peer participants can 

observe their actions and decisions. 

A second limitation is inherent in the almost exclusive focus on individual acts of attention allocation, 

which precluded analysis of possible outcomes of such acts. Whenever participants allocate attention on a 

bug report, their act contributes an event edge in our attention network. The dynamics of these events are 
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the focus of our analytical interest in this paper. This observation scheme is not inspired by a focus on the 

real effectiveness of the collective resolution of problems, on how long problems remained unresolved 

within the project, or on how durable (or stable) were the solutions that contributors implemented 

(Fioretti and Lomi 2008). Addressing these issues would require a different research design, one oriented 

toward the consequences of problem-solving behavior rather than on attention as one of its main 

antecedents. The study says little about attentional selection - or the consequences of attention allocation 

decisions (Ocasio 2011). We hope our study will encourage to address issues of organizational 

effectiveness that we could not pursue here. 

Despite its limitations, we believe that our study contributes new elements to the understanding of the 

self-organizing mechanisms underlying attention allocation in organizations. The world of self-organizing 

is a world of variable attention, fluid participation, and evolving problems with little or often no 

centralized control. The rapid diffusion of such new organizational forms force us to broaden our view of 

what “organizations” are, and under what conditions they can exist and operate effectively. Contemporary 

open-source software projects are probably the organizational archetype of self-organizing contexts that 

capture the properties of the ideal formulation of “organized anarchy” prophesized by Cohen, March and 

Olsen more than half a century ago. We have presented an empirical example of how coordination of 

efforts may emerge and self-organized out of ordered time-sequences of individual acts of attention 

allocation connecting organizational participants (software contributors) to organizational problems 

(software bugs). In the case we presented here, the linkages between participants and problems were “less 

consequential than temporal” because “attention to problems seems to be determined as much by the 

time of their arrival as by assessment of their importance” (March and Olsen, 1984:743). But the 

theoretical vision that inspires the current study was articulated decades before innovation in information 

technology made open-source software projects possible, or even only conceivable. In this sense, the 

current study celebrates the success of organization theories – and theorists whose insight, vision and 

imagination time proved prescient. 
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Table 1: summary of attention network mechanisms with examples 

 

Attention network 
mechanism 

 

Description 
 

Inherent behavioral logic Contextual example 
 

Structural outcome 

Attention focusing 
 

Acts of attention 
allocation are dedicated 
to problems that are 
familiar (i.e. addressed in 
the past by the focal 
participant). 
 

Logic of familiarity: people 
manifest a preference for 
problems that already captured 
their own attention due to 
dynamics of habituation. 
 

A software developer tends to 
focus on contributing 
repeatedly to solve a specific 
bug rather than spreading 
attention to different bugs. 
 

Attention is repeatedly 
allocated to the same 
problems. 
 

Attention reinforcing 
 

Acts of attention 
allocation are dedicated 
to problems that are 
popular (i.e. addressed by 
many others). 

Logic of popularity: people 
manifest a preference for 
problems that already captured 
the attention of other people, due 
to an increased perception of 
interest and opportunities. 
 

A software developer tends to 
attend to bugs that exhibit a 
wealth of prior activities by 
other developers rather than to 
less attended bugs. 

Attention becomes 
progressively more 
concentrated on a limited 
number of problems. 

Attention mixing 
 

Acts of attention 
allocation by participants 
who are highly active are 
progressively diverted 
away from popular 
problems.  

Logic of devaluation:  people’s 
preference for popular problems 
fades away as participants become 
more active, due to a decreased 
interest for popular items.  

A software developer, while 
becoming more active in the 
community, increasingly tends 
to dedicate attention to bugs 
left unattended by the rest of 
the community. 

Attention of active 
participants spreads over 
less popular problems 
compensating, in part, for 
the tendency toward 
concentration of attention 
to already popular 
problems.  

Attention clustering 
 

Acts of attention 
allocation are dedicated 
to problems that are 
situated in the neighborhood 
of already attended 
problems. 
 

Logic of proximity: people 
manifest a tendency to allocate 
their attention to proximate 
problems in their neighborhood, 
due to a behavioral tendency for 
local search. 

A software developer tends to 
extend previous collaborations 
with other developers to future 
bugs. 

Attention develops 
around a neighborhood of 
participants who 
collaborate by giving 
attention to the same sets 
of problems.  
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Table 2: Generalizability of attention network mechanisms to other settings 

 

Setting 
 

Attention focusing 
 

Attention reinforcing 
 

Attention mixing Attention clustering 
 

Distributed software 
development (e.g., 
GitHub) 
 
 

Software developers focus 
repeatedly their attention to 
specific projects rather than 
spreading it across many 
different projects. 

Software developers 
contribute attention to 
projects that are well 
attended by other 
developers rather than to 
less popular projects. 
 

While accumulating activity, 
software developers 
increasingly divert their 
attention away from popular 
to less popular projects. 

Software developers extend 
previous collaborations by 
attending to the 
development of proximal 
projects in their attention 
network. 

Crowdsourced innovation 
(e.g., idea generation 
platforms) 
 

Platform participants 
concentrate their attention 
on contributing repeatedly 
to the same ideas 

Platform participants 
allocate attention to ideas 
that received a high volume 
of contributions from other 
participants.   
 

While accumulating activity 
on the platform, participants 
diversify their scope, 
diverting their attention 
away from popular ideas.   

Participants extend their 
collaboration with other 
participants by allocating 
attention to proximal ideas 
in their attention network.   
 

Bossless organizations 
(e.g., holacracy) 

Employees in self-managing 
teams focus their attention 
on engaging repeatedly the 
same type of tasks  

Employees allocate their 
attention to tasks that 
received a high volume of 
attention by peer employees 

While accumulating activity, 
employees divert their 
attention away from popular 
tasks to less popular ones. 
 

Employees extend their 
collaboration across teams 
by engaging in proximal 
tasks in their attention 
networks 
 

Scientific research 
production 
 

Researchers accumulate 
specialized knowledge by 
focusing their attention 
repeatedly on specific topics.  

Researchers are attracted by 
topics that are well attended 
in their scientific 
community.  
 

While accumulating activity, 
researchers broaden their 
expertise by engaging with 
topics that are less popular 
in the scientific community.  
 

Researchers extend 
collaboration with other 
researchers to proximate 
topics in their attention 
network.   
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Table 3: Summary of hypotheses 

Time = t1 Predictions Time = t2 (>t1) 

 

Attention focusing (H1) 
Preferential tendency of a participant 
(i1) to allocate attention to a problem 

(m1) at time t2 that has attracted his 

attention at time t1. 
 

 

Attention reinforcing (H2) 
Preferential tendency of a participant 
(i1) to allocate attention at time t2 to 

problems (m1) that attracted a higher 

level of collective attention at time t1. 

 

 

Attention mixing (H3) 
Preferential tendency of a participant 
(i1) that is very active at time t1 against 

allocating attention to problems that 
are very popular (m1) at time t2. 

 

 

Attention clustering (H4) 
Preferential tendency of a participant 
(i1) to allocate attention to a problem 

(m1) at time t2, if that problem is in 

its neighborhood – i.e., it is reachable 
through a three-path (i1– m2 – i2 – 

m1) indirectly connecting i1 to m1. 
 

Legend: Grey circles are participants (i1, i2). White squares are problems (m1, m2, m3, m4). Arrows represent the relation “allocate attention to.” Dashed 
gray arrows denote potential opportunities of attention allocation. Solid black arrows denote observed attention allocation events. Therefore, potential 
opportunities can only be present at time t1 (i.e., in the left column of the table). 
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Table 4: Variables, units and measures 

 

Effect Variable type Unit of measurement Measure Included in the model to capture 

Institutional 
participant 

Binary Dimensionless Indicator variable = 1 if participant’s 
email address ends in “apache.org,” 
and = 0 otherwise 

Preferential tendency of institutional participants 
to become involved in problem solving activities 

Experienced 
participant 

Binary Dimensionless Indicator variable = 1 if participant 
was active in prior release cycles, and 
= 0 otherwise 

Preferential tendency of experienced participants to 
become involved in problem solving activities 

Problem priority Ordinal Dimensionless Priority level assigned to the problem 
(5 priority levels where 1 = highest 
priority) 

Differential tendency of problems to attract 
attention as a function of their assigned level of 
priority 

Problem severity Binary Dimensionless Indicator variable = 1 if problem is 
classified as severe in the bug report, 
and = 0 otherwise 

Differential tendency of problems to attract 
attention as a function of their assigned level of 
severity 

Problem latency Numerical Units (days) Problem age Differential tendency of problems to attract 
attention as a function of their age 

Problem resolved Binary Dimensionless Indicator variable = 1 if problem is 
resolved, and = 0 otherwise 

Differential tendency of problems declared resolved 
to attract further attention 

Problem recognition Numerical Units (messages) Number of comments generated by a 
problem 

Differential tendency of problems to attract 
attention as a function of the comments they have 
generated 

Time inactive Numerical Units (days) Number of days elapsed since last 
contribution 

Time of inactivity of participants 

Cumulative attention Numerical Units (Events) Overall number of events connecting 
participants to problems observed 
within the observation period 

Overall volume of problem solving activity within 
the project 

Module indicators Binary Dimensionless Indicator variable = 1 for problems 
belonging to one of the five main 
modules of the project 

Tendency of formal organizational structure to 
channel attention of participants toward specific 
classes of problems 
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Table 5: Cox Regression Model: Partial likelihood estimates of bipartite relational event models (standardized estimates) 

 

 Null (M0) Control (M1) REM (M2) Org Structure (M3) 

Cumulative attention 2.5376 (0.0233) ***  0.8813 (0.0144) ***  0.7808 (0.0143) ***  0.7848 (0.0143) *** 

Experienced participant   0.9060 (0.0476) ***  0.9767 (0.0557) ***  1.0444 (0.0568) *** 

Institutional participant   1.0971 (0.0361) ***  0.9537 (0.0392) ***  0.9736 (0.0395) *** 

Problem priority  -0.0334 (0.0256) -0.0175 (0.0275) -0.0341 (0.0279) 

Problem severity   0.1409 (0.0323) ***  0.1519 (0.0347) ***  0.1531 (0.0356) *** 

Problem latency  -0.0019 (0.0000) *** -0.0017 (0.0001) *** -0.0017 (0.0001) *** 

Problem resolved  -1.4596 (0.0356) *** -1.7946 (0.0418) *** -1.7897 (0.0420) *** 

Problem recognition   0.5253 (0.0108) ***  0.3430 (0.0143) ***  0.3440 (0.0145) *** 

Time inactive  -0.0163 (0.0003) *** -0.0135 (0.0003) *** -0.0135 (0.0003) *** 

Attention focusing (H1)    0.2150 (0.0066) ***  0.2029 (0.0065) *** 

Attention reinforcing (H2)    0.1354 (0.0116) ***  0.1320 (0.0117) *** 

Attention mixing (H3)   -0.0320 (0.0028) *** -0.0308 (0.0027) *** 

Attention clustering (H4)    0.0349 (0.0039) ***  0.0452 (0.0070) *** 

Module 1    -0.1276 (0.0634) * 

Module 2    -0.2006 (0.0660) ** 

Module 3     0.1717 (0.0732) * 

Module 4    -0.5103 (0.0557) *** 

Preferential modularity     0.4094 (0.0243) *** 

Attention clustering w/in modules    -0.0128 (0.0069) 

Log-Likelihood -33,021.85 -12,844.57 -11,434.08 -11,266.95 

AIC    66,045.7081 25,707.1446 22,898.1567 22,575.9039 

LR test  - 40,355 43,176 43,510 

Num. events 11,599 11,599 11,599 11,599 

Num. obs. 1,170,871 1,170,871 1,170,871 1,170,871 

*** p < 0.001, **p < 0.01, *p < 0.05; 3-path effects estimates not reported in table. 
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Table 6: Qualitative implications of estimates for parameters of theoretical interest. 

 

 
Hypotheses 
 

 
Hazard ratio (M2, Table 5) 

 
Heuristic interpretation 

(H1) Attention focusing exp(0.2150) = 1.240 

 
An increase by one standard deviation in the level of attention that a participant 
has allocated to one specific problem in the past increases the odds that he will 
decide to pay attention to the same problem again by approximately 24% (please 
refer to text for further discussion). 
 

(H2) Attention reinforcing exp(0.1354) = 1.145 

 
An increase by one standard deviation in the level of attention that a problem 
has received within the community in the past increases the odds that the same 
problem will attract further attention by approximately 15% (please refer to text 
for further discussion). 
 

(H3) Attention mixing exp(-0.0320) = 0.969 

 
A participant that is by approximately 7 events (one standard deviation) more 
active than the average participant, experiences a reduction in the strength of 
attention reinforcing effect only by approximately 3% (please refer to text for 
further discussion). 
 

(H4) Attention clustering exp(0.0349) = 1.036 

 
An increase by approximately 10 (one standard deviation) in the number of 
three-paths indirectly connecting a participant to a problem will increase by 
slightly less than 4% the odds that this participant will allocate attention directly 
to this problem in the future (please refer to text for further discussion). 
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Figure 1: Johnson-Neyman plot (with 95% CI) of H3: Attention Mixing interaction term. The plot shows how the marginal effect (i.e., the slope) of Attention 

reinforcing decreases as the Cumulative attention of participants increases. The marginal effect is calculated on the hazard ratio, therefore values above 1 on the 

y axis denote a positive effect of Attention reinforcing (on the probability of an attention allocation event) and values below 1 a negative effect
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Appendix A: Notation and definitions 

Appendix A establishes the basic notation needed for describing with accuracy the effects of theoretical interests 

and the control factors included in the empirical model specification and discussed in the paper. 

Organizational attention networks 

Consider an organization as a set of problems 𝑀 = {𝑚1, 𝑚2, … , 𝑚𝑘}, and a set of participants 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑙}. 

The models estimated in the paper interpret an individual act of attention allocation as a relational event 𝑒 =

(𝑡𝑒 , 𝑖𝑒 , 𝑚𝑒) connecting participant 𝑖𝑒 to problem 𝑚𝑒 at time 𝑡𝑒 . An attention network is the set of all relational 

events 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛} connecting individuals to problems at the given event times. Membership in the sets 

𝑀 and 𝐼 is updated at every event time 𝑡𝑒  – which in the data we collected is precise to the second. 

An attention network is empty (denoted 𝐸0) if no organizational participant ever pays attention to any 

organizational problem. The attention network is complete (denoted as 𝐸𝑚,𝑙) if every participant pays attention 

to every organizational problem at every given time. As Cohen et al. (1972) note, the allocation of attention in 

organizations typically generates relational patterns that fall within these two extreme cases: some organizational 

participants attend to some organizational problem some of the times. 

Baseline attention allocation mechanisms 

As explained in the main text, Cumulative attention provides the basic attention allocation mechanism that we use 

as a baseline. Cumulative attention of participant 𝑖 ∈ 𝐼 is defined as: 

 Cumulative attention(𝑡, 𝑖) = ∑ ∑ 𝑤

𝑁𝑖𝑚(𝑡−)

𝑒=1𝑚∈𝑀

(𝑡, 𝑇𝑖𝑚
𝑒 ) , (A.1) 

where 𝑇𝑖𝑚
𝑒  is the timestamp associated with event 𝑒 connecting participant 𝑖 to problem 𝑚. The count 𝑁𝑖𝑚(𝑡−) 

is the number of past events from participant 𝑖 to problem 𝑚 that have happened strictly before 𝑡. The function 

𝑤(𝑡, 𝑇𝑖𝑚
𝑒 ) assigns a temporal weight to events so that every event observed has an immediate effect when is 

recorded and then a delayed effect on subsequent events that decays over time. The precise definition of the 

temporal weight for the event 𝑒 is given by: 

 𝑤(𝑡, 𝑡𝑒) = exp (−(𝑡 − 𝑡𝑒) ⋅
ln(2)

𝑇1/2
) (A.2) 

for a given half life 𝑇1/2 > 0, where 𝑡𝑒  is the time of the event included in the computation of the network 

statistics, and 𝑡 is the current time, i. e., the time in which the partial likelihood function is evaluated (see 

Appendix B). Following Brandes et al. (2009); Lerner et al. (2013), Equation (A.2) assigns a weight that 

progressively decreases toward zero to events that happened in the more distant past. In this way, current 

attention allocation events have a continuously decreasing effect on future events. In our models, we set the half-

life equal to 10 days. 
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Hypotheses 

Attention focusing is the cumulative number of attention allocation events connecting participant 𝑖 to problem 𝑗 

before time 𝑡 – downweighted by the elapsed time – and is defined as: 

 Attention focusing(𝑡, 𝑖, 𝑗) = ∑ 𝑤

𝑁𝑖𝑗(𝑡−)

𝑒=1

(𝑡, 𝑇𝑖𝑗
𝑒 ) , (A.3) 

where 𝑡− indicates the complete history of the event network up to 𝑡, and the time-weighting function 𝑤(𝑡, 𝑇𝑖𝑗
𝑒 ) 

is defined in Equation (A.2). 

Attention reinforcing is defined simply as the current number of attention allocation events performed on a problem 

– downweighed by the elapsed time: 

 Attention reinforcing(𝑡, 𝑗) = ∑ ∑ 𝑤

𝑁𝑔𝑗(𝑡−)

𝑒=1𝑔∈𝐼

(𝑡, 𝑇𝑔𝑗
𝑒 ) , (A.4) 

where 𝑇𝑔𝑗
𝑒  is the timestamp of attention allocation event 𝑒 from participant 𝑔 to problem 𝑗, and the function 

𝑤(𝑡, 𝑇𝑔𝑗
𝑒 ) defined in Equation (A.2) assigns a temporal weight for the event 𝑒. 

To examine mixing patterns (or assortativity), Attention mixing is simply the interaction of cumulative attention 

and attention reinforcing: 

 Attention mixing(𝑡, 𝑖, 𝑗) = ∑ ∑ 𝑤

𝑁𝑖𝑚(𝑡−)

𝑒=1𝑚∈𝑀

(𝑡, 𝑇𝑖𝑚
𝑒 ) ⋅ ∑ ∑ 𝑤

𝑁𝑔𝑗(𝑡−)

𝑒=1𝑔∈𝐼

(𝑡, 𝑇𝑔𝑗
𝑒 ) . (A.5) 

In a bipartite data structure, such as the one we analyze, closure cannot involve an odd number of links. 

Therefore, Attention clustering takes the form of a bipartite four-cycle and can be formally defined as follows: 

 

Attention. clustering(𝑡, 𝑖, 𝑗)

= ∑ 𝐼

𝑚≠𝑗

[𝑁𝑖𝑚(𝑡−) > 0] ⋅ ∑ 𝐼

𝑔≠𝑖

[𝑁𝑔𝑗(𝑡−) > 0] ⋅ 𝐼[𝑁𝑔𝑚(𝑡−) > 0] , (A.6) 

where 𝐼[𝑥] is an indicator function that equals to 1 if statement 𝑥 is true, otherwise 𝐼[𝑥] = 0. In Equation (A.6), 

𝑔 and 𝑚 index participants and problems, respectively. Attention clustering gives the number of three-paths 

indirectly connecting the participant 𝑖 of the focal dyad with its problem 𝑗 via another participant 𝑔 different 

from 𝑖 and another problem 𝑚 different from 𝑗; these three-paths are closed to four-cycles by an event on (𝑖, 𝑗). 

This statistic is contingent on the number of 3-paths attached to the participant 𝑖 and the number of 3-paths 

attached to the problem 𝑗, defined in the following Equation (A.7) and Equation (A.8), respectively. 

The number of three paths attached to the participant 𝑖 of a given dyad (𝑖, 𝑗) is defined as follows: 
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3path.participant(t, i, j)

= ∑ ∑ I

m≠j′j′

[Nim(t−) > 0] ⋅ ∑ I

g≠i

[Ngj′(t−) > 0] ⋅ I[Ngm(t−) > 0] . 
(A.7) 

In contrast to the four-cycle statistic, 3paths.participant does not require that the three-paths starting at participant 

𝑖 end at the problem 𝑗 of the focal dyad but instead allows that these three-paths can end at any problem 𝑗′ that 

may, but does not have to, be different from 𝑗. The statistic 3paths.participant is one of the two antecedents of the 

four-cycle statistic since it gives the three-paths that may be closed to a four-cycle in the next event initiated by 𝑖. 

The other antecedent of the four-cycle statistic is the number of three-paths attached to the problem 𝑗 of the 

given dyad (𝑖, 𝑗) defined by: 

 

3paths.problem(𝑡, 𝑖, 𝑗)

= ∑ ∑ 𝐼

𝑚≠𝑗𝑖′

[𝑁𝑖′𝑚(𝑡−) > 0] ⋅ ∑ 𝐼

𝑔≠𝑖′

[𝑁𝑔𝑗(𝑡−) > 0] ⋅ 𝐼[𝑁𝑔𝑚(𝑡−) > 0] . (A.8) 

Similar to 3paths.participant, the statistic 3paths.problem does not require that the three-paths ending at problem 𝑗 

start at the participant 𝑖 of the focal dyad but instead allows that these three-paths can start at any participant 𝑖′ 

that may, but does not have to, be different from 𝑖. The statistic 3paths.problem is the second of the two 

antecedents of the four-cycle statistic since it gives the three-paths that may be closed to a four-cycle in the next 

event received by 𝑗. 

Control factors 

Problem latency records the age of each problem and is defined as: 

 Problem latency(t, j) = t − Tj
opened

 , (A.9) 

where 𝑇𝑗
opened

 is the time when problem 𝑗 is fist reported – or reopened if it had already been declared resolved 

in the past. 

Problem recognition is defined as: 

 Problem recognition(𝑡, 𝑗) = ∑ ∑ 𝑤

𝐶𝑖𝑗(𝑡−)

𝑒=1

𝑙

𝑖=1

(𝑡, 𝑇𝑖𝑗
𝑒 ) , (A.10) 

where 𝐶𝑖𝑗(𝑡−) is the set of comment events from participant 𝑖 to problem 𝑗 before time 𝑡, 𝑇𝑖𝑗
𝑒  is the time stamp 

of comment event 𝑒, and the time-weighting function 𝑤(𝑡, 𝑇𝑖𝑗
𝑒 ) is defined in Equation (A.2). 

Preferential modularity is defined as: 
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 Preferential modularity(𝑡, 𝑖, 𝑗) =
∑ 𝐼𝑚 [𝑧(𝑚) = 𝑧(𝑗)] ⋅ 𝐼[𝑁𝑖𝑚(𝑡−) > 0]

∑ 𝐼𝑚 [𝑁𝑖𝑚(𝑡−) > 0]
 , (A.11) 

where 𝑧(𝑗) is the module index of problem 𝑗. The statistic is the proportion of problems in the same module as 

problem 𝑗 out of all problems addressed by participant 𝑖. 

Attention clustering within modules for participant 𝑖 to problem 𝑗 at time 𝑡 is defined as follows: 

 

Attention clustering w.m.(𝑡, 𝑖, 𝑗)

= ∑ 𝐼

𝑚≠𝑗

[𝑧(𝑚) = 𝑧(𝑗)] ⋅ 𝐼[𝑁𝑖𝑚(𝑡−) > 0] ⋅ ∑ 𝐼

𝑔≠𝑖

[𝑁𝑔𝑗(𝑡−) > 0]

⋅ 𝐼[𝑁𝑔𝑚(𝑡−) > 0] , 

(A.12) 

where the first indicator equals 1 if problems 𝑗 and 𝑚 are in the same module, otherwise 𝐼[𝑧(𝑚) = 𝑧(𝑗)] is zero. 

The effect described in Equation (A.12) is used to examine the preferential tendency of attention to cluster 

within software modules, i. e., to examine the extent to which formal organizational structure affects the joint 

allocation of attention to the same problems. 

Finally, Time inactive records for each participant 𝑖 the time difference between the current time and the last time 𝑖 

was active in addressing any problem. It is defined as 

 Time inactive(𝑡, 𝑖) = 𝑡 − 𝑇𝑖
last active(𝑡) , (A.13) 

where 𝑇𝑖
last active(𝑡) is the maximum time stamp, strictly before the current time 𝑡, when participant 𝑖 addressed 

any problem. time inactive(𝑡, 𝑖) is undefined for participants 𝑖 that have never been active before 𝑡. Indeed, we 

define that participants enter the risk set right after their first event (first events of participant are not modeled). 

Once they have entered the risk set, participants never leave it again – but the time inactive provides an 

important control mechanism that let the probability that participants initiate any further event tend to zero as 

their time inactive increases. Participants with long time inactive will hardly influence the estimation of other 

model effects; they are “almost out of the risk set”. This is a more principled way to deal with participants who 

apparently have decided not to contribute again than defining an arbitrary crisp cut-off after which participants 

are removed from the risk set. Strictly speaking, even after a prolonged time of inactivity, participants could still 

decide to become active again – even though it is increasingly unlikely. 
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Appendix B: Model estimation, interpretation, and evaluation 

Point process models for bipartite networks 

The model we implement in the empirical part of the paper is based on a bipartite extension of the point process 

models for directed social interaction networks proposed by Perry and Wolfe (2013). Introduced by Butts (2008) 

as a strategy for the analysis of social networks, this class of models is also known as relational event models. The 

advantage of this approach over more conventional models for networks is its ability to analyze sequences 

relational events directly, rather than as aggregate network “ties”. Our data require that the model be adapted to 

two-mode networks – networks containing two classes of nodes, with relations defined only between nodes in 

different classes (Everett and Borgatti 2013). The counting process framework developed in the analysis of 

repeated events within event history analysis provides the statistical foundation for the models that we develop 

(Aalen et al. 2008). 

Modeling the evolutionary dynamics of attention network connecting participants to problems starts by defining 

a counting process 𝑁𝑖𝑗(𝑡) on the dyad linking participant 𝑖 and problem 𝑗. The counting process 𝑁𝑖𝑗(𝑡) 

increases (or “jumps”) by one unit whenever participant 𝑖 allocates attention to problem 𝑗 at time 𝑡. When we 

have 𝑙 participants and 𝑘 problems, the total number of counting processes is 𝑙 × 𝑘. Following Perry and Wolfe 

(2013), each process is modeled by a conditional intensity function 𝜆𝑖𝑗(𝑡) taking form of the Cox proportional 

intensity model (Cox 1972; Cook and Lawless 2007): 

 𝜆𝑖𝑗(𝑡 ∣ 𝐻𝑡−) = 𝑅𝑖𝑗(𝑡)𝜆0(𝑡)exp[𝜃𝑇𝑠(𝑡, 𝑖, 𝑗)] , (B.1) 

where 𝐻𝑡− is the complete network history right before time 𝑡, 𝑠(𝑡, 𝑖, 𝑗) is the vector of time-varying statistics, 

and 𝜃 is a vector of coefficients to be estimated from data. 𝑅𝑖𝑗(𝑡) is the “at-risk” indicator which equals 1 if 

participant 𝑖 can perform actions on problem 𝑗 at time 𝑡. This happens when the participant is active (that is, 

right after her first event) and the bug report is opened so they are both in the risk set at time 𝑡. Otherwise, 

𝑅𝑖𝑗(𝑡) = 0. The “at risk” indicator function plays a central role in our models because it records the continuous 

change in the flow of problems and participants, thus controlling what actions are possible at any given moment 

– i. e., the “opportunity set.” When all elements of 𝑠(𝑡, 𝑖, 𝑗) are set to zero, the intensity equals the baseline rate 

𝜆0(𝑡). To account for potential baseline rate changes during the observation time, we assume a non-parametric 

form of 𝜆0(𝑡), a flexible and widely used approach in survival and event history analysis (Andersen and Keiding 

2002; Perry and Wolfe 2013; Vu et al. 2011). 

Model estimation 

Thanks to the non-parametric choice of the baseline rate 𝜆0(𝑡), the effects associated with the network statistics 

discussed in the paper can be estimated by maximizing the partial likelihood (Andersen et al. 2012). 

 PL(𝜃) = ∏
exp[𝜃𝑇𝑠(𝑡𝑒, 𝑖𝑒, 𝑗𝑒)]

∑ exp(𝑖,𝑗)∈𝑅(𝑡𝑒) [𝜃𝑇𝑠(𝑡𝑒 , 𝑖, 𝑗)]
𝑒∈𝐸

 , (B.2) 

where 𝐸 is the set of attention allocation events; 𝑅(𝑡𝑒), contains every dyad (𝑖, 𝑗) for which the indicator 𝑅𝑖𝑗(𝑡𝑒) 

is equal to 1. Perry and Wolfe (2013, Appendix B) provide a proof of the consistency of inference based on 

maximum partial likelihood for this model. 
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Defining a counting process for events on each participant-problem pair makes computation unfeasible since the 

number of events may also be very large. To alleviate this computational constraint, we employ the nested case-

control sampling approach (Borgan et al. 1995). Under this sampling method, for each event included in the 

sample, we randomly select a subset of non-events (case controls) from the current risk set 𝑅(𝑡) to compute the 

denominator sum in the partial likelihood (B.2). This results in the sampled partial likelihood of the form 

(Borgan et al. 1995): 

 PL̃(𝜃) = ∏
exp[𝜃𝑇𝑠(𝑡𝑒, 𝑖𝑒, 𝑗𝑒)]

∑ exp(𝑖,𝑗)∈�̃�(𝑡𝑒) [𝜃𝑇𝑠(𝑡𝑒 , 𝑖, 𝑗)]
𝑒∈𝐸

 , (B.3) 

where �̃�(𝑡𝑒) includes the case and only the sampled controls at the event time 𝑡𝑒 . For our current analysis, we 

sample up to 100 controls for each observed event (Lerner and Lomi 2020). This results in a final data set of 

11,599 cases and 1,170,868 nested controls for the estimation. Most commercial or open-source statistical 

software can be used for parameter estimation based on this sampled partial likelihood. The results that we 

report are based on the survival package (Therneau and Grambsch 2013) in the R software for statistical 

computing. 

Parameter interpretation 

We interpret estimated network effects in terms of hazard ratios, a common concept in survival analysis (Aalen 

et al. 2008). The hazard ratio 𝛹𝑝 of a network statistic 𝑠𝑝 is defined as the ratio of the intensity function for 

dyads with the statistic value 𝑠𝑝(𝑡, 𝑖, 𝑗) = 𝑣 + 1 to the intensity function of those with one unit smaller in that 

network statistic, i. e. 𝑠𝑝(𝑡, 𝑖, 𝑗) = 𝑣, while holding all other statistics constant. It can also be thought of as the 

odds that attention allocation events will occur on dyads with 𝑠𝑝(𝑡, 𝑖, 𝑗) = 𝑣 + 1 over those with 𝑠𝑝(𝑡, 𝑖, 𝑗) = 𝑣, 

all other statistics being equal. The hazard ratio can be estimated by the formula 𝛱𝑝 = exp(𝛽𝑝), where 𝛽𝑝 is the 

maximum likelihood estimate of the parameter corresponding to the network statistic 𝑠𝑝(𝑡, 𝑖, 𝑗). 
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Appendix C: Robustness Checks 

 

Attention Intensity Levels. In constructing our dataset, we record an attention allocation event whenever a 

developer chooses to allocate attention on – and thus visibly “touch” – a bug report without distinguishing 

between the varying levels of effort required. All actions leave visible cues potentially catching the attention of 

other participants; thus, our modelling approach reflects the fact that the intensity of the effort behind each 

specific act of attention allocation does not directly affect the theoretical arguments that underlie our 

hypothesized mechanisms. However, could it be that attention allocation patterns do vary significantly depending 

on the level of effort put into the acts visible to participants? To answer this question, we estimated new models 

including interaction effects between the four variables capturing the attention mechanisms we hypothesized and 

a new variable called High attention effort. In our empirical setting, the intensity of attention acts can be inferred by 

considering the nature of the bug report modification that each act represents. We consider acts that involve the 

direct production or review of software code – intended as a patch for the focal bug – as a proxy for “high 

attention effort”. Conversely, “low attention effort” acts are those addressed at more mundane tasks contributing 

to the description, general classification, and maintenance of software bugs (Lakhani & von Hippel, 2003). The 

results of these additional tests show that all four main effects are still significant and consistent with our 

hypotheses (see Table C.1). Attention focusing and Attention mixing show significant interactions going in the same 

direction of their respective main effect, thus representing a reinforced effect for high attention effort events. 

Our additional findings suggest that the dynamics that underlie the self-organizing properties of the attention 

structures that we investigate are substantively similar for high and low attention efforts. 

Crowding. In our modelling approach the idea that attention is limited is just assumed – in line with our 

theoretical framework– and thus not directly tested. However, within that assumption, to which problem a 

participant allocates attention could depend on the amount of choice opportunities available, a concept referred 

to as “crowding” in related literature (e.g., Piezunka and Dahlander, 2015). According to this view, attention 

could become more limited as there are more choice opportunities available, and individuals could become more 

selective in allocating their limited attention to competing issues. Do crowding levels have a significant effect of 

the mechanisms of attention allocation we hypothesize? To answer this question, we coded a new variable 

Crowding – similarly to what done by Piezunka and Dahlander (2015) – by counting, for each attention allocation 

event recorded, all problems “at risk” of attracting attention acts. We also applied an exponential decay function 

to the count, with 60 days half-life, thus giving more emphasis to newer problems (we tested alternative 

specifications of 30 and 90 days with similar results). We then interacted Crowding with the four variables 

capturing the attention mechanisms we hypothesize. The results in Table C.2 show that all four main effects are 

still significant and consistent with our hypotheses. While all new interaction effects are statistically significant, 

our main effects maintain the same direction and significance once the moderator is included in the model, with 

crowding only affecting the relative magnitude of the effects. These results suggest that the mechanisms 

underlying our hypotheses are robust to this “ecological” conceptualization of limited attention.  

Returning Problems. In our modelling approach, problems that are considered solved remain in the risk set as 

they could be re-opened at a later stage and still attract the attention of participants. It is however reasonable to 

expect a reduced attractiveness of problems marked as resolved and our control variable Problem resolved 

confirms this intuition consistently in our models. However, distinct attention mechanisms pertaining to 

problems resolved and re-opened could exist and potentially confound our results. To address the point, we re-
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estimated our models excluding problems from the risk set after they were marked as resolved once. The number 

of bugs excluded from the analysis is not high (approximately 200) and the estimates are stable and fully 

consistent with our previous results (see Table C.3). 

Extreme Outliers. In our empirical setting the number of recorded attention allocation acts vary significantly 

across participants and is not normally distributed. Indeed, we expect the mechanisms underlying our hypotheses 

to produce an uneven concentration in attention allocation and our modelling approach is suited to handle this 

skew. Nonetheless, could it be that the results we find are only driven by the actions of the most active 

participants? To answer this question, we re-estimated our models excluding the more severe outliers amongst 

the participants. We computed the 90% quantile of cumulative attention over all events and removed all 

observations above that threshold from the dataset. The results in Table C.4 show that the new estimates are 

stable and consistent with our previous results. 
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Table C.1: Cox Regression Model: High vs. low attention effort 

 Model 1 Model 2 

Cumulative attention  0.9125 (0.0147) ***  0.8098 (0.0142) *** 

Experienced participant  1.4348 (0.0554) ***  1.2900 (0.0556) *** 

Institutional participant  1.1685 (0.0373) ***  1.1428 (0.0377) *** 

Problem priority -0.0250 (0.0270) -0.0223 (0.0275) 

Problem severity  0.1710 (0.0347) ***  0.1498 (0.0350) *** 

Problem latency -0.0020 (0.0000) *** -0.0018 (0.0000) *** 

Problem resolved -1.9565 (0.0412) *** -1.8208 (0.0411) *** 

Problem recognition  0.3474 (0.0153) ***  0.3340 (0.0151) *** 

Time inactive -0.0170 (0.0003) *** -0.0155 (0.0003) *** 

Attention focusing (H1)  0.2357 (0.0067) ***  0.2096 (0.0066) *** 

Attention reinforcing (H2)  0.1608 (0.0119) ***  0.1448 (0.0120) *** 

Attention mixing (H3) -0.0342 (0.0028) *** -0.0322 (0.0027) *** 

Attention clustering (H4)  0.0449 (0.0070) ***  0.0444 (0.0070) *** 

Module 1 -0.1431 (0.0609) * -0.1132 (0.0616) 

Module 2 -0.1652 (0.0640) ** -0.1386 (0.0645) * 

Module 3  0.1328 (0.0709)  0.1175 (0.0719) 

Module 4 -0.5976 (0.0542) *** -0.5334 (0.0547) *** 

Preferential modularity  0.4003 (0.0232) ***  0.3830 (0.0234) *** 

Attention clustering w/in modules -0.0055 (0.0069) -0.0045 (0.0069) 

High attention effort  -3.0232 (0.0849) *** 

Attention focusing * High attention effort   0.1266 (0.0208) *** 

Cumulative attention * High attention effort  -0.4138 (0.0990) *** 

Attention reinforcing * High attention effort  -0.0442 (0.0402) 

Attention clustering * High attention effort  -0.0287 (0.0289) 

Attention mixing * High attention effort  -0.2865 (0.0931) ** 

AIC 29,255.1392 24,287.3073 

Num. events    11,599 11,599 

Num. obs. 2,330,137 2,330,137 

*** p < 0.001, **p < 0.01, *p < 0.05 
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Table C.2: Cox Regression Model: Interacting attention crowding with effects of interest 

 Model 1 Model 2 

Cumulative attention  0.7706 (0.0139) ***  1.0765 (0.0240) *** 

Experienced participant  1.2818 (0.0560) ***  1.2079 (0.0589) *** 

Institutional participant  1.1832 (0.0377) ***  1.2699 (0.0389) *** 

Problem priority -0.0526 (0.0276) -0.0446 (0.0287) 

Problem severity  0.1494 (0.0349) ***  0.1579 (0.0357) *** 

Problem latency -0.0017 (0.0000) *** -0.0018 (0.0001) *** 

Problem resolved -1.7850 (0.0407) *** -1.7857 (0.0424) *** 

Problem recognition  0.3223 (0.0154) ***  0.2941 (0.0154) *** 

Time inactive -0.0150 (0.0003) *** -0.0139 (0.0003) *** 

Attention focusing (H1)  0.2112 (0.0066) ***  0.2513 (0.0077) *** 

Attention reinforcing (H2)  0.1298 (0.0117) ***  0.1815 (0.0126) *** 

Attention mixing (H3) -0.0285 (0.0027) *** -0.1173 (0.0067) *** 

Attention clustering (H4)  0.0509 (0.0067) ***  0.0416 (0.0081) *** 

Module 1 -0.1247 (0.0614) * -0.1120 (0.0631) 

Module 2 -0.1498 (0.0641) * -0.1098 (0.0653) 

Module 3  0.1419 (0.0713) *  0.1515 (0.0730) * 

Module 4 -0.5139 (0.0543) *** -0.4888 (0.0554) *** 

Preferential modularity  0.3780 (0.0234) ***  0.3843 (0.0239) *** 

Attention clustering w/in modules -0.0052 (0.0067) -0.0040 (0.0070)  

Attention focusing * Crowding   0.0636 (0.0063) *** 

Cumulative attention * Crowding  -0.4220 (0.0244) *** 

Attention reinforcing * Crowding  -0.0531 (0.0121) *** 

Attention clustering * Crowding   0.0273 (0.0077) *** 

Attention mixing * Crowding   0.0857 (0.0062) *** 

AIC 23,256.4512 22,405.9749 

Num. events    11,599 11,599 

Num. obs. 1,170,870 1,170,870 

*** p < 0.001, **p < 0.01, *p < 0.05 
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Table C.3: Cox Regression Model: Exclusion of problems attracting attention of developers after resolution 

 Model 1 Model 2 (excluding resolved problems) 

Cumulative attention  0.8171 (0.0144) ***  0.7604 (0.0137) *** 

Experienced participant  1.2219 (0.0558) ***  1.2506 (0.0559) *** 

Institutional participant  1.1508 (0.0379) ***  1.1406 (0.0380) *** 

Problem priority -0.0447 (0.0274) -0.0133 (0.0284) 

Problem severity  0.1379 (0.0351) ***  0.1734 (0.0351) *** 

Problem latency -0.0018 (0.0000) *** -0.0018 (0.0001) *** 

Problem resolved -1.8088 (0.0412) *** -1.8164 (0.0416) *** 

Problem recognition  0.3507 (0.0153) ***  0.3192 (0.0156) *** 

Time inactive -0.0148 (0.0003) *** -0.0153 (0.0003) *** 

Attention focusing (H1)  0.2054 (0.0065) ***  0.2090 (0.0067) *** 

Attention reinforcing (H2)  0.1255 (0.0117) ***  0.1424 (0.0123) *** 

Attention mixing (H3) -0.0310 (0.0027) *** -0.0284 (0.0029) *** 

Attention clustering (H4)  0.0465 (0.0069) ***  0.0527 (0.0067) *** 

Module 1 -0.1408 (0.0622) * -0.0717 (0.0624) 

Module 2 -0.1968 (0.0650) ** -0.1304 (0.0646) * 

Module 3  0.1266 (0.0719)  0.1274 (0.0723) 

Module 4 -0.5065 (0.0550) *** -0.4660 (0.0548) *** 

Preferential modularity  0.3562 (0.0237) ***  0.3556 (0.0236) *** 

Attention clustering w/in modules -0.0040 (0.0069) -0.0059 (0.0066)  

AIC 23,022.6114 22,901.9335 

Num. events    11,599 11,369 

Num. obs. 1,170,871 1,147,640 

*** p < 0.001, **p < 0.01, *p < 0.05 
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Table C.4: Cox Regression Model: Observations above the 90% quantile of Cumulative attention removed 

 

Model 1 

Model 2 (excluding 

observation > 90% quantile of 

Cumulative attention) 

Cumulative attention  0.8171 (0.0144) ***  1.2232 (0.0204) *** 

Experienced participant  1.2219 (0.0558) ***  1.0198 (0.0584) *** 

Institutional participant  1.1508 (0.0379) ***  1.1627 (0.0407) *** 

Problem priority -0.0447 (0.0274) -0.0536 (0.0291) 

Problem severity  0.1379 (0.0351) ***  0.1519 (0.0378) *** 

Problem latency -0.0018 (0.0000) *** -0.0018 (0.0001) *** 

Problem resolved -1.8088 (0.0412) *** -2.0719 (0.0465) *** 

Problem recognition  0.3507 (0.0153) ***  0.3597 (0.0163) *** 

Time inactive -0.0148 (0.0003) *** -0.0129 (0.0003) *** 

Attention focusing (H1)  0.2054 (0.0065) ***  0.2272 (0.0071) *** 

Attention reinforcing (H2)  0.1255 (0.0117) ***  0.1746 (0.0121) *** 

Attention mixing (H3) -0.0310 (0.0027) *** -0.1164 (0.0062) *** 

Attention clustering (H4)  0.0465 (0.0069) ***  0.0442 (0.0082) *** 

Module 1 -0.1408 (0.0622) * -0.1033 (0.0670) 

Module 2 -0.1968 (0.0650) ** -0.1749 (0.0699) * 

Module 3  0.1266 (0.0719)  0.1733 (0.0771) * 

Module 4 -0.5065 (0.0550) *** -0.4707 (0.0595) *** 

Preferential modularity  0.3562 (0.0237) ***  0.3598 (0.0253) *** 

Attention clustering w/in modules -0.0040 (0.0069) -0.0087 (0.0082) 

AIC 23,022.6114 20,078.9980 

Num. events    11,599 10,439 

Num. obs. 1,170,871 1,169,235 

*** p < 0.001, **p < 0.01, *p < 0.05 
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