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a b s t r a c t 

The first 1000 days from conception to two-years of age are a critical period in brain development, and there 
is an increasing drive for developing technologies to help advance our understanding of neurodevelopmental 
processes during this time. Functional near-infrared spectroscopy (fNIRS) has enabled longitudinal infant brain 
function to be studied in a multitude of settings. Conventional fNIRS analyses tend to occur in the channel- 
space, where data from equivalent channels across individuals are combined, which implicitly assumes that head 
size and source-detector positions (i.e. array position) on the scalp are constant across individuals. The validity of 
such assumptions in longitudinal infant fNIRS analyses, where head growth is most rapid, has not previously been 
investigated. We employed an image reconstruction approach to analyse fNIRS data collected from a longitudinal 
cohort of infants in The Gambia aged 5- to 12-months. This enabled us to investigate the effect of variability in 
both head size and array position on the anatomical and statistical inferences drawn from the data at both the 
group- and the individual-level. We also sought to investigate the impact of group size on inferences drawn from 

the data. We found that variability in array position was the driving factor between differing inferences drawn 
from the data at both the individual- and group-level, but its effect was weakened as group size increased towards 
the full cohort size ( N = 53 at 5-months, N = 40 at 8-months and N = 45 at 12-months). We conclude that, at 
the group sizes in our dataset, group-level channel-space analysis of longitudinal infant fNIRS data is robust to 
assumptions about head size and array position given the variability in these parameters in our dataset. These 
findings support a more widespread use of image reconstruction techniques in longitudinal infant fNIRS studies. 
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. Introduction 

The period of the first thousand days of life – from conception to
 years of age – is a critical stage in the development of the brain and ner-
ous system ( Bornstein, 2014 ; Cusick and Georgieff, 2012 ; Mendez and
dair, 1999 ; Powell et al., 1995 ). The past twenty years have seen the
doption and optimisation of neuroimaging methods to further our un-
erstanding of development during this integral period of human life.
owever, while longitudinal studies of brain function play an important

ole in understanding development, less than a third of developmental
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euroimaging studies published between 2008 and 2019 employed this
esign ( Azhari et al., 2020 ). 

While there has been an overall decreasing trend in published neu-
oimaging infant studies over the past decade ( Azhari et al., 2020 ), re-
ently and conversely there has been an increase in the number of stud-
es employing functional near-infrared spectroscopy. This technique, ab-
reviated to fNIRS, is a non-invasive optical neuroimaging technique
easuring changes in cortical haemoglobin concentration as a marker of

unctional activation ( Lloyd-Fox et al., 2010 ; Pinti et al., 2020 ). Further-
ore, there has been an increase in the use of this method in longitudinal
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tudies of functional activation ( Ichikawa et al., 2019 ; McDonald et al.,
019 ; Miguel et al., 2019 ) and functional connectivity ( Bulgarelli et al.,
020b ). 

Longitudinal study designs are of particular importance when it
omes to understanding the impact of early adversity on brain and cog-
itive development, and is a framework commonly adopted in global
ealth projects. Most recently, fNIRS has found particular application
n global health projects where the portability, low cost relative to func-
ional magnetic resonance imaging (fMRI), and accessibility of the tech-
ology has enabled studies to be undertaken in low-resource settings
 Blasi et al., 2019 ). Recent examples include studies of visual working
emory in rural India ( Wijeakumar et al., 2019 ); social selectivity in
rban Bangladesh ( Perdue et al., 2019 ); social markers in rural Gambia
 Blasi et al., 2014 ; Lloyd-Fox et al., 2017 ); and monitoring treatment
f malnutrition in infants and children in Guinea-Bissau ( Roberts et al.,
017 , 2020 ). 

However, given this recent increase in the number of longitudinal
evelopmental studies, particularly within the new frontier of global
ealth neuroimaging research, it is paramount that we utilise analytical
pproaches that are applicable across a range of contexts (such as age
nd changes in head size). In fNIRS, an array of sources and detectors
re placed on the head. Each detector records the intensity of light arriv-
ng from a subset of neighbouring sources, with each dual-wavelength
ource and detector pair referred to as a channel. Typically, the analysis
f fNIRS data occurs in the channel-space, where data from each chan-
el is pre-processed and statistically examined on a channel-by-channel
asis. Group-level channel-space analyses are then predicated on the no-
ion that data acquired from the same channel of the same array can be
ompared between (and combined across) individuals. This approach
akes two assumptions. The first is that differences in scalp positions

f sources and detectors relative to cranial landmarks are negligi-

le across individuals . The second is that a given scalp location has

he same spatial relation to underlying cortical anatomy across all

ndividuals . This is particularly pertinent in longitudinal studies over
he first year of life, where head circumference increases by almost a
uarter from 1- to 12-months of age (World Health Organization, 2007 ).
his issue concerns not only scalp-cortex correspondences, but
lso differences in cortical depth linked to variation in head
ize. 

To produce images from fNIRS data, an image reconstruction ap-
roach can be used. Image reconstruction employs a structural prior of
ead anatomy to compute a forward model of the propagation of near-
nfrared light, describing how an attenuation change at a given point
n the head will affect resulting fNIRS attenuation measurements. This
odel is then mathematically inverted, and optical density data derived

rom fNIRS attenuation measurements for each channel is combined
ith the inverted forward model to reconstruct an image that maps cor-

ical haemoglobin concentration changes ( Arridge and Cooper, 2015 ). 
Channel-space analyses assume a constant head size and a constant

rray position across participants. Variability in either of these param-
ters will influence the distribution of near-infrared light transmitted
rom source to detector, and will therefore influence measures of brain
ctivation. Here, we aim to provide an analysis to isolate the effects
f the variability in head size and array position on the analysis of
ongitudinally-acquired infant fNIRS data. Because these effects are fun-
amentally related to the three-dimensional anatomy of the subject,
uch an analysis requires a light transport modelling and image recon-
truction approach. Using such an approach, we can directly compare
he effects of head size and array position in a consistent anatomical
pace. We therefore chose to implement an image reconstruction ap-
roach to isolate the effects of variability in these parameters, which
e can then use to infer the effects of variability in these parameters on

onclusions about fNIRS data analysis drawn from channel-space anal-
ses. 

In this work, we use image reconstruction as a tool to investigate
he validity of assuming constant array position and constant head size
2 
n channel-space analysis of longitudinal infant fNIRS data. Specifically,
his paper:- 

1 investigates whether the application of a best-practice image recon-
struction approach can result in different statistical inferences com-
pared to a standard channel-space analysis. 

2 uses image reconstruction approaches to investigate the effect of
variation in array position and head size on the interpretation of
fNIRS data. 

3 uses image reconstruction approaches to investigate whether group
size has an impact on differing statistical and anatomical infer-
ences between a best-practice image reconstruction approach and
an image-space equivalent to channel-space analysis. 

To address these objectives, this paper utilises data from the Brain
maging for Global Health (BRIGHT) project. This is a longitudinal study
nvestigating early neurocognitive development during the first 2 years
f life, following two cohorts of infants in parallel; one in The Gambia
 N = 225) and the other in the UK ( N = 62). As part of the BRIGHT
roject, fNIRS data was collected at six age points: 1-, 5-, 8-, 12-, 18- and
4-months of age. Data from this project has already been analysed to
nvestigate age-related changes in the neural responses to tasks such as
ssessing working memory ( Begus et al., 2016 ), social cognition ( Lloyd-
ox et al., 2017 , 2014a ), and habituation and novelty detection ( Lloyd-
ox et al., 2019 ). Due to its large sample size and its inclusion of data
cquired at three age points up to 12-months of age, the dataset from
he Gambian cohort of the BRIGHT project is highly suited to address
he objectives outlined above. 

. Methods 

.1. Participants 

Recruitment of participant families occurred at the Medical Research
ouncil (MRC) Unit The Gambia at the London School of Hygiene and
ropical Medicine (MRCG@LSHTM) field station in Keneba, The Gam-
ia, during antenatal clinic visits. In order to avoid confounds relating
o language translation, only families of the Mandinka group, the ethnic
ajority in the region ( Hennig et al., 2017 ), were recruited. All infants

ncluded in the current study were required to have been born at term
37–42 weeks gestation). Datasets from 104 infants aged 5-months, 97
nfants aged 8-months, and 97 infants aged 12-months in the Gambian
ohort of the BRIGHT study were available at the time of conducting this
nalysis. Only datasets from the Gambian cohort were included in this
nalysis. This was because the Gambian cohort had a particularly large
ample size, particularly in the context of longitudinal infant studies.
urthermore, for this analysis we wanted to avoid the potential con-
ounds related to cohort demographics that would come by mixing data
rom the two cohorts. 

In the West Kiang District, where Keneba is situated, moderate to
evere growth faltering is prevalent in infants from roughly 3 months
f age, due to several factors which include prenatal growth retarda-
ion, poor-quality (often contaminated) foods and a high incidence of
nfection ( Lunn et al., 1991 ; Lunn, 2000 ; van der Merwe et al., 2013 )).
s part of the BRIGHT project, growth measurers were acquired at
ach age point, though an indication of severe growth faltering (i.e.
eight ‐for ‐height z-score or head circumference z ‐score greater than 3
elow the median values stated in the World Health Organisation stan-
ards (World Health Organization, 2007 )) was not a criteria for exclu-
ion. 

Ethics approval for the BRIGHT study was obtained from the joint
ambia Government/MRC Unit The Gambia Ethics Committee (‘Devel-
ping brain function for age curves from birth using novel biomarkers of
eurocognitive function’, SCC number 1451v2). Full, informed consent
as obtained from all participating families prior to recruitment. 
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Fig. 1. a) Representation of the BRIGHT array, outlining the po- 
sitions of sources and detectors (see legend). 
b) Anterior headgear placement of three infants included in the 
study. The horizontal dotted line denotes the level of the top of 
the eyebrows, and the vertical dotted line denotes the midline. A: 
vertical line denoting middle of the headband is uncentered rela- 
tive to the midline, but the bottom of the headband is not displaced 
relative to the top of the eyebrows. B: bottom of headband is dis- 
placed superiorly with respect to the top of the eyebrows, but is 
centred relative to the midline. C: headgear is centred relative to 
the midline and is in line with the top of the eyebrows. 
c) Lateral assessment of headgear placement. The displacement of 
a reference optode, highlighted by a dotted circled, in directions 
parallel to the x - and y -axes is measured (denoted by “x-disp. ”
and “y-disp. ”). Displacement in the anterior or superior directions 
were taken to be positive, while displacement in the posterior or 
inferior directions were taken to be negative. 
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.2. Procedure 

For fNIRS data acquisition, infants wore custom ‐built fNIRS head-
ear consisting of two arrays, one over each of the left and right hemi-
pheres, embedded within a custom-made soft silicone-based head band.
he arrays contained a total of 6 sources and 7 detectors per hemisphere
source ‐detector separations 2 cm), constituting 17 channels per hemi-
phere ( Fig. 1 a). Data were acquired with the NTS fNIRS system (Gow-
rlabs Ltd. London, UK) which uses two continuous wavelengths of light
t 780 nm and 850 nm and has a sampling rate of 10 Hz ( Everdell et al.,
005 ). The design of the fNIRS array enabled responses in lateral frontal
o posterior temporal brain regions to be investigated, which included
he inferior frontal gyrus; middle and superior temporal regions; and the
emporo ‐parietal junction. 

Any displacement of the headband that could compromise the sta-
ility of its fit were excluded from further analyses. To assess headgear
lacement, photographs of the array were taken on each participant’s
ead pre- and post-experiment. Over the anterior of the head, the in-
3 
ended placement of the headgear should align a vertical line denoting
he centre of the band to the midline (in line with the participant’s na-
ion landmark) and such that the silicone band lay just above and in line
ith the eyebrows. Infants where the headband was displaced both hor-

zontally (with reference to the midline) and vertically (with reference
o the eyebrows) were excluded from further analyses on the grounds
f poor placement of headgear. Examples of three included infants with
orizontal but no vertical displacement (A), vertical but no horizontal
isplacement (B), and no horizontal or vertical displacement (C) over
he anterior of the head are shown in Fig. 1 b. 

The placement of the headgear was assessed laterally by overlay-
ng a set of axes on the images of the head to quantify the displace-
ent of a reference optode. This method was first demonstrated by
lasi et al. (2014) . The intended placement of the headgear was such
hat the third lower optode from the posterior, used as a reference op-
ode (see Fig. 1 c), was over the tragus. The overlaid x -axis was defined
s a line from the top of the eyebrows running along the superior-most
oint of the ear, while the y -axis was defined as a line passing through
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a response window to baseline. 
he tragus and the anterior of the helix. Displacement in the directions of
oth x - and y -axes were measured; displacement towards the anterior or
uperior direction was noted as positive, while displacement towards the
osterior or inferior direction was noted as negative. The x-displacement
f the reference optode was measured, while the vertical displacement
f the bottom headband at that x-displacement value was measured and
hen added to the value of the lower band thickness to obtain the y-
isplacement. The x- and y-displacement values for each hemisphere
or each individual were used to register the array to a head model. If
he x-displacement value was greater than or equal to 1.6 cm, chan-
els were re-indexed such that the array was shifted either forward or
ackward one full channel space. If the y-displacement was greater than
.6 cm, the infant was excluded from further analyses on the grounds
f poor headgear placement. 

In addition, head circumference, tragus-to-tragus distance and
asion-to-inion distance were measured for each participating infant.
nfants without a head circumference measurement were excluded. 

.3. Experimental paradigm 

Participants were assessed using an auditory-visual social perception
aradigm first described by Lloyd-Fox et al. (2014a ) and subsequently
sed in a number of other studies of infant brain function ( Frijia et al.,
020 ; Lloyd-Fox et al., 2017 , 2013 , 2012 , 2018 ; Perdue et al., 2019 ). 

The paradigm included three experimental conditions and a baseline
ondition. During each condition, visual-social videos were presented,
howing Gambian adults moving their eyes left or right, or perform-
ng hand games. The duration of these videos ranged from 9 to 12 s.
n the visual-social silent (VS) condition, visual-social videos were pre-
ented in silence with no accompanying audio. At the onset of two in
very three trials, auditory stimuli were presented, lasting a total dura-
ion of 8 s (consisting of four different sounds). The auditory vocal (V)
ondition was where infants were presented with non-speech vocalisa-
ions of two adult speakers (who were either coughing, crying, laughing
r yawning) alongside the visual-social videos. The auditory non-vocal

NV) condition was where common environmental sounds familiar to
he infants that were not human- or animal-generated were presented
longside the visual-social videos. 

Experimental conditions were altered one after the other, and the
ame order of conditions (VS, NV, V, VS, V, NV) was presented until
he infant showed signs of fussiness or boredom or up to the point that
 presentations of each condition has been reached. During fNIRS data
cquisition, videos of the infants were recorded to perform eye-tracking
o monitor the time the infant was looking at the screen for each trial,
hich was used as an indication of the infant’s attention. A baseline con-
ition was presented between experimental conditions, where images of
ypes of transport (such as helicopters, cars, and trains) were displayed.
 graphical representation of the paradigm is shown in Supplementary

aterial . 
In this work, we focused on the response to the auditory vocal stim-

lus. Usually, the response to this condition is studied in the context
f its contrast with the response to the auditory non-vocal condition.
owever, here we aimed to investigate whether different data analy-

is approaches (in both image- and channel-space) can lead to different
nferences drawn from the data rather than the contrast between the
wo conditions. As such, we chose to focus on the response to a single
ondition. 

.4. fNIRS data pre-processing 

The fNIRS data were pre-processed using NirsPlot ( Hernandez and
ollonini, 2020 ) and Homer2 (MGH–Martinos Center for Biomedical
maging, Boston, MA, USA) ( Huppert et al., 2009 ), which were both
mplemented in MATLAB. The specific pipeline and analysis have pre-
iously been reported by Bulgarelli et al. (2020a) ) and Hernandez and
ollonini (2020) . 
4 
The first step in the processing stream was channel pruning. Based on
revious experience with the NTS fNIRS system, channels with intensity
eadings lower than a certain threshold were immediately excluded. The
ata were then subjected to a cardiac-signal and spectral analysis assess-
ent based on a method first proposed by Pollonini et al. (2016) . This

nspection was done within each channel in the array. Channels that did
ot pass these quality assessments were excluded from further analysis.
f more than 40% of channels from a given dataset were deemed invalid,
hen the whole dataset was excluded from further analysis. 

For each of the four conditions, raw intensity data from surviving
hannels were processed in a pipeline in Homer2. The first step con-
erted raw intensity data to optical density. Motion artifacts were cor-
ected using a combination of spline interpolation and wavelet-based
ltering in the method proposed by Di Lorenzo et al. (2019) . Follow-

ng motion artifact correction, sections of the data still affected by noise
ere flagged: if such an artifact was detected, a time window wider than

he extent of the flagged section was defined on either side of the artifact.
rials within this time window were excluded from the analysis, where
rial exclusion was applied within each channel. The data were band-
ass filtered with high- and low-pass frequencies of 0.02 and 0.06 Hz
espectively in order to correct for slow baseline drifts in the data as
ell as to eliminate high-frequency noise. The modified Beer-Lambert

aw was employed to convert optical density data into concentration
hanges in oxy- and deoxy-haemoglobin ( Delpy and Cope, 1997 ). The
ifferential pathlength factors were calculated for each wavelength and
ge using the formula proposed by Scholkmann and Wolf (2013) . 

Based on the looking time measures, trials where the infant was look-
ng at the screen for less than 60% of the trial’s duration were excluded,
nd infants with less than a minimum of three valid trials for the audi-
ory vocal condition were excluded. In Homer2, all the remaining trials
after exclusion for looking time and excessive noise due to motion) for
ach participant were block-averaged for each condition: the block du-
ation was defined starting at t = − 2 s from stimulus onset and ending
t t = 20 s from stimulus onset. The total duration of the block was
herefore 22 s. 

As previously mentioned, though data was pre-processed for all four
onditions, we only focus on the response to the auditory-vocal stimulus
elative to baseline. 

.5. Processing streams 

In this work, five data processing streams were used: channel-space
nalysis and four image reconstruction pipelines. In the channel-space
nalysis, the block-averaged values of concentration changes across in-
ants during a response window were compared to baseline for the au-
itory vocal condition. For the image reconstruction processing stream,
ach individual’s block-averaged concentration changes were converted
ack to optical density values using the modified Beer-Lambert law. The
ptical density values were then used as an input in the image recon-
truction step. 

The basic outline for each of the imaging processing streams was as
ollows: 

1 Warp a head model on the basis of certain head measurements. 
2 Register optode positions to the head model. 
3 Produce a forward model, which defines the sensitivity distribution

associated with each channel. 
4 Invert the forward model, and use as an input alongside a given

infant’s block-averaged optical density data into a reconstruction
function to produce a time-course image of the distribution of
haemoglobin concentration changes on the cortical surface. 

5 Repeat steps 1–4 for all participants. 
6 Perform group-level statistical analysis on a node-by-node basis,

comparing the concentration change values across participants in
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Fig. 2. Outline of the different processing streams compared in this study. 
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For step 1, the head model could be warped on the basis of either
a) subject-specific head measurements, or (b) group-average head mea-
urements. For Step 2, there were two options for registering the array
o the head model: (a) register by subject-specific array positioning data,
r (b) register by group-average array positioning data. Given these two
teps in the processing pipeline, each with two options, there were a
otal of four possible image reconstruction processing streams. All four
f these processing streams are outlined in Fig. 2 . 

For the purpose of this analysis, the first processing stream presented,
here subject-specific head measurement data were used both to warp

he head model and to register the array, is termed subject parameter re-

onstruction . Given that this processing stream attempted to account for
rray position and head size on a subject-specific basis, this was effec-
ively the best-practice image reconstruction pipeline that could feasibly
e applied to this dataset. At the other end of the complexity scale, the
econd processing stream used group-average head measurement data to
arp the head model and group-average array position data to register

he array, and is termed constant parameter reconstruction . This process-
ng stream employed the same assumptions as the channel-space anal-
sis, and is considered as an image-space equivalent to channel-space
nalysis. While some fNIRS analyses may make not attempt to account
or head size, we believe a reasonable minimum step for research groups
o take is to obtain a population average measure of head size and use
hat measurement to warp a head model for each age group. We use this
pproach to define our constant parameter pipeline, which provides a
easonable baseline against which to compare our subject parameter
ipeline. 

Two other variations of the image reconstruction pipeline are com-
ared, both attempting to isolate the effects of variability in head size
nd array position. Constant array position reconstruction (subject-specific
ead measurements, group-average array position) offered a method to
5 
solate the effect of variability in array position, and constant head warp

econstruction (group-average head measurements, subject-specific array
ositioning) offered a method to isolate the effect of variability in head
ize. 

We acknowledge that some fNIRS pipelines may not account for head
ize at all. We therefore re-ran our constant parameter pipeline twice for
he fNIRS data at each age, using the head measurements of the other
ges, to mimic the case where a single-sized head model is used for all
nfants. 

.6. Head modelling 

A four-layer mesh model of the infant head was used as part of
he image reconstruction process, which was constructed using struc-
ural MRI data from a cohort of 12-month-old infants presented by
hi et al. (2011) . A single head model was used across ages and spatially
arped appropriately. Prior to choosing to employ a single head model,
e conducted an extensive preliminary analysis to evaluate age-specific
odels for the age range investigated in this work using structural data
resented by Sanchez et al. (2012) . This analysis demonstrated very lit-
le differences in sensitivity as a result of anatomical differences (i.e.
patial distribution of tissues but not model size) across these models,
nd is presented in Supplementary Material . Using a single model across
ges also negated the need to register different head models to a com-
on space for comparison across ages, which would undoubtedly have

ncurred some level of error itself. 
Binary tissue masks for white matter, grey matter and cerebrospinal

uid were combined to produce a cerebral tissue mask. The outer bound-
ry of the cerebral tissue mask was used to demarcate the inner skull
order, and an outer scalp boundary was segmented from the average
1-weighted MRI template using Betsurf ( Jenkinson et al., 2005 ). All
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Fig. 3. Top row: example sagittal, axial and coronal sections of the four-layer infant head model showing the distribution of white matter (WM), grey matter (GM), 
cerebrospinal fluid (CSF) and extra-cerebral tissue (ECT). Bottom row: the position of the cranial landmarks and 10-5 positions (in black) and cranial landmarks (in 
magenta) on the scalp surface. 
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oxels between the outer scalp and inner skull boundaries were defined
s extra-cerebral tissue, a combined layer for scalp and skull; given the
ifficulty involved in distinguishing the two tissues from each other in
nfant MRI data, the two tissues were combined as one label. The re-
ulting four-layer tissue mask was used to create a tetrahedral volume
esh as well as a grey matter surface mesh using the iso2mesh package

( Fang and Boas, 2009 ), see iso2mesh.sourceforge.net). 
A parcellation atlas, the Automated Anatomical Labelling (AAL) at-

as, consisting of 90 volumes of interest, was transformed to the space
f the 12-month head model based on the affine transformation infor-
ation in its file header. This allowed us to use the AAL atlas to assign

n anatomical label to each node in the grey matter surface mesh. 
The coordinates of five cranial landmarks (the nasion (Nz), the

nion (Iz), the left pre-auricular point (Al), the right pre-auricular
oint (Ar) and vertex (Cz)) were determined manually using ITK-
NAP ( Yushkevich and Gerig, 2017 ). Based on a curve-walk procedure
( Aasted et al., 2015 ), see Homer2: www.nitrc.org/projects/homer2 ),
he 10-5 positions on the scalp surface of the head model were com-
uted using the cranial landmarks coordinates (see Fig. 3 ). The mesh
odes were then transformed to a coordinate system where: 

• the position of Iz defines the origin 
• a line joining Iz to Nz defines the y-axis 
• the z-coordinates of Ar and Al are approximately equal following

rotation of mesh nodes around the y-axis. 

.7. Head model warping 

Data on head circumference, tragus-to-tragus via Cz (approximated
o be the Ar-Cz-Al) distance, and nasion-to-inion via Cz (Nz-Cz-Iz) dis-
6 
ance were used to iteratively warp the head model. For the pipelines
hat required the use of subject-specific head measurements (subject pa-
ameter and constant array position pipelines), these measures were
sed to warp the infant head model to each participant’s head di-
ensions. For the pipelines that did not require subject-specific head
easurements (constant head warp and constant parameter pipelines),

he mean values of these measures were calculated at each age and
sed to iteratively warp the infant head volume mesh. At the 5-
onth assessment timepoint, measurement of the Nz-Cz-Iz distance
as not taken, and so the head model was warped according to
ead circumference and Ar-Cz-Al distance. The grey matter surface
esh was also iteratively warped by the same values as the head
odel. 

For a given participant, the head model was initially scaled accord-
ng to head circumference; a warp factor was calculated by dividing
he subject-measured (or group mean) head circumference by the head
odel’s initial head circumference. Each node’s x-, y- and z-coordinates
ere multiplied by the warp factor. The warped model’s head circum-

erence, Ar-Cz-Al distance and Nz-Cz-Iz distance were computed, and
he measurement with the greatest difference between its correspond-
ng subject-measured (or group mean) value was then used to re-warp.
or whichever distance had the greatest difference, the warped model-
easured value was divided by the subject-measured (or group mean)

alue to yield another warp factor which was then multiplied by the
elevant node coordinates (x- and z-coordinates if Ar-Cz-Al; y- and z-
oordinates if Nz-Cz-Iz; x-, y- and z-coordinates if head circumference).
he process was repeated until the error for the Ar-Cz-Al distance was
elow 6 mm, the error for the Nz-Cz-Iz distance was below 6 mm, and
he error for head circumference was below 3 mm. See Supplementary

http://www.nitrc.org/projects/homer2
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Fig. 4. The array registration process for the 
subject parameter reconstruction pipeline. A) 
Photograph of the lateral placement of the ar- 
ray on an example infant, with the x - and y -axes 
overlaid. B) The x - and y -axes approximated on 
the head model warped on the basis of the in- 
fant’s head measurements. C) Curves (in green) 
parallel to the Iz-FPz curve which were used 
to register optodes in relation to the reference 
optode, shown as a red circle. D) All optodes 
registered to the head model, where detectors 
are represented by blue circles and sources are 
represented by red circles. 
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aterials for details on accuracy of head model warping with respect
o participant-measured values. Allowing a degree of tolerance with re-
ards to head measurements (which themselves are prone to a degree
f error) removes the potential for over-fitting the head warping proce-
ure to head measurements, which can lead to anomalous and anatom-
cally implausible head shapes. The parameters chosen were a balance
etween over-fitting, accuracy and computation time. In Supplementary

aterial , we provide data on the accuracy of our iterative warping pro-
edure in preserving participant-measured head measurements in the
arped head models for each infant undergoing the subject parameter
ipeline. This error rarely exceeded 2% for Nz-Cz-Iz and Ar-Cz-Al, and
arely exceeded 0.2% for head circumference. 

.8. Array registration 

For each hemisphere the approximated x-axis on the warped head
odel was defined as a curve along the scalp surface from Iz to FPz

long the lateral side of the head, and the y-axis was approximated by
efining a curve from the preauricular point to CCPz on the midline
f the head. The x- and y-displacement values of the reference optode
xtracted from photographs were used to register the reference optode
o the head model. With the knowledge of a source-detector separation
f 2 cm between nearest neighbours, the other optodes in the array were
egistered to the head model in relation to the reference optode along
wo curves parallel to the Iz-FPz curve. 

For the subject parameter and constant head warp pipelines, subject-
pecific values were used to register optodes to the head model. For con-
tant parameter and constant array position pipelines, age-cohort mean
 - and y -axis displacement values were used. An example of a registered
rray on the head model compared to the corresponding participant pho-
ograph is provided in Fig. 4 . 
7 
.9. Light transport modelling and image reconstruction 

For each infant dataset in each processing stream, we used TOAST ++
( Schweiger and Arridge, 2014 ), see http://toastplusplus.org ) to model
ear-infrared light transport to produce a forward model for each wave-
ength. Using a regularization hyperparameter of 0.1, a zeroth-order
ikhonov regularized reconstruction was performed. A requirement for
epth discrimination in image reconstruction is that overlapping chan-
els are present in the array ( Lee et al., 2017 ); these are channels
hat exhibit sensitivity profiles that partially sample the same volume
 Boas et al., 2004 ; White, 2010 ). No data from overlapping channels
ere used in this analysis, and so image reconstruction was constrained

o the grey matter nodes of the volume mesh. This has been shown
n previous topographic approaches to increase the accuracy of recon-
tructed images when data on cortical activation is being collected
 Boas and Dale, 2005 ; Boas et al., 2004 ). In addition, we do not ex-
ect to be sampling a substantial amount of white matter due to the
ource-detector separation in our array. 

For each individual, the forward model was thresholded at 1% of
he maximum value to produce a binary image, which was mapped to
he grey matter surface mesh to create an individual-level grey matter
ask. A group-level grey matter mask for each age-cohort was produced,
hich consisted of nodes present in the individual-level grey matter
asks of at least three quarters of participants, similar to the approach

aken by Wijeakumar et al. (2019) . Data preparation, meshing, forward
odelling and reconstruction were facilitated by the DOT-HUB Toolbox

 www.github.com/DOT-HUB ). 

.10. Statistical mapping of reconstructed images 

In this work, we produced T-statistic maps comparing the group-level
esponse to the auditory vocal condition to baseline across participants

http://toastplusplus.org
http://www.github.com/DOT-HUB
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or a given age. Statistical mapping was conducted in the space of the
rey mater surface mesh. A time window of 12–16 s post-stimulus on-
et was used to signify the peak of the haemodynamic response in the
mage time-course. This choice of window was informed by previous
ata analysis approaches using the same paradigm in previous cohorts
 Lloyd-Fox et al., 2017 , 2013 , 2012 ). 

Statistical mapping was performed for oxy-haemoglobin group-level
mages at each age and for each image reconstruction processing stream.

e also present deoxy-haemoglobin group-level images for the subject
arameter pipeline in the Results section. All concentration change val-
es within the response window across participants were concatenated
o produce a single vector for each node present in the group-level grey
atter mask; the same process was completed for values within a base-

ine window (2 s pre-stimulus onset). Equivalent response and baseline
ectors were compared using a two-tailed two-sample t-test. To correct
or multiple comparisons, the Bonferroni method was employed on the
asis of the number of nodes in the grey matter surface mesh, as was
erformed in ( Frijia et al., 2020 ). 

.11. Statistical mapping of channel-space analysis 

We conducted a channel-wise statistical analysis comparing the
roup-level response to the auditory vocal condition to baseline across
ll infants, in a method analogous to the statistical mapping approach
or the imaging processing stream. Statistical analyses were performed
eparately for oxy- and deoxy-haemoglobin time-courses. To be included
n the analysis for a given age cohort, the channel had to be present (i.e.
ot pruned) in at least three quarters of individuals. Using a 12–16 s
ime window to represent the peak of response and a 2 s pre-stimulus
aseline, a concatenated vector of concentration change values in these
eriods in each channel across all infants were compared using a two-
ailed two-sample t -test. To correct for multiple comparisons, the Bon-
erroni method was employed on the basis of the channels (34 in total).

To enable the group-level channel-space analysis to be compared to
econstructed images, channel location positions on the scalp were pro-
ected onto the cortical surface. It is commonly assumed in fNIRS work
hat the region of the brain to which a channel is maximally sensitive
s halfway between the source and the detector, and at a depth from
he scalp surface equal to approximately half the source-detector sepa-
ation ( Fukui et al., 2003 ; Lloyd-Fox et al., 2014b ). Using this knowl-
dge, previous work relating to fNIRS in infants has demonstrated cor-
ical projection to determine the cortical label and position of channels
 Lloyd-Fox et al., 2014b ; Tsuzuki et al., 2017 ). 

For each age, the head model was warped by the group-average head
easurements and the group-average array positioning data was used

o register optode positions. The midpoint on the scalp surface between
ource and detector for each channel was projected onto the cortex
n a method analogous to that which was demonstrated in ( Collins-
ones et al., 2020 ) which employs the Möller-Trumbore algorithm
 Möller and Trumbore, 1997 ; Mena-Chalco, 2019). 

The surface nodes of the volume mesh (i.e. the scalp surface) that
ere situated within a 5 mm radius of each source-detector midpoint
ere determined, and were used to fit a plane. Orthogonal to this plane,
 vector was defined whose length was increased until it intersected with
 face on the grey matter surface mesh. The position of this intersection
as taken to be the cortical projection of the channel. 

.12. Window-averaged images 

For each individual, the duration of the block-averaged pre-
rocessed data for the auditory vocal condition for each channel is 22 s
consisting of a 2 s pre-stimulus onset baseline period plus a 20 s post-
timulus onset period), and so each infant’s reconstructed image is a
ime-course of 221 frames. To obtain a single image for a given indi-
idual at a given age point, the mean value of each grey matter surface
8 
esh node in a 12–16 s window post-stimulus onset was computed, to
ield what we term a window-averaged image . 

.13. Metric extraction 

In order to compare images between processing streams, two metrics
ere used: peak node offset and cortical label of peak node , which were

omputed separately for both left and right hemispheres. For subject
arameter and constant parameter images at the group-level, the peak
ode was defined as the node in the group-level image with the greatest
ositive and negative T-statistic value for oxy- and deoxy-haemoglobin
oncentration changes, respectively. In addition, the cortical label of the
eak node was determined. This was completed for both hemispheres
t each age. 

For channel-space analyses, the peak channel was defined as the
hannel with the greatest positive and negative T-statistic value for oxy-
nd deoxy-haemoglobin concentration changes, respectively. To enable
omparison between channel-space analysis and subject parameter re-
onstruction, the cortical label of the peak channel projection was de-
ermined and used as an analogous metric to the cortical label of peak
ode. This was completed for both hemispheres at each age. 

At the individual-level, the peak node was defined as the node
n the window-averaged image with the greatest positive change in
xy-haemoglobin concentration. This was completed for both hemi-
pheres for each infant at each age. We focus only on changes in
xy-haemoglobin concentration due its larger response than deoxy-
aemoglobin, which was an important consideration given the lower
ignal-to-noise ratio in the individual-level images. 

At both the group- and the individual-level, we defined the peak
ode offset as the Euclidean separation between the peak node from a
iven processing stream and the peak node from the subject parameter
econstruction. This was calculated in the space of the relevant age-
ohort constant head warp model. In addition, having determined the
eak node, the cortical label of that node was identified using the par-
ellation obtained using the methods presented in Section 2.6 “Head
odelling ”. 

.14. Effect of longitudinal growth measures 

As part of our investigation on the effect of head size, we sought to
nvestigate whether there was any association between peak node offset
nd two other parameters: head circumference (as measured from the
nfants, not corrected for age and sex) and head growth trajectory (the
hange in head circumference z-score between two age points). The pur-
ose of this comparison was to assess whether the use of subject-specific
arameters was more impactful in infants whose head size deviated from
he group mean at a given age or whose head growth trajectories di-
erged from the expected trajectories outlined by the World Health Or-
anisation (WHO) growth charts ( World Health Organization, 2007 ).
his is important to investigate as differences in head size and growth
rajectory could potentially lead to notable differences in light transport
hrough the head which may lead to artifactual statistical or anatomical
nferences. 

For each individual, the difference in head circumference from the
roup mean was calculated. For each age and each hemisphere, using
earson correlation we tested for associations between individual-level
eak node offset and:- 

1 Difference in head circumference from group mean. 
2 The absolute value of difference in head circumference from group

mean (which disregards whether the difference is positive or nega-
tive). 

Head circumference values were converted to z-scores on the basis
f WHO references curves ( World Health Organization, 2007 ). For in-
ants who had data at two or more age points, a change in z-score was
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omputed. We then used Pearson correlation to test for an association
etween individual-level peak node offset and:- 

1 Change in z-score. 
2 The absolute value of change in z-score (which disregards whether

the change is positive or negative). 

.15. Combinatorial analysis 

Subject parameter reconstruction represents the best-practice anal-
sis given the available data on head size and array position for this
ataset, while we consider constant parameter reconstruction to be an
maging equivalent to channel-space analysis. We conducted a combi-
atorial analysis to investigate the effect of group size on how the inter-
retations of subject parameter and constant parameter reconstructions
ay differ. 

For each age and each hemisphere, a combinatorial analysis was con-
ucted. To begin with, 100 sub-cohorts of 10 randomly chosen infants
ere selected. The same statistical analysis as was performed on the full

ohort was performed on each sub-cohort of 10 randomly-selected in-
ants. The position and cortical label of the peak node was determined
or both the subject parameter and constant parameter reconstructions
or each of the 100 sub-cohorts of group size 10, and used to calculate: 

1 Mean peak node offset relative to subject parameter reconstructions
for the group size. 

2 The proportion of mismatching cortical labels for the group size. 

This process was repeated for sub-cohort group sizes from 11 to the
ull cohort size. 

. Results 

Of the datasets initially included in this study (N 5-months = 104,
 8-months = 97, N 12-months = 97), infants were excluded due to the fol-

owing criteria: 

• The infant was not tested 
○ The infant was withdrawn (N 5-months = 3, N 8-months = 8,

N 12-months = 9) 
○ The infant missed the visit (N 5-months = 1, N 8-months = 2,

N 12-months = 2) 
• NIRS data acquisition was not undertaken at visit (N 5-months = 7,

N 8-months = 9, N 12-months = 11) 
• Task was not undertaken (no infants were excluded due to this cri-

teria) 
• The infant became fussy (N 5-months = 6, N 8-months = 5, N 12-months = 9)
• Experimental errors 

○ PPhotographs of headgear placement missing (N 5-months = 5,
N 8-months = 4, N 12-months = 1) 

○ Video of infant during fNIRS data acquisition was missing
(N 5-months = 8, N 8-months = 5, N 12-months = 3) 

○ Missing event markers in the task (N 5-months = 1, N 8-months = 0,
N 12-months = 0) 

○ Other technical issues: data not saved due to a technical glitch or
due to human error (N 5-months = 1, N 8-months = 1, N 12-months = 2)

• Poor placement of headgear (N 5-months = 5, N 8-months = 12,
N 12-months = 6) 

• Number of channels surviving channel pruning below minimum
threshold (N 5-months = 5, N 8-months = 1, N 12-months = 1) 

• Not enough valid trials for the auditory vocal condition
(N 5-months = 3, N 8-months = 3, N 12-months = 4) 

• Missing head circumference measurement (N 5-months = 6,
N 8-months = 7, N 12-months = 4) 

In total, our final sample size consisted of 53 infants aged 5-months
27 female, mean age ± SD = 163.17 ± 12.15 days), 40 infants aged 8-
onths (19 female, 245.53 ± 8.36 days), and 45 infants aged 12-months

24 female, 376.16 ± 16.34 days). 
9 
.1. Directly comparing image reconstruction to channel-space 

Firstly, the pipeline that represents the best-available practice im-
ge reconstruction, subject parameter reconstruction, and the channel-
pace analysis pipeline were compared. Fig. 5 shows group-level cortical
-statistic maps for changes in oxy-haemoglobin concentration in a 12–
6 s post-stimulus window with respect to baseline for subject param-
ter reconstructions. Also shown in Fig. 5 are the cortical projections
f group-level channel-wise T-statistic values comparing the same time
indows. 

The results appear very consistent between the two processing
ipelines across all hemispheres at all ages in terms of spatial distri-
ution, which is particularly true in the temporal lobe. In addition, at
ll age groups and across both hemispheres, the peak node and peak
hannel projection was observed in the middle temporal gyrus, demon-
trating consistency in the results across the two processing streams at
he group-level. 

However, there are some areas where inferences differ, particularly
n the inferior frontal regions, as can be seen in Fig. 5 . In the left hemi-
phere at 5-months and the right hemisphere at 8-months, the group-
evel reconstructed images suggest larger changes in inferior frontal re-
ions than can be inferred from channel-space, while in the right hemi-
phere at 12-months the group-level reconstructed image suggests more
idespread concentration changes. 

Fig. 6 shows the same analysis repeated using the deoxy-
aemoglobin signal, replicating the analysis seen in Fig. 5 . As can be
een in Fig. 6 , in general these results also appear broadly consistent
ith one another. The spatial distribution of activation suggested by the

hannel-space deoxy-haemoglobin T-statistic values appears to emulate
hat is seen in image-space. However, the T-statistic values themselves
ppear to be much lower lower in channel-space, which is particularly
vident in the left hemisphere at all ages and the right hemisphere at
2-months. 

In the deoxy-haemoglobin analysis, at all age groups and across both
emispheres, the peak node and peak channel projection was observed
n the middle temporal gyrus, as was the case in the oxy-haemoglobin
nalysis. 

The cortical projections of channel-space positions showed that there
ere four cortical areas where significant changes in oxy-haemoglobin

oncentration occurred at the group-level: inferior frontal gyrus, supe-
ior temporal gyrus, middle temporal gyrus and inferior temporal gyrus.
he maximum absolute T-statistic value of a channel projected to each of
hese four areas in each hemisphere was noted for both the oxy- and the
eoxy-haemoglobin analysis. The maximum absolute T-statistic value
as also taken for each of these four cortical areas in the subject pa-

ameter reconstruction. In Fig. 7 , we show the difference between the
hannel-space maximum values and the subject parameter maximum
alues. Consistently, we see that channel-space underestimates the ef-
ect size relative to subject parameter reconstruction, and this is most
vident at 12-months in the oxy-haemoglobin analysis and across ages
n the deoxy-haemoglobin analysis. 

.2. Effects of variability in head size and array position 

We also aimed to explore the effect that variability in head size and
rray position has on the analysis of fNIRS data. Comparisons were made
t the group- and the individual-level between all of the four image
econstruction processing streams. 

.2.1. Group-level 

Fig. 8 shows group-level oxy-haemoglobin T-statistic maps for the
our different image reconstruction processing streams: subject param-
ter, constant head warp, constant array position and constant parame-
er. Qualitatively, it can be seen that the subject parameter and constant
ead warp reconstructions appear similar, suggesting that within-cohort
ariability in head size does not have a large impact on the resulting



L.H. Collins-Jones, R.J. Cooper, C. Bulgarelli et al. NeuroImage 237 (2021) 118068 

Fig. 5. Group-level T-statistic images of changes in oxy-haemoglobin concentration in response to the auditory vocal condition relative to baseline for two approaches 
to analysing fNIRS data. Top row: subject parameter reconstruction pipeline. Bottom row: channel-space analysis. The significance level of displayed T-statistic values 
is p < 0.05, Bonferroni corrected on the basis of number of nodes in the grey matter surface mesh. 

Fig. 6. Group-level T-statistic images of changes in deoxy-haemoglobin concentration in response to the auditory vocal condition relative to baseline for two 
approaches to analysing fNIRS data. Top row: subject parameter reconstruction pipeline. Bottom row: channel-space analysis. The significance level of displayed 
T-statistic values is p < 0.05, Bonferroni corrected on the basis of number of nodes in the grey matter surface mesh. 

Table 1 

Jaccard index quantifying overlap of the thresholded group-level image for each processing stream with the thresholded group- 
level subject parameter image. Group-level images from each processing stream were thresholded at 50% of their maximum value. 
A Jaccard index of 100% would indicate perfect overlap, while 0% would indicate no overlap at all. 

Age Number of 
infants 

Group-level thresholded nodal overlap with subject parameter images (Jaccard index) 

Left hemisphere Right hemisphere 

Constant 
head warp 

Constant array 
position 

Constant 
parameter 

Constant 
head warp 

Constant array 
position 

Constant 
parameter 

5-months 53 90.3% 71.9% 69.9% 83.0% 62.0% 58.2% 

8-months 40 57.7% 48.1% 46.9% 74.2% 48.4% 50.6% 

12-months 45 80.0% 61.9% 39.3% 78.8% 47.5% 39.7% 
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roup level images. It can also be observed that the group-level constant
arameter reconstruction images are similar to the group-level constant
rray position reconstruction images. 

This qualitative observation is supported by the overlap between the
mages from the different processing streams where each group-level
mage is thresholded at 50% of its maximum value. Here, in both hemi-
pheres at every age, we see greater levels of overlap between the thresh-
lded constant head warp and subject parameter images than the other
wo processing streams (see Table 1 ). In each case, the 50% thresholded
verlap is greatest between subject parameter images and constant head
ize images, though this is lowest (but still true) for the left hemisphere
10 
t 8-months. In this case, we see a less focal response across reconstruc-
ion pipelines, which is potentially due to this cohort having the smallest
roup size. 

Despite the constant head warp pipeline appearing to most closely
mulate the subject parameter pipeline, the group-level images across
econstruction pipelines are broadly consistent with one another. This
uggests that group-level analyses are robust to variability in head size
nd array position. 

To compare focality and the spatial characteristics of activation be-
ween the subject parameter and constant parameter pipelines, each
roup-level T-statistic images from both pipelines for each age was nor-
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Fig. 7. Differences in absolute maximum T-statistic values of the channel-space analysis relative to the subject parameter reconstruction for (a) oxy-haemoglobin 
and (b) deoxy-haemoglobin concentration changes across four cortical areas where activation is consistently seen in the oxy-haemoglobin channel-space analysis. 
For each pair of bars grouped by colour, the left bar represents the difference in that region in the left hemisphere and the right bar (with a more faded colour) 
represents the difference in that region in the right hemisphere. Note: at 8-months in the right hemisphere, no activation was seen in the inferior frontal gyrus in 
either the channel-space analysis or subject parameter group-level image. The cortical areas are shown in (c). 
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alised to its maximum value, and thresholded at values between 50%
nd 90% of that maximum value. This is shown in Fig. 9 . On visual
nspection, the subject parameter images appear more focal, while the
patial distribution of T-statistic values in the constant parameter group-
evel images appears more dispersed. 

To better quantify this measure, we plot the cumulative area of acti-
ation as a function of T-statistic value in Fig. 9 . Toward the maximum
-statistic values, the area covered in subject parameter group-level im-
ges is consistently lower than is the case in the constant parameter
roup-level images. This demonstrates greater focality in the subject pa-
ameter images. 

.2.2. Individual-level 

Fig. 10 shows the peak node offset at the individual-level for the
hree processing streams relative to subject parameter reconstructions.
his analysis was conducted using images of oxy-haemoglobin concen-
ration changes. It can be observed that the constant head warp peak
ode offset is substantially lower at each age in each hemisphere than
he other two processing streams. The difference between individual-
evel peak node offset in the constant head warp and constant parame-
er pipelines is statistically significant in all cases, and this is also true
or the difference seen between constant head warp and constant array
osition pipelines in all cases except the left hemisphere at 12-months. 
11 
We also quantified individual-level peak node offset between the
ubject parameter pipeline and the constant parameter pipeline mod-
fied such that the size of the head model at each age was determined
y the average head measurements at the other two age points. This
as performed to assess the effect of using a single-sized head model
cross all age cohorts. No statistically significant difference was found
etween peak node offset obtained using group-level age-matched head
easurements and using non-age-matched measurements. That is to say,
sing non-age-matched warped head models does not perform notice-
bly worse than the constant parameter pipeline. This result is shown
n Supplementary Material . 

.3. Peak node offset association with head size and growth trajectory 

Though we see that array position is the dominant driver of differ-
nces between the subject parameter and constant parameter group-
evel images, we aimed to investigate whether there was any associ-
tion between individual-level peak node offset and the magnitude of
ifference in head size from the group mean. 

There were 24 individuals with data at both 5- and 8-months, 20
ith data at both 8- and 12-months, and 25 with data at both 5- and 12-
onths, enabling an analysis by trajectory of head size. No correlation
as observed between individual-level peak node offset and change in
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Fig. 8. Group-level T-statistic images of changes in oxy-haemoglobin concentration in response to the auditory vocal condition relative to baseline for the four 
processing streams. From top row to bottom row: subject parameter reconstruction, constant head warp reconstruction, constant array position reconstruction, 
constant parameter reconstruction. The significance level of displayed T-statistic values is p < 0.05, Bonferroni corrected on the basis of number of nodes in the grey 
matter surface mesh. 

Fig. 9. Top: normalised and thresholded group-level T-statistic images of changes in oxy-haemoglobin concentration in response to the auditory vocal condition 
relative to baseline for subject parameter (top row) and constant parameter (middle row) pipelines. Each image is thresholded at values between 50% and 90% of 
its maximum T-statistic value. Bottom row: cumulative area of activation as a function of T-statistic value. At larger T-statistic values, the area covered in subject 
parameter group-level images is consistently lower than is the case in the constant parameter group-level images, suggesting greater focality in images resulting from 

the subject parameter pipeline. 

12 
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Fig. 10. Peak node offset at the individual-level for each processing stream relative to subject parameter reconstructions. Peak node offset values were calculated 
in the space of the constant head warp model for each age. Significance levels were computed using paired t-tests. ∗ represents p < 0.05 (corrected), ∗ ∗ represents 
p < 0.01 (corrected), ∗ ∗ ∗ represents p < 0.001 (corrected). 

Fig. 11. Group-level T-statistic images of changes in oxy-haemoglobin concentration in response to the auditory vocal condition relative to baseline for a sub- 
cohort of 10 randomly chosen infants at each age. Top row: subject parameter reconstruction pipeline. Bottom row: constant parameter reconstruction pipeline. The 
significance level of displayed T-statistic values is p < 0.05, Bonferroni corrected on the basis of number of nodes in the grey matter surface mesh. 
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-score or difference in head circumference from group mean at any age
r for any of these age ranges. Further, for each comparison performed,
o statistically significant correlations were found. As such, we have
ound no evidence to suggest inferences made from constant parameter
econstructions are systematically biased by either head size deviation
rom group mean or head growth trajectory. The full results for each
omparison can be found in Supplementary Material . 

.4. Effect of group size 

In Fig. 11 , we show group-level T-statistic response maps for a sub-
ohort of 10 randomly selected infants at ages 5-, 8- and 12-months.
n visual inspection, differences between the two processing streams at
13 
quivalent ages and for equivalent hemispheres are more apparent than
as the case for the full-sized cohort in Fig. 8 . 

In Fig. 12 , we plot mean peak node offset from groups of randomly
ssorted participants as a function of group size. In this context, we de-
ne peak node offset as the Euclidean offset between the position of the
eak node in the group-level T-statistic images from subject parameter
nd constant parameter pipelines for each randomly assembled group.
s group size increases, in general there is a decrease in the mean peak
ode offset. 

There is also decrease in the proportion of mismatched peak node
ortical labels between the two processing streams as group size in-
reases (see Fig. 13 ), except for the left hemisphere at 12-months. 
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Fig. 12. Peak node offset as a function of group size. Mean ± standard error is shown by the red shaded area. An increase in group size leads to a decrease in peak 
node offset and, by extension, a decrease in the likelihood of different inferences being drawn from the results at the group-level. Note: this effect is less evident at 
12-months in the left hemisphere, but this likely relates to the fact that the constant parameter approach appears to yield two disparate peaks (one in the temporal 
lobe and one in the inferior frontal gyrus, see Fig. 8 ). 
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. Discussion 

We have demonstrated an image reconstruction approach using
NIRS data acquired from a cohort of Gambian infants. Using image
econstruction to quantify and isolate the effects of variability in head
ize and array position, we find that inferences drawn from group-level
hannel-space fNIRS analyses are unlikely to be significantly affected
y these assumptions given the variability of these parameters in our
ataset, though their effect is much more influential at the individual-
evel. We find that variability in array position is the dominant factor
hat drives differences between channel-space analysis and best-practice
mage reconstruction at the individual- and group-level. Our combina-
orial analysis shows that the influence of variability in array position
nd head size on statistical and anatomical inferences is weakened as
roup size increases. 
14 
.1. Inferences from channel-space and image reconstruction 

This analysis sought to directly compare group-level analyses of our
ata in channel-space to subject parameter reconstruction, which repre-
ents a best-practice image reconstruction pipeline given the available
ata on head size and array position. As was shown in Figs. 5 and 6 ,
roup-level subject parameter reconstructions and channel space projec-
ions are notably consistent across the two processing streams. For both
he oxy- and deoxy-haemoglobin analysis at the group-level, areas where
e see activation in the channel space projections are also where we see
ctivation in subject parameter reconstructions, especially in the tem-
oral lobe, demonstrating consistency between both processing streams
t the group-level. In addition, the cortical labels of the peak node and
eak channel were consistent between the two processing streams for
ach age, hemisphere and chromophore, which further demonstrates
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Fig. 13. Cortical label mismatch between subject parameter and constant parameter reconstruction pipelines as a function of group size. 
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onsistency. This direct qualitative comparison of channel-space and
est-practice image reconstruction included in this analysis provides ev-
dence that the influence of variability in head size and array position
n statistical and anatomical inferences is weakened at the group-level.

For large effect sizes and large group sizes, it is unlikely that
nalysing data in channel-space will lead to substantially different in-
erences about activation; however, for smaller effect sizes, an analysis
sing subject parameter image reconstruction will likely better resolve
he effect. In our data, the channel-space analysis consistently underesti-
ates the effect size seen in image space (see Fig. 7 ). This likely pertains

o the fact that image reconstruction uses models of light transport to
ccount for differences in channel sensitivity across subjects, and thus
hen an average is taken, it is more likely that the signals contributing

o that average are derived from the same cortical regions across sub-
ects. Though we are using functional data where a large effect size is
xpected, the fact that image reconstruction still results in greater signif-
cance suggests that investigations of smaller differences (for example,
ge-related differences within a longitudinal cohort, investigations of
he deoxy-haemoglobin response and studies with smaller group sizes)
ay benefit from an image-based analysis. 

.2. Effect of head size and array position 

The analyses presented aimed to isolate the effects of variability
n head size and array position seen in our dataset on the analysis of
NIRS data. The constant parameter reconstruction pipeline represents
n imaging approach that is conceptually equivalent to a channel-space
nalysis, insofar as it assumes a fixed array that is consistent across par-
icipants, as well as assuming a fixed model of the cerebral anatomy.
n addition, the effect of variability in head size and array position can
e isolated using subject-specific values for one parameter and group-
verage values for the other. 

At the individual-level, our results show that differences between
ubject parameter and constant parameter reconstructions are driven by
ariability in array position. It can be seen in Fig. 10 that constant head
arp reconstruction leads to the lowest level of peak node offset, while
ot accounting for array position (whether or not accounting for head
ize) leads to a much greater degree of peak node offset. In addition,
15 
e found no statistically significant differences between individual-level
eak node offset obtained using group-level age-matched head mea-
urements and using non-age-matched measurements (see Supplemen-

ary Material ). Our results show that using any single head model for all
nfants (warped to a size within the 5-12 month range) does not result in
ignificantly worse performance than our constant parameter pipeline
hat uses group-level age-matched warping. This conclusion is antici-
ated given the dominance of variability in array position in driving
ifferent inferences. 

The images obtained via constant head warp and subject parameter
pproaches at the individual- and the group-level are notably more sim-
lar than the other two pipelines are in comparison to subject parameter
see Figs. 8 and 10 ). Our results show that the difference between the
ubject parameter and constant parameter pipelines is primarily driven
y variability in array position and not in head size. We therefore con-
lude that collecting data on array positioning from each infant and
mploying an image reconstruction approach is essential to increase the
eliability of fNIRS data analysis at the individual-level. Subject param-
ter reconstruction produces images with greater focality (see Fig. 9 );
s such, accounting for subject-specific parameters can increase confi-
ence in the spatial localisation of activation, and is likely able to better
esolve features of activation particularly for smaller group sizes than is
he case in channel-space analysis or constant parameter reconstruction.

One of the biggest differences between subject parameter and con-
tant parameter images at the group-level is in the inferior frontal gyrus;
his is particularly evident at 12-months in the left hemisphere where
e see a larger peak T-statistic value in the inferior frontal gyrus in the

onstant parameter image. The differences seen in frontal regions may
ell be due to their slightly greater depth underneath the scalp, and so

ize and shape of the head model will have a greater impact on mod-
lling photon transport in frontal areas than is the case for shallower
ortical regions. Brain activation at a greater depth will influence fewer
easured photons than activation at a shallower depth, and so activa-

ion occurring deeper will have a reduced signal-to-noise ratio. 
We sought to investigate whether within-cohort head size variation

nd growth trajectory were associated with peak node offset in constant
arameter reconstructions, a surrogate of whether there is a system-
tic bias in channel-space analysis linked to these factors. We found no
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vidence that such a link exists; the correlation between head circum-
erence deviation from group mean or change in z-score and peak node
ffset was not significant for any correlation tested. In addition, there is
lso no clear pattern of peak node offset being larger at the extremes of
ither of these metrics (see Supplementary Material ). This signifies that
here is no systematic error linked to these factors in channel-space anal-
sis. 

Fundamentally, combining data from equivalent channels across in-
ividuals implicitly assumes that equivalent channels probe equivalent
natomical volumes of the cortex. One possible explanation for why
ariability in array position has a substantially larger influence than
ariability in head size is due to correspondences between scalp posi-
ions and underlying anatomy. Tsuzuki et al. (2017) demonstrated us-
ng a cortical projection method that the 10-10 system is sufficient to
redict underlying macroanatomical cortical structures in infants from
irth to 2 years. This suggests that an array positioned on two differ-
nt sized heads (within a plausible anatomical range for a given age)
s likely to be overlying the same cortical area. In contrast, if an array
osition deviates from the group-average position, it is very likely to be
verlying (and, by implication, sampling) different regions of the cortex
o what the average array position would suggest. 

The effect of variability in array position appears to have a substan-
ial influence on peak node offset at the individual-level but its influence
s diminished at the group level. This exhibits the robustness of assum-
ng constant head size and array position (a fundamental assumption
mplied in channel-space analysis) at the group-level in fNIRS analyses.
his finding is consistent with findings reported by Blasi et al. (2014) ,
ho found high test-retest reliability of group-level oxy-haemoglobin

esponse in infants aged 4- to 12-months, but much lower reliability at
he individual-level. 

.3. Combinatorial analysis and the effect of group size 

In the combinatorial analysis, for each age and hemisphere, peak
ode offset decreases as group size increases; in other words, the con-
tant parameter results converge towards (but never meet) the subject-
arameter results as group size increases. We conclude that this decrease
hows that the effect of the variability in head size and array position be-
omes less evident as more individuals are included in each group. This
as significant implications for channel-space analyses, where head size
nd array position are also generally assumed constant. Subject parame-
er reconstruction approaches are likely the superior analysis approach,
ut their benefit is particularly evident for smaller group sizes. 

In all cases except for the left hemisphere at 12-months, the propor-
ion of mismatched cortical labels between the two processing streams
ecreases as group size increases. At 12-months in the left hemisphere,
here appears to be a broad focus that straddles the superior and mid-
le temporal gyri, which helps to explain how a mismatch in peak node
ortical label could have occurred at the full cohort size. 

Our results demonstrate that there is a weakening of the effect
f variability in head size and array position as group size increases.
hough our results suggest that assuming these parameters constant is
uestionable at the individual-level, the influence of variability in these
arameters (to the extent seen in our dataset) is weakened as group size
ncreases. This further supports our claim that channel-space fNIRS anal-
ses are robust to variability in these parameters in longitudinal infant
tudies at the group-level. Our analysis does not allow us to address the
roader question as to what number of participants is an appropriate co-
ort size for field-based fNIRS studies; this question is highly dependent
n the expected size of activation and other parameters of the experi-
ent in question. 

As we have been using infant-specific data, we cannot state whether
imilar results would be observed across different cohorts (e.g. adults
ith varying head sizes). However, given that the fundamental char-
cteristics of the problem (optodes manually coupled to a head) are
onsistent across all ages, it does seem likely that an increasing group
16 
ize will increase the robustness of the channel-space analysis, and that
his robustness would be further increased (particularly when the cohort
ize is small) when a subject parameter image reconstruction approach
s employed. In addition, this conclusion should be independent of the
tatistical analysis used; for example, a generalised linear model analysis
hould also benefit from employing subject parameter reconstruction. 

.4. The benefit of an image reconstruction approach 

Image reconstruction techniques are better suited to high-density ar-
ays that contain overlapping channels ( Boas et al., 2004 ; White, 2010 ),
articularly if they also include a range of source-detector separations,
hich allow depth discrimination: this form of image reconstruction is
nown as diffuse optical tomography (DOT) ( Lee et al., 2017 ). A re-
ent example of high-density DOT being applied in a field-based con-
ext is a study by Fishell et al. (2020) of Colombian children. A no-
able example of a high-density DOT study in infants was conducted by
rijia et al. (2020) using the same paradigm as was used in this present
tudy. 

An image reconstruction approach produces images inherently reg-
stered to the head model, allowing concentration changes to be visu-
lised on a model of cortical anatomy ( Yücel et al., 2017 ). Parcellation
tlases can be incorporated into the analysis of reconstructed images in
 similar fashion to how the AAL atlas was used in in this work, permit-
ing cortical labels to be attributed to nodes or voxels in the head model
hich enables the response in equivalent cortical areas to be compared
cross populations. 

In addition, using anatomical information present in the head
odel, reconstructed images can be registered to a common space to

e compared with data acquired from several complimentary func-
ional imaging modalities such as electroencephalography (EEG), mag-
etoencephalography (MEG), and fMRI. This can enable longitudinally-
cquired fNIRS data to be compared directly to fMRI data collected
rom child and adult populations, helping to bridge gaps in our under-
tanding of functional development. Our work represents a significant
tep towards enabling such comparisons for longitudinal infant popu-
ations, particularly those in field-based studies. Such comparisons be-
ween fMRI and fNIRS data collected with high-density arrays have been
onducted in adults (for example, ( Eggebrecht et al., 2014 )). 

Image reconstruction incorporates models of light transport in the
nalysis of fNIRS data ( Arridge and Cooper, 2015 ). Models of light trans-
ort have also been employed to infer a cortical label of activation with-
ut taking an image reconstruction approach, such as was performed by
erdue et al. (2019) . However, such an approach still confines statisti-
al inferences about functional activation to a discretised and arbitrary
hannel-space. 

The reconstruction of spatially-continuous images of concentration
hanges on the cortex removes the need to assume a given channel and
calp location is associated with a single cortical position. Constraining
nalysis to a discretised channel-space does not enable the intricacies of
he spatial characteristics of activation on the cortex itself to be inves-
igated. Image reconstruction approaches can enable the development
f longitudinal changes in the spatial distribution and focality of func-
ional responses to be studied, which we have begun to investigate in
his work. 

To our knowledge, Wijeakumar et al. conducted the only previous
ongitudinal image reconstruction study in a field-based setting with in-
ants in this age range that has been published ( Wijeakumar et al., 2019 ),
hough this study does not explicitly investigate longitudinal imaging of
nfants aged 12-months and under, and has far fewer participants than
he cohorts in our analysis. Our work therefore forms the foundation of
eld-based longitudinal image reconstruction in infants up to 12-months
f age. Improvements in infant image reconstruction approaches, build-
ng on the demonstration in this work, can help improve the localisation
rror and resolution of infant image reconstruction, but must also focus
n doing so in the context of a low-resource setting where acquiring
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ubject-specific MRI data, digitised optode positioning data and using
igh-density arrays may not be feasible. 

.5. Head modelling 

A model of head anatomy is required for image reconstruction. A
ead model would ideally be obtained from an individual’s own MRI
can so as to be subject-specific; however, this approach was not fea-
ible for the BRIGHT project. In the age range here, there are sev-
ral sources of age-appropriate MRI data. In this work, we have used
 head model built from structural data acquired and pre-processed
y Shi et al. (2011) which we aim to include in our group’s tool-
ox on Github ( www.github.com/DOT-HUB ). An MRI atlas for infants
ged 6-months was constructed by Akiyama et al. (2013) . For struc-
ural head models at several age points in the range in this work,
here exists data published in the Neurodevelopmental MRI Database
 Richards et al., 2016 ; Richards and Xie, 2015 ; Sanchez et al., 2012 ).
ur group has also published several models that are available via our
ebsite ( www.ucl.ac.uk/dot-hub ). 

In this work, we do not use age-specific head models. We conducted
 preliminary sensitivity analysis on forward modelling using array po-
ition data from five arbitrarily chosen infants at 5-months, and used
ge-appropriate models (from the Neurodevelopmental MRI Database)
o investigate the effect of longitudinal changes in anatomy as well as
rray position, head size, and cranial landmark positions on light trans-
ort. We found that the median variation in channel centre of mass as
 result of longitudinal anatomical changes for each array position was
.0 mm (median absolute deviation 1.1 mm), substantially smaller than
he effect of variability in array position (median 7.4 mm, median ab-
olute deviation 3.8 mm) and statistically significant ( p < 0.0001). The
ull results are shown in Supplementary Material . 

The level of influence of longitudinal anatomical changes on light
ransport must also be placed in the context of our array registration
ethod. Qualitatively, it can be seen in Fig. 4 that our method is a rea-

onable approximation of array position, and the data used to register
he array was extracted specifically from participants. However, given
hat we did not collect data using a digitised positioning system or em-
loy sophisticated photogrammetry methods, we have not been able to
onduct a quantitative assessment of our array registration method. The
rror in the sensitivity distribution resulting from the array registration
rocess is likely to be larger than the effect of longitudinal anatomical
hanges. 

Another benefit of using the same model across ages is that there
s an explicit one-to-one nodal correspondence regardless of how the
odel has been warped. This removes the need to register different head
odels to a common space, which itself would be liable to a degree of

rror. This one-to-one nodal correspondence was used to display group-
evel images in a common space across ages, as is shown in Figs. 5 , 6 ,
 , 9 and 11 . 

In addition, given that we employed a cortically-constrained recon-
truction method, we desired a cortical surface clearly displaying the
rincipal gyri and sulci, which was another factor affecting our choice
f head model. A more well-defined cortical surface could be extracted
sing the Shi et al. averaged data, which was accompanied by the reg-
stered AAL atlas, than was the case with the Sanchez et al. averaged
ata. 

No MRI data was available from a cohort of West African infants
o build a head model. It is unclear how the head model in this work,
erived from infants living in a high-income country, may bias our re-
ults when used to represent head structure of Gambian infants. This
s impossible to ascertain given the current lack of structural MRI data
rom this population, which may be difficult to obtain given the lack
f MRI units in West Africa, in particular high-field imaging systems
 Ogbole et al., 2018 ). In addition, we had no access to any individual-
evel data from infants at the ages under investigation. This underlines
he need for more publicly-available high-quality MRI data from infants
17 
n this age range, similar to the database of individual-level structural
riors presented by Collins-Jones et al. (2020) . 

.6. Future work 

This study validates channel-space fNIRS inferences drawn at the
roup-level, and helps bolster confidence in conclusions drawn from
revious fNIRS studies in longitudinal cohorts. However, as has been
utlined, an image reconstruction approach to analysing fNIRS data in
ts own right can be beneficial. While image reconstruction analyses are
till relatively rare in fNIRS, they are not excessively complex and are
ikely to become ubiquitous in the coming years. Several packages are
ow available that can undertake image reconstruction-based process-
ng (e.g. Homer3 ( https://openfnirs.org/software/homer/ ), NeuroDOT
 Eggebrecht and Culver, 2019 )). The tools we used in this work are
art of the DOT-HUB toolbox and are already available open-source
 www.github.com/DOT-HUB ). 

The image reconstruction pipeline demonstrated in this work incor-
orates models of light transport, enables anatomical and functional
ata to be related to one another, and enables the spatial characteristics
f activation to be investigated and understood. As such, we envisage
idespread use of image reconstruction in future publications of longi-

udinal infant fNIRS studies. 

. Conclusion 

Using an image reconstruction approach to analyse longitudinally-
cquired infant fNIRS data, we have found that inferences drawn from
roup-level channel-space fNIRS analyses are robust to the implicit as-
umptions of constant head size and array position. We found that vari-
bility in array position, not head size, is the dominant factor that
rives differences between channel-space and image-space analyses at
he group- and the individual-level. In addition, we have shown that the
nfluence of array position variability diminishes as group size increases.

e envisage that the use of image reconstruction in longitudinal infant
NIRS studies will become widespread to permit the incorporation of
natomical information in data analysis and has the potential to enable
he combination of functional data across modalities. 
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