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Abstract: Mobile user authentication acts as the first line of defense, establishing confidence in the
claimed identity of a mobile user, which it typically does as a precondition to allowing access to
resources in a mobile device. NIST states that password schemes and/or biometrics comprise the
most conventional user authentication mechanisms for mobile devices. Nevertheless, recent studies
point out that nowadays password-based user authentication is imposing several limitations in terms
of security and usability; thus, it is no longer considered secure and convenient for the mobile users.
These limitations stress the need for the development and implementation of more secure and usable
user authentication methods. Alternatively, biometric-based user authentication has gained attention
as a promising solution for enhancing mobile security without sacrificing usability. This category
encompasses methods that utilize human physical traits (physiological biometrics) or unconscious
behaviors (behavioral biometrics). In particular, risk-based continuous user authentication, relying
on behavioral biometrics, appears to have the potential to increase the reliability of authentication
without sacrificing usability. In this context, we firstly present fundamentals on risk-based continuous
user authentication, relying on behavioral biometrics on mobile devices. Additionally, we present an
extensive overview of existing quantitative risk estimation approaches (QREA) found in the literature.
We do so not only for risk-based user authentication on mobile devices, but also for other security
applications such as user authentication in web/cloud services, intrusion detection systems, etc., that
could be possibly adopted in risk-based continuous user authentication solutions for smartphones.
The target of this study is to provide a foundation for organizing research efforts toward the design
and development of proper quantitative risk estimation approaches for the development of risk-based
continuous user authentication solutions for smartphones. The reviewed quantitative risk estimation
approaches have been divided into the following five main categories: (i) probabilistic approaches,
(ii) machine learning-based approaches, (iii) fuzzy logic models, (iv) non-graph-based models, and
(v) Monte Carlo simulation models. Our main findings are summarized in the table in the end
of the manuscript.

Keywords: continuous user authentication; risk-based user authentication; quantitative risk estimation;
mobile devices; security vs. usability

1. Introduction

The ubiquitous use of smartphones and mobile phones has become an indispensable
aspect of our daily routine [1,2]. With an increasing number of people using smartphones
every year, their ease of use and advanced performance capabilities enable users to per-
form more sensitive and critical tasks, making these devices into attractive and profitable
targets for attackers. The authors in [1] provided a comprehensive survey on cybersecurity
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concerns in smartphones, while the authors in [2] presented a thorough classification of
cybersecurity threats on mobile devices. In this context, it is important to highlight the
importance of mobile user authentication which acts as the first line of defense, estab-
lishing confidence in the claimed identity of a mobile user, which it typically does as a
precondition to allowing access to resources in a mobile device [3–8]. NIST [9] states that
password schemes and/or biometrics comprise the most conventional user authentication
mechanisms used in mobile devices. In particular, password-based user authentication
methods (e.g., standard passwords, PINs, graphical passwords) have been used to verify
the identity of a mobile user for several decades. Nevertheless, nowadays it is no longer
considered secure or usable for the mobile user for various reasons [10–12]. For instance,
Zhang at al. [13] have identified that mobile users struggle to memorize and accurately
recall their passwords, especially when they are long enough to convey strong security.
Consequently, users usually set passwords that are easy to recall, making their mobile de-
vices vulnerable to various attacks such as dictionary, guessing, shoulder-surfing, smudge
and keylogger-based attacks [13,14]. On top of that, Abuhamad et al. state that a major issue
when implementing password-based user authentication is the underlying assumption of
having equal security requirements for all applications [13,14].

On the other hand, biometric-based user authentication has gained attention as it
appears to be able to enhance mobile authentication security without sacrificing usability,
as behavioral modalities can be gathered and utilized, unobtrusively, for authentication
purposes [11,12,15]. Biometric-based user authentication fall into two main categories:
(i) physiological biometric-based authentication, which utilizes mobile users’ human physi-
cal characteristics, also referred to as physiological biometrics, such as fingerprints, facial
traits, and hand geometries to authenticate a legitimate user; and (ii) behavioral biometric-
based authentication, which makes use of mobile users’ involuntary actions, also referred
to as behavioral biometrics, such as gait, and keystroke dynamics to validate their claimed
identity [16]. In the last decade, popular mobile device manufacturers have already started
embedding sensors, such as fingerprint readers, iris and face scanners, into their launched
smartphones and deploying physiological biometrics for user authentication purposes.
These are utilized as they appear to be secure since they are unique. Nevertheless, nowa-
days researchers have demonstrated that physiological biometric-based user authentication
mechanisms can be hacked easily with inexpensive equipment and relatively primitive
algorithms (e.g., using mobile users’ photos extracted from social media), making smart-
phones vulnerable to numerous attacks, including impersonation [17–20]. Alternatively,
the behavioral biometrics cannot be shared, copied, lost or stolen, and thus behavioral
biometric-based authentication mechanisms appear to be more secure and accurate [12].
On top of that, they authenticate users unobtrusively, based on their interactions with the
device, and thus, when efficiently deployed, address the security versus usability challenge
in mobile user authentication [3–7].

Furthremore, nowadays, continuous user authentication, relying on behavioral bio-
metrics, has been shown to have the potential to further improve mobile authentication
security without sacrificing usability (i.e., security and usability are often thought of as
being contradictory) [12,21–24]. More specifically, continuous user authentication mecha-
nisms have been proposed in the literature for use to continuously verify the user’s identity
during their entire interaction with the smartphone device [25]. Specifically, the verification
process of a user’s identity can be event-based, periodical (i.e., at fix intervals), or take place
randomly. This allows us to overcome the limitations of the conventional one-shot authenti-
cation, where authentication happens only at the beginning of the session and, afterwards,
any future changes and/or abnormalities in user identity/behavior remain undetected,
increasing the risk of sensitive information leakage and user’s privacy violation [12,14,23].

Besides, it is worthwhile mentioning that enhancing continuous user authentication
with the concept of risk-based authentication will lead to the following two benefits.
The first one is that it increases the efficiency of continuous user authentication by only
triggering the verification process for user re-authentication when it is actually required,
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minimizing the consumed resources. In particular, the verification process will be triggered
based on real-time high-risk scores which are estimated only when an abnormality on a set
of attributes has been detected (i.e., event-driven approach), instead of being triggered at fix
intervals or randomly. On the other hand, the second benefit coming along with risk-based
continuous authentication is the adaption of the user re-authentication levels autonomously
on-the-fly based on the apparent risks [12,26]. For instance, during user’s session, when the
real-time risk score is low (i.e., compared to a predefined threshold), the mobile user will
remain signed in. Nevertheless, when the risk score is medium, uni-modal authentication
(e.g., based on keystroke dynamics) will be required for re-authentication. Conversely,
when the risk score is high, then multi-modal authentication (e.g., based on keystroke
dynamics and voice) will be required for re-authentication to prove the claimed identity
of the user and remain signed in or, otherwise, a countermeasure action will be taken (i.e.,
device lock) [12,27]. Therefore, it is clear that accurate risk estimation (i.e., computation of
an accurate risk score of an action or event) plays a key role in risk-based continuous user
authentication as it might impact its overall usability and security [27,28].

In principle, the different approaches which have been proposed over the years
for risk estimation can be qualitative or quantitative [29]. Qualitative risk estimation
approaches have been widely used in several areas until recently. However, despite
appearing credible, existing qualitative approaches heavily rely on expert judgment and,
therefore, the risk assessment is subjective, rendering these approaches inappropriate
for use in real-world security solutions [30,31]. On the other hand, quantitative risk
estimation approaches have emerged as a new tendency, addressing the subjective nature
of qualitative risk estimation approaches, which is their major limitation, in order to
improve their accuracy and reliability, which are two key characteristics for risk-based
continuous user authentication on smartphones [32]. Nevertheless, so far, there has also
been a lack of suitable quantitative risk estimation approaches for risk-based continuous
user authentication for smartphones. Thus, more effort is required to investigate the
suitability and limitations of these approaches for use in such mobile user authentication
solutions. Therefore, this paper aims to give an extensive overview of existing quantitative risk
estimation approaches that could be possibly adopted in risk-based continuous user authentication
solutions for smartphones in order to provide a foundation for organizing research efforts toward
the design and development of proper quantitative risk estimation approaches to provide such user
authentication solutions. There is no doubt that selecting quality references is a crucial aspect
of writing a survey paper. The methodology that we used to gather high-quality references
to write this survey paper is as follows:

1. Before selecting references, we determined the scope of the survey paper, which is
to investigate existing quantitative risk estimation approaches that could be possibly
adopted in risk-based continuous user authentication solutions for smartphones.

2. Afterwards, we identified the most relevant databases and search engines, namely
Google Scholar, IEEE Xplore, ACM Digital Library, and ScienceDirect.

3. Then, we used appropriate keywords to find relevant references (i.e., quantitative risk
estimation, risk-based user authentication, continuous user authentication, behavioral
biometrics), also utilizing Boolean operators (AND, OR, NOT) to refine our search.
We also used advanced search options to further refine our search.

4. After that, we evaluated the quality of the references by: (i) looking for references that
were published in reputable peer-reviewed journals or conference proceedings; (ii)
checking the authors’ credentials and their affiliations; and (iii) looking for references
that were recent and relevant to our topic.

5. Finally, we organized the references by creating a spreadsheet to keep track of all
the references. Then, we analyzed each reference and identified the key findings
and themes. Afterwards, we created a table (which is presented in the end of our
manuscript), where we extracted from every reference the technique used, as well as
our main observations.
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Following the Introduction, this paper is organized as follows. In Section 2, we present
fundamentals of risk-based continuous user authentication for mobile devices. In Section 3,
we give an extensive overview of existing quantitative risk estimation approaches that
could be possibly adopted in risk-based continuous user authentication solutions. Finally,
the paper is concluded in Section 4.

2. Fundamentals of Risk-Based Continuous User Authentication Relying on
Behavioral Biometrics for Mobile Devices

Risk-based continuous user authentication, a method relying on behavioral biometrics,
has been shown to have the potential to further improve mobile authentication security
without sacrificing usability (i.e., security and usability are often thought of as being
contradictory) [12,21–23]. More specifically, risk-based continuous user authentication
mechanisms manage to continuously verify the user’s identity during their entire interac-
tion with the smartphone device, a task they perform based on a real-time risk score, as
depicted in Figure 1. In particular, when an abnormality in a set of attributes regarding
user’s behavior has been detected (i.e., event-driven approach), a real-time risk score is
estimated. If this risk score is above an acceptable threshold (i.e., high risk score), re-
authentication will be triggered. Re-authentication might rely on behavioral biometrics,
verifying the authenticity of the user unobtrusively without the user needing to respond to
an explicit authentication request.
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Summarizing, the benefits of risk-based continuous user authentication whn relying
on behavioral biometrics, they are as follows:

(i) to overcome the limitations of the conventional one-time authentication, in which
user authentication only occurs at the start of the session, and afterwards, any future
changes and/or abnormalities in user identity/behavior remain undetected;
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(ii) to increase the efficiency of user authentication by triggering the verification process
for user re-authentication only when it is actually required (i.e., real-time risk score
above predefined threshold), minimizing the consumed resources;

(iii) to adapt the user re-authentication levels (i.e., uni-modal or multimodal authenti-
cation) autonomously in an on-the-fly approach based on the apparent risks (i.e.,
real-time risk score);

(iv) to re-authenticate users unobtrusively, based on their interactions with the device (i.e.,
beharioural biometrics), and thus address the security versus usability challenge in
mobile user authentication.

However, it is worthwhile mentioning that, while behavioral biometrics have several
advantages when used for user authentication, there are also limitations and potential
risks that need to be taken into account. According to [11,24], behavioral biometrics are
subject to false positives/false negatives. This is because behavioral biometrics rely on
patterns of behavior to authenticate legitimate users, such as keystroke dynamics or mouse
movement patterns. However, these patterns can change over time or might be affected
by external factors such as environmental conditions, leading to false positives where
legitimate users are denied access [11,24]. Similarly, behavioral biometrics can also result
in false negatives, whereby unauthorized users are mistakenly granted access. This can
happen if an attacker is able to mimic the user’s behavior [11,24]. On top of that, behavioral
biometrics can also suffer from inconsistencies, such as when users are in a hurry, stressed,
or distracted, which can lead to variations in their behavior that are difficult to capture and
authenticate, leading again to false positives/false negatives. To overcome this limitation,
the authors in [11,24] state that it is crucial to maximize the accuracy of the deployed
algorithms. They additionally argue that since the user’s behavior and habits might change
over time, authentication systems should also be able to adapt to these changes [11,24].

Another concern is user’s privacy and how this concern might affect user’s accep-
tance. Some users may be hesitant to adopt behavioral biometrics for authentication, as
they may feel uncomfortable with the collection and use of their behavioral data for au-
thentication purposes [11,24]. There are also potential security risks associated with the
collection and storage of behavioral biometric data, as these data may be susceptible to
hacking or misuse. Therefore, it is important to weigh the benefits and risks of behavioral
biometric authentication and ensure proper security measures are in place to protect them.
However, behavioral biometrics (e.g., gait, keystroke dynamics) remain less sensitive than
physiological biometrics (e.g., fingerprints, iris) [11,24].

3. Quantitative Risk Estimation Approaches (QREAs)

This section gives an extensive overview of existing quantitative risk estimation ap-
proaches (QREA) found in the literature for: (i) risk-based user authentication on mobile
devices, and (ii) other security applications, such as user authentication in web/cloud
services, intrusion detection systems, etc., that could be possibly adopted in risk-based
continuous user authentication solutions for smartphones. The target of this study is to
provide a foundation for organizing research efforts toward the design and development
of proper quantitative risk estimation approaches for risk-based continuous user authenti-
cation solutions for smartphones. The reviewed quantitative risk estimation approaches
have been divided into the following five main categories, as also shown in Figure 2:
(i) probabilistic approaches, (ii) machine learning-based approaches, (iii) fuzzy logic mod-
els, (iv) non-graph-based model, and (v) Monte Carlo simulation models.
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3.1. Probabilistic QREA Approaches
3.1.1. Freeman et al. Approach

In 2016, Freeman et al. [33] presented the first public probabilistic approach to derive
a risk score for a login attempt in a web service in order to classify the login attempt
into normal or suspicious, strengthening password-based authentication in this way. The
underlying idea behind their proposed model is to exploit complementary data when a
user tries to login to a web service, beyond the validation of just their credentials. These
complementary data can be obtained from the HTTP session logs of authentication sessions
established between the web server and the user such as the IP address, timestamp, and
cookies. After this, they are compared against stored users’ login history data through a
carefully designed statistical approach.

The model proposed by Freeman et al. [33] calculates the risk score for a login attempt
in a web service S for a user u and a given feature set (FV 1, . . . , FVd), where d is the total
number of features characterizing a login attempt (e.g., IP address, timestamp, browser,
etc.) as follows:

Su(FV) =

 d

∏
k=1

p
(

FVk
)

p
(

FVk|u, legit
)
 p(u|attack )

p(u|legit )
, (1)

where p
(

FVk
)

is the probability of a feature value to appear in the global login history,

and p
(

FVk|u, legit
)

is the probability of a feature value to appear in the legitimate user’s
login history.

The user login probability p(u|legit ) derives from the proportion of the user logging
in as follows:

p(u|legit ) =
number o f user logins
number o f all logins

, (2)

On top of that, attack data might be also taken into consideration by the statis-
tical model of Freeman et al. [33] for more accurate login attempt classification (nor-
mal/suspicious). However, Wiefling et al. [27] highlighted that use cases without attack
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data are more common in real-world applications, especially for medium- and small-sized
websites that have limited storage and computing capacity. In this case, and consider-
ing that all users are equally likely to be attacked, Wiefling et al. considered the attack
probability as follows: p(u|attack ) = 1

|U| , where U is the set of users and u ∈ U [27].
Wiefling et al. [27] extended Equation (1) in order to include the attack probability for

the selected feature values:

Su(FV) =

 d

∏
k=1

p
(

attack
∣∣∣FVk

) p
(

FVk
)

p
(

FVk|u, legit
)
 p(u|attack )

p(u|legit )
(3)

where p
(

attack
∣∣∣FVk

)
comprises the total number of feature value occurrences in the failed

login attempts.
For their prototype implementation, Freeman et al. [33] chose the features values of:

(i) IP address and (ii) useragent string (an example of which is given in Figure 3). The
authors selected these particular features because they: (a) are attached to real users (and
not bots) as their primary goal is to improve detection of non-bot account compromise;
(b) admit natural hierarchies, and thus the authors will be able to apply certain techniques
to calculate the probabilities required by their statistical model in the presence of sparse
data; and (c) can be obtained easily from the LinkedIn dataset which the authors used to
build their model. Freeman et al. [33] highlight that, although in practice IP and useragent
are correlated, and thus the independence assumption that allows us to derive Equation (1)
does not hold in practice, this correlation is not strong enough to prevent the two features
from providing complementary signals to their model.
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3.1.2. Hidden Markov Model

Hidden Markov Models (HMMs) can be used for risk estimation in various applica-
tions, such as finance, healthcare, and security [34,35]. HMMs are a type of probabilistic
model that can be used to model sequential data, where the underlying states are hidden
and only observable through a set of outputs [36]. In the context of risk estimation, HMMs
can be used to model the underlying states of a system and the observations that result
from these states [34,35]. For example, in a security application, the states might represent
different levels of risk (e.g., low, medium, and high), while the observations might be the
sensor readings or other inputs that are used to estimate the risk level [34,35].

Once an HMM is trained on historical data, it can be used to estimate the probability
of different risk levels in a way that accounts for the current set of observations [34,35]. This
can be useful for real-time risk assessment and decision making in various applications.
One advantage of using HMMs for risk estimation is that they can handle sequential data
and incorporate temporal dependencies between observations [36]. Additionally, HMMs
can handle missing or incomplete data, making them robust to noisy or imperfect sensor
readings [36]. Overall, HMMs can be a powerful tool for risk estimation in various applica-
tions as they provide a flexible and probabilistic framework for modeling complex systems
and making real-time predictions based on incomplete and uncertain information [34,35].
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Arnes et al.

Arnes et al. [35] proposed the use of a real-time risk assessment approach for intrusion
detection systems based on information derived from network sensors. In their proposed
risk assessment method, the risk was dynamically evaluated using Hidden Markov Models
(HMMs). In this way, their proposed mechanism managed to handle the data from sensors
with a different degree of trustworthiness. The authors defined the degree of trustworthi-
ness of a sensor in terms of its false positives and false negatives. The main advantage of
their study is that enables data aggregation from various sensors with different weighting
according to their trustworthiness. By using HMMs, Arnes et al. [35] are able to identify the
most possible state probability distribution of monitored objects, considering the degree of
trustworthiness of the IDS. Regarding the types of sensors employed in their monitoring
architecture, the authors assume that they can provide standardized output as required by
the model parameters.

Arnes et al. [35] considered two main entities in their system: (i) the sensor, which can
be any information-gathering device and/or program, such as virus detectors, honeypots,
logging systems, network sniffers, etc., which are used to collect information regarding the
security state of monitored objects; and (ii) the agent, which is a computer program that
can perform a certain degree of autonomous actions and whose its main task is the sensor
data collection and aggregation. These sensor data derive from a set of sensors that monitor
a set of objects to perform real-time risk assessment. As such, Arnes et al. [35] propose
a multi-agent system architecture consisting of multiple agents that monitor objects in a
network using sensors. In such networks, agents have the capabilities to communicate and
cooperate with other agents. Arnes et al. [35] selected the multi-agent architecture for its
scalability and flexibility, as well as for supporting distributed automated responses.

In this study, O = {o1, o2, . . .} is the set of objects that an agent monitors. This set
of objects represents the part of the network that the agent is responsible for, and the
security state of each object is described using discrete-time Markov chains. Assuming
that each object consists of N states, denoted as S = {s1, s2, . . . , sN}, the security state
of an object is not constant. On the contrary, it changes over time, moving between the
states in S. Thus, the sequence of an object’s states is denoted as X = x1, x2, . . . , xT , where
xt ∈ S is the object’s security state at time t. For the purpose of their study [35], Arnes et al.
considered that the object’s state space can be represented by a general model consisting of
three states: (i) Good (G), (ii) Attacked (A) and (iii) Compromised (C), e.g., S = {G, A, C}.
State G indicates that the object is running securely and that it is not subject to any kind of
attack. The authors assume that objects are constantly vulnerable to attacks, even in state
G, and that when an attack is initiated, the security state of this object will move from G to
A. Thus, state A indicates that the object is subject to an ongoing attack, which probably
affects its general behavior regarding security. Finally, state C indicates that the object has
been successfully compromised by an attacker, being subject to any kind of confidentiality,
integrity and/or availability breaches. Afterwards, Arnes et al. [35] modeled the objects
using HMMs, defined by λ = {P, Q, π}, where

P =
{

pij
}

is the state transition probability distribution matrix for object o, where
pij represents the probability that object o will transfer from state si into state sj next,
denoted as pij = P

(
xt+1 = sj

∣∣xt = si
)
, 1 ≤ i, j ≤ N. To be able to estimate P for real-life

objects, the authors state that they might use either statistical attack data from production
or experimental systems or the subjective opinion of experts. However, the deployment of
learning algorithms may give a better estimate of P over time [35].

Additionally, Q =
{

qj(l)
}

is the observation symbol probability distribution matrix
for object o in sj, whose elements are qj(l) = P(yt = vl |xt = si), 1 ≤ j ≤ N, 1 ≤ l ≤ M.
Arnes et al. [35] considered qj(l) in Q as the probability that a sensor will send the ob-
servation vl at time t, given object o in sj at t. Consequently, Q actually indicates the
sensor’s trustworthiness, i.e., sensor’s false-positive and false-negative effects on the agents’
risk assessments.
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Finally, π = {πi} is the object’s o initial state distribution. Hence, πi = P(x1 = si) is
the probability that si was the initial state of o.

Afterwards, Arnes et al. [35] constructed their quantitative risk assessment approach
following the terminology used in [37]. According to [37], risk was measured in terms
of consequences and likelihood. In particular, a consequence was that the outcome of an
event and could be qualitative or quantitative, while the likelihood was a description of
the probability of that event to happen. To perform dynamic risk assessment, the authors
needed to map C : S → R , describing the expected cost for each object due to loss of
integrity, confidentiality, and availability. Then, the total risk Rt for an object at time t is
defined as:

Rt =
N

∑
i=1

Rt(i) =
N

∑
i=1

γt(i)C(i) (4)

where γt(i) is the probability that object o is in security state si at time t, and C(i) is the
associated cost value.

In order to perform real-time risk assessment for an object o, the agent that is respon-
sible for this object has to dynamically update the object’s state probability γt = {γt(i)}.
Given an observation yt, and the HMM λ, Arnes et al. [35] proposed a particular algorithm
(i.e., Algorithm 1 in [35]) based on which the agent can update the state probability γt of an
object. The complexity of the algorithm is O(N2).

To illustrate the theory, Arnes et al. [35] deployed a typical home office network (HON)
and performed a real-time risk assessment on it. The typical home office network consisted
of a laptop using WLAN, a cell phone connected to the laptop using Bluetooth, a stationary
computer with disk and printer sharing, and an Internet router/WLAN access point (AP).
The AP was considered to be equipped with a network monitoring sensor that monitored
traffic between the internal hosts (a network IDS) and the outside network, while each of
the objects (hosts) in the HON was equipped with a sensor that produced and processed
log files and checked system integrity (i.e., a host IDS).

Overall, Arnes et al. [35] introduced an HMM-based approach for assessing risks in
real-time. The approach involves consolidating data from various sensors and assigning
different weights to each sensor based on reliability. The proposed model operates in
discrete time and depends on the periodic transmission of sensor data, which necessitates
the sampling of alert information. To make the method more practical for use in real-
world scenarios, Arnes et al. [35] suggested further development using continuous-time
models in order to be able to handle highly variable alert rates from multiple sensors.
Furthermore, Arnes et al. [35] proposed extending this approach to a multi-agent system
with automated response capabilities, enabling agents to evaluate and respond to the risk
level for several objects. Their proposed risk assessment showed promising results (i.e.,
false-positive and false-negative rates), and it could be the basis for automated response
IDSs. However, more mechanisms need to be deployed and combined to provide a system
that will be able to relate detected security incidence to an appropriate response based on
the underlying risk assessment model [35]. The authors give some indications on how their
study can be extended into a multi-agent system with automated responses, where agents
are responsible for assessing and responding to the risk for several objects.

Chen et al.

On the other hand, Chen et al. [34] discussed the weaknesses of traditional risk as-
sessment methods in terms of the subjectivity of experts/assessors and inaccuracy of
vulnerability detection, leading to the obtention of non-quantitative and unreliable results,
proposing instead an approach for quantitative risk assessment based on software behavior
using HMMs. Their proposed system architecture is depicted in Figure 4. Chen et al. [34] fol-
lowed a similar approach as Arnes et al. [35], with the difference being that Chen et al. [34]
considered four security states, namely Low (L), General (G), Medium (M) and High (H),
denoted as S = {s1, s2, . . . , sN}, where n = 4. In addition, Chen et al. [34] used Baum–
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Welch algorithm, which is the most widely used unsupervised learning algorithm in HMM
for dynamically updating the object’s state probability γt = {γt(i)}.
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Chen et al. [34] generated observable sequences from data derived from daily statistics
to train their HMM. Afterwards, they considered four hosts to assess the risk control level of
the system. Each host had set up the whitelist mechanism to identify if the called software
was or not trustworthy. In the case that is untrusted, the host continued to detect whether
the untrusted software had been successfully invoked. This test simulated the user’s
software calling behavior and randomly invoked trusted/untrusted software. The authors
suggested that their approach showed credible risk assessment results in a quantitative
way and can be applied in the actual risk assessment process in other applications.

3.1.3. D–S Evidence Theory

D–S Evidence Theory, also referred to as D–S Theory, which was proposed by Dempster
and extended by Shafer, is a probabilistic approach to reasoning under uncertainty that can
be used for various tasks, including risk assessment for various applications [38]. The D–S
evidence theory is relevant and useful for risk assessment and other applications due to its
following characteristics [38]:

• Ability to handle uncertainty: The D–S theory can handle uncertain and incomplete
information, making it useful in situations where traditional probability theory may
not be suitable.

• Incorporation of multiple sources of evidence: The D–S theory allows for the inte-
gration of evidence from multiple sources, even when they may be conflicting or
inconsistent, making it well-suited for situations where there are multiple sources
of information.

• Flexibility in representation: The D–S theory provides a flexible framework for repre-
senting uncertainty and making decisions based on evidence, making it adaptable to a
wide range of applications.

• Transparent reasoning process: The D–S theory provides a transparent reasoning
process that allows users to trace the origins of their beliefs and decisions.

• Robustness to outliers: The D–S theory is robust to outliers or noise in the data, making
it well-suited for applications where there may be inaccuracies or errors in the data.

Overall, the D–S evidence theory can be a valuable tool for risk assessment and
other applications in which uncertainty and multiple sources of evidence need to be taken
into account [38]. It provides a flexible and transparent framework for reasoning under
uncertainty, making it useful for a wide range of applications [38].

D–S evidence theory is based on the concept of belief functions, which are used to
represent the degree of belief or disbelief in a particular hypothesis or statement. Belief
functions can be combined using Dempster’s rule of combination, which considers the
degree of conflict or overlap between different belief functions. The resulting belief function
can then be used to calculate the final risk score for a given input. D–S theory is a commonly
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used tool in solving complex problems with uncertainties caused by ignorance [38]. In the
following, we introduce the part of D–S theory related to the online risk assessment model,
as has been proposed by Mu et al. [38].

The Frame of Discernment Θ is a finite hypothesis space consisting of mutually
exclusive propositions for which the information sources can provide evidence, while 2Θ

denotes its powerset [38]. Then, the mass function m, or also known as the Basic Probability
Assignment (BPA) is defined as follows:

m : 2Θ → [0, 1]

m(φ) = 0

∑
V⊆Θ

m(V) = 1
(5)

where φ is an empty set, m(V) is the proportion of all available and applicable evidence
that supports the claim that a specific element of the universal set X belongs to the subset
V. Subset V is called focal element of m when m(V) > 0.

Afterwards, Dempster’s Rule of Combination calculates the joint support contribution,
reducing uncertainties this way by combining different pieces of evidence together. The
rule is given by the combined mass function m = m1 ⊕m2 ⊕ . . .⊕mn, as follows:

m(φ) = 0

m(V) =
∑∩V.=V ∏1≤q≤n mq(Vj)
∑∩V. 6=φ ∏1≤q≤n mq(Vj)

(6)

where the combination operator ⊕ is called orthogonal summation [38].

Mu et al.

For their proposed online risk assessment model, Mu et al. [38] considered two impor-
tant notions: (i) the Risk Index (RI), and (ii) the Risk Distribution, as depicted in Figure 5.
According to Mu et al. [38], RI is the dangerous degree to a protected target. This risk is
caused by an intrusion scenario and it might be considered in three cases: (1) the probability
that an attack successfully compromises an asset of the system; (2) the probability that an
irregular behavior, detected by IDS, is an actual attack given the fact that only a true and ef-
fective attack is capable of causing a true threat to a protected target; and (3) the probability
that the severity caused by an attack, as attacks with different degrees of severity might
result in different threats and damages to a protected target. Figure 5 presents in detail the
factors that influence the RI in [38]. On the other hand, the Risk Distribution represents the
spectrum (i.e., thresholds) of the low, medium and high risk that a target can tolerate. The
Risk Distribution of a target is determined by the importance of the target for the whole
system. This value is usually evaluated by a subjective approach of an administrator [38].
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Their proposed online risk assessment model is presented in Figure 5. Their model
fuses five assessment factors (i.e., Alert Amount Ak, Alert Confidence Ck0, Alert type
number Bk, Alert severity Pr0, and Alert Relevance Score Rs0) to compute RI using D–
S evidence theory. In their proposed model, these factors are acquired from the alert
confidence learning, the alert verification and alert correlation. Meanwhile, the importance
of the target is taken into consideration for the determination of the target risk distribution.
Finally, the final risk score, which in the proposed model is the risk state of the target, can
be defined by the position of RI in the final overall risk distribution of the target.

Mu et al. [38] performed some experiments, deploying IDAM&IRS and Snort 2.0 IDS
on the subnet (xxx.71.75.130-xxx.71.75.180) in their laboratory that was connected to the
Internet to test and evaluating their proposed online risk assessment model. The authors
also installed Norton Internet Security 7.0 and BlackICE PC Protection on some hosts in
xxx.71.75.130-xxx.71.75.180. In their experiment, there were four types of network servers,
namely Http Proxy, Ftp, Web and Database in the subnet, while the main operating systems
included Windows 2000, Windows XP, Windows 2003 server, and Linux. According to their
results, the deployment of their proposed risk assessment model enabled IDAM&IRS to
tolerate IDS false positive alerts, establishing in this way the basis for effective intrusion
response decision making [38].

3.2. ML-Based RBA Models
3.2.1. Siamese Neural Networks

A Siamese Neural Network (SNN) is a group of neural networks that comprise two
or more identical subnetworks, as depicted in Figure 6. The term ‘identical’ means that
these subnetworks have the exact same configuration (i.e., similar parameters and weights).
On top of that, parameter updating is reflected across both subnetworks. Then, the SNN
extracts the feature vectors of the two or more subnetworks and, using a loss function,
outputs the similarity score of the two or more inputs by comparing their feature vectors.
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Figure 6. An example of a Siamese Neural Network (SNN).

Since, in most cases, the training of SNNs requires pairwise learning, cross entropy
loss cannot be used. Typically, triplet loss or contrastive loss are popular loss functions
used in training SNNs [38–41]. Triplet loss comprises a loss function in which there is an
anchor or baseline input that can be compared to a positive input (i.e., truth) and a negative
input (i.e., false) [42]. The main idea is that this loss function tries to minimize the distance
from the anchor or baseline input to the positive input and maximize the distance from the
anchor or baseline input to the negative input. To do this, it follows Equation (7):

L(A, P, N) = max
(
‖ f (A)− f (P)‖2 − ‖ f (A)− f (N)‖2 + a, 0

)
(7)

where a is a margin term used to “stretch” the distance differences between similar and
dissimilar pairs in the triplet, and f (A), f (P), and f (N) are the feature embeddings for the
anchor, positive and negative inputs [42].
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During the training process, an input triplet (i.e., anchor input, negative input, positive
input) is fed into the SNN model as a single sample. The aim of this is that the distance
between the anchor and positive inputs should be smaller than the distance between the
anchor and negative input [42], as depicted in Figure 7.
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On the other hand, the popular and commonly used nowadays loss function con-
trastive loss comprises a distance-based loss contrasted with the conventional error-prediction
losses [42]. This loss is used to learn embeddings in which two identical points will present
a low Euclidean distance, while two unidentical points will present a large Euclidean
distance [42]. To do this, it follows the following equation:

(1−Y)
1
2
(DW)2 + Y

1
2
{max(0, margin− DW)}2 (8)

where DW is the Euclidean distance:√
{GW(X1)− GW(X1)}2 (9)

where GW is the similarity score (i.e., output of SNN) for one image.
Compared to traditional neural networks as well as to other machine learning classi-

fiers, SNNs’ main advantage is that they are one-shot learning classifiers which means that
they can classify new classes of data without training the network again. This is because
they learn a similarity function, rather than classify entries based on particular features.
On top of that, they work well as an ensemble with the best or most efficient classifier.
Additionally, its learning mechanism is fairly different from conventional classification.
Indeed, simple averaging of the SNN output with the output of a conventional classifier
can perform much better compared to the average of two correlated supervised models [42].
SNNs are widely used in image and text similarity, as well as signature verification [38–40].
Regarding risk estimation, SNNs can potentially be used to estimate risk by comparing
features of different data points and identifying patterns that may indicate a higher or
lower risk [38–40]. For example, in financial risk assessment, Siamese networks could be
used to compare the features of different financial transactions and identify patterns that
may indicate fraud or high-risk transactions [38–40]. However, it’s important to note that
the effectiveness of SNNs for risk estimation would depend on the quality and relevance of
the input data, as well as the specific problem being addressed [38–40].

Acien et al.

The SNNs have been widely used for image classification or handwritten signature
verification in the literature. However, most recently SNNs have begun to be used for
behavioral biometric-based user authentication [38–40]. In particular, Acien et al. [40]
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developed their TypeNet model based on a Siamese Recurrent Neural Network (RNN) and
evaluated the effectiveness of keystroke dynamics as a behavioral biometric for authenticat-
ing 100 K users typing free-text, where the amount of data per user is limited, a common
scenario in free-text keystroke authentication. The authors utilized the Aalto University
keystroke database [40] in their experiments and obtained promising results with an equal
error rate of 4.8%, a result obtained using only 5 enrollment sequences and 1 test sequence
per user with 50 keystrokes per sequence for 1 K test users (a sample size comparable to
previous studies). When the number of test users was increased to 100 K with the same
amount of data per user, the performance degraded relatively by less than 5% equal error
rate compared to 1 K test users, demonstrating the potential for scalability to large numbers
of test users, which are representative of real-world security scenarios. According to the
authors, this is the largest free-text keystroke database collected, featuring more than 136 M
keystrokes from 168 K users.

To train the Siamese Recurrent Neural Network (RNN), Acien et al. [40] fed the
network with two inputs consisting of two free-text keystroke sequences from either the
same user or different users. During the training phase, the RNN learned to distinguish
between the pairs of free-text keystroke sequences and then transformed this information
into an embedding space. In this space, the embedding vectors (outputs of the RNN model)
will be close in proximity when both free-text keystroke sequences belong to the same
user (referred to as genuine pairs) and far apart when they do not belong to the same user
(referred to as impostor pairs). For this, Acien et al. [40] used a contrastive loss function
specifically defined for this task. This had been proposed by Taigman et al. [43] in 2014. If(

xi, xj
)

is a free-text keystroke sequences pair that is provided as input to the RNN model,
then, according to [43], the contrastive loss determines the Euclidean distance between the
model outputs (i.e., embedding vectors) as follows:

dE
(
xi, xj

)
= ‖ f (xi)− f

(
xj
)
‖, (10)

where f (xi) and f
(

xj
)

are the model outputs for the inputs
(
xi, xj

)
, respectively. The model

will learn to make this distance dE small (∼0) in case of a genuine input pairs and large (∼ α)
in case of impostor input pairs by computing the contrastive loss function L as follows:

L =
(
1− Lij

)d2
E
(
xi, xj

)
2

+ Lij
max2{0, α− dE

(
xi, xj

)}
2

(11)

where Lij is the label associated with every input pair:

Lij =

{
0, f or genuine pairs
1, f or impostor pairs

Additionally, α ≥ 0 a distance that represents the maximum margin between genuine
and impostor distances.

After training the RNN model, Acien et al. [40] tested their model, authenticating users
by comparing samples that belong to one of the users in the test set xg, with a sample xq
from either the same user (i.e., genuine match) or another user in the test set (i.e., impostor
match). Then, they computed the final test score (or similarity score) by averaging the
Euclidean distances dE between each embedding vector f

(
xg
)

and the embedding vector
f
(

xq
)

as follows:

score =
1
G

G

∑
g=1

dE
(

f
(
xg
)
, f
(
xq
))

(12)

where G is the number of enrollment samples per user. Considering that each user has a
total of 15 sequences (i.e., enrollment samples per user), the authors keep 5 sequences (i.e.,
5 genuine test scores) per user as test set and let G vary between 1 > G > 10 to evaluate the
performance as a function of number of enrollment sequences.
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It is important to highlight that Acien et al. [40] compared the performance of their
proposed model with state-of-the-art studies found in the literature and showed that
TypeNet performs more efficiently and effectively in terms of Equal Error Rate (EER) and
computational time. This is an important advance for behavioral biometric-based user
authentication and also demonstrates the potential use of SNN in risk-based user authenti-
cation based on behavioral biometrics. In particular, Equation (12), used by Acien et al. to
calculate the final test score (or similarity score), could be used to estimate the real-time
risk score when deploying risk-based user authentication on smartphones as the final test
score, a process which takes into consideration behavioral biometrics, such as free-text
keystroke sequences. This is similar to the risk estimation process in risk-based continuous
user authentication, which relies on behavioral biometrics for calculating the risk score, as
mentioned in Section 2.

3.2.2. Classification Algorithms

Classification algorithms comprise a large category of machine learning algorithms,
whose aim is to identify which of a set of categories a new observation belongs to. For
example, typical classification problem is to assign a certain email to the “spam” or “non-
spam” class, or, in our case, to assign an activity and/or event to the “low risk”, “medium
risk” or “high risk” class. Classification algorithms have been widely used in the literature
for identifying the risk associated with a particular event or action deploying risk-based
user authentication [22,27,44–49].

Misbahuddin et al.

In [49], Misbahuddin et al. proposed the design of a risk engine capable of analyzing
specific attributes of user’s past login records (i.e., IP address, geolocation, time zone,
login time, OS version, browser version, device type, and number of failed attempts) and
generating a proper pattern using classification algorithms to determine the risk score
every time the user sign-in. Their proposed risk engine combined three different machine
learning classification algorithms (i.e., Support Vector Machine (SVM), one-class SVM, and
Naïve-Bayes (NB) classification algorithms), as depicted in Figure 8.
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In their application [49], Misbahuddin et al. aim to classify whether a user that tries to
log in into the system is genuine or suspicious and trigger relevant actions, respectively.
According to their design, the SVM and NB classifiers are expected to output a probability,
and more specifically to output the probability of the user being fraudulent. On the
other hand, a one-class SVM classifier is expected to output a Boolean value (i.e., “True”
indicating that the user is genuine or “False” indicating that the user is suspicious). In
case that the output is “False”, Misbahuddin et al. propose the following Equation (13) to
estimate the probability of this user being suspicious, also known as a risk score:
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Risk score =
n

∑
i=1

userparametervaluei
× userparameterweighti

(13)

where,

userparametervalue =

{
0, i f user behavior exists in user’s past login records

1, i f user behavior does not exist in user’s past login records

After evaluating the impact that each user_parameter would have in determining
potential risk for their system, Misbahuddin et al. proposed the user_parameter_weight, as
appears in Table 1 (from least severe potential risk to most severe potential risk). Afterwards,
the Risk Engine combined the 3 different outputs from the 3 classifiers and assigned
different risk levels according to Table 2. Table 2 also presents the required further actions
that the user should perform based on the identified risk level.

Table 1. User parameter weights [49].

User Parameter User Parameter Weight

Browser version 1
OS version 2
Login time 3
IP address 4

Device type 5
No. of failed attempts 6

Geolocation 7
Time zone 8

Table 2. Additional authentication methods required based on the identified risk levels [49].

SVM and NB Classifiers Output
(i.e., Probabilities P)

One-Class SVM Output
(i.e., Risk Score S) Risk Level Action Required

(i.e., Authentication Method)

50 ≤ P ≤ 60 1 ≤ S ≤ 6 1 Security questions
60 < P ≤ 75 7 ≤ P ≤ 18 2 OTP token
75 < P ≤ 90 19 ≤ P ≤ 29 3 Graphical password
90 < P ≤ 100 30 ≤ P ≤ 36 4 Digital signature

Misbahuddin et al. [49] implemented their proposed mechanism using Android, java
and R programming. On top of that, they tested their scheme, modifying every time certain
features during user’s login. The authors provided valuable information regarding the
performance of their 3 classifiers [49]. In particular, they highlighted that, in order for
SVM and NB classifiers to be efficient, they need to be trained with sufficient data from
both classes (i.e., genuine user class and suspicious user class). In cases that this condition
cannot be assured and data of both classes may not be available, which is very frequent
in real-world applications, Misbahuddin et al. [49] proposed that researchers to deploy
a one-class SVM classifier. Finally, the proposed mechanism also ensured usability in
addition to device security as a genuine user is not required to perform multiple factors of
authentication methods to effectively prove their authenticity, while suspicious users must
perform various authentication methods depending on the risk level associated with their
action [49].

In [48], the authors tested and evaluated the performance of SVM, NB, Decision
Tree (DT), and k-NN; a set of the most popular classification algorithms for risk-based
authentication. These classification algorithms were trained and tested over the HuMIdb
dataset [50,51], which, to the best of authors’ knowledge, is the most recent and publicly
available dataset for behavioral user authentication. Afterwards, these classification algo-
rithms were evaluated in terms of: accuracy, precision, recall, and F1-score. It was noticed
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that, during the training process, generated models were used to become very closely
related to training data with certain training features and thus, perfect scores (i.e., 100%)
were achieved by the models. As such, derived from overfitted models, these evaluation
results cannot be considered reliable; on the contrary, they are strongly reliant and biased
towards specific features of the training data. Therefore, the classification algorithms tested
in this study [48] should not be considered as proper algorithms for deploying risk-based
user authentication mechanisms. To overcome the challenge of overfitting, the authors
considered the concept of novelty detection, training and testing the following novelty
detection algorithms: OneClassSVM, Local Outlier Factor (LOF), and KNN_average (i.e.,
KNN configured properly for novelty detection). All of them demonstrated a level of
high performance. To the best of authors’ knowledge, this was the first time that nov-
elty detection algorithms have been considered for risk-based user authentication. The
findings in [48,52] highlighted the advantages of one-class novelty detection algorithms,
presented in detail in Section 3.2.3, over popular machine learning classifiers for risk-based
user authentication.

3.2.3. Novelty Detection Algorithms

Smartphone device user authentication requires the ability to determine if a new
observation, such as a log-in from an unfamiliar location, belongs to the same distribution
as existing observations (i.e., is an inlier) or to a different distribution (i.e., is an outlier) [53].
The process of detecting such anomalies is referred to as novelty detection and is also known
as semi-supervised anomaly detection. This is because, in novelty detection, the training
data are not contaminated by outliers and the goal is to determine if a new observation is
an outlier, as illustrated in Figure 9 [53].
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In particular, risk-based user authentication, relying on behavioral biometrics, nor-
mally involves single-user smartphone devices where it is necessary to differentiate between
a known legitimate user and an unknown malicious user [52]. In this context, novelty
detection algorithms, also known as one-class classifiers [54–56], have gained interest
among researchers due to their potential advantages in user authentication based on be-
havioral biometrics. Antal et al. [57] compared the performance of one-class classifiers and
multi-class classifiers for keystroke-based user authentication on smartphone devices and
found that multi-class classifiers outperformed one-class classifiers, with a difference of
4% error rate. On the other hand, Gupta et al. [54] conducted a comprehensive review
of the state-of-the-art one-class classifiers and analyzed their collected dataset, before se-
lecting four classifiers for their IDeAuth system: Local Outlier Factor (LOF), Minimum
Covariance Determinant (MCD), Isolation Forest (IF), and one-class Support Vector Method
(SVM). Their selection criteria included the classifier’s efficiency for platforms with limited
computing power, diversity of the learning paradigm of the classifiers, nominal memory
consumption, and ability to handle similar sensory data. Their proposed scheme, IDeAuth,
achieved a Half Total Error Rate (HTER) of approximately 4% through decision-level fusion,
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with an improvement of approximately 1% versus the best-performing MCD classifier.
The HTERs for the MCD, LOF, IF, and SVM classifiers, trained with 20 Singular Value
Decomposition (SVD) components, were 5.25%, 6.89%, 7.28%, and 9.06%, respectively.
Shen et al. [58] used one-class SVM, Neural Network, and KNN-based one-class classifiers
for user authentication based on mouse usage patterns, reporting HTERs of approximately
8%, 15%, and 15%, respectively, on a dataset of 5550 mouse operation samples collected
from 37 subjects. On top of that, they also argued that one-class classifiers are more suitable
for user authentication in real-world applications [58].

Furthermore, according to [56], one-class classifiers, particularly the one-class SVM,
have been utilized to address a range of authentication challenges, including touch and
mouse dynamics recognition, smart-stroke, and face recognition. In [59], Antal et al.
developed an authentication model based on swipe gestures using four one-class classifiers,
including the Parzen density estimator, kNN_average, Gaussian mixtures method, and
Support Vector Data Description method. The swipe gestures and micro-movements of the
device were collected under a controlled environment while participants were completing
a psychological questionnaire. The kNN_average and Parzen density estimator achieved
the lowest mean Equal Error Rates (EER), i.e., 0.024 and 0.023, respectively, after combining
the decisions from multiple swipe gestures.

In fact, the main benefit of one-class novelty detection algorithms over other types of
ML algorithms, especially classification algorithms, is that for model training, they only
require genuine samples, and not samples from the impostors’ class. The fast progress in
the data acquisition quality of mobile computing devices, along with the general lack of
available data for behavioral biometrics, constitute novelty detection, a semi-supervised
method and suitable approach for risk-based user authentication relying on behavioral
biometrics. Classification algorithms, which are usually supervised models, are challenging
to use in real-world user authentication applications as there are not enough negatively
labeled samples available per user. In [48], the novelty detection algorithms, OneClassSVM,
Local Outlier Factor (LOF), and KNN_average, were considered for risk-based adaptive
user authentication and showed promising results. These algorithms outperformed popular
machine learning classification algorithms, such as k-NN, DT, SVM, and NB, each of which
demonstrated overfitting (accuracy: 10,000). In particular, KNN_average was accurate in
almost all cases (99%), followed by LOF and OneClassSVM (97% and 95%, respectively) [48].
In terms of precision, recall, and F1-score evaluation metrics, the KNN_average algorithm
demonstrated a slightly better performance compared to the OneClassSVM and LOF
algorithms [48].

Papaioannou et al.

Similar to the classification algorithms, the main idea is to create a formula based on
which the output of one or more novelty detection algorithms will be combined to give an
overall real-time risk score associated with an action or event. For instance, the authors
in [60] proposed the design of a Risk Estimation Agent (REA), as depicted in Figure 10,
which takes as inputs behavioral and contextual data of the user and their device (i.e.,
user profile and device profile), respectively, and as its outputs a real time risk score using
novelty detection algorithms. More specifically, firstly, it is intended that the proposed
REA component will perform data normalization to the input data (i.e., user profile and
device profile) to ensure that features of the input data with substantially large values
do not outweigh features with smaller values. The normalization process of the data
(i.e., Feature Normalization) occurs during every sampling period Ts [60]. During this
time, the Monitoring Component (MC), as depicted in Figure 10, updates both the user
profile and device profile, which are referred to as input data, and sends them to the REA
component. Afterward, the REA component employs the most efficient novelty detection
algorithm, selected from a set of algorithms, on the normalized input data to determine if
each entry into the normalized data is legitimate or malicious. Specifically, for each entry,
the algorithm will output either 0 for a legitimate user or 1 for a malicious user, resulting in
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a binary vector of length equal to the number of normalized entries. This vector is then fed
to the Risk Estimation Module, as depicted in Figure 10, which calculates the risk score, in
a continuous mode, for a given period of time TRS. An illustration of the periods Ts and
TRS is shown in Figure 11.
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Denoting the output (binary) vector of the novelty detection algorithms as yεRm × 1,
the risk score (i.e, P0(k)ε [0, 1]) in a period k (e.g., TRS, T2RS) can be calculated as
follows [7,60–63]

P0(k) =
∑m

i=1 yi

m
A (14)

where, A denotes the accuracy of the novelty detection algorithms. A is defined as fol-
lows [60]:

A =
TP + TN

TP + TN + FP + FN
(15)

where, as defined in all machine learning algorithms, the following terms are used to
describe the accuracy A of a model:

• True Positive (TP) refers to the number of positive instances (malicious users) that are
correctly classified.

• True Negative (TN) refers to the number of negative instances (legitimate users) that
are correctly classified.

• False Positive (FP) refers to the number of negative instances (legitimate users) that
are mistakenly classified as positive (malicious users).

• False Negative (FN) refers to the number of positive instances (malicious users) that
are mistakenly classified as negative (legitimate users).

Afterward, the calculated risk score will be sent to the Risk Level Decision Agent
(RLDA) component, as illustrated in Figure 10, for comparison against the risk level
thresholds stored in RLDA. The RLDA will then determine if the estimated risk score is low,
medium, or high [60]. Although the authors showed that the novelty detection algorithms
that they are going to use demonstrate promising results, their study lacks performance
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evaluation results for the whole REA component. The run-time and the computational
complexity of the whole REA component are of the utmost importance as they will run on
a smartphone device.

3.2.4. Bayesian Networks

According to NIST publication NISTIR 8286A [32], although using expert judgement
to estimate risk parameters brings significant value in risk assessments, the results of a
risk assessment may be more objective and accurate when they are based on information
known from prior events. Towards this direction, the deployment of Bayesian networks has
caught the attention of scholars [64] as Bayesian analysis includes methods for considering
conditional probability, namely the application of a distribution model and a set of known
prior data to help estimate the probability of a future outcome [32].

In particular, the use of prior knowledge, obtained from internal observations and
experiences from similar organizations, can significantly enhance the precision and relia-
bility of predictions, such as determining the probability of a significant event happening
or calculating the impact of that uncertainty on an enterprise’s objectives [32]. Similar
techniques can also be applied to estimate the probability of multiple conditions occurring
simultaneously (joint probability) or to calculate the probability of a particular outcome in
light of other external factors (marginal probability) [32].

Luo et al.

Luo et al. [65] proposed a Bayesian network intrusion intent analysis method based on
a Bayesian attack graph. Attack graphs provide powerful frameworks for risk assessments
by analyzing the network topology and vulnerabilities and then creating a solid representa-
tion of the attack paths that an attacker might follow to compromise network resources.
As can be observed, there is always uncertainty regarding attacker’s behavior, and thus
Bayesian networks become suitable approaches to model attack graphs for static and/or
dynamic risk assessments. Risk assessments, performed based on dynamic attach graphs
have caught the attention of scholarship as they account for evidence of compromise at
run-time, compared to risk assessments based on static attach graphs that considered the
security posture at rest. As such, risk assessments based on dynamic attach graphs have
shown themselves to be more efficient in helping system administrators to dynamically
react against potential threats [64,65]. In their paper, Luo et al. [65] proposed a Bayesian
attack graph model in order to estimate the probabilities of an attacker compromising
several networks; resources. To do so, firstly, they calculated the probability of atomic
attack using three evaluation indicators, namely vulnerability probability P(vi), attack cost
cost

(
Aj
)

and benefit bene f it
(

Aj
)
:

P
(

Aj
)
= min

(
P(vi)× bene f it

(
Aj
)

cost
(

Aj
) , 1

)
(16)

where
P(vi) =

8.22× AV × AC× PR×UI
10

× 100% (17)

Luo et al. [65] made use of parameters that were specified in the Common Vulnerability
Scoring System (CVSS) provided by the national vulnerability database (NVD) of the US
for quantification. CVSS provides comprehensive scoring parameters, an open scoring
framework, a combination of dynamic assessment and vulnerability dependencies between
attribute nodes, and quantification of vulnerability utilization [65]. According to the CVSS
quantification standard, Luo et al. [65] used the following four indexes to quantify the
vulnerability utilization probability P(vi), for a given vulnerability vi: (i) Access Vector
(AV), (ii) Access Complexity (AC), (iii) Privileges Required (PR) and (iv) User Interaction
(UI). The authors leveraged these data to make the results of their measurement more
precise and to eliminate the potential for bias due to a lack of measurement indicators [65].
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The CVSS quantification standard provides comprehensive coverage of vulnerability value
measurement, which the authors utilized to create a classification of impact indicators. By
assigning a lower score to indicators with limited impact and a higher score to indicators
with greater impact, they were able to shed light on the level of influence each indicator
has on network security. This method is illustrated in Table 3, which displays the specific
scores assigned to each indicator.

Table 3. CVSS indicator scores used by Luo et al. [65].

Indexes Measurements Score

AV Network (N) 0.85
Adjacent (A) 0.62

Local (L) 0.55
Physical (P) 0.20

AC Low (L) 0.77
High (H) 0.44

PR None (N) 0.85
Low (L) 0.62
High (H) 0.07

UI None (N) 0.85
Required (R) 0.62

Accordingly, and based on the CVSS, Luo et al. [65] considered that the attack cost
might be quantified using four indexes: (i) Shellcode Information (SI), (ii) Shellcode
Platform (SP), (iii) Operation Requirement (OR), and (iv) Information Requirement (IR),
as follows:

cost(Ai) = 1− (1− SI) ∗ (1− SP) ∗ (1−OR) ∗ (1− IR) (18)

The specific scores for SI, SP, OR, and IR are shown in Table 4, while the specific values
of bene f it

(
Aj
)

are given in Table 5.

Table 4. Attack cost index score used by Luo et al. [65].

Cost Measurements Score

SI Complete/Function/Null 0.1/0.3/0.7
SP Common/Special/Particular 0.15/0.35/0.6
OR Tool/Script/Manual/Corporation 0.1/0.25/0.45/0.7
IR Null/Regular/Configuration/Critical 0/0.2/0.55/0.8

Table 5. Attack benefit index score used by Luo et al. [65].

Measurements Score

Information leakage 0.3–0.55
Remote register 0.55–0.7
Authentication bypass 0.7–0.8
Limited access 0.85–0.95
Root access 1.0

Afterwards, the authors calculated the static reachability probability, which represents
the probability of each attribute node being accessible in the static network. This is deter-
mined by considering the joint conditional probability of the current node and its parent
node. That is, for Sj ∈ Stransition ∪ Starget, the calculation formula of the node Sj static
reachability probability is the following:

P1
(
Sj
)
=

n

∏
j=1

P
(
Sj
∣∣P(Sj

) )
(19)
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Finally, to compare the attack probability among various paths, the authors computed
the total reachability probability of a path as the product of the reachability probability
of each node in that path. The calculation equation for the total reachability probability
of APi is:

P(APi) = ∏ P(Si), Si ∈ APi (20)

Based on their experiments, the proposed study showed efficient results compared
to other similar works in the literature. The authors commented that this is because
they considered more evaluation indicators, and their data were derived from CVSS.
Furthermore, in addition to the value of the vulnerability, this study also considered the
cost and benefit of using the attack to obtain a more accurate vulnerability assessment
probability, which is more precise in the event of an actual network attack.

The authors in [64] emphasized the superiority of Dynamic Bayesian Networks (DBNs)
compared to basic Bayesian Networks (BNs) in the area of risk analysis due to DBNs’ ability
to model probabilistic data with consideration of temporal dependencies over time. Unlike
basic BNs, which can only show relationships between variables at a specific time or for a set
period, DBNs are capable of handling time-dependent risk assessments. For instance, when
used in risk-based user authentication, they can demonstrate changes and relationships
over time between a smartphone device’s current, past, and future states.

3.3. Fuzzy Logic

In the literature, there are many studies in risk assessment that apply Fuzzy Logic
with a focus on predicting forest fires, reducing risk in energy management projects, and
detecting anomalies in systems, but there are very few that focus on risk-based authenti-
cation for mobile devices. The purpose of this section is to investigate how fuzzy logic is
utilized in other fields for risk estimation and to assess its potential for use in risk-based
authentication for mobile devices. Fuzzy logic models incorporate human knowledge into
usable algorithms and use two main types of sets: (i) classic or crisp sets and (ii) fuzzy sets,
which can be defined by different membership functions. For instance, a classic set can be
defined by a membership function as follows:

µs(X) =
{

1 i f X ∈ S
0 i f X /∈ S

(21)

In particular, Equation (21) specifies the degree of membership of a sample point
to a crisp set S. For the crisp sets, a function of this type is also known as characteristic
function. On the other hand, in fuzzy sets which can be used to provide rational and
sensible clustering, there is likewise a degree of membership µs(X) ∈ [0, 1]. The main idea
is that every calculated risk belongs simultaneously to all different risk clusters (i.e., low,
medium, and high risk) with a different degree of membership. As such, the characteristic
cluster for each prefecture is the one with the greatest value of the membership function
µs(X) ∈ [0, 1] [45,66]. To generate different cases of Degrees of Membership depending
on the application and the problem that we intend to solve, there are several membership
functions that might be applied, with dissimilar shapes such as trapezoidal or triangular
membership functions [67].

A trapezoidal membership function comprises a special case of the following expres-
sion [68]:

µs(X) =



0 i f X < a
X−a
m−a i f X ∈ [a, m]
1 i f X ∈ [m, n]
b−X
(b−n) i f X ∈ [n, b]

0 i f X > b

(22)

An example of a trapezoidal membership function is given in Figure 12. For example,
in Figure 12, three different trapezoidal functions are illustrated, representing three different
expressions of low-, medium- and high-risk score, respectively. As such, every point has
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three “truth values”— one for each of the three functions. The vertical black line in the
image represents a particular estimated risk at the current moment and the three arrows
(truth values) represent the values of the three different functions for that particular point.
Since the red arrow (i.e., high risk) points to zero, this risk score may be interpreted as “not
high”; i.e., this risk score has zero membership in the fuzzy set “high score”. The orange
arrow (pointing at virtually 0.2) may describe it as “slightly medium” and the green arrow
(pointing at virtually 0.8) “fairly low”. Therefore, this risk score has 0.2 membership in the
fuzzy set “medium score” and 0.8 membership in the fuzzy set “low risk”. As a result, we
consider the estimated risk score to be low. The degree of membership assigned for each
fuzzy set is the result of fuzzification (i.e., the process of assigning the numerical input of a
system to fuzzy sets with some degree of membership).
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Figure 12. An example of the trapezoidal membership function.

In some cases, there is a need for a semi-form of the trapezoidal membership function
which is defined as [69]:

µs(X) =


0 i f X < a

X−a
m−a i f X ∈ [a, m]
1 i f X ∈ [m, n]

(23)

A triangular membership function comprises a special case of the following ex-
pression in Equation (24), while the semi-triangular membership function is given in
Equation (25) [68]:

µs(X) =


0 i f X < a

X−a
c−a i f X ∈ [a, c]
b−X
(b−c) i f X ∈ [c, b]

0 i f X > b

(24)

µs(X) =
{

0 i f X < a
X−a
c−a i f X ∈ [a, c]

(25)

In the application of forest fire prediction, Iliadis [69] states that, in practice, the
triangular membership function can be used only in the semi-form and that this is because,
in reality, there could not exist areas with more burned hectares (ha) than c and with
a lower degree of membership to the fuzzy set ‘forest fire risky area’. This is because
‘c’ is actually the peak of the burned areas in Greece (i.e., the center of the cluster with
the highest risk) and no other higher values than this can be considered. According to
the results in [69], the triangular and semi-triangular (an example of which is depicted
in Figure 13) membership functions performed better than the trapezoidal and semi-
trapezoidal membership functions. This was expected as the triangular and semi-triangular
membership functions identify clearer distinctions between the areas of highest risk. This
is a significant advantage compared to the performance of the trapezoidal and semi-
trapezoidal membership functions.
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Figure 13. An example of the semi-triangular membership function.

Membership functions are usually defined as triangle- (i.e., triangular, or semi-triangular)
or trapezoid-shaped (i.e., trapezoidal or semi-trapezoidal) curves. As such as, each value
of the membership functions will have a slope where the value is increasing and/or
decreasing, and a peak where the value is equal to 1 (which can have a length of 0 or
greater) [70]. Nevertheless, they can also be defined using a sigmoid function [71]. One
commonly used sigmoid function is the standard logistic function defined as:

S(x) =
1

1 + e−x (26)

The standard logistic function presents the following symmetry property:

S(x) + S(−x) = 1 (27)

From this, given the fact that we have 3 variables x, y, and z (peak values for low,
medium and high risk, respectively), it follows that:

(S(x) + S(−x))(S(y) + S(−y))(S(z) + S(−z)) = 1 (28)

Shang et al. [72] stated that fuzzy logic models can work as a complement to prob-
ability models, assessing risks in cases where there are insufficient data and incomplete
knowledge. According to them, fuzzy logic models are able to provide a framework where
human reasoning and imprecise data can contribute to efficient risk analysis [72] in various
environments including risk-based user authentication [48,73].

3.3.1. Haslum et al.

Haslum et al. [74] proposed an online risk assessment for distributed intrusion predic-
tion and prevention systems based on fuzzy logic. In particular, for the three different risk
levels (i.e., low, medium, high), the authors proposed trapezoidal membership functions
to define the “Low” and “High” values and a triangular membership function to define
“Medium” value as follows:

µL3(x) = trap(x,−0.4,−0.1, 0.1, 0.4)
µM3(x) = triang(x, 0.2, 0.5, 0.8)
µH3(x) = trap(x, 0.6, 0.9, 1.0, 1.4)

(29)

Furthermore, Haslum et al. [74] used a Hidden Markov Model (HMM) that captures the
interaction between the attacker and the network to model and predict the next step of a
potential attacker and evaluate their proposed fuzzy online risk assessment model. On
top of that, the interaction between various distributed intrusion detection systems and
the efficient integration of the various output are also achieved using an HMM. The main
novelty of their study is the design and development of Fuzzy Logic Controllers (one in
every IDS) to estimate the numerous risk(s) that are dependent on several other variables
based on the inputs from HMM modules and the DIDS agents. To establish the if-then
fuzzy rules for their proposed fuzzy logic model, the authors considered interviews with
security experts and network administrators. Nevertheless, their results demonstrate that
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the proposed online risk assessment for distributed intrusion prediction and prevention
systems based on fuzzy logic is very practical and highly effective in practice when it comes
to protection assets which are highly at risk of misuse and/or attacks [74]. In addition, their
implementation is very simple, while the developed system is easy to interpret [74]. The
authors are planning to design and develop adaptive fuzzy inference systems when some
preliminary data or knowledge related to network risk is available. On top of that, they are
aiming to examine the use of different fuzzy inference methods for several applications
and use cases [74].

3.3.2. Gusmão et al.

Last but not least, Gusmão et al. [75] proposed a cybersecurity risk analysis model
using fuzzy logic and fault tree analysis. Their proposed cybersecurity risk analysis model
includes five phases as depicted in Figure 14: (i) expert identification, (ii) understanding
the causes of possible attack scenarios, (iii) definition of criteria, (iv) fuzzy assessment and
finally, and (v) aggregation and ordering. Its main aim is to provide practical support for
controlling and evaluating cybersecurity attacks, including, for example, evaluations of the
consequences of a cyberattack and evaluations of the effects of a potential cyberattack, in
terms of some define criteria.
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Figure 14. The five phases of the proposed cybersecurity risk analysis model using fuzzy logic and
fault tree analysis [75].

Further, Gusmão et al. [75] utilized Fault Tree Analysis (FTA) to detect scenarios that
lead to hazards. The method they followed for conducting FTA is described in Table 6.
This structured analysis helped to identify key aspects and assess the vulnerability of
cybersecurity as well as the potential impact of cyberattacks. To demonstrate the usefulness
of the proposed model, Gusmão et al. [75] developed an example using three different
evaluation alternatives: a website, ERP, and e-commerce. They evaluated the consequences
of data dissemination, data modification, data loss or destruction, and service interruption
in terms of financial costs and time to restoration. The results of the model’s application
show its usefulness and suggest that e-commerce may be more vulnerable to cybersecurity
attacks compared to other websites or ERP, partially due to frequent operator access, credit
transactions, and user authentication issues.
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Table 6. Procedure for FTA [75].

Step Definition

Step 1 Define the system of interest, regarding the cyberattacks and other events as initial conditional causes of failure in
the security system.

Step 2 Define the top event for the analysis and specify the problem of interest that the analysis will address.

Step 3 Define the treetop structure. Determine the events and conditions (i.e., intermediate events) that lead most directly
to the top event, which in this case can be faulty network and fault IS.

Step 4 Explore each branch in successive levels of detail. Determine the events and conditions that lead most directly to
each intermediate event.

3.4. Non-Graph-Based
Gehani et al.

Gehani et al. [76] proposed a framework for systematic fine-grained response, which
is to be achieved by dynamically controlling the host’s exposure to perceived threats.
In particular, their proposed model, namely RheoStat, calculates a real-time risk score
representing the risk faced by a host based on the popular qualitative risk assessment [77,78].
As depicted in Figure 15, Gehani et al. [76] suggested that risk can be computed as a function
of: (i) the threats, (ii) their likelihood, (iii) the vulnerabilities, (iv) the safeguards, (v) the
assets and (vi) the consequences. Afterwards, they quantified each of these elements to
form a final equation for the overall real-time risk score.
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Figure 15. RheoStat: Real-Time Risk Management [76].

First of all, the authors defined the threat as a possible attack to any application or
system software that is running on the host and they considered it to be characterized by
an intrusion detection signature, denoted as T = {t1, t2, . . .}, where ta ∈ T represents a
host-based intrusion detection signature. Thus, ta will comprise an ordered set of events
S(ta) = {s1, s2, . . .}.

Then, the authors defined likelihood as the hypothetical probability of a threat to
actually occur and they considered a function µ in order to compute the likelihood of threat
ta occurring. Given the fact that µ depends on the history of systems events which are
relevant to this particular intrusion detection signature, if all events that have occurred are
denoted as E = {e1, e2, . . .}, then:

T (ta) = µ(ta, E
≺
∩ S(ta)) (30)

where
≺
∩ yields the set of all events that occur in the same order in each input set.

Next, the authors defined an asset as an item that has value to the system, and they
considered assets as data stored in the system, and denoted as O = {o1, o2, . . .} the set
of assets where oβ ∈ O. Then, the authors considered a set of objects A(ta) ⊆ O to be



Sensors 2023, 23, 2979 27 of 34

associated with each threat ta, and thus only objects oβ ∈ A(ta) could be harmed if threat
ta is successfully introduced.

Afterwards, the authors defined a consequence as a type of harm that an asset (i.e.,
data) might suffer if a threat actually occurs and they considered there to be three types of
consequences, namely loss of integrity i(oβ), confidentiality c(oβ), and availability a(oβ).
If the attack does not affect a certain consequence, then the respective value for this type
of consequence will be 0. Nevertheless, for oβ ∈ A(ta) to hold, all three values associated
with a single object cannot be 0 at the same time. Hence, the consequence of a threat ta is:

C(ta) = ∑
oβ∈A(ta)

i(oβ) + c(oβ) + a(oβ) (31)

In the following, the authors defined a vulnerability as a weakness in the system that
might result from an error in its design, implementation, or configuration, and they consid-
ered the set of vulnerabilities in their system W = {w1, w2, . . .}. Hence, W(ta) ⊆W repre-
sents the set of system weaknesses exploited by ta.

The authors then defined a safeguard as a mechanism that controls the exposure of
the system’s assets. In an operating system, the set of permission checks P = {p1, p2, . . .},
which is performed by the reference monitor and serves as a safeguard. As the reference
monitor mediates access to all objects, limiting a vulnerability’s exposure can be achieved by
denying the relevant permissions. The set Pwγ ⊆ P includes all the permissions requested
during the exploitation of vulnerability wγ. In a conventional reference monitor, the static
configuration either grants or denies access to a permission ph, represented by v(ph), with
a value of either 0 or 1. The active reference monitor can reduce the exposure of a statically
granted permission to v′(ph), a value in the range [0, 1]. This reflects the nuance that
results from evaluating predicates as auxiliary safeguards. Thus, if all auxiliary safeguards
are utilized, the total exposure to a threat ta is:

V(ta) = ∑
ph∈P̂(ta)

v(ph)× v′(ph)∣∣P̂(ta)
∣∣ (32)

where:
P̂(ta) = ∪

wγ∈W(ta)
P(wγ) (33)

Finally, the risk to the host is the accumulation of the risks caused by all the threats
it faces. The risk from a single threat is calculated by multiplying the likelihood of
the attack happening, the system’s exposure to the attack, and the cost of the attack’s
consequences [76,79]. Hence, the total risk faced by the system is:

R = ∑
ta∈T

T (ta)× V(ta)× C(ta) (34)

Gehani et al. [76] state that, in order to effectively manage the risk posed to the system,
its level must be continuously monitored at all times. If the risk surpasses the tolerance
level of the host, the system’s security needs to be strengthened. Conversely, if the risk
decreases, the restrictions can be loosened in order to enhance performance and usability.
The risk to a system can be decreased by reducing the exposure of vulnerabilities through
the implementation of auxiliary safeguards before granting a permission. Additionally, if
the threat decreases, the restrictive permission checks can be relaxed.

Gehani et al. [76] developed and tested a prototype in Sun’s Java Runtime Environment
(version 1.4.2), running on Redhat Linux 9 (with kernel 2.4.20). The utility of their proposed
framework is illustrated with a set of attack scenarios in which the risk is managed in real-
time and results in the attacks being contained [76]. This is very promising for estimating
the real-time risk score when deploying risk-based user authentication on smartphone. The
timely and accurate risk estimation (i.e., computation of an accurate risk score of an action



Sensors 2023, 23, 2979 28 of 34

or event) plays a key role in risk-based continuous user authentication as it might impact
its overall usability and security.

3.5. Monte Carlo Simulation

Monte Carlo Simulation (MCS) is a robust simulation model for risk assessment that
calculates the risk scores of numerous possible scenarios, taking into account the many
random variables that play crucial roles in cybersecurity risks [32,45]. MCS is practical
and can be easily performed on a standard personal computer [30]. The model involves
using a conventional computer to generate a large number of scenarios based on randomly
sampled probabilities as conventional inputs. For each scenario, MCS generates specific
values for each unknown variable. These values are then used in a formula to calculate an
output for each scenario. This process is typically repeated for thousands of scenarios.

Consequently, MCS is able to generate a comprehensive probability distribution for
risk scores, providing accurate results. According to NISTIR 8286A [32], the simulation
results can be easily interpreted through visualization on a graph, such as a histogram. The
MCS method reduces subjectivity by simulating the random behavior of a system through
a set of experiments, as opposed to relying on expert judgement [32,80]. While it requires
high computing power, the growing availability of high-speed computers has made the
MCS increasingly popular. The main advantage of the MCS is that it is able to work with
large and complex systems. Moreover, MCS can manage the probabilistic behavior of
several inputs to the system, which in the analytical technique are supposed to be constant
values [80]. This is very promising for the risk estimation process in risk-based continuous
user authentication that relies on behavioral biometrics for calculating the risk score, as
the overall real-time risk score takes into consideration large and complex input data (i.e.,
behavioral biometrics, such as free-text keystroke sequences).

4. Conclusions

Risk-based continuous user authentication, relying on behavioral biometrics, has been
shown to have the potential to further improve mobile authentication security without
sacrificing usability (i.e., security and usability are often thought of as being contradic-
tory) [12,21–23]. More specifically, risk-based continuous user authentication mechanisms
manage to continuously verify the user’s identity during their entire interaction with the
smartphone device based on a real-time risk score. In particular, when an abnormality on a
set of attributes regarding user’s behavior has been detected (i.e., event-driven approach),
a real-time risk score is estimated, and if this risk score is above an acceptable threshold
(i.e., high risk score), re-authentication will be triggered. It is clear that accurate risk esti-
mation (i.e., computation of an accurate risk score of an action or event) plays a key role
in risk-based continuous user authentication as it might impact its overall usability and
security [27,28].

In principle, the different approaches, proposed over the years, for risk estimation
can be qualitative or quantitative [29]. Qualitative risk estimation approaches have been
widely used in several areas until recently [81]. However, despite their apparent rationality,
current qualitative approaches rely heavily on expert intuition, resulting in subjective
risk assessments. This makes them unsuitable for practical security solutions in real-
world scenarios [30,31]. On the other hand, quantitative risk estimation approaches have
emerged as a new tendency, addressing the subjective nature of qualitative risk estimation
approaches and improving accuracy [32]. Nevertheless, so far, there is a lack of suitable
quantitative risk estimation approaches for risk-based continuous user authentication on
smartphones. Therefore, in the context of this study, we present an extensive overview
of existing quantitative risk estimation approaches (QREA) found in the literature not
only for risk-based user authentication on mobile devices, but also for other security
applications such as user authentication in web/cloud services, intrusion detection systems,
etc., that could be possibly adopted in risk-based continuous user authentication solutions
for smartphones. The target of this study was to provide a foundation for organizing
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research efforts toward the design and development of proper quantitative risk estimation
approaches for risk-based continuous user authentication solutions for smartphones. The
reviewed quantitative risk estimation approaches have been divided into the following
five main categories: (i) probabilistic approaches, (ii) machine learning-based approaches,
(iii) fuzzy logic models, (iv) non-graph-based model, and (v) Monte Carlo simulation
models. Table 7 summarizes our findings.

Table 7. Taxonomy of Quantitative Risk Estimation Approaches (QREAs).

Reference Used Technique Observations
Platform

Smartphone Other

Freeman et al.
[33] Probabilistic

Proposed to estimate a risk score for a login attempt in a web
service to classify the login attempt into normal or

suspicious, strengthening this way password-based
authentication. Freeman et al. approach showed to be the

most suitable for categorical data (i.e., IP address and
useragent) for scalable and practical RBA solutions that can

be used in large-scale online services.

x

Arnes et al. [35]
Probabilistic;

Hidden Markov
Model

Proposed to estimate a real-time risk score approach for
intrusion detection systems based on observations from

network sensors, showing promising results. It can be the
basis for automated response IDSs

x

Chen et al. [34]
Probabilistic;

Hidden Markov
Model

Proposed to evaluate system risk based on software behavior
using HMMs. The approach has demonstrated credible

results for risk assessment in a quantitative manner and can
be utilized in the actual risk assessment process for various

applications.

x

Mu et al. [38] Probabilistic;
D–S Evidence

Proposed for online risk assessment of intrusion scenarios.
The deployment of the proposed risk assessment model
enables IDAM&IRS to tolerate IDS false positive alerts
setting the foundation for effective intrusion response

decision-making.

x

Acien et al. [40]
ML-based;

Siamese Neural
Networks

Proposed for keystroke dynamics behavioral biometric to
effectively authenticate 100 K users typing free-text, when

the amount of data per user is very limited: a common
scenario in free-text keystroke authentication. Demonstrated

efficient performance in terms of EER and computational
time. Demonstrated potential use of SNN in risk-based user

authentication based on behavioral biometrics.

x

Misbahuddin
et al. [49]

ML-based;
Classification
Algorithms

Proposed to determine the risk score every time the user
sings-in in a web application. Demonstrated promising

results in terms of effectively classifying the user as genuine
or suspicious while ensuring usability. The authors

deployed 3 classifiers, namely SVM, one-class SVM, and NB,
and suggested that one-class SVM classifier is more efficient
in real-world applications where there is not enough data for

both classes (i.e., genuine and suspicious).

x

Papaioannou
et al. [48]

ML-based;
Novelty Detection

Algorithms

Proposed to estimate a real-time risk score in risk-based user
authentication for smartphone devices. The deployed

novelty detection algorithms demonstrated
high-performance evaluation results. However, performance

evaluation results of the whole REA component were
not provided.

x
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Table 7. Cont.

Reference Used Technique Observations
Platform

Smartphone Other

Luo, Z. [65]
ML-based;

Dynamic Bayesian
Attach Graph

Efficient results compared to similar works of research in the
literature. The used data were derived from CVSS standard.

In addition to the value of the vulnerability, it also
considered the cost and benefit of the attack to obtain a more
accurate vulnerability assessment probability, which is more
precise given an actual network attack. Ideal for handling

time-dependent risk assessments, for instance when they are
used in risk-based user authentication, they are able to
present changes over time and relationships between a

smartphone device’s current, past or future states.

x

Iliadis L.S. [69] Fuzzy Logic

Proposed for forest fire prediction. Suggested that the
triangular and semi-triangular membership functions

performed better than the trapezoidal and semi-trapezoidal
membership functions.

x

Shang et al. [72] Fuzzy Logic

Suggested that fuzzy logic models can serve as a
complementary approach to probability models, particularly
in cases where data are limited and knowledge is incomplete.
Fuzzy logic models provide a framework that allows human
reasoning and imprecise data to contribute to efficient risk

analysis in various applications, including risk-based
user authentication.

x

Haslum et al.
[74] Fuzzy Logic

Proposed for distributed intrusion prediction and
prevention systems. Demonstrated to be very practical and
highly effective in practice when it comes to protect assets

which are highly at risk of misuse and/or attacks.

x

Gehani et al.
[76]

Non-Graph-based;
Addition,

Multiplication &
Division

Proposed for achieving a systematic, fine-grained response
by dynamically managing a host’s exposure to perceived

threats. The approach has been shown to be highly effective
in a series of attack scenarios, where risk is managed in

real-time, leading to the containment of attacks.

x

Goerdin et al.
[80]

Monte Carlo
Simulation

Capable of handling intricate and substantial systems. Able
to regulate the uncertain behavior of multiple inputs to the

system, which are considered constant values in
analytical methods.

x

As future research, we plan to take into consideration the outcome of this study, in
terms of the strengths and weaknesses of the examined QREAs, and design and develop
reliable and efficient quantitative risk estimation approaches for risk-based continuous
user authentication solutions for smartphones. Finally, the developed risk estimation
approaches will be evaluated based on their computational cost, communication overhead,
and storage overhead when integrated into a risk-based continuous user authentication
mechanism running on a smartphone device.
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