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Abstract
Characterizing ontogenetic changes across the lifespan is a crucial tool in understanding neurocognitive functions. While age-related 
changes in learning and memory functions have been extensively characterized in the past decades, the lifespan trajectory of 
memory consolidation, a critical function that supports the stabilization and long-term retention of memories, is still poorly 
understood. Here we focus on this fundamental cognitive function and probe the consolidation of procedural memories that underlie 
cognitive, motor, and social skills and automatic behaviors. We used a lifespan approach: 255 participants aged between 7 and 
76 years performed a well-established procedural memory task in the same experimental design across the whole sample. This task 
enabled us to disentangle two critical processes in the procedural domain: statistical learning and general skill learning. The former is 
the ability to extract and learn predictable patterns of the environment, while the latter captures a general speed-up as learning 
progresses due to improved visuomotor coordination and other cognitive processes, independent of acquisition of the predictable 
patterns. To measure the consolidation of statistical and general skill knowledge, the task was administered in two sessions with a 
24-h delay between them. Here, we report successful retention of statistical knowledge with no differences across age groups. For 
general skill knowledge, offline improvement was observed over the delay period, and the degree of this improvement was also 
comparable across the age groups. Overall, our findings reveal age invariance in these two key aspects of procedural memory 
consolidation across the human lifespan.
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Significance statement

Consolidation is a critical function responsible for the stabilization and long-term retention of memories. Here, we tested the consoli
dation of procedural memories, which underlie skills and automatic behaviors, using a lifespan approach. In contrast to the age- 
variant lifespan trajectory of procedural learning, our results revealed age-invariant procedural memory consolidation across the 
lifespan. Thus, procedural learning and consolidation seem to follow distinct developmental curves in neurotypical individuals. 
These findings suggest at least partially different neural underpinnings of learning versus consolidation and will likely stimulate 
future neuroimaging research and theory development of memory.

Introduction
Identifying age-related changes in cognitive functions across the 
human lifespan is a crucial step in understanding brain develop
ment and developing more efficient diagnostic tools and interven
tions for developmental delays and decline in old age. Substantial 
research has focused on characterizing how cognitive functions 
change across the lifespan. The largest body of evidence comes 
from studies comparing the cognitive performance of typically 
two to four age groups. There are comparably fewer large-scale, 

cross-sectional, or longitudinal studies that track performance 
from childhood to older adulthood (i.e. across the lifespan) using 
the same task. These large-scale studies, however, are essential 
for a better understanding of cognitive changes across the life
span as they control for a range experimental and analytical fac
tors that cannot be controlled when lifespan trajectories are 
inferred based on a diverse set of individual studies. Combined 
evidence from these different study approaches reveals markedly 
distinct lifespan trajectories depending on the cognitive function 
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of interest. For example, aspects of executive functions (1, 2), 
working memory (3–5), autobiographical memory (6), and episodic 
memory (7, 8) have been shown to follow an inverted U-shape tra
jectory, with continuous maturation during childhood, a peak 
performance in young adulthood, and a deterioration in older 
adulthood. In contrast, language acquisition, general skill 
learning, and statistical learning—the ability to extract and 
learn predictable patterns of the environment—seem to peak 
during childhood, followed by a decline in adulthood (9–11). 
Furthermore, certain cognitive functions might remain intact lat
er in life as well, such as automatic processes of memory retrieval 
(12). While our knowledge on the age-related changes in learning 
and memory functions has greatly expanded in the past decades, 
the lifespan trajectory of memory consolidation—a critical func
tion that is responsible for the stabilization and long-term reten
tion of memories—is still poorly understood. Here we focus on 
this fundamental cognitive function and probe the consolidation 
of memories acquired via statistical learning using a lifespan 
approach.

Statistical learning is a crucial aspect of life from infancy to old 
age as it enables us to extract complex probabilistic regularities 
embedded in the environment, allowing us to adapt to our sur
roundings throughout the human lifespan (13–17). Through ex
tensive practice, statistical learning contributes to the 
acquisition of automatic behaviors, such as skills and habits, 
which are rooted in procedural memory (18–21). The developmen
tal trajectory of statistical learning has been described with three 
different models (22). The age-invariant model suggests no devel
opmental changes across the lifespan (23), based on studies show
ing comparable learning performance in children and adults (e.g. 
24), and based on results showing that statistical learning is re
lated to brain regions that mature early, such as the striatum 
(23). The other two models propose that statistical learning varies 
as a function of age. The inverted U-shaped model suggests a 
gradual improvement over childhood and adolescence, with the 
best performance in young adulthood and a decline with aging 
(25). This model is supported by results finding better learning 
performance in young adulthood than in childhood and old adult
hood (e.g. 26). Involving a large sample of participants from child
hood to old adulthood, a study (25) found evidence for the inverted 
U-shaped model examining participants between 7 and 87 years 
of age. The third model, which can be referred to as “competition 
model,” argues for better statistical learning in childhood (under 
the age of 12), less effective learning in adolescence and adulthood 
and a decline in old adulthood (9, 10). In detail, Janacsek et al. (10) 
differentiate between the detection of raw probabilities and the 
usage of internal models. They argue that due to the yet under
developed internal models, children are more sensitive to raw 
statistical probabilities of the environment, which translates to 
better statistical learning performance. The development of in
ternal models in adolescence and adulthood then leads to less re
liance on raw statistical probabilities as more complex 
interpretations of the observed probabilities emerge. The decline 
in old adulthood can be explained by reduced sensitivity to raw 
statistical probabilities, increased rigidness of internal models, 
and/or a weaker connection between these two systems. 
Employing a lifespan approach, a study (10) investigated partici
pants from the age of 4 to 85 years, showing better statistical 
learning under the age of 12. Moreover, Nemeth et al. (27) con
trasted the performance of five age groups from 11 to 39 years. 
They showed better statistical learning in the 11- to 13-year-old 
group compared with the other age groups, while statistical learn
ing was similar from the age of 14 to 39 years. A recent study by 

Juhasz et al. (9) examined statistical learning from the age of 7 
to 85 years involving the same pool of participants as the present 
study. Notably, Juhasz et al. (9) focused on the trajectory of statis
tical learning and general skill learning (see below for details), 
whereas the present study focuses on the 24-h consolidation of 
such knowledge.

Importantly, statistical learning does not occur only during 
practice but also between the practices, in the so-called offline pe
riods. Via consolidation, the initially fragile and unstable memory 
representations are converted into a more stable form, ensuring 
that they are preserved and can be retrieved later (28). 
Successful consolidation can be reflected by retention (i.e. no for
getting, similar performance at the end of learning and during 
subsequent testing) or even by offline gains (i.e. offline learning, 
better performance during testing than at the end of learning) 
(29). The consolidation of knowledge acquired via statistical learn
ing has been tested across different time delays (e.g. from hours to 
days or even a year) between learning and testing, but all studies 
have focused on one age group at a time or contrasted perform
ance of a couple of age groups (e.g. children vs. adults; young vs. 
older adults) only. The present study aims to go beyond previous 
research by examining consolidation of statistical knowledge 
across the lifespan, in a sample of participants aged between 7 
and 76 years.

Despite the ample investigation on the lifespan trajectory of 
statistical learning, the consolidation of such knowledge did not re
ceive much attention. To the best of our knowledge, no models 
were proposed for the lifespan trajectory of the consolidation of 
statistical knowledge. Considering the proposed trajectories of 
statistical learning, different developmental curves can be pro
posed for the consolidation of statistical knowledge. As described 
above, two age-variant trajectories have been proposed for the de
velopment of statistical learning (10, 25). It raises the question 
whether we can expect that the consolidation of such knowledge 
will also follow an age-variant trajectory. In atypical develop
ment, it has been demonstrated that learning and consolidation 
can show dissociation: Enhanced learning and intact consolida
tion has been shown in Tourette syndrome (30), whereas impaired 
consolidation has been shown to accompany intact learning in de
velopmental dyslexia (31). However, it is still an open question 
whether learning and consolidation show a dissociation in neuro
typical populations, especially across development and aging.

As described above, research on the consolidation of statistical 
knowledge has focused on one age group at a time or contrasted 
performance in a couple of age groups only. Most studies have 
suggested that children and adolescents can successfully retain 
the acquired knowledge following delays ranging from hours to 
one-year (30, 32–35), while others have found offline learning 
(i.e. improved performance) in a group of children and adoles
cents after a 24-h delay (31). Smalle et al. (36) investigated a re
lated process, that is, Hebb learning in a longitudinal design 
with 8- to 9-year-old children and adults and tested the retention 
of sequences over a 4-h, 1-week, and 1-year offline delay. The re
sults showed better consolidation in children compared with 
adults across all offline periods. In young and middle aged adults, 
knowledge of statistical regularities seems to be successfully re
tained, irrespective of the length of delay (e.g. 21, 37–44). In con
trast, the handful of studies focusing on older adults have 
revealed mixed results: Some studies have suggested retention 
of the acquired knowledge (21), whereas others have indicated a 
decline over the delay period (45). Overall, based on these studies, 
no firm conclusions could be drawn on the consolidation of statis
tical knowledge across the lifespan, although retention (that is, no 
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performance change) seems to be the most plausible outcome for 
most age groups, which would support an age-invariant model of 
the consolidation of statistical knowledge.

Since statistical learning requires repeated exposure to the 
same regularities (46), during this period of repeated exposure 
(i.e. in the learning phase), other learning processes are also en
gaged that could confound the measures and interpretation of 
statistical learning as well as its consolidation. One such learning 
process is called general skill learning, which refers to the faster 
processing of and responding to stimuli and improved visuomotor 
coordination as a result of practice, independent of the regular
ities embedded in the stimulus stream (9, 18). In the present study, 
we use a task design that enables us to tease apart consolidation 
processes specific to statistical knowledge by contrasting it to 
the consolidation of general skill knowledge. Unveiling the life
span trajectory of the consolidation of statistical and general skill 
knowledge using a carefully controlled, identical design across 
age groups from childhood to older adulthood can significantly 
improve our understanding of how the consolidation of different 
types of knowledge changes across development and aging and 
can shed light on the age-related changes in brain plasticity sup
porting these functions.

With regards to the consolidation of general skill knowledge, 
offline improvement has been shown both in children and adults, 
that is, participants usually exhibited faster average reaction 
times after an offline period (31, 32, 34, 44, 47, 48). Nevertheless, 
whether the extent of offline improvement differs across develop
ment from childhood to adulthood remains unclear. In older 
adults, the results on the consolidation of general skill knowledge 
are largely mixed. Elderly participants demonstrated offline gains 
over a 12-h delay (45, 49), but the gain was smaller than in young 
adults (49). Moreover, Nemeth and Janacsek (45) did not find evi
dence for improvement following 24-h and 1-week delays in older 
adults, while young adults showed significant improvements fol
lowing both delay periods. Retention but no offline improvement 
of general skill knowledge has been found over a 1-year delay as 
well, with no differences between young and older adults (21). 
Thus, while offline improvement of general skill knowledge may 
be expected in some cases (e.g. for shorter delays), overall, no con
clusive pattern across studies could be revealed, especially for po
tential differences in the extent of this improvement from 
childhood to adulthood. Nonetheless, based on the previous stud
ies, it is reasonable to expect at least some age variance for the 
consolidation of general skill knowledge.

To the best of our knowledge, no study has tested consolidation 
of statistical and/or general skill knowledge with the same experi
mental design across the lifespan so far. The present study fills 
this gap using a learning task that enables us to tease apart con
solidation processes specific to statistical knowledge versus gen
eral skill knowledge in a large sample of participants aged 
between 7 and 76 years. By employing the same experimental de
sign across the whole sample, our study can unveil the lifespan 
trajectory of the consolidation of statistical and general skill 
knowledge: Crucially, it can provide clear evidence for potential 
differences in consolidation across age groups from childhood to 
older adulthood as well as across knowledge types. Based on the 
previous empirical findings, for the lifespan trajectory of consoli
dation of statistical knowledge, an age-invariant trajectory can be 
proposed, whereas the consolidation of general skill knowledge 
might follow an age-variant trajectory. The findings of the present 
study can greatly improve our understanding of the consolidation 
of different types of knowledge across the human lifespan and 
can shed light on the age-related changes in brain plasticity 

supporting these functions. Unveiling the lifespan trajectory of 
statistical as well as general skill knowledge can also help develop 
a theoretical model for these processes.

Methods
Participants
Two hundred and seventy participants took part in the present 
study. They were assigned to nine age groups (n = 30 in each 
group). Fourteen participants were excluded based on outlier 
(above 3 SDs) performance in average response times or accuracy 
during the whole experiment compared with their respective age 
group. The developmental trajectory of statistical learning and 
general skill improvements in the Learning Phase of this sample 
are reported in Juhasz et al. (9). The present study focuses on 
the consolidation of statistical knowledge and general skills; these 
results were not reported elsewhere. For consistent age distribu
tion, we decided to exclude one (85-year-old) participant from 
the oldest age group due to being outlier in terms of age. Hence, 
the final sample of the present study consisted of 255 participants 
aged between 7 and 76 years. Mean and SD for age and gender ra
tio for all age groups are presented in Table 1. Caregivers of under
age participants completed a parental questionnaire and adults 
completed a self-report questionnaire regarding health-related 
questions. All participants had normal or corrected-to-normal vi
sion and none of the participants had any neurological, psychi
atric, or neurodevelopmental disorder. Adult participants gave 
informed written consent, whereas caregivers of underage partic
ipants provided informed written consent and children and ado
lescents provided verbal consent to participate in the study 
before enrollment. Participants received no financial compensa
tion for participation. All experimental procedures were approved 
by University Research Ethics Committee, and were conducted in 
accordance with the Declaration of Helsinki.

Task
The Alternating Serial Reaction Time (ASRT) task was used to as
sess statistical learning and consolidation (49, 50). In this task, 
four horizontally arranged empty circles are presented on the 
screen and a stimulus (a dog’s head) appeared in one of the circles 
(51). Participants were instructed to press a corresponding key (Z, 
C, B, or M on a QWERTY keyboard) as quickly and accurately as 
they could when the stimulus occurred using their index and mid
dle fingers. After the correct response of the participant, the next 
stimulus appeared 120 ms later. Unbeknownst to the partici
pants, the presentation of stimuli followed an eight-element se
quence, within which pattern (P) and random (r) trials 
alternated with each other (e.g. 2-r-4-r-3-r-1-r; where numbers 

Table 1. Demographic data (mean and SD for age and gender 
ratio) for all age groups.

Group Age Gender

7–8 years old (n = 26) 7.92 (0.27) 13 M/13 F
9–10 years old (n = 28) 9.79 (0.42) 13 M/15 F
11–13 years old (n = 30) 12.10 (0.61) 13 M/17 F
14–15 years old (n = 30) 14.55 (0.57) 13 M/17 F
16–17 years old (n = 30) 16.56 (0.54) 13 M/17 F
18–29 years old (n = 30) 21.64 (2.93) 12 M/18 F
30–44 years old (n = 30) 36.67 (3.81) 12 M/18 F
45–60 years old (n = 26) 51.65 (4.46) 6 M/20 F
61–76 years old (n = 25) 65.28 (4.47) 5 M/20 F
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indicate the four locations on the screen from left to right, and r 
denote a randomly chosen location out of the four possible 
ones; see Fig. 1).

Due to this alternating sequence, some runs of three consecu
tive trials (triplets) were more probable than others. In the ex
ample sequence 2-r-4-r-3-r-1-r, triplets 2-X-4, 4-X-3, 3-X-1, and 
1-X-2 (where X indicates the middle element of the triplet) oc
curred with a higher probability because they were presented 
in every sequence repetition (P-r-P) and could also be formed 
by chance (r-P-r, see Fig. 1B). Note that here, we use X to indicate 
the middle element of the triplet because, for example, 4-X-3 
(e.g. 4-2-3 in Fig. 1B) can appear both as a P-r-P structure (where 
the first and last element of the triplet belong to the predeter
mined pattern) and as a r-P-r structure (where the first and 
last elements are random, and the middle element is part of 
the predetermined pattern). In contrast, triplets 2-X-1 and 
3-X-2 occurred with a lower probability since they could only 

be formed by chance (that is, their structure could only be 
r-P-r). The former triplet types are referred to as high-probability 
triplets and the latter ones as low-probability triplets. Overall in 
the task, high-probability triplets were five times more probable 
than the low-probability ones (27, 41). Note that triplets were 
identified using a moving window throughout the stimulus 
stream. Thus, each trial was categorized as the third element 
of a high- or a low-probability triplet, and this categorization 
was used in our analyses; the same trial then served as the mid
dle and the first element for the categorization of the following 
triplets.

The ASRT task enables us to separate statistical learning from 
general skill improvements. Statistical learning is defined as fast
er and more accurate responses to high-probability elements than 
to low-probability ones (50). In contrast, general skill improve
ments refer to average speed-up and changes in accuracy which 
are independent of the probabilities of events. These 

Fig. 1. The Alternating Serial Reaction Time (ASRT) task. (A) Pattern and random trials were presented in an alternating fashion; the trial types were 
indistinguishable on the surface level: a picture of a dog’s head served as stimuli in all trials. The alternating sequence was coded by the location of 
stimuli. In pattern trials, the location of stimuli was predetermined, and occurred in the same order throughout the experiment. In random trials, 
randomly chosen locations out of the four possible ones were presented. (B) An example of the sequence structure. Numbers indicate the predetermined 
stimulus locations in pattern trials, and rs indicate randomly selected locations out of the four possible ones. Due to the alternating sequence, some runs 
of three consecutive trials (triplets) were more probable than others, referred to as high-probability (green shading) and low-probability triplets (blue 
shading), respectively. Since high-probability triplets could occur as pattern-ending triplets (50% of all trials) and by chance as random-ending triplets 
(12.5% of all trials), these triplets constituted 62.5% of all trials. Low-probability triplets constituted the remaining 37.5% of the trials; these were all 
random-ending triplets. Note that triplets were identified using a moving window throughout the stimulus stream: each trial was categorized as the third 
element of a high- or a low-probability triplet; the same trial then served as the middle and the first element for the categorization of the following 
triplets. (C) Experimental procedure. The experiment consisted of two sessions. The Learning Phase was composed of four epochs (each epoch contained 
five blocks with 85 trials in each block). The Testing Phase consisting of one epoch was administered 24-h later. Figs. 1A and 1B are adapted from Nemeth 
et al. (27) and Zavecz et al. (52), and Fig. 1C is adapted from Kóbor et al. (41).
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improvements reflect more efficient visuomotor and motor–mo
tor coordination due to practice (9, 18).

Procedure
The ASRT task was presented in blocks. One block consisted of 85 
trials: each block started with 5 random practice trials followed by 
the 8-element sequence repeated 10 times. After each block, par
ticipants received feedback about their general performance, that 
is, about their average RTs and accuracy. The ASRT task was ad
ministered in 2 sessions with a 24-h delay between them (see 
Fig. 1C). The Learning Phase consisted of 20 blocks. The Testing 
Phase contained five blocks.

For the alternating sequence, there were 24 permutations of 
the four possible spatial positions for the predetermined order 
of pattern trials. However, because of the continuous presentation 
of the stimuli, for instance, the sequences 2-r-1-r-3-r-4, 1-r-3-r- 
4-r-2, 3-r-4-r-2-r-1, and 4-r-2-r-1-r-3 were considered identical as 
they consisted of the same triplets. Consequently, there were six 
unique sequence permutations: 1-r-2-r-3-r-4-r, 1-r-2-r-4-r-3-r, 
1-r-3-r-2-r-4-r, 1-r-3-r-4-r-2-r, 1-r-4-r-2-r-3-r, and 1-r-4-r-3-r-2-r. 
One of these unique permutations was selected for each partici
pant in a pseudorandom manner. For a given participant, the se
quence permutation remained the same over the Learning and 
Testing Phases.

In our study, participants were not informed about the under
lying probability structure of the sequence, and they did not even 
know that they were in a learning situation. Nevertheless, poten
tially emerged explicit knowledge about the structure was probed 
by a questionnaire at the end of the Testing Phase (39, 49). None of 
the participants reported noticing the sequence in the task. Thus 
an implicit, nonconscious form of learning was tested (53–55). 
This is in line with previous studies showing that participants re
main unaware of the sequence even after extended practice, or 
when more sensitive recognition tests are used to assess explicit 
knowledge (39, 56).

Statistical analysis
Statistical analysis was based on previous studies (41, 49, 57); to 
facilitate data processing, epochs of five blocks were analyzed in
stead of single blocks (e.g. Blocks 1–5 corresponded to Epoch 1, 
Blocks 6–10 to Epoch 2, and so on). The Learning Phase consisted 
of four epochs, while the Testing Phase consisted of one epoch. 
Similarly to previous studies, two types of low-probability triplets, 
repetitions (e.g. 222, 333) and trills (e.g. 212, 343), were eliminated 
because people often show preexisting response tendencies to 
them (56, 58). By eliminating these triplets, we could ensure that 
any high- versus low-probability differences were due to statistic
al learning and not to preexisting tendencies. We calculated mean 
accuracy and median RTs (for correct responses) for each partici
pant and each epoch, separately for high- and low-probability 
triplets. The mean accuracy was 95.19% (SD = 0.03%) in the 
Learning Phase of the task. Since high accuracy scores and the 
relatively low variance in samples of neurotypical participants 
can hinder the detection of learning (59), we considered RTs to 
be a more appropriate measure of performance in the ASRT 
task. Therefore, we use RTs as our primary measures in this paper. 
Statistical learning scores were calculated as the difference in RTs 
between high- and low-probability triplets (i.e. RTs for low- 
probability triplets minus RTs for high-probability triplets). 
Higher scores indicated better learning/memory performance. 
General skill knowledge was defined as a general decrease in me
dian RTs during practice (i.e. participants became faster 

throughout the task), irrespective of triplet types. Median RTs 
were calculated separately for each epoch in each phase.

To evaluate statistical learning, we conducted repeated meas
ures ANOVAs by contrasting statistical learning scores across the 
Learning Phase. To test general skill learning, we contrasted me
dian RTs across the Learning Phase using repeated measures 
ANOVAs. As the main goal of the present paper is to investigate 
the consolidation of statistical and general skill knowledge, we 
only briefly report the results on learning in the main text and re
port the exact statistics in the Supplementary Materials. To evalu
ate the consolidation of the acquired statistical knowledge, we 
conducted ANOVAs by contrasting statistical learning scores of 
the last epoch of the Learning Phase with those of the first epoch 
of Testing Phase. To evaluate the consolidation of general skill 
knowledge, we conducted repeated measures ANOVAs by con
trasting median RTs of the last epoch of the Learning Phase with 
those of the first epoch of the Testing Phase. Greenhouse–Geisser 
epsilon (ϵ) correction was used when necessary. Original df values 
and corrected, two-tailed P-values (if applicable) are reported to
gether with partial eta-squared (ηp

2) as the measure of effect size.
As children and older adults are typically respond with slower 

RTs overall (e.g. 9), we conducted additional ANOVAs on standar
dized RTs. To control for the effect of average RT differences 
across age groups on learning and consolidation of knowledge, 
we employed two different ways of standardization: (i) ratio scores 
and (ii) log-transformed RT data. For calculating ratio scores, we 
transformed the data in the following way. We divided each par
ticipants’ raw RT values of each trial type and each epoch by their 
own median RT in the first epoch of the task (for a similar ap
proach, see 9, 35, 43, 60). This way, participants’ performance 
was around 1 at the beginning of the task and changed as the 
task progressed. We then calculated standardized learning and 
memory scores by subtracting standardized RTs for high- 
probability triplets from standardized RTs for low-probability trip
lets. Higher standardized scores indicated better learning/mem
ory. General skill knowledge scores were standardized in an 
identical way: Each participants’ median RTs in Epoch 4 and 
Epoch 5 were divided by their median RT in the first epoch of 
the task. For log-transformed RT data, we applied a log N trans
formation on the trial-based raw RT data. Then, we computed 
the mean of log-transformed RTs for each trial type and 
each epoch, separately for each participant. Log-transformed 
statistical knowledge scores were calculated by subtracting 
log-transformed RTs for high-probability triplets from log- 
transformed RTs for low-probability triplets. Log-transformed 
general skill knowledge was calculated for each epoch using the 
mean of trial-based log-transformed RT data. For the sake of brev
ity, we only refer to the results of these ANOVAs in the main text, 
where they are relevant in comparison with the results of raw RTs, 
and we report the exact statistics in the Supplementary Materials.

Moreover, to explore consolidation in more detail, we fitted 
curves to the data of the Learning Phase and used the fitted param
eters to predict statistical learning scores and general skill perform
ance in the Testing Phase (see 61–63). A linear function was fitted to 
the block-wise statistical learning scores, and a power function was 
fitted to the block-wise general skill learning scores. Since some par
ticipants acquire statistical regularities quickly, showing high stat
istical learning early in the task, then maintaining their 
performance throughout the task, the slope of their learning trajec
tory is near zero. This leads to a low R2 value even when a linear 
function fits the data well. Residual standard errors (RSEs) are inde
pendent of the slope; therefore, they are better goodness-of-fit esti
mates in these cases. Hence, we report RSEs instead of R2 values, 
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both for the statistical learning and general skill learning scores, for 
comparability. Smaller RSEs indicate better fit in both cases.

Importantly, in previous studies that used curve fitting on learn
ing data, a performance improvement (i.e. offline learning) was typ
ically expected after an offline delay (61–63). In these cases, using 
fitted parameters from a power or a linear function has been an ap
propriate approach to predict and test future performance (61). 
Therefore, using curve fitting to test offline changes can work 
well for general skill learning in our study because offline learning 
is expected following the 24-h delay. However, this approach may 
be less ideal for statistical learning as measured by the ASRT task 
because maintenance of performance (i.e. retention) may be ex
pected instead of offline learning (e.g. 37, 39, 41). Moreover, differ
ences in variance across age groups can create additional 
challenges when curve fitting is used to test age-related differences 
in learning and consolidation: As variance can influence how well a 
function fits the data and how reliable the predicted performance 
is, differences in variance can hinder the comparability of predicted 
performance across age groups. Nevertheless, we report the curve 
fitting results to provide a more detailed picture of the consolida
tion of statistical and general skill knowledge across the lifespan 
using multiple approaches.

In conjunction with the frequentist analyses, we performed 
Bayesian mixed-design ANOVAs and Bayesian paired-samples 
t-tests for the relevant comparisons. Bayesian mixed-design 
ANOVAs were run on the memory scores to test which factors deter
mine performance. Here, we present Bayesian model averaging and 
the exclusion Bayes factor (BFexclusion). BFexclusion values quantify 
the change from prior to posterior odds and can be interpreted as 
the evidence in the data for excluding a given predictor from the 
model. Thus, values below 1 support the inclusion and values above 
1 the exclusion of the given factor. Cauchy prior distribution was 
used for the ANOVA with a fixed-effects scale factor of r = 0.5, and 
a random-effects scale factor of r = 1. Moreover, we ran Bayesian 
paired-samples t-tests for comparing performance between the 
end of the Learning Phase and the beginning of the Testing Phase, 
separately for each age group. Bayes factor (BF) was computed to as
sess the amount of evidence for the null-hypothesis of no offline 
change. The BF is a statistical technique that helps conclude 
whether the collected data favors the null-hypothesis (i.e. evidence 
for no difference between groups or variables) or the alternative hy
pothesis (i.e. evidence for differences); thus, the BF could be consid
ered as a weight of evidence provided by the data (64). One of the 
main benefits of calculating the BF is that for nonsignificant com
parisons we can use the BF to conclude that the acquired evidence 
supports H0 rather than H1 (65–67). BFs were calculated using JASP 
version 0.14 (68). Here we report BF01 values where greater values 
support the null-hypothesis (no difference) over the alternative hy
pothesis. According to Wagenmakers et al. (64), BF01 values between 
1 and 3 indicate anecdotal evidence, values between 3 and 10 indi
cate substantial evidence and values larger than 10 indicate strong 
evidence for H0. Values between 1 and 1/3 suggest anecdotal evi
dence, values between 1/3 and 1/10 indicate substantial evidence, 
and values below 1/10 indicate strong evidence for H1. Values 
around 1 do not support either hypothesis.

Results
Are there age-related differences in the 
consolidation of statistical knowledge?
Before testing the age-related differences in consolidation of stat
istical knowledge, we tested the potential age-related differences 

in statistical learning. Analysis on raw RT data in the Learning 
Phase showed better learning under the age of 13, whereas analysis 
on ratio scores revealed comparable learning from childhood to 
young adulthood, followed by decreased learning from the age of 
30. We present the exact statistics in the Supplementary Materials.

To test 24-h consolidation of the acquired statistical knowledge, 
we contrasted statistical learning scores computed for the last 
epoch of the Learning Phase (Epoch 4) with the learning scores 
computed for the first epoch of the Testing Phase (Epoch 5) and 
submitted these scores to a mixed-design ANOVA with EPOCH 
(Epoch 4 vs. Epoch 5) as a within-subject factor and AGE GROUP 
as a between-subjects factor. The ANOVA revealed overall signifi
cant statistical knowledge (main effect of INTERCEPT: F(1, 246) =  
309.24, P < 0.001, ηp

2 = 0.56) and significant differences in overall 
learning across age groups (main effect of AGE GROUP: F(8, 246)  
= 2.91, P = 0.004, ηp

2 = 0.09). Importantly, statistical knowledge ap
pears to be retained over the 24-h delay period with no significant 
change between the end of the Learning Phase and the Testing 
Phase (main effect of EPOCH: F(1, 246) = 0.39, P = 0.53, ηp

2 =  
0.002). Moreover, no age group differences emerged in the reten
tion of the statistical knowledge (non-significant EPOCH × AGE 
GROUP interaction: F(8, 246) = 0.14, P = 0.997, ηp

2 = 0.005; all P >  
0.52): this suggests that all age groups retained the acquired 
knowledge over the 24-h delay period (Figs. 2 and S1). The analysis 
of effects of the Bayesian mixed-design ANOVA showed that the 
main effect of EPOCH and the EPOCH × AGE GROUP interaction 
should be excluded from the model (see Table 2, and for model 
comparisons, see Table S1), corroborating the findings of the fre
quentist ANOVA.

To rule out the possible confounding effect of different average 
RTs across age groups on these results, we employed two ways of 
standardization, and we conducted two ANOVAs for ratio scores 
and log-transformed RT data, respectively (for details on the stand
ardization process, see the Statistical analysis section). We submit
ted the standardized statistical learning scores to mixed-design 
ANOVAs with EPOCH (Epoch 4 vs. Epoch 5) as a within-subject factor 
and AGE GROUP as a between-subjects factor. The ANOVAs revealed 
identical results to the ANOVA computed on raw RT scores (for the 
exact statistics, see Table S7 and the accompanying text). The 
Bayesian mixed-design ANOVAs on the standardized learning 
scores also supported these findings (for details, see Tables S3–S4 
and S8–S9), confirming no change in learning scores over the 24-h 
delay period and no differences in this pattern across age groups.

To explore consolidation in more detail, we used a linear func
tion to predict performance in the Testing Phase (for details, see 
the Statistical analysis section). RSEs were calculated separately 
for the age groups, and they were between 3.80 and 19.17 (M =  
8.41), suggesting a generally good fit to the data. A difference score 
was calculated by subtracting the predicted statistical learning 
scores from the observed statistical learning scores. We submit
ted the difference scores to a mixed-design ANOVA with BLOCK 
(1–5) as a within-subject factor and AGE GROUP as a between- 
subjects factor. Importantly, we found no significant age-related 
effect in this ANOVA: the difference score between the predicted 
and observed statistical learning scores was comparable across 
the age groups. Bayesian ANOVA further supported these results. 
For the exact statistics, see Tables S13–S15.

Are there age-related differences in the 
consolidation of general skill knowledge?
Similar to statistical learning, before comparing the age groups on 
the consolidation of general skill knowledge, we first tested the 
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age-related differences in general skill learning. Analysis on raw 
RT data in the Learning Phase revealed highest general 
skill learning performance in the youngest age group. For details, 
see the exact statistics in the Supplementary Materials.

We tested the consolidation of general skill knowledge (defined 
as median RTs changes) over the delay period with a mixed-design 
ANOVA on median RTs (i.e. RTs irrespective of the probabilities of 
events) with EPOCH (Epoch 4 vs. Epoch 5) as a within-subject fac
tor and AGE GROUP as a between-subjects factor. Our analysis 
found that the median RTs significantly decreased over the 24-h 
delay (main effect of EPOCH: F(1, 246) = 107.92, P < 0.001, ηp

2 =  
0.31): participants responded faster in the Testing Phase com
pared with the end of the Learning Phase (significant speed-up 
in all age groups: all P < 0.014, except for the 14- to 15-year-old 
group, where P = 0.080, Fig. 3). The amount of speed-up over the 
delay period, however, was not uniform across the age groups 
(EPOCH × AGE GROUP interaction: F(8, 246) = 2.26, P = 0.02, ηp

2 =  
0.07). A follow-up ANOVA on the offline change score (i.e. RTs in 
Epoch 4 minus RTs in Epoch 5) showed that the 7- to 8-year olds 
exhibited the greatest speed-up over the delay, significantly dif
fering from the speed-up of almost all other age groups (P <  
0.026; 7- to 8-year-old vs. 9- to 10-year-old groups: P = 0.068; 
Fig. S2). The other age groups’ median RT changes over the delay 

period were not significantly different from one another (all P >  
0.062). Bayesian mixed-design ANOVA also supported the inclu
sion of the main effect of EPOCH and the EPOCH × AGE GROUP 
interaction (Table 3, and for model comparisons, see Table S2).

Similarly to the statistical learning scores, we ran two ANOVAs 
on standardized RTs as well, one for ratio scores and one for log- 
transformed RT data (for details on the standardization process, 
see the Statistical analysis section). Both ANOVAs revealed a sig
nificant RT speed-up over the delay period; however, in contrast 
to the ANOVA on raw RT scores, the age groups did not differ 
from each other in the amount of speed-up either concerning ratio 
scores or log-transformed RT data (for the exact statistics, see 
Table S10, Fig. S3 and the accompanying text). The Bayesian 
mixed-design ANOVAs also supported the inclusion of the main 
effect of EPOCH and the exclusion of the EPOCH × AGE GROUP 
interaction, suggesting a uniform speed-up over the delay period 
across the age groups (for details, see Tables S5–S6 and S11– 
S12). These results suggest that the group differences observed 
in the raw average RT analyses above were largely driven by 
some age groups being on average slower in the task than other 
groups; controlling for this confound eliminated the group differ
ences in the consolidation of general skill knowledge over the de
lay period.

Similarly to the statistical learning scores, we further examined 
the magnitude of offline gains and possible age-related differen
ces by predicting future general skill performance in the Testing 
Phase with a power law function (for details, see the Statistical 
analysis section). RSEs were calculated separately for the age 
groups, and they were between 4.32 and 20.54 (M = 10.53), suggest
ing a generally good fit to the data. A difference score was calcu
lated by subtracting the predicted RT data from the observed RT 
data. We submitted the difference scores to a mixed-design 
ANOVA with BLOCK (1–5) as a within-subject factor and AGE 
GROUP as a between-subjects factor. We found no significant 
age-related effect: the difference between the predicted and ob
served performance was comparable across the age groups. 

Fig. 2. Consolidation of statistical knowledge over the 24-h offline period across age groups. RT statistical learning scores for the last epoch of the Learning 
Phase (Epoch 4, light gray bars) were contrasted with those for the first epoch of the Testing Phase (Epoch 5, dark gray bars). BF01 values were obtained by 
paired-samples t-tests for this contrast separately for each age group. All reported BF01 values indicate substantial evidence for the null-hypothesis (BF01 >  
3), providing evidence for comparable knowledge in Epoch 4 and Epoch 5 in each age group. Error bars denote the standard error of mean.

Table 2. Analysis of effects of Bayesian ANOVA for consolidation 
of statistical knowledge.

Effects P (incl) P (incl|data) BFexclusion

Epoch 0.400 0.104 8.608
Age group 0.400 0.800 0.250
Epoch × age group 0.200 3.382e−4 246.000

The Effects column denotes the main effects and interaction. The P(incl) 
column indicates the prior inclusion probability and the P(incl|data) denotes 
the posterior inclusion probability. The BFexclusion column shows the exclusion 
Bayes factors. BFexclusion values below 1 support the inclusion and values above 
1 the exclusion of the given factor.
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Bayesian ANOVA further supported these results. For the exact 
statistics, see Tables S16–S18.

Testing possible confounds influencing the 
consolidation of statistical and general skill 
knowledge
To test the possible confounding effect of averaging over the last 
five blocks of the Learning Phase and the first five blocks of the 
Testing Phase (61), we contrasted performance in the last block 
of the Learning Phase (Block 20) and in the first block of the 
Testing Phase (Block 21). The analysis revealed that some degree 
of forgetting might be present as statistical learning score in 
Block 21 was marginally lower than that in Block 20. Bayesian ana
lysis was not conclusive, the BF was around 1, not supporting ei
ther the null or the alternative hypothesis. Crucially, age-related 
differences were not detected either with the frequentist or with 
the Bayesian analysis. For the exact statistics, see Tables S19 
and S20 and the accompanying text.

It is important to note that the analysis of block-wise data in 
the ASRT task should be interpreted carefully due to the relatively 

low number of trials. Specifically, statistical learning scores are 
calculated as difference scores between the high- and low- 
probability trials after excluding the first five random practice tri
als at the beginning of the block, erroneous responses as well as 
trills and repetitions from the 85 trials that are presented in a 
block. Hence, aggregated (mostly epoch-level) data have been 
used to characterize learning in the ASRT task since its inception 
because it enables tracking the trajectory of learning while simul
taneously decreasing the effect of noise in the learning scores to 
an acceptable level (39, 50, 69).

Moreover, to test whether practice-dependent changes influ
enced the offline learning of general skill knowledge over the 
24-h offline delay, we compared performance in the last block 
of the learning phase (Block 20) and the first block of the 
Testing Phase (Block 21). Overall, participants responded faster 
in Block 21 compared with Block 20, with similar speed-up across 
the age groups, and the amount of speed-up was comparable 
across the age groups. This suggests that the offline learning of 
general skill knowledge over the delay period was not due to fur
ther practice-dependent changes in the Testing Phase. For the 
exact statistics of this analysis, see Table S21 and the accom
panying text.

We also tested whether offline learning of general skill knowl
edge in terms of RTs could be influenced by decreased accuracy 
over the offline period. On the group level, mean accuracy scores 
increased over the offline delay, but the level of improvement was 
not comparable across the age groups. Significant offline learning 
was only detectable in the 7- to 8-year-old and 11- to 13-year-old 
groups. These results suggest that, in terms of accuracy scores, 
none of the age groups showed forgetting, therefore, offline learn
ing in terms of RTs cannot be explained by a decreased accuracy 
over the offline period. For exact statistics, see Supplementary 
Materials.

Fig. 3. Consolidation of general skill knowledge over the 24-h offline period across age groups. Average RT values for the last epoch of the Learning Phase 
(Epoch 4, light gray bars) were contrasted with those for the first epoch of the Testing Phase (Epoch 5, dark gray bars). BF01 values were obtained by 
paired-samples t-tests for this contrast separately for each age group. BF01 values for all age groups except for the 61- to 76-year olds indicate substantial 
evidence for the alternative hypothesis (BF01 < 0.33) providing evidence for offline learning over the 24-h delay. BF01 value obtained for the 61- to 76-year 
olds could not provide evidence for either the null or the alternative hypotheses. Error bars denote the standard error of mean.

Table 3. Analysis of effects of Bayesian ANOVA for consolidation 
of general skill knowledge.

Effects P(incl) P(incl|data) BFexclusion

Epoch 0.400 0.548 1.067e−17
Age group 0.400 0.548 5.163e−29
Epoch × age group 0.200 0.452 1.214

The Effects column denotes the main effects and interaction. The P(incl) 
column indicates the prior inclusion probability and the P(incl|data) denotes 
the posterior inclusion probability. The BFexclusion column shows the exclusion 
Bayes factors. BFexclusion values below 1 support the inclusion and values above 
1 the exclusion of the given factor.
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Discussion
The present study examined the 24-h consolidation of statistical 
and general skill knowledge in a large sample of participants be
tween the age of 7 and 76 years using the same experimental de
sign across the sample. Based on statistical learning scores 
computed from raw RT data, we showed retained statistical 
knowledge in all age groups. Analyses on standardized RT data 
and Bayesian analyses (both on raw RTs and standardized RTs) 
further corroborated these results. As for general skill knowledge, 
while the analyses on raw RT data suggested offline improvement 
that was the greatest in the 7- to 8-year olds, results on standar
dized RT data revealed offline gains in all age groups with a uni
form speed-up across the sample. Bayesian analyses of general 
skill consolidation also confirmed this uniform speed-up.

Our results on age-invariance in the retention of statistical 
knowledge are in line with prior smaller scale studies that focused 
on one age group only or contrasted performance in a few age 
groups. Specifically, in groups of children and adolescents, suc
cessful retention of statistical regularities has been shown follow
ing a 16-h (30, 32), 24-h (34), 3-day (33), and even a 1-year offline 
period (35). Offline learning has also been found over a 24-h delay 
in a group of 9- to 13-year-old participants (31). Successfully re
tained knowledge had been consistently demonstrated in young 
and middle adulthood as well over various offline delays ranging 
from hours to even 1 year (e.g. 21, 38, 40, 41, 44).

However, differences in consolidation between children and 
adults have been suggested in specific areas, such as the contribu
tion of sleep to consolidation. Fischer et al. (70) compared the con
solidation of statistical knowledge in 7- to 11-year-old children 
and young adults after offline periods of overnight sleep or day
time wakefulness. Adults showed better retention of statistical 
knowledge following sleep compared with the wakeful offline pe
riod, whereas children showed an opposite pattern with better re
tention after daytime wakefulness than after overnight sleep. 
Notably, children showed overall higher learning than adults 
and this difference in the pre-sleep performance level could 
have strongly confounded the results on consolidation (71). Our 
study was not designed to test the effect of sleep on consolidation 
across the lifespan: the 24-h delay employed in our study included 
both periods of overnight sleep and daytime wakefulness. In the
ory, an opposite pattern such as the one observed in the study of 
Fischer et al. (70) could have resulted in overall similar retention 
performance of statistical knowledge across age groups. 
Importantly, we chose the 24-h delay because that could provide 
a clearer picture of everyday functioning of individuals as it incor
porates both the effects of sleep and daytime wakefulness. 
Overall, consolidation of statistical knowledge seems to be similar 
across childhood and adulthood, and previously found develop
mental differences might be explained by confounding factors, 
such as differences in sleep.

Previous studies investigating the consolidation of statistical 
knowledge in aging showed somewhat mixed results. Most stud
ies suggested intact consolidation of statistical knowledge in eld
erly adults. Comparable retention has been shown in younger and 
older adults after a 12-h offline period, irrespective of whether 
that period included overnight sleep or daytime wakefulness 
(49). Retained knowledge has also been found following a 1-year 
delay (21). In contrast, Nemeth and Janacsek (45) have found for
getting of statistical knowledge in older adults compared with 
successful retention in young adults, irrespective of the length 
of the offline delay (12-h, 24-h, or 1-week). Our results align with 
the former studies, providing substantial evidence for retained 

statistical knowledge over the 24-h delay in older adults, as indi
cated by the Bayesian analyses (BF01 = 4.44). The mixed findings 
across studies could be attributed to differences in experimental 
designs, for example, different lengths of the learning period 
could lead to a varying degree of fatigue, which can potentially af
fect consolidation. Future studies may systematically test how 
such differences affect consolidation across age groups.

During learning, we extract the regularities from the 
environment and encode them into initially fragile memory repre
sentations. During consolidation, the recently acquired represen
tations undergo a progressive stabilization, creating long-term 
memory representations (28). Although these two processes are 
intertwined and depend on each other, considering the age- 
variant lifespan trajectory of statistical learning based on previ
ous studies (9, 10, 25) and the age-invariant lifespan trajectory 
of consolidation of statistical knowledge based on the present 
study, we can conclude that these two processes show a dissoci
ation. Similar results have been demonstrated before in atypical 
development. In Tourette syndrome, intact consolidation has 
been shown to accompany enhanced learning (30), whereas intact 
learning and impaired consolidation have been found in develop
mental dyslexia (31). Our results are in line with these prior ones 
as we showed a dissociation between learning and consolidation 
of statistical knowledge in a neurotypical population: while learn
ing varied with the function of age, consolidation did not. This 
suggests that, at least partially, distinct mechanisms and neural 
networks underlie the acquisition and consolidation of statistical 
knowledge across the lifespan.

To the best of our knowledge, no theoretical framework has 
been proposed for the lifespan trajectory of consolidation of stat
istical knowledge. Here, we found comparable retention of statis
tical knowledge in all ages from 7 to 76 years, which would suggest 
an age-invariance model of consolidation of such knowledge. 
Based on the present behavioral results, we can also make as
sumptions for the neural networks that underlie the consolida
tion of statistical knowledge, at least when measured with the 
ASRT task. As mentioned in the introduction, in their model for 
statistical learning, Janacsek et al. (10) proposed a shift from 
detecting raw probabilities to relying more on internal interpreta
tions of events, which then leads to decreased statistical learning 
performance in adults compared with children under the age of 
12. On the neurobiological level, the competition model (10) re
lated this shift to the protracted maturation of the hippocampus 
and prefrontal cortex. While these brain regions have been sug
gested to underlie the development of internal models, basal gan
glia, particularly the striatum, have been linked to the detection of 
raw probabilities. Albouy et al. (72) proposed a model for a related 
process, that is, motor sequence learning and consolidation. 
According to this model, in healthy young adults, during the ac
quisition of a motor sequence, the hippocampus and the striatum 
show an antagonistic dynamic, which is presumably mediated by 
the prefrontal cortex. In contrast, during consolidation and retest, 
instead of a competitive dynamic, the striatum and the hippocam
pus seem to function cooperatively. According to Albouy et al. 
(72), striatal activity supports time-dependent maintenance in 
performance (i.e. retention), whereas the hippocampus supports 
sleep-dependent enhancement in performance (i.e. offline learn
ing), at least in young adults. In line with this dissociation, 
Schapiro et al. (73) also showed the involvement of the hippocam
pus in the sleep-dependent consolidation of a motor sequence in 
middle aged adults. Converging our behavioral results and the 
model of Albouy et al. (72), we can speculate that consolidation 
of statistical knowledge was likely more reliant on the striatum 
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and its circuits as we found retention of statistical knowledge in 
all age groups. This would be consistent with the notion that the 
consolidation of statistical knowledge, at least when measured 
with the ASRT task, is independent of sleep (e.g. 39, 49). It is im
portant to note that in the present study, we employed a visuo
motor task involving temporally distributed non-adjacent 
statistical regularities; therefore, the conclusion of age-invariance 
is restricted to these regularities. Considering other, related proc
esses, such as motor (sequence) learning, usually measured with 
deterministic SRT and finger tapping tasks, a different trajectory 
might emerge. As stated above, the consolidation of motor (se
quence) knowledge appears to be sleep dependent, resulting in 
offline gains over the delay, due to the involvement of the hippo
campus (74). Due to sleep dependency and the underlying neural 
circuits (i.e. the hippocampus showing protracted development, 
75), age variance may be expected for the consolidation of motor 
(sequence) knowledge. Indeed, empirical evidence supports this 
notion (76–78, but see 61, 79). In contrast, the time-dependent 
consolidation of statistical knowledge seems to be age invariant, 
potentially due to the greater reliance on the striatum that ma
tures early in development. To sum up, the cooperation of the stri
atum and the hippocampus could be responsible for the 
consolidation of the acquired knowledge and based on our results, 
the striatum may be more prominent in this interaction when 
consolidation is independent of sleep, as is the case for the statis
tical knowledge tested in the present study. Nevertheless, it is im
portant to note that this is highly tentative and further 
neuroimaging studies are needed to corroborate it.

Previous development and aging studies have highlighted the 
importance of baseline RT differences across the lifespan. It is 
well established that children and older adults show slower RTs 
compared with young adults (e.g. 9, 10). These differences can 
confound performance as children and older adults have more 
room to improve, meaning that as their baseline RTs are slower, 
they can demonstrate higher gains in learning. Juhasz et al. (9) fo
cused on general skill learning in the sample used in the present 
study. According to their results, general skill learning is height
ened in childhood, but this could not be explained by the “more 
room to improve” concept. Superior general skill learning in 7- 
to 8-year olds persisted across different analysis approaches 
which controlled for the baseline speed differences. Our results 
on raw RT data showed that 7- to 8-year olds are also superior 
in the consolidation of general skill knowledge as they exhibited 
greater offline improvement than the other age groups. 
Importantly, however, this could not be confirmed by the analyses 
of standardized RT data where we controlled for the average 
speed differences across the age groups. Hence, the greater offline 
speed-up compared with other age groups seen on raw RT data is 
possibly due to the generally slower responses in the 7- to 8-year 
olds. Thus, while general skill learning seems to be age variant 
with heightened learning in childhood (9), consolidation of such 
knowledge seems to be age invariant with similar offline improve
ment in all age groups, based on the results of the current paper.

Prior studies have found inconsistent results on the consolida
tion of general skill knowledge in the elderly population. Based on 
these studies, the length of the offline delay seems to influence the 
magnitude of consolidation in older adults (21, 45, 49). Concerning 
the prior studies, only Nemeth and Janacsek (45) employed a 24-h 
offline delay. They have found neither offline improvement nor 
forgetting in older adults, general skill knowledge did not change 
over the offline period. In contrast, we found offline improvement 
in 61- to 76-year olds following a 24-h delay and the magnitude of 
offline gains did not differ significantly between younger and older 

adults. However, it is worth noting that Bayesian evidence for off
line gains in general skill knowledge was around 1 in the 61- to 
76-year-old group, which means that we did not find evidence 
for either the null or the alternative hypothesis. Hence, further re
search is warranted to explore the consolidation of general skill 
knowledge in older adulthood.

A considerable amount of research has focused on the changes 
of different cognitive functions across the lifespan. The lifespan 
trajectory of several cognitive functions has been described as 
an inverted U-shape: these functions continuously mature 
through childhood and adolescence, then peak in young or middle 
adulthood and decline over the course of aging (e.g. 2, 3). Some 
functions peak in childhood and starts to decline as soon as ado
lescence or young adulthood (e.g. 9–11), whereas some functions 
remain intact in late adulthood as well (e.g. 12). The consolidation 
of statistical regularities seems to follow a different, age-invariant 
trajectory: the acquired statistical knowledge is comparably re
tained in all age groups from the age of 7 to 76 years. 
Consolidation of general skill knowledge also seems to follow an 
age-invariant trajectory: in this case, the offline improvement 
over the delay period is comparable across all age groups. Since 
the oldest adult in our study was 76 years old, future studies could 
provide further insights into how aging affects consolidation by 
involving individuals beyond this age as well.

One limitation of our study is the lack of interference design, 
which can be important for consolidation studies (80, 81). 
Consolidation can be defined both as stabilization of the acquired 
knowledge—usually evident as no change in performance or off
line learning during the delay period—and as resistance to inter
ference. A previous study with the ASRT task employed an 
interference design: Kóbor et al. (41) investigated the 1-year con
solidation of statistical knowledge in healthy young adults. They 
showed successful retention as well as a resistance to interfer
ence. Hence, successful consolidation was expressed both by re
tention and resistance to interference in the same group of 
participants. Employing an interference design might also be rele
vant from a developmental perspective. Dorfberger et al. (82) 
showed similar consolidation in childhood and adulthood on the 
behavioral level using a motor learning task; however, a differ
ence emerged concerning interference. Children seemed to be 
less susceptible to subsequent interference compared with adults, 
suggesting age-related differences in this aspect of consolidation. 
Therefore, future studies should employ an interference design 
to shed further light on the lifespan trajectory of memory 
consolidation.

Conducting large-scale studies involving participants from age 
groups across the lifespan is essential to characterize the develop
ment and aging of any cognitive functions. Inferences made from 
different sets of individual studies have a risk of different para
digms and designs confounding the conclusions. Here, we em
ployed a lifespan approach in a cross-sectional design involving 
participants from 7 to 76 years using the same task across the 
whole sample. In conclusion, the present study demonstrated 
comparable consolidation of statistical and general skill knowl
edge following a 24-h offline delay across the lifespan, from 7- to 
76-year olds. Our study offers evidence for age-invariance in these 
key cognitive functions.
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