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Abstract: The numerically simulated method of using electromagnetic field from an alternating cur-

rent is a patented method to create in liquid metal, under the conditions of resonance, acoustic 

waves of sufficient strength to cause cavitation and implosion of gas bubbles, leading to beneficial 

degassing and grain refinement. The modelling stages of electromagnetics are described below 

along with acoustics in liquids, bubble dynamics, and their interactions. Sample results are pre-

sented for a cylindrical container with liquid aluminium surrounded by an induction coil. The pos-

sibility of establishing acoustic resonance and sustaining the bubble oscillation at a useful level is 

demonstrated. Limitations of the time-dependent approach to this multi-physics modelling prob-

lem are also discussed. 
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1. Introduction 

Liquid metals subjected to powerful ultrasonic waves tend to evolve microscopic 

bubbles as gases (e.g., hydrogen) come out of the solution. These bubbles pulsate vio-

lently, driven by the periodic pressure of the acoustic waves—the phenomenon of acoustic 

cavitation. Practically useful modes of cavitation for ultrasonic processing are when the 

bubbles collapse so violently that the subsequent solidification behaviour of the melt is 

altered, leading to beneficial effects such as grain refinement and degassing [1]. The usual 

way of introducing the ultrasonic vibration is via a ceramic or other non-melting rod 

called a ‘sonotrode’. 

For reactive or high temperature melting alloys (where a sonotrode probe would be 

eroded, thus contaminating the melt) an alternative contactless method of generating the 

ultrasound has been proposed [2], and its successful use has been demonstrated [3]. The 

acoustic waves are then generated by the periodic component of the Lorentz force accom-

panying the electromagnetic induction driven by an AC induction coil [4]. In practical 

applications, even for melting in laboratory crucibles, the electromagnetic force is not suf-

ficiently strong to invoke acoustic cavitation on its own; this leads to the need to achieve 

acoustic resonance in the liquid metal volume [5] when the acoustic pressure amplitude 

surpasses the so-called Blake threshold for inertial cavitation [6]. 

Resonant conditions depend on the driving frequency, on the speed of sound in the 

liquid with bubbles, on the dimensions of the container, and on the acoustic properties of 

the container and the free surface (which may be covered by oxide layers). The presence 

of pulsating bubbles has a very strong, nonlinear effect on the effective speed of sound in 

the liquid-bubble mixture, as the bubble oscillation amplitude and phase depend nonlin-

early on the acoustic pressure amplitude and even on the shape of the bubble oscillation 

that departs from the sinusoidal as soon as the Blake threshold is approached. In addition, 

the particular shape of the container may give rise to more than one acoustic mode, 

thereby giving the acoustic pressure itself a complex, combined oscillating pattern. 
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Mathematical, numerical, and computational modelling of electromagnetically in-

duced acoustic cavitation is useful in two ways: it helps better understand the interrela-

tions of the physical phenomena involved, and it can assist in tuning the multiple process 

parameters on which a successful application of the method depends. Traditionally, only 

the driving frequency is considered, and oscillation at any other frequency is assumed to 

be significantly attenuated by the action of the bubbles [7–9], which, indeed, is true for 

most practical cases and especially those where resonance at the driving frequency is 

sought. The alternative time-dependent modelling method attempts to include non-line-

arities and multiple frequencies in a single computation based on first principles—the 

governing equations of fluid motion in an acoustic approximation for liquid media. 

When reporting past results [4,5], one-dimensional estimates of the oscillatory acous-

tic pressure arising from electromagnetic induction were used as a basis for the acoustic 

computation. In this work, full one-way coupling between the electromagnetic and the 

acoustic computation is presented, i.e., the actual output from the simulation of the elec-

tromagnetic driving force is remapped and used in the simulation of acoustic waves in 

the bubbly liquid metal. 

The sections below show the full sequence of numerical modelling, starting with 

computing the driving electromagnetic forces and including the time-dependent model-

ling of acoustic cavitation for a case of ultrasonic degassing with an induction coil sur-

rounding a non-metallic cylindrical container full of liquid aluminium. Computational 

times and stable ranges of key parameters are also discussed. 

2. Computational Methods 

The alternating electromagnetic field produced by the AC coil with a known fre-

quency and current amplitude induces eddy currents in the liquid metal in a thin layer by 

the container wall. The interaction of these currents with the magnetic field is responsible 

for the Lorentz force acting on the metal. Both the current and the force depend on the 

exact shape of the body of metal, which itself depends on the mean component of the force 

that causes the free surface to acquire a domelike shape resolved by specialized software 

[4]. Theoretically, the acoustic motion caused by the periodic component of the Lorentz 

force also disturbs the surface, but those oscillations of micron height can be neglected. 

Thus, any feedback from the acoustic field onto the electromagnetic field can be ignored, 

allowing the latter to be computed separately and prior to the acoustic simulation. Here, 

the mean deformation of the free surface is also neglected and a method consistent with 

CFD solvers is used [10]. Following a quasi-steady approach, it involves numerically solv-

ing partial differential equations (PDEs) for the real and imaginary components of the 

electric field vector E plus two extra PDEs for the real and imaginary components of an 

auxiliary scalar potential. The above PDEs are obtained from Maxwell’s equations of the 

electromagnetic field, assuming the liquid metal is a non-magnetic material with no local-

ised electric charges—the electromagnetic induction approximation. 

The computational domain only covers the electrically conducting volume of liquid 

metal. Boundary conditions are calculated at each iterative step for all surfaces (the ceramic 

crucible bottom and inner wall and the top free surface, see also Figure 1) via the Biot–Savart 

integral for the local values of the magnetic induction taking into account the driving and 

induced currents. For the axisymmetric case considered here, as the domain only covers 

a segment of 10 degrees, the driving and the induced electrical current segments are ex-

tended to full circles using azimuthal symmetry before Biot–Savart integration [10]. Azi-

muthal symmetry is also applied to the solved electric field vectors at the near and far 

sides of the two-dimensional sector domain [10]. 

The numerical solutions are obtained on a computational mesh that is refined in the 

‘skin’ layer containing the induced current (Figure 1). In a post-processing step, the mean 

FM and oscillatory FA components of the Lorentz force vector field are calculated [4] in 

each mesh cell: 
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𝑭𝑀 =
1

2
(𝑱𝑅 × 𝑩𝑅 + 𝑱𝐼 × 𝑩𝐼) (1) 

𝑭𝐴 =
1

2
√(𝑱𝑅 × 𝑩𝑅 − 𝑱𝐼 × 𝑩𝐼)

2 + (𝑱𝑅 × 𝑩𝐼 + 𝑱𝐼 × 𝑩𝑅)
2 (2) 

where all imaginary parts (with subscript ‘I’) of the current density J and the magnetic 

induction B are 90° later in phase than the corresponding real parts (subscript R), e.g., 

𝑩 = 𝑩𝑅 cos𝜔𝑡 + 𝑩𝐼 sin𝜔𝑡 with t—time and ω[s−1]—rotational frequency of the AC cur-

rent. The mean force is responsible for bulk flow in the liquid volume, which may be ben-

eficial for stirring the products of cavitation treatment, e.g., finely fractured dendrites or 

grain refiner particles. The oscillatory force drives the acoustic waves that cause cavita-

tion. 

 

Figure 1. Mesh over liquid metal, computed electric field [V/m], and mean Lorentz force. The non-

conducting vessel wall is not included in the mesh and not needed for the computation. The circles 

indicate the positions of the turns of the induction coil. 

For the time-dependent acoustic simulation that follows, the driving oscillatory sig-

nal is recovered from the amplitude FA into a sinusoidal one (with a twice higher fre-

quency) and applied as an acoustic momentum source in each cell of a new, regular Car-

tesian computational mesh. A mapping procedure between the two meshes is needed, 

and is implemented according to the following algorithm: for the centre of a CFD cell, the 

containing Cartesian cell is located and its indices stored; and if, due to the stepwise rep-

resentation of boundaries in the acoustic module, the containing cell is not active, succes-

sive neighbours are checked and the nearest active one is selected. The solution procedure 

for the acoustic waves from first principles has been described elsewhere [11,12]. It is 

based on higher-order finite difference numerical schemes that have been optimised for 

accurate representation of sinusoidal functions. A characteristic of the sound propagation 

in liquids is the very high speed of sound compared to the fluid bulk velocity (the Mach 
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number in liquids is always negligibly small), so all terms in the governing linearised Eu-

ler equations that have a fluid velocity component as a factor are ignored and set to zero. 

The boundary conditions on all external surfaces (crucible walls and metal top free 

surface) are assumed ‘acoustically soft’, i.e., acoustic pressure p is fixed to zero. This as-

sumption is justified by the fact that the acoustic impedance (the product of density and 

speed of sound, Table 1) of the liquid metal and solid walls is orders of magnitude higher 

than that of the surrounding air. 

Table 1. Simulated case parameters. 

Parameter Value Unit 

Crucible inner radius 100 mm 

Crucible wall and bottom thickness 12 mm 

Liquid aluminium depth 230 mm 

Outer boundaries and top surface acoustic pressure 0 Pa 

Liquid metal density 2325 kg/m3 

Liquid metal speed of sound 4560 m/s 

Crucible density 2000 kg/m3 

Crucible speed of sound 1400 m/s 

Acoustic solver mesh size 4 mm 

Acoustic solver time step 1.75 × 10−7 s 

Equilibrium (hydrogen) bubble radius 8 μm 

Driving coil turns 8 - 

Driving coil inner radius 112 mm 

Driving coil outer radius 118 mm 

Driving AC amplitude 650 A 

Driving AC frequency 8906 Hz 

Electric field error tolerance 1 mV/m 

Driving acoustic source frequency 17,812 Hz 

Liquid metal surface tension 0.87 N/m 

Liquid metal viscosity 0.0013 Pa.s 

Bubble concentration 5 × 107 m−3 

Polytropic exponent 1.4 - 

Ambient pressure 10,1325 Pa 

Smallest allowed ODE solver time step 2 × 10−13 s 

Relative ODE solver error tolerance 0.0005 - 

Signals monitor location radius 37 mm 

Signals monitor location heights 80, 120, 160 mm 

Signal RMS averaging interval  1.1 ms 

Total simulated time for acoustic cavitation 0.01 s 

Central to acoustic cavitation modelling is the representation of the bubble pulsation. 

When only the main, spherical mode of oscillation is considered out of the many variants 

 investigated by numerous scientists over the years, the Keller–Miksis (3) ordinary 

differential equation (ODE) for the bubble radius R is used here as it provides a good 

balance between accuracy and complexity [13,14]. 

(1 −
�̇�

𝑐
)𝑅�̈� +

3

2
�̇�2 (1 −

�̇�

3𝑐
) = (1 +

�̇�

𝑐
)
𝑞

𝜌
+
𝑅

𝜌𝑐

𝜕𝑞

𝜕𝑡
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with p—the local acoustic time-dependent pressure, t—time,  and c—the density and 

speed of sound in the liquid, and the single and double dots over R indicating the first 

and second temporal derivatives. Equation (3) partially (to the first order) accounts for the 

liquid compressibility in its rapid radial motion in the vicinity of the bubble, as driven by 

the varying pressure q just outside the bubble wall; and q gives the balance of bubble pres-

sure (depending on equilibrium radius R0, ambient static pressure p0 and polytropic ex-

ponent γ), surface tension σ, viscosity μ and driving acoustic pressure p. In the fully in-

compressible limit (𝑐 → ∞), the Keller–Miksis Equation (3) reduces to the original Ray-

leigh–Plesset equation. 

The changing bubble volume (as a function of R) determines the source term of the 

mass continuity equation according to the Caflisch model [15]: 

1

𝜌𝑐2
𝜕𝑝

𝜕𝑡
+ ∇ ⋅ 𝒖 =

𝜕𝛽

𝜕𝑡
=

𝜕

𝜕𝑡
(
4

3
𝜋𝑅3𝑁) (4) 

𝜌
𝜕𝒖

𝜕𝑡
+ ∇𝑝 = 𝑭𝐴 sin 2𝜔𝑡 (5) 

u—the acoustic velocity vector, β—local bubble volume fraction, and N [m−3]—the local 

concentration of bubbles. The rate of change of β is the source term in the mass continuity 

equation, which represents the effect of the oscillating bubbles on the sound waves. The 

bubble spherical oscillation, described by R, depends on the variable local sound pressure 

p, thus making the interaction between sound and bubbles very tightly coupled. 

Without their source terms, the system of Equations (4) and (5) describes the propa-

gation of acoustic waves in the liquid. Since sound waves are a form fluid motion, these 

equations have been derived from the continuity and momentum equations of fluid flow 

under the assumption of the negligibly small Mach number in liquids. When these equa-

tions are solved numerically for many acoustic cycles, some numerical errors inevitably 

arise. Figure 2 gives an illustration of the error accumulation with the numerical imple-

mentation [12] used in this study. It shows a positive pressure pulse (with Gaussian dis-

tribution) in its initial state, and after multiple reflections at the ends of a one-dimensional 

computational domain. The boundary condition at the left (0) end is rigid reflection, and 

on the right (100)—‘sound-soft’, i.e., p = 0. An error accumulation of about 10% can be seen 

over 1600 acoustic cycles requiring 512,000 time steps. This number of steps is representa-

tive of what is needed to simulate an acoustic cavitation case (as shown later) over a suf-

ficiently long time interval so that FFT analysis of monitored signals can be performed 

with an accuracy of about 10 Hz. The observed error is a combination of imperfections of 

both the numerical scheme for solving Equations (4) and (5) and the numerical boundary 

conditions for direct and inverted reflections, which appear in a simulated case of a vessel 

full of liquid. 
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Figure 2. Accuracy test of acoustic waves time-dependent algorithm. 

The algorithm for the acoustic equations [12] is based on explicit time-stepping, i.e., 

it is subject to a CFL limit on the size of the time step depending on the density of the 

computational mesh, which, in turn, depends on the dimensions of the geometrical fea-

tures that must be resolved; and this time step is typically in the order of 10−7 s. The nu-

merical solution of the ODE requires about five orders of magnitude smaller time steps 

during bubble collapse and rebound but can revert to the acoustic time step size in the 

expansion phase. Here an implementation with variable time step and automatic stiffness 

determination that used to be available on the Intel Compiler website [16] is repeatedly 

called (before each acoustic time step) to cover an interval the size of the acoustic time 

step. During each of those intervals, the acoustic pressure p is assumed constant and fixed 

at its value at the beginning of the interval. This assumption is justified by the fact that the 

acoustic time step is already sufficiently small to resolve accurately both p and its temporal 

derivative. An alternative implementation where the bubble collapse is approximated in 

a way that avoids the need for extremely small timesteps has also provided useful results 

[9]. At the end of each ODE interval, the integral contribution of the Caflisch source term 

is calculated as 

∆𝛽 =
4

3
𝜋𝜌𝑐2𝑁(𝑅3 − 𝑅𝑜𝑙𝑑

3 ) (6) 

where R is the bubble radius at the end of the current interval and Rold—at its beginning. 

This contribution is applied in the explicit numerical scheme [12] next time the acoustic 

pressure is updated according to the continuity Equation (4). The numerical solution pro-

cedures for the electromagnetic field and for the time domain propagation of acoustic 

waves in bubbly liquids have been incorporated into the in-house computational frame-

work PHYSICA [17]. 

The cylindrical geometry of the examined case allows two-dimensional axisymmetric 

approximation, in which case the spiral induction coil is represented by a vertical array of 

rings. The parameters of the simulation are listed in Table 1. As this is an example case, 

the dimensions of the vessel and of the induction coil are arbitrary; the driving current 

and its frequency have been adjusted to achieve acoustic resonance at the lowest (in fre-

quency) acoustic mode in the assumed geometry. The material properties of aluminium 

are based on various internet searches [1] and the acoustic properties of the crucible are 

from past research [5], the computational mesh density is chosen based on the author’s 

experience in past projects (the acoustic time step size then follows the CFL limit for 
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explicit time-stepping), and the ODE solver parameters have been adjusted by trial and 

error based on the author’s experience. Two more parameters have been assigned arbi-

trary values based on past experience: the equilibrium bubble radius and the bubble con-

centration. When simulating a specific, practical case, these two are not known in advance 

and can be variable as the degassing of the melt progresses. Thus, they are treated as open 

parameters and can be varied to match computed results with available measurements. 

3. Results 

3.1. Electromagnetic Field and Forces 

For the axisymmetric approximation, the calculation of the electromagnetic field and 

resulting forces takes about 1 min on a single workstation processor. As the dominant 

component of the magnetic field is vertical, it is shown in Figure 3 together with dominant 

components of the oscillatory part of the Lorentz force that are perpendicular to the cylin-

drical metal surface. The latter values are stored for use in the subsequent acoustic simu-

lation. It can be seen that the considered values are non-zero only in the thin ‘skin’ layer 

of liquid metal opposite the induction coil. 

  

(a) (b) 

Figure 3. Computed vertical component of magnetic induction (Bz, coloured contours, in mT) and 

amplitude of the oscillatory component of the Lorentz force vector (A, arrows): (a) real parts; (b) 

imaginary parts. 

3.2. Acoustic Field and Cavitation 

At the beginning of the acoustic simulation, the amplitudes of the driving forces are 

remapped onto the regular Cartesian mesh needed for the acoustic simulation. At each 

time step, the real and imaginary parts of the force amplitude vectors are then used to 

calculate the cosine and sine contributions that drive the acoustic waves via the momen-

tum sources in (5). Values of the acoustic pressure and of the oscillating bubble radius are 
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recorded in selected locations and used to calculate RMS pressure, as displayed in Figure 

4. The pressure contours indicate the standing-wave mode established with the highest 

values at the centre of the cylindrical volume (a), and the resonant growth of the acoustic 

pressure amplitude is interrupted when the Blake threshold of bubble pulsation is reached 

at about 4.5 ms (b). This is due to the really strong attenuation of the acoustic waves re-

sulting from the elasticity of the bubbles when inertial cavitation occurs. 

Although the driving oscillatory force on the metal is concentrated in the thin ‘skin’ 

layer of induced current (Figure 1), the highest RMS acoustic pressure is in the middle of 

the metal volume as this corresponds to the first acoustic resonant mode [5]. The pressure 

corresponding to the driving force alone is about 100 times lower than at the resonant 

peak, so it cannot be distinguished at the scale of Figure 4a. 

 

 

(a) (b) 

Figure 4. Simulated acoustic field: (a) root-mean-square (RMS) contours of acoustic pressure and 

instantaneous acoustic velocity vectors at the end of simulation, with time in ms; (b) recorded sig-

nals at monitor points (see Table 1) with nine averaging intervals for RMS. 

An expanded image (Figure 5a) provides insight into the change of the bubble oscil-

lation when the Blake threshold is reached: at the negative pressure half-cycle, the bubble 

grows more than before and high-frequency after-bounces follow every collapse at posi-

tive acoustic pressure. Figure 5b shows the frequency analysis of the monitored signals: 

the amplitude at the driving frequency dominates, and all higher acoustic modes appear 

weaker by at least one order of magnitude. This is expected under resonance and justifies 

the alternative approach [7] of advancing the theoretical models based on a single fre-

quency assumption. 
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(a) (b) 

Figure 5. Results analysis: (a) zoomed acoustic pressure (positive half-cycles) and bubble radius 

oscillation around the moment inertial cavitation is reached; (b) fast Fourier Transform (FFT) spec-

trum at the monitoring points from Table 1. 

The combined simulation for solving Equations (3) to (5) over a time span of 10 ms 

(178 acoustic cycles) takes about 11 min on a 32-processor parallel workstation but the 

ODE implementation for (3) is not parallelised and all 1680 cells of the two-dimensional 

domain are processed sequentially at each acoustic time step. This time interval would 

ensure FFT accuracy of 100 Hz, which is not sufficient for fine tuning the driving electrical 

frequency. To achieve 10 Hz accuracy takes 10 times longer as the FFT resolution is in-

versely proportional to the sample interval. For three-dimensional domains (with many 

times more computational cells), the long running time may become an issue. An alterna-

tive approach to the ODE solution (with truncated bubble collapse resolution and parallel 

implementation) has been shown to provide useful results [9], and with that method the 

fuller 100 ms simulation for the examined two-dimensional case takes only 2 min. 

The time domain approach to the above system of equations may have stability is-

sues, especially with higher bubble concentration (above 108 m−3). This is due to the in-

creased magnitude of the source term on the right-hand side of the continuity Equation 

(4), which can lead to positive feedback and non-physical, unrealistic growth of the com-

puted pressure oscillations; and then only the onset of cavitation can be predicted. 

4. Discussion 

The simulation results presented above highlight the mechanism of inducing and 

sustaining acoustic cavitation in a vessel full of liquid metal by the action of electromag-

netic induction. Fine tuning of the driving AC frequency allows acoustic resonance to be 

initiated within the liquid volume. In the example presented in the previous section, 

standing waves are established at the first acoustic mode in the cylindrical geometry, 

which exhibits a peak of the pressure amplitude near the centre; other modes at higher 

frequencies can also be targeted [5], depending on the specification of the power supply 

to the induction coil. 

The simulation results reveal the attenuation of the sound waves by the bubbles: 

when the acoustic pressure amplitude reaches a certain level (the Blake threshold), the 

oscillations of any gas bubbles contained in the liquid become violent, thus opposing fur-

ther pressure growth. Some benefits of the cavitation treatment can be obtained at this 

level: bubbles will grow in mass by rectified diffusion from the liquid with each cycle, 

facilitating degassing of the melt for avoiding porosity in the final cast product. For other 

cavitation treatment results, e.g., primary phase dendrite fracture or grain refiner particles 
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deagglomeration, even stronger bubble collapses may be required—then the inducing 

magnetic field can be amplified by increasing the driving current or the number of turns 

in the induction coil. 

When the purpose of the simulation is to predict the acoustic spectrum of the bubbly 

liquid in the specified geometry, a simulated time of 0.1–0.2 s is sufficient to achieve FFT 

accuracy of 10 or 5 Hz needed for equipment tuning. This is at least 10 times longer than 

the time interval in the presented example. One option for improving the computational 

performance of the time-dependent method is using a truncated, approximate calculation 

of the bubble collapse and simultaneously parallelising the ODE solution [9]. This is suit-

able for obtaining also full three-dimensional results with more than 200,000 computa-

tional cells within comfortable parameter optimisation computing time and sufficient FFT 

accuracy. 

When the aim is to predict the degassing performance of a particular setup, a simu-

lated time of at least 30 s would be needed to capture the bubble growth and degassing 

rate. The time-dependent approach in this case would follow the rectified diffusion caus-

ing the bubble growth naturally from first principles; to achieve that, a suitable model for 

bubble break-up after a collapse would need to be implemented and a high-performance 

computing cluster would be needed rather than a workstation. 

5. Conclusions 

The simulation sequence revealing the interaction between electromagnetic induc-

tion and acoustic cavitation has been demonstrated in an example case of a cylindrical 

crucible surrounded by an induction coil carrying AC current. A pseudo-steady solution 

of the electromagnetic field equations provides the driving force of the acoustic waves. At 

the next step, the modelling followed the time domain approach where the governing 

equations of sound propagation in the presence of oscillating and collapsing bubbles were 

solved with a time-dependent numerical scheme simultaneously with the ordinary differ-

ential equations for the bubble oscillation in every computational cell. The necessary soft-

ware components and interfacing techniques between them have been described. 

Acoustic resonance is needed for contactless electromagnetic ultrasound treatment 

of liquid metal, so that the acoustic pressure amplitude can reach and be sustained at a 

sufficiently high level for useful bubble oscillation. The acoustic behaviour of the cavitat-

ing liquid is nonlinear as the effective speed of sound changes with increasing pressure 

amplitude. Time-dependent modelling can predict the acoustic pressure and cavitation 

level at given driving frequencies. Subsequent FFT analysis can show other possible reso-

nant frequencies, which can be confirmed by a new simulation. Fast computation allows 

parametric studies and optimisation to be carried out even on a desk workstation com-

puter. 
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