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Abstract

Wire/woven screens have a wide range of applications, from being used as simple mechanical

screening device to nanoscreen wicking with nanofluids. The vast number of applications makes

important to study these screens with high accuracy, to reduce errors in characterisation and

performance predictions. Previous works to date focused either on the study of these screens

as a two-dimensional surface (e.g. in ventilation openings as insect-proof screens) or as three-

dimensional structures under important assumptions (symmetric mesh, thickness of two times

their diameter, linear evolution of the pore area along the thickness). These incomplete mod-

ellings introduce errors in applications such as the estimation of permeability of the porous media

(two-dimensional porosity is identical for two meshes with the same projected area of pore but

different thickness) or computational simulations of ventilation in buildings/greenhouses, where

these parameters are imposed as boundary condition. The present investigation shows a method

to calculate three-dimensional pore related structural properties semi-analytically for the first time

and for any plain square mesh. We found that when sweeping the mesh with a plane parallel to it

there are up to six different zones or stretches which can be integrated by a piece-wise approach

(here named Discretisation Method). Results demonstrated high accuracy in the calculation of

three-dimensional porosity and constriction factor (a parameter that is calculated by integration

over the pore volume). Due to the mathematical complexity in the method, a software (Aero-

Screen v1.0) is available to obtain pore-related structural parameters from diameters, separations

and thickness of the screen.
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Nomenclature

Roman Symbols

D Discretisation.

S Stretch.

A Area.

a Sum of the x and y-thread/wire radii.

C Limiting point in the intersection between the cylinder

and the torus.

c Crimp.

D Diameter of a thread/wire.

d Distance between the position of the centre of a

thread/wire and a limiting point C.

e Thickness of the screen.

f Friction factor.

h Vertical separation between the centre of threads.

K Permeability.

L Separation between threads/wires.

l Total length of the thread/wire.

N Number of element.

O Position of the centre of a thread/wire with respect to

an axis.

p Horizontal separation between the centre of

threads/wires.

R Radius of a thread/wire.

Re Reynolds number.

s Polar angle of the cylinder.

U Velocity of air.

u, v Polar angles of the torus.

V Volume.

Y Inertial factor.

zp Integration limits of z at each stretch partition.

i,j Thread/wire generalised notation.

x, y, z Cartesian coordinates.

Abbreviations

3D Three-dimensional.

CF Constriction factor.

CFD Computational Fluid Dynamics.

IPS Insect-proof screen.

WS Wire/woven screen.

Subscripts

SD Stretch in an arbitrary discretisation.

bt Bottom torus.

cyl Cylinder.

lim Limits a distance or integration limit for the upper

torus.

lim2 Limits a distance or integration limit for the bottom

torus.

p Magnitude related to the pore.

t Total value of a quantity.

x, y x or y-coordinate.

hx, hy Diameter subscript for the x or y-thread/wire.

px, py Separation subscript for the x or y direction.

2D Two-dimensional quantity.

3D Three-dimensional quantity.

Greek Symbols

∆ Magnitude difference.

ϕ Porosity.

ρ Density of threads/wires.

θ Inclination angle of the thread/wire. Also contact an-

gle.

Superscripts

′ Plane coordinate position.

linear Quantity calculated from a linear approximation.

x,y Thread/wire specification (x-thread or y-thread).
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1. Introduction

The use of plain square woven (wire) screen (WS) meshes is very common in industrial ap-

plications such as screening filtering of elements [1], barrier to avoid the entrance of insects [2],

protective mesh for gas turbine compressors [3], control of turbulence intensity [4], static mixing

[5], or noise absorption [6, 7]. Amongst these examples, the use of these meshes as insect-proof

screens (IPS) in greenhouses or buildings is one of the most popular applications, due to their

frequent use for passive crop protection [8] and blocking the entrance of insects in buildings [9].

In greenhouses, insects are vectors of diseases to crops, and the use of IPSs represents a barrier to

restrict the entrance of insects [10], reduces the use of pesticides [11], and prevents the escape of in-

sect pollinators [12]. However, IPSs reduce ventilation rate, being detrimental in the microclimatic

conditions within the greenhouse (temperature and humidity) [13]. This outlines the importance

of designing IPSs that maximise ventilation and block the entrance of insects.

Wire screens are characterised by weft and warp threads. The warp threads determine the

width of the mesh, whilst the warp threads are placed in an alternated separation along the

screen, creating a woven-like structure. To characterise the geometric properties of the mesh of

the screens one just needs to know the separation between threads in the x (weft) and y (warp)

direction Lpx and Lpy, the diameters of the threads in the x and y directions Dhx and Dhy, and

the thickness of the screen e (see Figure 1). These parameters can be measured to characterise an

existing mesh, or input into a design process to create a new mesh. In the second scenario, not all

combinations are possible, as the interlacing of threads is modelled by mathematical equations that

may lead to unfeasible solutions [14]. In recent years, novel processing techniques are allowing the

modelling of interlaced threads forming the woven structures by different approaches. The work

in [15] consists of the 3D reconstruction of woven fabrics from pictures. The software combines

relevant weave parameters, colours and cross-sectional shapes to create 3D digital images of the

actual woven structure. This work was not focused on the calculation of pore-related parameters,

so the information provided is very limited. In [16], Fourier series are used to fit the experimental

binding waves of the threads, thanks to a cross-sectional image analysis method. Fourier series for

the modelling of the threads were also used in [17]. In this investigation, the reaction to mechanical

loads of the woven structure was studied analytically. The aim was to develop a discrete mass-

spring model of the meso/macro mechanical behaviour of a woven structure is developed. To

model the deformation, Fourier series were used, since the deformed shape of the yarns is assumed
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to retain its initial periodical shape. This study was of strong potential, since most works related

to the mechanical response to loads in the literature use Finite Element simulations [18, 19], due

to the complex shape of interlaced threads. The models in [17] were also used in more recent

works such as [20], where the beam theory is used as a novelty to model the thread interactions

at their cross-over points (so that these can be considered as external loads when isolating single

threads); and [21], whose work led to a micromechanical model of woven structures accounting for

yarn-yarn contact based on Hertz theory and energy minimisation. This modelling under loads

was also extended to the field of composite modelling [22], since composites can be created also as

compact woven structures [23, 24]. We have not found previous literature on how the aerodynamic

ventilation or screening ability of screens is perturbed when the mesh is subject to deformations.

Lpy

Lpx
Dhy

Dhx

e

Figure 1: Microscope images of a plain square woven screen for a greenhouse (a) and its geometry through the

thickness (b).

Pore-related properties have been studied in the literature, due to their importance in the

mechanical performance of screen applications. For instance, in [25] the impact of pore sizes

(dependent on the diameter of threads and their spacing) on the performance of superhydrophobic

wire screens is studied. These screens possess interesting mechanical properties such as providing

drag reduction [26] or mechanical separation of fluids having different surface tension [27]. In [25]

the impact of the pore size is analysed to estimate a pore-related property, the wetted area (area

of contact between water and the solid surface), and it is later used to estimate the reduction in

drag. Zhao et al. [28] outlined the importance and rising popularity of metallic woven screens

to enhance heat transfer [29]. Zhao et al. [28] modelled properties such as volumetric porosity,

specific surface areas and conductivity for multi-layered fully symmetric screens (Dhx = Dhy = Dh,

Lpx = Lpy = Lp, e = 2Dh). Their estimated parameters were approximations to reality but
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sufficient to demonstrate their relevance in performance prediction. Another relevant application

of woven screens is to use them as mechanical sieve. The work developed in [30] shows how screen

blocking can be modelled to predict the decrease in screen performance. The grain relative size is

the ratio between the average grain size (diameter) to the size of the pore. Therefore, the effective

area of the pores must be calculated accurately, otherwise the modelling results can be misleading.

An interesting attempt to calculate this effective area of woven screen pores is given in [31]. As

the area of these “holes” is not the projected surface but a 3D deformation of it (which is larger

than its projection), in this work two mathematical approaches are proposed to estimate the actual

area. Following this approach, Álvarez&Oliva [32] used this accurate calculation of the 3D area of

the pore hole to find a completely effective woven screen to protect crops from the entrance of an

specific size insect (Chestnut Gall Wasp). The aim was to use insect-proof screens with smaller

3D hole areas than the insect thorax and abdomen size.

To obtain the pore-related properties of woven screens allows to perform CFD simulations of the

ventilation of greenhouses/buildings with insect-proof screens. For instance, in [33, 34] (ventilation

of greenhouses) and [9] (ventilation of a kitchen) screens are modelled as a thin porous surface on

which the pore-related properties are input to model pressure drop via Darcy’s law. This approach

allows to simulate ventilation in large spaces without the need to simulate complex woven structure

pores using CFD, which have a very small size with respect to the entire room/greenhouse. This

allows to save important computational resources and reduces the complexity in the modelling as

the CFD mesh is simpler. In terms of ventilation, other works in the literature [35, 36] have focused

on the development of discharge coefficient models to explain the ventilation capacity of screened

windows, as well as heat and mass transfer in the ventilation process. These discharge coefficients

rely on the pressure drop coefficient, which requires to know beforehand the pore-related properties

of the screen [37, 38, 39].

There are also applications at micro/nanoscale in which the characterisation of screens is still

under research. In [40] the flow physics of wicking into micro/nano woven screens are studied

experimentally, which gained relevance recently due to phase-change heat transfer and phase sep-

aration. In this work, porosity is used to calculate the volume-flow rate due to capillarity. In the

calculation, a geometrical parameter (which characterises the screen sample influence) dependent

on the porosity is fundamental to describe the volumetric liquid drawn into the woven screens.

Similarly, [41] studied nanoscreen mesh wick and heat transfer by experimental testing in the ap-
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plication of Al2O3 and TiO2 nanofluids, due to their popular use in thermal applications thanks

to their outstanding thermophysical properties. All the aforementioned works rely on pore-related

properties to study woven screen mechanics, which evince the importance of an accurate calcula-

tion of these parameters: if their calculation is inaccurate, their study is inaccurate too, as errors

are propagated in the calculation.

Finally, another important application of the characterisation of pore-related parameters in

industry is to build models to characterise the aerodynamic performance of screens, which has

been an important area of research for decades. Initial investigations took place many decades ago

[42, 43], and continued to be studied in more recently both experimentally [44, 45, 46] and compu-

tationally [47, 48]. From this testing, and mostly experimentally, a prediction of the aerodynamic

performance of the screens based on relevant parameters is achieved [39, 49]. This allows provision

of industrial information in manuals (either on ventilation or filtering properties, depending on

the application) for industrial screens. Thus, for a certain Reynolds number (e.g. based on the

diameter of threads) and geometric characteristics (diameter of threads, spacing, thickness, poros-

ity, constriction factor, characteristic diameters, etc.), one can classify existing screens or predict

the behaviour of new designs. However, the accurate description of all screen properties is not

straightforward, due to their interlaced thread shape governed by non-linear systems of equations.

Despite of all the work made since decades ago the previous works in the literature, an exact

analytical model to estimate screens aerodynamic properties does not exist.

The installation of these screens in a system creates a pressure drop which can be related to the

velocity of inlet air by means of just a quadratic polynomial fit ∆P = αU2+βU [12, 50, 51]. In this

modelling, α and β are two coefficients related to the relevant properties of the mesh: permeability

K, which is independent of the working fluid but on the geometry; and the inertial factor Y , which

varies with the nature of the porous media [39, 52]. Many attempts to model the effect of flow

through screens can be found in the literature, but they all show noticeable errors in the predictions.

Possibly the first work in the literature addressing this topic was Eckert’s memorandum for the

National Advisory Committee of Aeronautics in 1942 [42], where air resistance of round wire screens

with different superficial solidity (that is to say, bidimensional porosity) were studied. This line of

research was continued by other researchers. It is important to point out the work by Armour and

Cannon [53], who developed a model applicable for a wide range of porous media (grids, plates with

holes, monofilament plastic screens, and possibly other surfaces with ordered equisized holes) as
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the screen is treated as a very thin packed bed. A good model for the friction factor f was obtained

for Reynolds numbers ranging between 1 and 100. The friction factor coefficient f is related to the

pressure loss per unit length from the Darcy-Forchheimer equation [54]. Similar models to this one

can be also found in recent works as [46, 55, 56], what evinces few improvements over the years.

A significant gap as observed in the literature is that the three-dimensional approach to screens

is scarce. Due to screens having a very small dimension in the direction of the thickness (z) in

comparison to the warp and weft threads, it is very often to see bidimensional characterisations of

the screens. For instance, it is the standard in the study of IPS in agriculture to calculate porosity

as a bidimensional quantity by ϕ2D = LpxLpy

(Lpx+Dhy)(Lpy+Dhx)
[39, 49, 57, 58]. From these assumptions,

empirical models to estimate aerodynamic properties (permeability, inertia factor, pressure drop,

etc.) are constructed [39, 57]. Even from intensive work to obtain the best correlations to fit

pressure drop in screen data using two-dimensional porosity estimations an unavoidable ±30% of

dispersion in data is present [59].

The simplification of 3D structural properties to 2D structural properties of the mesh is not

correct, specially due to two reasons: two screens may have the same pore size but different

thickness and thus different porosities [14]; and the effective area to avoid the pass of objects or

insects is not as simple as Lpx×Lpy, but requires some 3D considerations, as studied mathematically

in [31].

As mentioned above, empirical models are an aim to estimate the aerodynamic performance

of screens, usually based on two-dimensional quantities. Notwithstanding, Berg [60] developed

an important contribution to the field by describing permeability of porous media via charac-

teristic features such as tortuosity (related to streamlines), characteristic length (related to the

hydraulic pore), porosity (related to the fractional void volume that conducts the flow from in-

let to outlet), and constriction factor (related to fluctuation in local hydraulic radii). The pore

constriction/expansion or “hydrodynamic conductance” has been considered in a previous original

work by Berg [61] and it represents a term to account for the variations of velocity that take place

through the constriction/expansion of pores (because of conservation of mass in fluid mechanics

the volume flow rate is constant) and thus reduces permeability. This term has been considered

in simplified porous media in [62], and a standard deviation of the cross-sectional area of pores

is also considered as a measure of the degree of constriction in [63]. Moreover, the constriction

term is often grouped together with tortuosity effect [64, 65], although it has been demonstrated
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in [60] that both terms must be considered separately. These relevant ideas from general porous

media in [60] were imported recently to wire screens. As an attempt to find better models with

less dependence on empirical modelling, Wang and coworkers developed models for the friction

coefficient for different screens in [66]. These models included together for the first time the tortu-

osity, constriction factor and porosity in the estimation of the performance of screens. This is the

only work out there on how to obtain a constriction factor of screens. However, their modelling

of the constriction factor has strong limitations: it is calculated by a linear interpolation of the

local variation of the area of the pore for the sake of obtaining a generalisation of the calculation,

as the weave of the wire/threads of screens is a complex three-dimensional shape. Also, in their

calculation they considered only symmetric meshes, thus it was not generalisable to any screen.

Therefore, the calculation of the constriction factor of screens has room for improvement, since an

accurate mathematical modelling of the shape of the pore does not yet exist.

To summarise the literature review discussed above, it can be concluded that wire screens

porous structural properties have not been studied thoroughly. Previous works focused either on

the study of these screens as a 2D surface (e.g. in ventilation openings as insect-proof screens

[39, 67]: 2D porosity is identical for two meshes with the same projected area of pore but different

thickness) or as 3D structures under important assumptions (symmetric mesh, rough linear ap-

proximation to the evolution of the pore area along the thickness) [66]. Other work that considered

the mesh as a 3D structure have focused only on the study of the effective area of the pore to

block the entrance of insects and used it to improve 2D estimated porosity values [31], porosity

calculation as a void fraction not generalised to pore-related parameters [14], or have used Fourier

series to characterise thread shapes under loads but not structural properties [16].

The main novelty of the present work is the proposal and application of a method (Discretisa-

tion Method) to model accurately the 3D plain square mesh pores to fill this relevant research gap

in the characterisation of screens aerodynamics. The Discretisation Method based on the different

regions or stretches that the flow crosses along a mesh pore is tested and validated. This method

allows to calculate accurately three-dimensional structural quantities of interest in the modelling

of either symmetric and asymmetric meshes. To the knowledge of the authors, none of the previous

works in the literature modelled analytically the structure of the pore to obtain structural param-

eters from its volume integration, being the characterisation of pore-related properties of screens

very rough to date. To model (semi)analytically the mesh pores is an important contribution to
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calculate quantities such as the constriction factor, which is a structural parameter of the screen

only calculable by integration over the pore volume. Upon measurable (design) quantities as the

diameter of the wire/threads, their spacing, and the thickness of the screen the method allows to

calculate these quantities. This is implemented in the AeroScreen v1.0 software.

This investigation is useful to various applications. For instance, the semi-analytic calculation of

the pore allows to input more accurate boundary conditions in the CFD simulations in ventilation

of buildings/greenhouses, as screens are modelled as a thin surface (with no thickness) on which

pore-related structural parameters are input to the numerical software [9, 33]. The semi-analytical

modelling can be also used for the development of new designs, as one can assess the impact of

changes in geometry (and in consequence on pore-related parameters) on the performance of the

screen with lower errors. E.g., there are permeability or ventilation models in the literature based

on pore-related parameters [35, 60] and can be used to assess permeability/ventilation when dif-

ferent designs are tested. In addition, the methodology in the present work has been implemented

in the new AeroScreen v1.0 software, as tool for other researchers. Besides the option to input

geometric data manually, this software is compatible with output files from Euclides (a software to

extract screen measures from images) [67]. In consequence, pore-related structural parameters and

3D geometry reconstruction can be obtained from woven screen pictures. This gives the chance

to develop mobile apps to obtain the characterisation of screens instantly by using mobile phone

cameras, of interest in the supervision&maintenance of installed screens by mechanical engineers.

In any case, wire/woven screens have numerous applications in industry (ventilation, mechanical

screening, heat transfer&mixing in fluids, turbine protection, safety in switchgears, nanoscreen

wicking with nanofluids, control of turbulence in high-speed flows, woven fabrics, etc.), thus this

work is a relevant contribution to multidisciplinary knowledge in mechanical sciences.

A discretisation method based on the different regions or stretches that the flow crosses along

a mesh pore is tested and validated. This method allows to calculate accurately three-dimensional

structural quantities of interest in the modelling of either symmetric and asymmetric meshes, such

as porosity or the constriction factor. This methodology outperforms the linear approximation

developed in [66] for the constriction factor, and represents another way to estimate the volumetric

porosity studied in [14]. Upon measurable (design) quantities as the diameter of the wire/threads,

their spacing, and the thickness of the screen the method allows to calculate these quantities,

which is implemented in the AeroScreen v1.0 software.
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This manuscript is structured as follows. Section 2 describes the methods to carry out the

calculation, including the modelling of the interlaced threads and the local variation of the cross-

sectional area of the pores. Section 3 presents the results from the application of the method, which

is applied to the calculation of the volume of the pore and constriction factor for different screens

from the literature. Finally, in Section 4 the conclusions from this work are drawn. Additionally,

Appendix A provides some mathematical details on the intersection between a plane and a toroid

and cylinder; and Appendix B provides mathematical details on the application of the approach

via stretches for the calculation of the volume integral of the pore with separation of integrals.

2. Methods

In order to develop the mathematical study, first the geometry of the interlacing of threads must

be comprehended. After this, the full 3D characteristics of the pores can be modelled analytically

considering that the screen is swept across its thickness by a plane to obtain the cross-sections of

the threads that limit the size of the area of the pore.

2.1. Description of the problem

Easy measurements of geometric parameters (or desired values, if a specific design is in-

tended), such as diameter of threads, separation between threads and thickness, allow the full

geometric characterisation of a plain square woven/wire screen [14]. As depicted in Figure 1, the

threads/wires are interlaced to form a complex structure. This means that the pore also has a

complex volumetric shape, which has a very strong impact on the porous properties [39, 52, 66]

and screening performance [31] of the screen. To calculate the pore-related parameters of a screen

simply from few geometric data (or even directly from pictures [67]) is not straightforward, as there

are no general equations that model the shape of the pore. The present work proposes a method

based on sweeping the screen pore with a plane from the beginning to the end of its thickness.

This sweeping allows the local area of the pore to be calculated as the difference between the total

projected area and the intersection between the plane and the thread/wire shapes. Later, the

discretisation approach to be introduced in this section allows the integration of the local variation

of the area of the pore along the thickness to obtain the desired pore-related parameter.
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2.2. Non-linear model of the structure of threads

Since the objective is the development of an analytical model for the variation of the area of the

pore, a set of equations that describe the geometry of the interlaced threads must be introduced

first. Peirce [68] introduced a model for cloth woven structures, which consisted on a total of seven

equations that connect a total of eleven quantities:

ci =
li
pi

− 1, (1)

pi = (li −Hθi) cos θi + H sin θi (2)

hi = (li −Hθi) sin θi + H(1 − cos θi), (3)

H = hi + hj, (4)

where i = x,y (this notation throughout the manuscript denotes the threads in the x-coordinate

[x-threads or weft] and y-coordinate [y-threads or warp]), ci is the crimp, li is the total length

of each i -thread/wire, pi is the horizontal spacing between the centre of the threads (from a 2D

view) of i -threads/wires, θi is the inclination angle with respect to the plane parallel to the screen

or contact angle, and hi is the vertical separation of the centre of threads. A 2D sketch of this

geometry is shown in Figure 2. This set of non-linear equations requires to know seven out of

Figure 2: 2D Sketch of interlacing of threads/wires. The red threads (j-thread) represents the ones perpendicular

to the view plane (of diameter Dhj and separated a Lpi distance horizontally in this view) and the blue threads

(i-thread) are the transverse ones (of diameter Dhi and separated a Lpj distance). The contact area and inclination

of threads is determined by the angle θi for the i-thread in this view.
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eleven quantities to solve the geometry. Unfortunately, as said in [69], these equations are not

solved easily, and researchers have attempted to solve, simplify or approximate them by means of

different approaches. Moreover, to reconstruct the full geometry from real screens, it is important

to rely on have realistic measurable quantities. That is In other words, quantities such as crimp,

total length li, separations hi or the θi angles are good options from theoretical viewpoint but not in

practice. This is because they are not as easy to measure as other quantities such as the thickness

e, the inner spacing between threads Lpi, and the diameter of threads Dhi. For this reason, from

trigonometric relations, additional equations have been added in Granados et al. (2022) [14] to

the set of non-linear equations:

hi = (Dhi + Dhj)(1 − 1

cos θi
) + (Lpi + Dhj) tan θi. (5)

hj =
(Dhi + Dhj)

cos θi
− (Lpi + Dhj) tan θi, (6)

However, these equations are not extendable to any WS, since there is dependence on the

thickness e and the thread that constrains the thickness in asymmetric meshes (the diameter is

not the same for all threads and the thickness is not twice the diameter). This can be solved by

the aggregation of a categorical parameter, which is the type of configuration. If the WS is of

type Configuration 1 this means that in Figure 2 i = x, and the thickness e is measured as the

distancing between the upper and bottom sides of the x-thread. Configuration 2 would mean that

i = y, and the y-thread define the thickness. This is translated into the equations:

hi = e−Dhi,

hj = 2Dhi + Dhj − e,
(7)

Although by simply using the i = x,y notation (equivalent to rotate the mesh 90 degrees) the

model would be valid for either x- or y-threads without the necessity of defining Configuration 1

or 2, in the weaving of the WS structure it is important to define the warp and weft threads. In

addition, in IPS in greenhouses it is usual to have pores longer in the y-direction, and the subscript

of the thread is known beforehand. From the measured parameters, a solution to the full system

of non-linear equations can be found, and this allows to obtain the 3D structure of the mesh, see

Figure 3. In the figures can be seen that each interlaced thread/wire can be modelled as an inclined

cylinder, whose top and bottom parts are joined to portion of toroidal volumes. Thus, from using

the equations given in Equations (1)-(7), in combination to the parametric equations of a cylinder,

a toroid, and a plane, one can parametrise the full pore and mesh geometries analytically.
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Figure 3: Different views of the 3D model generated from the solution of the non-linear equations. Mesh with

Configuration 2 (x-threads in blue, y-threads in red). The visualisations in the figure are: a) isometric view, b) top

view (xy view), and c) side view (yz view). All units in meters.

2.3. Local variation of the cross-sectional area of a pore

When the plane parallel to the screen cuts the thread at a height such that both a portion

of a torus and the inclined cylinder are sectioned, then the calculation of the cross-section areas

is complex. This requires the calculation of the polar angles at which both the parametric curve

of the cylinder and the portion of torus coincide. The calculation of these limiting angles can be

explored in two different ways: 1) by creating a system of non-linear equations from the equality

between the two said parametric curves (the solution would be the point of convergence), or 2)

by some trigonometric work on the position of threads, which leads to non-linear equations. The

latter option is less complicated from a mathematical viewpoint. The determination of the limiting

polar angles to the solution of the area integrals1 must be done separately for the cylinder and

the portion of torus that make up the full thread. To obtain the cross-sectional area of the torus

and cylinder dependent on z requires some mathematical elaboration and identification of possible

scenarios (for instance, for the toroidal volumes, three different cross-sections will appear in a

transversal intersection with a plane). Details on this are given in Appendix A.

1Please bear in mind that, despite the concept of surface integral is usually in mathematics referred to an

extension of double integrals evaluated on surfaces, the definition of area integral is adopted in the present paper

to denote the solution to integrals that represent areas.
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To obtain the equations that model the local variation of the area of the pore, one has to bear

in mind all the possible scenarios in the intersection between the plane and the mesh. To this

aim To achieve this, we suggest to split the thickness of the screen into different parts or stretches

S. The different scenarios are illustrated in Figures 4 and 5. From these figures it is clear that

when sweeping the thickness e from z = e/2 up to z = 0, we may have up to six different zones or

stretches for any arbitrary i-thread and j as the transverse threads:

• Stretch 1: which corresponds to only intersections between the plane and an upper toroid

(Figure 4(a)). This occurs for z ∈ [e/2, (Rhj + Dhi) cos(θi) − hj/2 (if the i-thread limits the

thickness) or z ∈ [(Rhi + hi/2, (Rhj + Dhi) cos(θi) − hj/2 (if the i-thread does not limit the

thickness). If the both threads have the same size and limit thickness, thus the first relation

is valid for both.

• Stretch 2: which corresponds to intersections between the plane and both a cylinder and an

upper toroid, constrained also by the vertical symmetry axis of the toroid section (Figure

4(b)). This occurs for z ∈ [(Rhj + Dhi) cos(θi) − hj/2, Rhj − hj

2
).

• Stretch 3: which corresponds to intersections between the plane and both a cylinder and an

upper toroid, but this time constrained by the “inner hole” of the toroid (z delimited between

Figure 4(c) and 4(d)). When it appears, this usually occurs for z ∈ [Rhj − hj

2
, Rhj cos(θi) −

hj/2).

• Stretch 4: which corresponds to intersections between the plane and a cylinder only. When

it appears, this usually occurs for z ∈ Rhj cos(θi) − hj/2, hj/2 −Rhj cos(θi)].

• Stretch 5: which corresponds to intersections between the plane and a cylinder, an upper

toroid and a bottom toroid (Figure 5(a)). In this Stretch, the upper toroid is constrained as

in Stretch 2. However, the bottom toroid cross-section is constrained by the “inner hole”.

The cross-section of the cylinder is delimited by the contact with two toroids. When it

appears, this usually occurs for z ∈ [hj/2 −Rhj cos(θi), hj/2 −Rhj).

• Stretch 6: which again corresponds to intersections between the plane and a cylinder, an

upper toroid and a bottom toroid (Figure 5(b)). Again, in this stretch, the upper toroid is

constrained as in Stretch 2. However, the bottom toroid section is constrained by the vertical
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symmetry axis of the toroid section. The cross-section of the cylinder is again delimited by

the contact with two toroids. When it appears, this usually occurs for z ∈ [hj/2 −Rhj, 0].

It is very important to emphasize that the appearance of each of the six stretches is rare. Depending

on the shape of the interlacing of threads, some stretches may not be present exist. For instance, for

a fully symmetric mesh (same diameter for all threads, thickness equal to two times the diameter)

only Stretch 1 and 2 will appear, for both the warp (y-thread) and weft (x-thread) threads.

However, for the threads analysed in the present paper, which correspond to usually very non-

symmetric configurations, it is usual to see Stretches 1, 2, 3 and 4 for the warp thread; and Stretches

1, 2, 5 and 6 for the weft threads (see example in Figure 6). The appearance/disappearance of

these stretches also may vary the lower limits in the above-given description of each stretch. That

is to say, depending on the position of the z = 0 plane in the thread geometries, some of the given

limits would be negative. In this scenario, the integration limits for z at each stretch should be

adapted to the next limit (these limits abovementioned are named as zpxq and zpyq , with q = 0 , ...,5

in Appendix B). The numerical code in AeroScreen software does this automatically. In addition,

due to symmetry, the same intersections between the plane parallel to the screen and the threads

will be found for z ∈ [−e/2, 0], and z ∈ [0, e/2], thus only one half will be integrated.

For the first four stretches, which only involve the upper toroid portion, the delimitation of

which parts to consider from the cross-sections from the portion of torus and the cylinder are given

by the C1 and C2 points (point C in the 2D representation in Figure 7), which corresponds to the

intersection between their parametric curves. In Figure 7, it is provided an example of calculation

of limits for a thread positioned parallel to the Z-Y plane. It can be observed that the y-position

of the intersection between the plane and the separation region between the cylinder and the torus

happens at a distance ylim = Oy − d to the center of coordinates, where the y-axis position of the

thread below is Oy = (Lpi + Dhj)/2 and d = (z′ + hj/2) tan(θi). Thus, by equalising y(s) with

such distance and using z as z-coordinate for z′ (for the sake of notation hereinafter), we obtain a

non-linear equation, with solutions

silim(z) = sin−1

(
z cos(θi) − ylim sin(θi)

Rhi

)
,

silim(z) = π − sin−1

(
z cos(θi) − ylim sin(θi)

Rhi

)
.

(8)

The first of these two solutions is preferred because it falls into an appropriate quadrant, and

the area integrals will be solved in such. Once the polar angle limit is available, the cross-sectional
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area of the cylinder can be calculated based on the limiting angles by the torus as:

Acyl(z) = 2

∫ π/2

silim(z)

(Rhi cos(s))

(
Rhi cos(s)

sin(θi)

)
ds =

2R2
hi

sin(θi)

[
1

2
(s + sin(s) cos(s)

]π/2
silim(z)

. (9)

From the solution to this integral, it is clear that the cross-section of the inclined cylinder with

respect to the plane parallel to the screen is constant (always an ellipse). The dependence on z is

only dictated by slim(z) due to the intersection with the cross-section of the torus.

Similarly, this can be done for the torus section. However, must be taken into account that

for the four stretches shown in Figure 4, there are two limiting values for the polar angle v in the

parametric equations given in Equation (A.2): one for the vertical symmetry plane of the torus,

and one for the contact area between the torus and cylinder (as seen in the calculation of silim(z)).

Figure 4: Different full cross-sections obtained when the plane parallel to the screen (green horizontal line) cuts the

torus portion at different heights: a) Only torus, b) Torus and cylinder at intermediate distances (single deformed

oval curve), c) Torus and cylinder at z tangent to the j-thread hole top (lemniscate-like curve), and d) Torus and

cylinder when intersecting the “inner hole” of the torus (two ovals). The full elliptic curve of the cylinder is also

shown in blue for reference for the limiting points C1 and C2.

For the first case, to obtain the limit angles, the limit value of v can be considered the value

of v that would lead to the limiting angles are calculated by using the limiting value of v which

itself leads to a constant value of y(v) = (Lpi + Dhj)/2. This can be, for the sake of simplicity,

translated to y = 0. The solution v to this non-linear equation is:

vilim1(z) = π ± cos−1

(
a± z ∓Oz

Rhi

)
, (10)

with a = (Dhi + Dhj)/2, and one can select the following real value in a suitable quadrant:

vilim1(z) = π − cos−1

(
a− z + Oz

Rhi

)
. (11)
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Figure 5: Full cross-sections involving both the upper and bottom toroid portions. a) Upper toroid portion delimited

by the vertical symmetry axis and bottom toroid portion delimited by the inner hole. b) Both upper and bottom

toroid portions delimited by their vertical symmetry axes.

Figure 6: Stretches for an specific mesh with Configuration 2 (NWS = 11). Warp threads are shown in red, and

weft in blue. It can be observed all the stretches S that lead to the definition of the seven Discretisations D. Both

xz and yz views are placed together for better comprehensive interpretation of the definition of the Discretisations.

Stretches from the xz view are extended by means of dashed lines to overlap all the stretches at the right hand-side

for better identification of Discretisations. The horizontal black thick line represents z = 0, as only one half is

analysed due to symmetry. All units are in meters.

Similarly, for the second limit value one has to solve the non-linear equation resulting from

making equal y(v) in Equation (A.2) and ylim, according to the geometry shown in Figure 7),

which yields the following limit value of v:

vilim2(z) = π ± cos−1

(
a±

√
d2 + (z −Oz)2

Rhi

)
. (12)

Amongst these solutions (some may lead to complex values), one can get the real value:

vilim2(z) = π − cos−1

(
a−

√
d2 + (z −Oz)2

Rhi

)
. (13)
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Figure 7: 2D sketch of the full thread cut intersected by a plane parallel to the screen at z = z′. ylim defines the

horizontal position of the limiting point denoted as C for the sake of planar notation, but which in reality stands

for the two points C1 and C2 in three dimensions.

For the transverse threads, j, the limits are studied in the x-axis, thus ylim would actually be xlim.

We preferred to focus on a particular y-axis notation rather than using more sub-indices in order

to avoid confusing the reader with an overload of notation.

Finally, a scenario in which both the upper and bottom toroid portions are intersected by

the plane may take place. This situation is depicted in Figure 5. In Figure 5(a) is illustrated

an intersection in Stretch 5. All cross-sections in this stretch include a bottom toroid, which is

delimited by the inner hole, that is, by the shape of the toroid itself, and the joint with the cylinder.

To obtain the limit value of the angle v in the equations of the bottom toroid portion (bt), one

has to solve the non-linear equation resulting from making equal the equation of the bottom toroid

and −ylim2, where ylim2 = Oy − d2, and d2 = (hj/2 − z) tan(θi). This is almost the same concept

as in the calculation of vilim2(z). This calculation leads to the analytical solutions:

v′ ilim2(z) = π ± cos−1

(
a±

√
d22 + (z + Oz)2

Rhi

)
. (14)

Amongst these four solutions, the one of interest is the one from the quadrant:

v′ ilim2(z) = π − cos−1

(
a−

√
d22 + (z + Oz)2

Rhi

)
. (15)

In this stretch, the cross-section of the cylinder is delimited at both the left and right sides by the

joints with the toroid portions. Thus, there are two limits for the area integral: the silim(z) already
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explained for the joint with the upper toroid, and a new silim2(z) for the bottom toroid joint. This

limit for the integration is obtained in a similar manner to silim(z) in Equation (8). This time, it is

the equation of the bottom toroid portion the one which must be set equal to the negative values

at the limit with the cylinder, −ylim2. As there are two intersection points between the toroid and

the cylinder, there are two solutions:

silim2(z) = sin−1

(
z cos(θi) + ylim2 sin(θi)

Rhi

)
,

silim2(z) = π − sin−1

(
z cos(θi) + ylim2 sin(θi)

Rhi

)
.

(16)

The first solution is preferred, due to this corresponds to a quadrant positive integration. There

is no need to use both solutions as there is symmetry. Once the polar angle limit is available,

the cross-sectional area of the cylinder can be calculated by using the limiting angles slim(z) and

slim2(z).

The last scenario is illustrated in Figure 5(b), which corresponds to Stretch 6. The cross-section

of the cylinder and the upper toroid is the same, but the bottom toroid bt has its cross-section

limited by the joint with the cylinder (as Stretch 5) and by the symmetry axis. This limit for

the integral at the vertical symmetry axis is obtained from making equal ybt(v) and −Oy, whose

solution is:

v′ ilim1(z) = π ∓ cos−1

(
a± z ∓Oz

Rhi

)
, (17)

and it is chosen the following value corresponding to the suggested quadrant integration:

v′ ilim1(z) = π − cos−1

(
a + z + Oz

Rhi

)
. (18)

2.4. Integration of the area of the pore along the thickness. Calculation of the constriction factor

and volume of pores

The analysis developed in the previous sections was based on the interaction of a plane parallel

to the screen with a single thread. This idea can be exported to an WS taking into account that

this is made of four threads per pore (two threads in the x-coordinate direction, of diameter Dhx;

and two threads in the y-coordinate direction, of diameter Dhy). However, this is not an easy

task due to several reasons. First, the angle of the threads in the x-direction (namely x-threads or

weft), θx, and in the y-direction (namely y-threads or warp), θy, as well as their lengths, is not the

same. Actually, the geometry of the interlaced of threads is quite complex, as discussed in [14],

being dependent on the separation of the threads (Lpx and Lpy), their diameter (Dhx and Dhy), the
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thickness (e), and their structure (Configuration 1 or 2 ). Second, and related to the first point,

due to the different geometries that present each thread, when the plane intersects one thread at

a certain stretch, it is very likely that the transverse threads will not be intersected at the same

stretch, due to the different height of each thread (see Figure 6). Thus, the sweeping of the plane

on the insect-proof mesh structure must be done carefully, depending on the mesh shape.

The integration of the area of the pore along the thickness is of interest to calculate descriptive

parameters that characterise the mesh, as for instance volumetric porosity or the constriction

factor. The calculation of the integral of the area of the pore through the mesh (volume of the

pore) and the inverse allows to perform the full calculation of the constriction factor, given by

CF =
1

e2

∫ e/2

−e/2

Ap(z)dz

∫ e/2

−e/2

1

Ap(z)
dz, (19)

which is a parameter that estimates the effectiveness of the pore to conduct the flow [60]. A larger

value of CF reflects a reduced ability to let the flow pass from the inlet of the pore to the outlet.

The first integral in Equation (19) is equivalent to the volume of the pore Vp, which is:

Vp =

∫ e/2

−e/2

Ap(z)dz = 2

∫ e/2

0

Ap(z)dz. (20)

This integral can be solved taking into account the suggested approach stretch by stretch. This

method consists of decomposing Ap in the integral of Equation (20) into the different areas along

the stretches introduced in Section 2.3:

Vp =

∫ e/2

−e/2

[At − (Ax(z) + Ay(z))] dz = Vt −

(∫ e/2

−e/2

Ax(z)dz +

∫ e/2

−e/2

Ay(z)dz

)
, (21)

where the areas of the x-thread (Ax(z)) and y-thread (Ay(z)) are obtained and integrated for each

stretch. The method is explained in detail in Appendix B. For validation purposes, the result from

this integration can be compared to the volumetric porosity calculated in [14]. Since in [14] the

volumetric porosity is calculated as the percentage of volume of the threads over the total volume,

the volume of the pore can be computed as

Vp = Vt ϕ3D, (22)

where the total volume is calculated as Vt = (Lpx + Dhy)(Lpy + Dhx)e, and ϕ3D is calculated with

the Poro3D software [70]. Results have been validated with Equation (22) for the 20 WSs analysed

in [14] and the difference is negligible, with an average error of O(10−20).
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Therefore, the first integral in Equation (19) can be solved by decomposition of Ap with respect

to z (the actual volume of the pore Vp) into several terms related to the intersection of the plane with

the x- and y-threads. However, regarding the second integral in Equation (19), the decomposition

approach in Appendix B is not possible, as Ap(z) is in the denominator and the integration of 1/Ap

cannot be decomposed under the same reasoning. This complicates the problem substantially, since

as aforesaid, the area from the intersection between a torus and an horizontal plane has no solution

in terms of elementary functions. This leads to a complex multidimensional integral: depending

on the z position, each thread may be into a different stretch (see Figure 6), and the limits of the

integrals will be different for each area at each z position. In addition, depending on the stretch,

the horizontal plane may encounter e.g. a piece of torus in an x-thread, whereas may encounter a

cylinder+piece of torus for the y-thread. The impossibility of decomposing the integral into terms

related to each thread, complicates the identification of a solution to the problem.

To overcome these difficulties, we propose a methodology based on a discretisation from a

re-grouping of the proposed stretches, in order to solve piece-wise integrals. In other words, this

methodology consists of discretising the integration interval with z into different integrals from the

combination of all the stretches. Thus, each integral is solved independently. Opposite In contrast

to the approach introduced in Appendix B for the volume of the pore, this allows to work with

all threads at the same time. Thus, the first integral in Equation (19), besides by using Equation

(22), can be calculated either according to Appendix B or by means of the discretisation approach.

The results are identical.

From the combination of all the stretches Sk for each thread, the new discretisation of z ∈

[0, e/2] into different Dm intervals (called hereinafter discretisations), with m = 1, 2, ..., n, is

[0, e/2] = D1 + D2 + ... + Dn. For an arbitrary discretisation Dm, the area of the cross-section of

the x-thread with the horizontal plane (ASDmx(z)) is selected according to its stretch SDm. This is

extendable to the cross-section of the y-thread, ASDmy(z), so that one can obtain:∫ e/2

−e/2
1

Ap(z)
dz = 2

∫ e/2

0
1

Ap(z)
dz = 2

∫ e/2

0
1

At−(Ax(z)+Ay(z))
dz =

2
(∫

D1

1
At−(ASD1x

(z)+ASD1y
(z))

dz +
∫
D2

1
At−(ASD2x

(z)+ASD2y
(z))

dz + ... +
∫
Dn

1
At−(ASDnx(z)+ASDny(z))

dz
)
.

(23)

This piece-wise integration is not easy, as the resulting integrals are not strictly double or triple

integrals, but nested (ASDmx(z) and ASDmy(z) are actually integrals, whose integration limits also

depend on z, see explanation of stretches in the previous section). The identification of the integrals
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and the selection of each area per stretch (that is, ASDmx(z) and ASDmy(z)) to be integrated with

respect to z is done in the same way as described in Appendix B. An example of discretisations

from the case scenario shown in Figure 6 are given in Figure 6, which shows a total of seven

discretisations.

3. Results and Discussion

The discretisation method has been applied to real symmetric wire screens studied in previous

works [44, 66, 71], to validate the results and observe differences in the calculation of the constric-

tion factor as well as in the calculation of the volumetric porosity. Also, the discretisation method

has been applied to a set of 20 real woven screens (WSs) with asymmetric mesh frequently in-

stalled in Mediterranean greenhouses to spot differences with the estimation of porosity via volume

integration of toroid and cylinder done in Granados et al. (2022) [14].

3.1. Validation of the modelling with symmetric wire screen data

The only previous work in the literature on the estimation of the constriction factor was done

by Wang and coworkers [66]. In this work, a formula to calculate this parameter is proposed for

several types of mesh, including the one under study in this work (named as plane square screen in

[66]). However, their investigation has serious drawbacks. First, their calculation is based on the

assumption of strong linear variation of the area of the pore with z, as shown in Equation (24):

Ap(z)linear = (Lp + Dh)2 − 2B

Dh

z, (24)

where Lp is the separation between threads, Dh is the diameter of threads, and B = πDh(Lp+Dh)

4
.

This leads to an important simplification specially in non-symmetric meshes. The construction

of their Ap(z)/At plots (At is the projected total area of the pore) to interpolate or approximate

with a linear approach is also unclear, possibly constructed from image detection. Second, the

formula provided is only tested for fully symmetric screens (Dhx = Dhy = Dh, Lpx = Lpy = Lp,

e = 2Dh), so the efficacy for very distorted meshes is unknown. The evolution of the local area of

the pore Ap from the upper side to the bottom side of the mesh must be analysed to validate that

results and the approach are correct. When modelling it, one has to check whether the solution is

feasible, since when approaching z = 0 a horizontal is expected to ensure symmetry in both half

of the thickness. To achieve this, our approach has been compared to the linear approximation as

depicted in Figure 8 for two screen meshes: a fully symmetric mesh (same diameter for all threads,
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thickness equal to two times the diameter), for which only Stretch 1, 2 and 5 will appear; a typical

configuration; and a asymmetric screen mesh, for which 6 stretches exist. The figure shows the

evolution of the area of the pore at each z position (made dimensionless with the total area) and

the area occupied by each yarn at each z position and its corresponding stretch.

The linear approximation suggested by Wang et al. (2021) [66] is far from reality for non-

symmetric meshes, as seen in Figure 8, where a linear approximation following the reasoning in

Wang et al. is intended to show the difference in the trend for non-symmetric meshes. It is also

noticed that the use of a linear approximation leads to a non-differentiable plot for Ap in z = 0.

The change from positive values of z to negatives is abrupt, which is not consistent with reality.

Table 1 shows a comparison between constriction factor and volumetric porosity (both calcu-

lated from the integration of the expression of the linear approximation for the variation of area

of the pore shown in Equation (24)) from fully symmetric meshes in Figure 8 and the current pro-

posed method. Porosity is also validated with experimental data from the literature. In the table

can be observed that whilst in the calculation of the constriction factor the differences between

the linear approximation and the proposed discretisation method is not large, in the calculation

of porosity the difference is more remarkable. Compared to the experimental results reported in

the literature, the discretisation method provides a more accurate estimation of porosity, specially

when the thread density is increased. This makes sense, as in meshes with small pore sizes the

presence of threads is more notorious. In large separation between threads a mesh has less depen-

dence on the interlacing threads and even on thickness. Nevertheless, must be recall it must be

stressed that these results are related to fully symmetric meshes as they are the only data available

in previous literature for the constriction factor. For asymmetric meshes the difference would be

greater as will be seen next.

3.2. Calculation and validation of the volume of the pore and constriction factor for different

measured asymmetric screens

The discretisation method has been applied to a total of 20 WSs from Granados et al. (2022)

[14]. Table 2 and Figure 9 show the results from the calculation of the constriction factor with

Equation (19). The results are validated with the calculation of the volume of the pore Vp via

Equation (22) (Vp from ϕ3D) and discretisation method (Vp Current). The match has a negligible

difference, an absolute average error of O(10−20), due to the adaptive quadrature method to solve

the definite nested integrals for which there is no solution in terms of elemental functions.
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(a) (b)

Figure 8: Plots of the analytical estimation of the area of the pore with z and cross-sectional areas of the

threads/wires ASDmx(z) and ASDmy(z) from the intersection by the plane for each Stretch SDm present. The

dashed lines represent the linear approximation by Wang et al. [66]. The results are made dimensionless with the

total projected area At and shown for: a) Fully symmetric mesh (ρt = 40× 40 in [66]), and b) Notably asymmetric

mesh (NWS = 17 in [14]). All units are in meters.

ρt[wires/inch2], D[m] CF linear CF ϕlinear
3D ϕ3D ϕ3D exp.

4 × 4, D = 5.1E − 4 1.0015 1.0019 0.937 0.936 0.919 [44]

40 × 40, D = 2.54E − 4 1.080 1.076 0.686 0.659 0.662 [71]

60 × 60, D = 1.905E − 4 1.122 1.106 0.646 0.607 0.612 [71]

150 × 150, D = 6.604E − 5 1.074 1.072 0.694 0.669 0.671 [71]

Table 1: Comparison of constriction factors and volumetric porosity for symmetric meshes. The calculation of the

constriction factor via the present approach (CF ) is compared with the linear approximation (CF linear), and the

estimation of porosity experimentally (ϕ3D exp.) is compared to results via Discretisation Method (ϕ3D) and by

linear approximation (ϕlinear
3D ).

In addition, it is useful to observe the evolution of the local area of the pore from the upper side

to the bottom side of the mesh in a plot. This allows to check whether the solution makes sense or

not, since when approaching z = 0 a horizontal is expected to ensure symmetry. This is depicted

in Figure 8 for two WSs: a fully symmetric mesh (same diameter for all threads, thickness equal

to two times the diameter), for which only Stretch 1, 2 and 5 will appear; a typical configuration;

and a asymmetric screen mesh. The figure shows the evolution of the area of the pore at each z

position (made dimensionless with the total area) and the area occupied by each yarn at each z

position and its corresponding stretch. [Moved to previous section]

Must be outlined that the constriction factor is a value ideally close to 1 (an exact value of
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NWS ρt Lpx Lpy Dhx Dhy e ϕ2D ϕ3D Vp (from ϕ3D) Vp (DM) CF

1 14 × 27 131.84 570.46 209.6 225.74 489.82 0.270 0.655 8.947E-11 8.947E-11 1.113

2 14 × 27 141.8 615.93 214.81 221.73 514.28 0.288 0.688 1.068E-10 1.068E-10 1.091

3 14 × 27 187.33 543.47 186.45 183.97 417.75 0.379 0.723 8.189E-11 8.189E-11 1.063

4 14 × 27 188.4 591.6 184.1 184.7 401.7 0.385 0.721 8.378E-11 8.378E-11 1.061

5 10 × 20 233.7 734 276.4 273.4 563.8 0.335 0.664 1.919E-10 1.919E-10 1.082

6 10 × 20 226.87 681.08 256.83 243.52 566.62 0.349 0.709 1.773E-10 1.773E-10 1.071

7 10 × 20 238.57 745.95 272 261.24 564.4 0.350 0.688 1.975E-10 1.975E-10 1.074

8 10 × 20 239.99 761.46 263.95 261.81 534.67 0.354 0.677 1.864E-10 1.864E-10 1.073

9 10 × 20 232.48 760.74 233.06 253.08 544.35 0.366 0.715 1.879E-10 1.879E-10 1.068

10 10 × 20 252.74 746.43 258.95 255.66 639.22 0.368 0.745 2.435E-10 2.435E-10 1.058

11 10 × 20 243.71 773.99 251.59 253.5 595.82 0.369 0.734 2.229E-10 2.229E-10 1.061

12 10 × 20 250.31 865.1 264.6 260.28 610.55 0.375 0.736 2.592E-10 2.592E-10 1.058

13 10 × 20 234.9 838.7 245.8 248 525.91 0.375 0.711 1.957E-10 1.957E-10 1.064

14 10 × 20 253.89 784.27 250.54 253.49 586.68 0.379 0.735 2.264E-10 2.264E-10 1.060

15 10 × 20 256.6 736.4 256.8 243.7 480.19 0.379 0.674 1.609E-10 1.609E-10 1.061

16 10 × 20 246.76 877.27 233.8 236.45 545.95 0.402 0.752 2.204E-10 2.204E-10 1.050

17 15 × 30 107.52 456.34 195.99 211.07 507.52 0.237 0.663 6.989E-11 6.989E-11 1.117

18 13 × 30 110.02 611.88 187.7 209.4 458.13 0.263 0.667 7.808E-11 7.808E-11 1.107

19 13 × 30 170.9 876.8 163.3 160 406.07 0.437 0.795 1.111E-10 1.111E-10 1.031

20 15 × 30 221.6 548.8 110.5 109.9 260.57 0.556 0.830 4.728E-11 4.728E-11 1.021

Table 2: Estimation of porosity and constriction factor for the 20 representative WSs studied in Granados et al.

[14]. All units are given in micrometers (10−6 meters), but the volumes Vp in cubic micrometers. All screens are

interlaced according to Configuration 2. NWS is the number of woven screen, and the volume of the pore is

calculated from the volumetric porosity in [14] [Vp (from ϕ3D)] and by the here introduced Discretisation Method

[Vp (DM)]. The negligible difference in the comparison shows that the calculation of CF is very reliable via the DM.

unity would express that the area of the pore is constant [independent on the position z]). A mesh

is more prone to have greater CF if the size of the pore is distorted and small in comparison to

the area covered by the threads. A hint for this is how close the area occupied by the threads is to

the total area of the pore Ap (Ax and Ay actually approaches or surpass Ap in the surroundings of

z = 0). Another indicator can be the superficial porosity (ϕ2D), whose relation can be observed in

Figure 9. Although this can suggest certain degree of relationship, the superficial porosity is not a

good indicator of correlation, since the thickness also plays an important role in the CF , and the

thickness is not taken into account in the calculation of superficial porosity. This is observed also

in Figure 9: whereas the superficial porosity is ordered from lower to higher grouped by density of

threads (ρt), the CF is not varying with the same intensity. Actually, for meshes with ρt = 10×20

the change is not highly noticeable and it is not monotonically incresing or decreasing. In general,

the variability in CF is mild compared to the variability in porosity. This actually suggest that

the variability in CF , a parameter that has not yet been considered in computational models of

ventilation of vents with IPSs [39], may account a correction to errors in the aerodynamic behaviour

of IPSs worthy of consideration. Models in the literature [39] actually mimic very poorly pressure
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drop and inertial factor of IPS because of a lack of 3D structural properties [14].

Figure 9: Superficial porosity (ϕ2D), volumetric porosity (ϕ3D), and constriction factor (CF ) for each screen.

Screens are grouped by density of threads (ρt in [threads/cm2]) and ordered from low to high superficial porosity.

In order to gain more knowledge on the effect of the geometry on pore-related properties

(constriction factor, porosity and local area of pores), the One-factor-At-a-Time (OAT) method

[72] has been carried out. The asymmetric NWS = 17 screen has been selected as baseline design,

which will need to be re-designed. On this screen, two design space dimensions have been explored

by varying one of the design parameters and keeping the other fixed to their baseline value: one of

the diameters, Dhx, has been varied from a 50% up to a 110% of the original baseline value; and the

thickness e has been varied from a 90% up to a 120% of the original baseline value. Wider ranges

are not possible because values outside these limits lead to unfeasible (unrealistic) geometries.

In other words, there is no solution to the set of nonlinear equations given in Equations (1)-(7).

The separation of the threads (Lpx and Lpy) has not been explored by OAT, since in principle

the separation can be increased a lot while still obtaining feasible geometries. This leads to a

continuous increase (decrease) in porosity (constriction factor), and the challenge is actually to

restrict the screen to a certain pore inner diameter that blocks certain size insects/objects and to

vary mostly diameters&thickness to achieve the best screen. Also, depending on the application,

engineers may intend a specific design to suit a specific pore size, porosity and/or constriction

factor.
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As seen in Table 3, when increasing Dhx, the constriction factor was increased from a CF =

1.0498 up to a CF = 1.1288, and porosity was decreased from ϕ3D = 0.7249 up to ϕ3D = 0.6433.

The explanation behind this increase in the constriction factor is that, as the diameter of the wire

is increased, the volume occupied by the wire is increased (actually, the thread is also increasing

its inclination and elongation to fit in the new geometry [always a Configuration 2 one], as can

be seen in the top figure in Figure 10(a)). This affects to the local cross-sectional areas of the

pore at the different z locations by creating more “distorted” pore volume geometries (see Figure

10(b) to observe that for larger values of Dhx the impact of Ax on Ap is more remarkable). As the

constriction factor is a parameter that estimates the ability of the pore to conduct the flow (also

known as a fluctuation in local hydraulic radii) [60], it is clear that the more distorted the pore is,

the greater the constriction factor (which should ideally be strictly equals to unity). In terms of

porosity, the effect of increasing the diameter of the thread is clear: as all parameters but Dhx are

fixed to their baseline value, the volume of the pore is decreased whilst the total volume is still

the same. Therefore, the porosity decreases as the diameter of the wire increases.

Table 3 shows that, when increasing e, the constriction factor increases from a CF = 1.1297

up to a CF = 1.0716. Porosity is increased from ϕ3D = 0.6449 up to ϕ3D = 0.7088. In the event

of searching for a new design by increasing the thickness e of the screen, opposite to the scenario

when increasing Dhx, for the Configuration 2 screen the x-threads tend to decrease their inclination

as the y-threads increase their inclination (see Figure 11(a)) to keep delimiting the thickness of

the screen (up to a point at which the only option to keep increasing the thickness would be to

also increase Dhy). This has an easily predictable effect on porosity: the volume of the pore is

increased whilst the volume of the wires is essentially the same (it varies very little, as the nearly

negligible increases in length in the y-thread are cancelled by decreases in the x-thread). Thus,

porosity is increased. The effect on the constriction factor is not that clear. When the thickness is

increased, the x-threads are re-adapted to the geometry tending to a horizontal wire. That is why

the Ax/At plot in Figure 10(b) tends to an ellipse and the Ap/At plot tends to look like a “curved

step” (x and y-threads are swept in tandem). The y-threads increase their inclination, but more

gently. Thus, it is hard to extract a conclusion from the behaviour of the threads. However, the

terms in Equation (19) give a hint on the sensitivity of this factor to each parameter. It can be

observed that the thickness has squared inverse relation to CF , thus this evokes that an increase

on the thickness should dramatically reduce the constriction factor. But the limits of the integrals
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% of Dhx CF ϕ3D

50% 1.0498 0.7249

70% 1.0752 0.7058

90% 1.1038 0.6791

100% 1.1172 0.6625

110% 1.1288 0.6433

% of e CF ϕ3D

95% 1.1297 0.6449

100% 1.1172 0.6626

110% 1.0924 0.6897

120% 1.0716 0.7088

Table 3: Variation in constriction factor and porosity depending on the variation in the diameter of the Dhx or

thickness e in the wire screen NWS = 17.

are dependent on the thickness as well, which seem to damp the effect of 1/e2. Nevertheless, one

has to be cautious to generalise this to any geometry, and we cannot guarantee this trend when

increasing the thickness of a screen.

Finally, another relevant aspect to highlight is that the use of a linear approximation as sug-

gested by Wang et al. [66] is far from being accurate in asymmetric screens. Figures 10 and

11 show that the Ap/At curves do not have a linear trend at all and the derivative approaching

z = 0 should be zero to ensure symmetry. The semi-analytical calculation introduced in the present

work is a practical and realistic approach, which guarantees an accurate calculation of pore-related

quantities.

4. Conclusions

In this work, a semi-analytical approach based on a discretisation procedure is proposed and

applied to obtain relevant pore-related structural properties of interest for the aerodynamic char-

acterisation of woven screens from easily measurable geometric parameters. This is the first work

of its kind in the literature to create a generalisable generalised analytical model for the three-

dimensional pore of symmetric/asymmetric screens.
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(a) (b)

Figure 10: Effect of increasing the diameter Dhx with the OAT method on a) the wire screen geometry, and b)

the local area of the pore Ap/At and area occupied by each thread (Ax for x-thread and Ay for y-thread) when

intersected by the plane. Arrows indicate the trend of the plots when the parameter Dhx is increased. All units are

in meters.

The Discretisation Method based on the different regions or stretches of the mesh pore is tested

and validated. The results from its application show that the Discretisation Method outperforms

the only single previous attempt in the literature which was not generalisable and assumed lin-

earity. As expected, the study developed with the one-factor-at-a-time method illustrated several

asymmetric mesh design which present abrupt changes in the evolution of the area of the pore along

the thickness, for which a linear approximation underestimates notably the results. There are no

analytical/semi-analytical works in the literature addressing this, thus to model (semi)analytically

the mesh pores with high accuracy is an important contribution to estimate pore-related quantities

such as e.g. the constriction factor, which is a structural parameter of the screen calculated by

integration over the pore volume.

The Discretisation Method consists of an extendable approach to other types of screen by

considering the different thread stretches that a perpendicular flow would cross through the screens,

which is mimicked by the sweep of a plane parallel to the screen. This method takes into account

the three-dimensional structure of the threads, which is often simplified in the literature to a

two-dimensional shape in their aerodynamic characterisation. Thus, this semi-analytical approach
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(a) (b)

Figure 11: Effect of increasing the thickness of the screen e with the OAT method on a) the wire screen geometry,

and b) the local area of the pore Ap/At and area occupied by each thread (Ax for x-thread and Ay for y-thread)

when intersected by the plane. Arrows indicate the trend of the plots when the thickness is increased. All units are

in meters.

is a valuable tool to calculate accurately certain pore-related parameters such as the constriction

factor, which is a relevant quantity of interest in porous media but very poorly studied before in

the literature. Actually, the constriction factor is a parameter usually ignored in the aerodynamic

characterisation of screens, possibly because of the difficulty in its calculation. Previous recent

works suggested to model the evolution of the local area of the pore (from which the constriction

factor and other pore-related parameters can be calculated) as a linear approximation, which

has been demonstrated in the present investigation to be an imprecise estimation. Our proposed

approach provides the only realistic and accurate calculation in the literature.

The semi-analytical model can be also used in design life cycles or optimisation algorithms in

which the pore-related properties of new designs can be reliably estimated instantly for the first

time. These values can be further input to e.g. existing permeability or ventilation models, as

well as in computational simulations where these pore-related structural parameters are input as

porous media boundary condition on screens represented by a thin surface. Therefore, the present

approach is an important contribution also to decrease uncertainty in predictions that use these

parameters as input. Wire/woven screens have plenty of applications in industry (insect-proof
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screens in agriculture/buildings, heat transfer&mixing in chemical industry, mechanical screening,

protection of turbines, electric safety switchgears, nanofluid wetting technology, textile design,

control of turbulence, etc.), thus the impact of the present work is on many levels and disciplines.

The method has been tested and validated against a total of 20+4 wire screens from the

literature, showing an outstanding accuracy. The applicability of this method to real screens

provides additional support in the decision making and design of novel screens, as these are designed

to maximise the fluid flow (e.g. ventilation in insect-proof screens for greenhouses) and minimise

pressure drop and the pass of insects or objects. The current models for the characterisation

of industrial screens are also based on simplified (usually bidimensional) parameters which large

errors (especially those used in insect-proof screens for greenhouses) which could be improved with

three-dimensional considerations. Therefore, our work may be the foundation for a more reliable

characterisation that may enable new design paradigms in the field, as optimisation algorithms

could be incorporated to deliver for the first time optimal a la carte woven screen designs that

maximise e.g. ventilation (related to minimisation of the constriction factor, maximisation of

porosity, etc.) and mechanical properties (e.g. more durable meshes with increased thickness but

tight threads) under geometric optimisation constrains that block the pass of insects/objects of

a specific size. A limitation of the approach is the complexity in solving the integrals from the

intersection between toroid and the plane, which have no solution in terms of elemental functions

and thus must be solved by quadrature. This hinders the purely analytical definition of the method.

A software to calculate relevant 3D pore-related parameters (AeroScreen) in the characterisation

of screens is available as support to spread its application. Since the software admits manual input

of data but also a text file from Euclides, an image detection software, all pore-related parameters

can actually be estimated from pictures of the screens.
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Supplementary Material

The AeroScreen v1.0 code is available at

https://rsoftuma.uma.es/en/software/AeroScreen/.
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Appendix A. Appendix: Intersection between a plane and a toroid and cylinder.

Appendix A.1. Intersection between torus and plane

In a general form, the parametric equations that model a torus generated by rotation around

the x-axis and centered in (0, 0, 0) take the form:

x(u, v) = R2 sin(v),

y(u, v) = (R1 + R2 cos(v)) cos(u),

z(u, v) = (R1 + R2 cos(v)) sin(u),

(A.1)

with R1 the radius of the rotation around the x-axis, R2 the radius of the circumference in rotation

of centre positioned at R1 distance to the centre of coordinates, u ∈ [0, 2π] the angle that R1 sweeps,

and v ∈ [0, 2π] the angle that R2 sweeps. When a halved torus (z(u, v) ≥ 0 ) is cut by a plane

orthogonal to the toroid, i.e. z(x, y) = z′ = constant, depending on the height z′, one can

obtain three different cross-sections (spiric sections of a torus): one oval or ellipse cross-section

(if z′ > R1 − R2) [hereinafter named Type 1 cross-section], a lemniscate-like cross-section (if

z′ = R1 −R2) [hereinafter named Type 2 cross-section], or two ovals (if z′ < R1 −R2) [hereinafter

named Type 3 cross-section], see Figure A.12. For each of these cases, the parametric equations

of the cross-section curves are the same, which can be obtained by equality in z:

x(v) = R2 sin(v),

y(v) = (R1 + R2 cos(v))

√
1 −

(
z′

R1 + R2 cos(v)

)2

,

(A.2)

with v ∈ [0, 2π]. Although these equations are valid for the three types of cross-section, the limits

of v must be carefully chosen. Must be pointed out that, when
(

z′

R1+R2 cos(v)

)2
> 1, then complex

numbers appear. Although they make no contribution to the parametric curve, they can be avoided

by simply selecting v as:

cos−1

(
−z′ −R1

R2

)
≤ v ≤ cos−1

(
z′ −R1

R2

)
. (A.3)

Thus, this also states the values of the limits in the integration to estimate the area of the cross-

section for each type of cut. The area enclosed by the parametric curve in the yx plane can be

obtained by the integral:

Ator(z) =

∫ 2

1

x(y)dy =

∫ v2

v1

x(v)
dy(v)

dv
dv =

∫ v2

v1

(R2 sin(v))

 −R2 sin(v)√
1 −

(
z

R1+R2 cos(v)

)2
 dv, (A.4)
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Figure A.12: Different cross-sections of a torus generated by revolution around the x-axis. The left column illustrates

the isometric views of the a) Type 1 cross-section, b) Type 2 cross-section, and c) Type 3 cross-section; whereas

the right column of plots illustrates the top views of the d) Type 1 cross-section, e) Type 2 cross-section, and f)

Type 3 cross-section.

where v1 and v2 are the limits of the integral such that v ∈ [v1, v2]. These limits, taking into

account (A.3) and the limiting state z′ = R1 −R2, are as follows:

cos−1
(
− z′−R1

R2

)
≤ v ≤ cos−1

(
z′−R1

R2

)
, if cross-section is of Type 1 or 2 (z′ ≥ R1 −R2),

−π ≤ v ≤ π, if cross-section is of Type 3 (z′ < R1 −R2).

(A.5)

The greatest problem in the calculation of the area of the cross-section arises from the fact that

the integral in Equation (A.4) has no solution in term of elemental functions. This type of integral

is very complex, not even solvable by means of either approximations or series. To our knowledge,

the only promising mathematical approach might be related to the use of elliptic integration, as

done in other similar curves such as Cassini ovals, which are often incorrectly referred to as spiric

toric sections. However, as these potential solutions to the integral need to be further integrated

(to estimate the constriction factor, the area will be integrated along the thickness of the screen),

this would complicate the problem excessively, and a solution with elemental functions to the

analytical equations does not exist. Therefore, although the present paper provides analytical
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integral equations to model the evolution of pore, the integrals of the toroid cross-sections have to

be solved inevitably by quadrature.

Appendix A.2. Intersection between cylinder and plane

The parametric equations of an inclined cylinder volume are:

x(l, s) = l cos θ + R sin s sin θ,

y(l, s) = R cos s, with l ∈ [−lcyl/2, lcyl/2] and s ∈ [0, 2π),

z(l, s) = R sin s cos θ − l sin θ,

(A.6)

where lcyl is the length of the cylinder, R is the radius and θ the angle of inclination. The

intersection between the plane z = z′ and the cylinder allows to obtain its cross-section. The

parametric equations of such cross-section are obtained from equality in z:

x(s) = R cos(s),

y(s) =
z′ −R sin(s) cos(θ)

sin(θ)
cos(θ) −R sin(s) sin(θ),

(A.7)

where s ∈ [0, 2π].

Similarly to the analysis for the toroid, the area integral of the cross-section of the cylinder can

be obtained as:

Acyl(z) =
∫ s2
s1

x(s)dy(s)
ds

ds =∫ s2
s1

(Rhy cos(s))
(

Rhy cos(s)

sin(θy)

)
ds =

R2
hy

sin(θy)

[
1
2
(s + sin(s) cos(s)

]s2
s1
,

(A.8)

where s ∈ [s1, s2] = [0, 2π] if the full area is desired. However, as the cylinder will be joined to

pieces of toroid portions to form a thread geometry, the area will be constrained, thus s1 and s2

limits will have dependence with z′. This is discussed in Section 2.3.

Appendix B. Application of the approach via stretches for the calculation of the vol-

ume integral of the pore with separation of integrals.

For the calculation of the constriction factor the area of the pore is integrated in two different

ways: with respect to z (volume of the pore, Vp), and also the inverse of the area with respect to

z. Since the area of the pore varies with z, it can be modelled as Ap(z) = At − (Ax(z) + Ay(z)),

with Ax(z) and Ay(z) the area of the intersection of the plane parallel to the screen at z and the
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x-thread and y-thread, respectively. Thus, when Ap is integrated, this integral can be decomposed

into:

Vp = 2

∫ e/2

0

(At − (Ax(z) + Ay(z))) dz = 2

∫ e/2

0

Atdz−2

(∫ e/2

0

Ax(z)dz +

∫ e/2

0

Ay(z)dz

)
. (B.1)

This decomposition of the integral allows to work on each term separately, not requiring to

solve a larger complex multivariate integral (must be recalled that Ax(z) and Ay(z) are actually

integrals). Unfortunately, this is not possible for the integration of 1/Ap(z), as will be shown in

the next subsection of the appendix.

By taking into account the different stretches mentioned in Section 2.3, one should perform

the calculation carefully for the x- and y-threads separately and by adding/removing any stretch

depending on the geometry. The AeroScreen software performs this identification&assignation

automatically in advance.

When intersected at different z values, the sweeping will include as maximum the six stretches

described in Section 2.3 (actually, it is expected to include from two to four for each thread). The

volume occupied by the i -thread (thus j -thread stands for the other thread) at each Stretch k

will be denoted by Vki, which will be lately subtracted to the total volume of the pore. Thus, the

volume integrals, limited by the stretches Sk in z and by the limiting angles vlim for the pieces of

torus, and by slim for the cylinders, are:

V1i = 2

∫
S1

A1i(z)dz = 2

∫ zpi0

zpi1

∫ vilim1(z)

0

R2
hi sin(v)2√

1 −
(

z−Oiz

a+Rhi cos(v)

)2dvdz, (B.2)

V2i = 2
∫
S2
A2i(z)dz =

2

∫ zpi1
zpi2

∫ vilim1(z)

vilim2(z)

R2
hi sin(v)

2√
1−

(
z−Oiz

a+Rhi cos(v)

)2
dvdz +

∫ zpi1
zpi2

2R2
hi

sin(θi)

[
1
2
(s + sin(s) cos(s)

]s=π/2

s=silim(z)
dz

 ,
(B.3)

V3i = 2
∫
S3
A3i(z)dz =

2

∫ zpi2
zpi3

∫ vilim2(z)

vilim3(z)

R2
hi sin(v)

2√
1−

(
z−Oiz

a+Rhi cos(v)

)2
dvdz +

∫ zpi2
zpi3

2R2
hi

sin(θi)

[
1
2
(s + sin(s) cos(s)

]s=π/2

s=silim(z)
dz

 ,
(B.4)

V4i = 2

∫
S4

A4i(z)dz = 2

∫ zpi3

zpi4

4R2
hi

sin(θi)

[
1

2
(s + sin(s) cos(s)

]s=π/2

s=0

dz, (B.5)
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V5i = 2
∫
S5
A5i(z)dz =

2

∫ zpi4
zpi5

∫ vilim2(z)

vilim3(z)

R2
hi sin(v)

2√
1−

(
z−Oiz

a+Rhi cos(v)

)2
dvdz +

∫ zpi4
zpi5

2R2
hi

sin(θi)

[
1
2
(s + sin(s) cos(s)

]s=silim2(z)

s=silim(z)
dz

+∫ zpi4
zpi5

∫ π

v′ilim2(z)

R2
hi sin(v)

2√
1−

(
z+Oiz

a+Rhi cos(v)

)2
dvdz

 ,

(B.6)

V6i = 2
∫
S6
A6i(z)dz =

2

∫ zpi5
0

∫ vilim2(z)

vilim3(z)

R2
hi sin(v)

2√
1−

(
z−Oiz

a+Rhi cos(v)

)2
dvdz +

∫ zpi5
0

2R2
hi

sin(θi)

[
1
2
(s + sin(s) cos(s)

]s=silim2(z)

s=silim(z)
dz

+∫ zpi5
0

∫ v′ilim1(z)

v′ilim2(z)

R2
hi sin(v)

2√
1−

(
z+Oiz

a+Rhi cos(v)

)2
dvdz


(B.7)

with

zpj0 = Rhj +
hj

2
and zpi0 = e/2 (for configuration 1 and i = x), (B.8)

zpi0 = Rhi +
hi

2
and zpj0 = e/2 (for configuration 2 and i = x), (B.9)

zpi1 = (Rhj + Dhi) cos(θi) −
hj

2
, (B.10)

zpi2 = Rhj −
hj

2
, (B.11)

zpi3 = Rhj cos(θi) −
hj

2
, (B.12)

zpi4 =
hj

2
−Rhj cos(θi), (B.13)

zpi5 =
hj

2
−Rhj. (B.14)

It must be noted that if any of these limits is negative, the value of the limit in the integral must

set to zero (we are integrating between 0 and e/2) and the stretch must be selected carefully. For

instance, attention must be paid to not overlap S2 with S5 or S6, as their ranges may actually

overlap in many WSs. This is solved by rearranging the limits according to their intersection.

Finally the volume of the pore can be calculated as:

Vp = 2

∫ e/2

0

Atdz − 2

NSi∑
k=1

Vki +

NSj∑
k=1

Vkj

 , (B.15)

where At is the total area At = (Lpx+Dhy)(Lpy+Dhx), and NSi and NSj are the number of stretches

in the intersection between the plane parallel to the screen and the i and j -thread, respectively.
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