
Citation: Kazi, M.A.; Woodhead, S.;

Gan, D. An Investigation to Detect

Banking Malware Network

Communication Traffic Using

Machine Learning Techniques. J.

Cybersecur. Priv. 2023, 3, 1–23.

https://doi.org/10.3390/jcp3010001

Academic Editor: Danda B. Rawat

Received: 11 November 2022

Revised: 7 December 2022

Accepted: 19 December 2022

Published: 27 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

An Investigation to Detect Banking Malware Network
Communication Traffic Using Machine Learning Techniques
Mohamed Ali Kazi, Steve Woodhead * and Diane Gan

Old Royal Naval College, The University of Greenwich, Park Row, London SE10 9LS, UK
* Correspondence: s.r.woodhead@greenwich.ac.uk

Abstract: Banking malware are malicious programs that attempt to steal confidential information,
such as banking authentication credentials, from users. Zeus is one of the most widespread banking
malware variants ever discovered. Since the Zeus source code was leaked, many other variants of
Zeus have emerged, and tools such as anti-malware programs exist that can detect Zeus; however,
these have limitations. Anti-malware programs need to be regularly updated to recognise Zeus, and
the signatures or patterns can only be made available when the malware has been seen. This limits
the capability of these anti-malware products because they are unable to detect unseen malware
variants, and furthermore, malicious users are developing malware that seeks to evade signature-
based anti-malware programs. In this paper, a methodology is proposed for detecting Zeus malware
network traffic flows by using machine learning (ML) binary classification algorithms. This research
explores and compares several ML algorithms to determine the algorithm best suited for this problem
and then uses these algorithms to conduct further experiments to determine the minimum number of
features that could be used for detecting the Zeus malware. This research also explores the suitability
of these features when used to detect both older and newer versions of Zeus as well as when used to
detect additional variants of the Zeus malware. This will help researchers understand which network
flow features could be used for detecting Zeus and whether these features will work across multiple
versions and variants of the Zeus malware.

Keywords: Zeus banking malware; Zeus malware variants; machine learning; binary classification
algorithms; deep learning; feature selection

1. Introduction

Cybercrime is a major threat to cybersecurity [1,2] estimates that the yearly cost of
cybercrime could rise to USD 10.5 trillion by the year 2025 and a significant proportion
of this is related to malware such as banking malware. Banking malware have also been
increasing on a yearly basis, and according to [3], banking malware attacks have increased
by 80% in 2021 alone. One of these banking variants, specifically, the Zeus malware (from
hereon, referred to as Zeus), has become one of the most prevalent banking malware
variants ever discovered [4]. Furthermore, in 2011, the Zeus program code was made
public [5], allowing malware developers to create additional variants of Zeus and to also
develop additional modules for the Zeus malware [6]. Since the Zeus code was leaked,
many variants of Zeus have emerged, and some of these include ZeusPanda, Ramnit
and Citadel.

1.1. Need for Malware Detection

As the number of malware and their variants are increasing rapidly and becoming
more sophisticated and prevalent [7], additional modern techniques need to be developed
to detect these malware variants, and [7] highlights the importance of using AI to detect
malware. The authors of [8] also discuss the limitations in other malware detection ap-
proaches, such as detecting malicious patterns in executables, and using heuristic-based

J. Cybersecur. Priv. 2023, 3, 1–23. https://doi.org/10.3390/jcp3010001 https://www.mdpi.com/journal/jcp

https://doi.org/10.3390/jcp3010001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcp
https://www.mdpi.com
https://orcid.org/0000-0002-0920-7572
https://doi.org/10.3390/jcp3010001
https://www.mdpi.com/journal/jcp
https://www.mdpi.com/article/10.3390/jcp3010001?type=check_update&version=1

J. Cybersecur. Priv. 2023, 3 2

approaches and statistical approaches and have recommended that researchers should use
machine learning and deep learning approaches to address these limitations. Signature-
based malware detection systems also exist, but these systems also have limitations; for
example, they can only detect known malware [9].

This paper proposes a framework and methodology to detect malware and benign
traffic using machine learning and deep learning algorithms. The main contributions of this
paper are to develop a methodology to detect the Zeus banking malware and differentiate
it from benign traffic using binary classification machine learning algorithms. This paper
will compare three binary classification algorithms to determine which provides the best
detection results when used to detect Zeus from benign traffic. This paper also determines
the minimum number of features that could be used to detect Zeus and benign traffic.
Researchers [10–13] have discussed and proposed several supervised machine learning
(ML) algorithms that could be used for analysing this type of problem and this paper uses
three of these ML algorithms. These are: random forest ML algorithm, decision tree ML
algorithm and the KNN deep learning algorithm. This paper aims to:

• Determine a methodology that can be used by deep learning and machine learning
algorithms for detecting the Zeus malware.

• Determine which ML algorithm produces the best detection results.
• Determine whether the features that produce the best detection results on one dataset

will work on other datasets from other sources.
• Determine a minimum set of features that could be used for detecting Zeus.
• Determine whether the features that produce the best detection results work across

newer and older versions of Zeus.
• Determine whether the features that produce the best detection results when detecting

Zeus also work on additional variants of the Zeus malware.

1.2. Zeus Malware Architecture

An important feature of the Zeus malware is the way that it communicates, as it uses
command and control channels (C&C) for this purpose. The author of [14] has discussed the
various phases of the C&C communication, which can be seen in Figure 1. This communica-
tion can occur using either a centralised or a peer-to-peer architecture, with the peer-to-peer
architecture being more robust and resilient [15]. This is because if the central C&C server
becomes unreachable or is taken down, the Zeus bots will not be able to communicate
with the C&C server, preventing the bots from receiving commands, updating themselves
and downloading new configuration files [16]. Newer variants of Zeus use the P2P C&C
architecture. These are more resilient to takedown efforts because the configuration file
does not point to a static C&C server [17]. Instead, the C&C server information is obtained
from a peer (proxy bot), which can be updated if the C&C server is taken down or becomes
unreachable [18]. Stolen data is routed through the C&C network to the malware authors’
C&C server, where the stolen data is decrypted and saved to a database [19].

J. Cybersecur. Priv. 2023, 3, x FOR PEER REVIEW 2 of 24

malware. The authors of [8] also discuss the limitations in other malware detection ap-
proaches, such as detecting malicious patterns in executables, and using heuristic-based
approaches and statistical approaches and have recommended that researchers should
use machine learning and deep learning approaches to address these limitations. Signa-
ture-based malware detection systems also exist, but these systems also have limitations;
for example, they can only detect known malware [9].

This paper proposes a framework and methodology to detect malware and benign
traffic using machine learning and deep learning algorithms. The main contributions of
this paper are to develop a methodology to detect the Zeus banking malware and differ-
entiate it from benign traffic using binary classification machine learning algorithms. This
paper will compare three binary classification algorithms to determine which provides
the best detection results when used to detect Zeus from benign traffic. This paper also
determines the minimum number of features that could be used to detect Zeus and benign
traffic. Researchers [10–13] have discussed and proposed several supervised machine
learning (ML) algorithms that could be used for analysing this type of problem and this
paper uses three of these ML algorithms. These are: random forest ML algorithm, decision
tree ML algorithm and the KNN deep learning algorithm. This paper aims to:
• Determine a methodology that can be used by deep learning and machine learning

algorithms for detecting the Zeus malware.
• Determine which ML algorithm produces the best detection results.
• Determine whether the features that produce the best detection results on one dataset

will work on other datasets from other sources.
• Determine a minimum set of features that could be used for detecting Zeus.
• Determine whether the features that produce the best detection results work across

newer and older versions of Zeus.
• Determine whether the features that produce the best detection results when detect-

ing Zeus also work on additional variants of the Zeus malware.

1.2. Zeus Malware Architecture
An important feature of the Zeus malware is the way that it communicates, as it uses

command and control channels (C&C) for this purpose. The author of [14] has discussed
the various phases of the C&C communication, which can be seen in Figure 1. This com-
munication can occur using either a centralised or a peer-to-peer architecture, with the
peer-to-peer architecture being more robust and resilient [15]. This is because if the central
C&C server becomes unreachable or is taken down, the Zeus bots will not be able to com-
municate with the C&C server, preventing the bots from receiving commands, updating
themselves and downloading new configuration files [16]. Newer variants of Zeus use the
P2P C&C architecture. These are more resilient to takedown efforts because the configu-
ration file does not point to a static C&C server [17]. Instead, the C&C server information
is obtained from a peer (proxy bot), which can be updated if the C&C server is taken down
or becomes unreachable [18]. Stolen data is routed through the C&C network to the mal-
ware authors’ C&C server, where the stolen data is decrypted and saved to a database
[19].

Figure 1. C&C Communication phases. Figure 1. C&C Communication phases.

J. Cybersecur. Priv. 2023, 3 3

As discussed by [20], Zeus propagates like a virus, mainly infecting Windows systems
and predominantly, the infection vector occurs via phishing emails, which is a significant
distribution mechanism for malware. Research by [21] has discussed this in detail, and
states that around 90 percent of data breaches are caused by phishing. Once the Zeus
binary executes on a Windows system, it performs several actions. One of these is to
create two files called local.ds and user.ds. Local.ds is the dynamic configuration of the file
downloaded from the command and control (C&C) server, while the user.ds stores stolen
credentials and other information that needs to be transmitted back to the C&C server [22].
Additional code is injected into svchost and is responsible for network communications.
Svchost is also responsible for injecting malicious code into many Windows processes,
which provide Zeus with the ability to steal credentials and launch financial attacks.

2. Related Studies

Bothunter [23] is a perimeter scanning system which uses three sensors and a correla-
tion engine to identify malicious traffic flows that can occur between an infected host and a
malicious entity. Bothunter [23] has been built on top of the open-source platform called
SNORT, and it is an application developed to track the various stages of the malware com-
munication flow and can correlate both inbound and outbound traffic to identify malware
traffic. Two plugins called SLADE and SCADE are used by Bothunter, and SCADEs role
is to analyse the communication flows to identify traffic patterns that can be considered
harmful. These traffic patterns include:

• Hosts that frequently scan external IP addresses.
• Outbound connection failures.
• An evenly distributed communication pattern which is likely to indicate that that

communication is malicious.

SLADEs role is to analyse network packets and alert the administrator if a packet
deviates from an established profile. SLADE was developed using PAYL [24], which
allows SLADE to examine 256 features of the packet and then use this information to make
determinations as to whether the packet is malicious or not.

Botminer [25] is a tool that was designed to detect groups of compromised computers,
and this is achieved by monitoring network communication flows using two modules,
a C-plane module, and an A-plane module. The C-plane’s role is to log network traffic
to identify all the hosts that are communicating, and the A-plane’s role is to identify
what these hosts are doing. Features extracted from both these modules can be used to
identify communication patterns that are similar between hosts and if these communication
patterns are malicious, it is indicative that a particular group of hosts are communicating
maliciously. The A-plane module is based on Bothunter’s [23] SCADE module and can
analyse communications to determine malicious communication patterns [25].

CONIFA [26] uses machine learning to detect malware communication traffic, and it
does this by training and testing the Zeus malware by using the correlation-based feature
selection (CFS) algorithm with the C4.5 classification algorithm. To improve CONIFAs
accuracy and prediction results, [26] created a cost-sensitive variant of the C4.5 classification
algorithm, which uses a lenient and strict classifier and compares the prediction results
to a standard machine learning framework, which uses a cost-insensitive version of the
C4.5 algorithm. The standard framework’s detection rate was good when evaluating the
training dataset; however, when evaluating the test data, the recall rate dropped to 56%.
CONIFAs results demonstrated an improvement in the detection accuracy, with the recall
rate increasing to 67%.

The RCC Detector (RCC) [27] analyses network traffic flowing from a host to identify
any malware communication traffic. To do this, the RCC [27] uses a multi-layer perceptron
(MLP) and a temporal persistence (TP) classifier. The MLP classifier is made up of an input
layer, an output layer and one hidden layer [27], and these are used to classify botnets
using several characteristics, including, the Flow count, session length, uniformity score
and the Kolmogorov–Smirnov Test.

J. Cybersecur. Priv. 2023, 3 4

The multi-layer feed forward network (MLFFN) [28] is a tool that extracts TCP features
from the TCP connections originating from a host computer and uses these to identify
botnet communication traffic. MLFFN [28] consists of an input layer made up of six neurons
and an output layer made up of four neurons. MLFFN was tested on four datasets, namely,
Zeus-1, Zeus-2, Spyeye-1 and Spyeye-2, and it is worth noting that these are all older
versions of the Zeus malware.

Genetic programming (GP) [29] used the Symbiotic Bid-Based (SBB) algorithm and the
C4.5 machine learning algorithms to identify unique botnet communication patterns, and
to do this, features were extracted from the communication flows of three malware variants
including Zeus, Conficker and Torpig. The features were extracted using Softflowd [30],
and the authors of [29] were able to categorise these three malware variants. It is worth
noting that the results are based the usage of the older versions of the malware variants.

MOCA [31] uses a two-stage monitoring and classification system to detect and classify
malicious attacks. It does this by identifying behaviours within the network flows that are
outside of the normal range (abnormal) and this part of the MOCA system is classed as
the stage one classifier of the MOCA system. These abnormal behaviours are then sent to
the stage two classifier, which attempts to classify the attacks into a class such as a DDoS
attack in an IoT network or a Botnet attack. Two datasets were used for testing, CICIDS2017
and CICDDOS2019, and the accuracy achieved was 99.84% for CICIDS2017 and 93% for
the CICDDOS2019 dataset. The algorithms used in this research include the decision tree,
random forest and XGBoost ML algorithms.

3. Problem Statement

This paper intends to develop a framework and methodology that uses machine
learning techniques to detect malware. Other methodologies exist and have been used by
many researchers to detect malware. These include anomaly-based detection approaches
such as those discussed by [32,33], and signature-based approaches such as those discussed
by [34,35]; however, these do have drawbacks, and these are highlighted in [36]. For ex-
ample, signature based-systems need to be updated regularly to cater for newly emerging
malware variants, and signature-based systems are not able to detect unknown malware
variants or zero-day malware.

Machine learning can help address many of these issues [37] and this paper has
developed a framework and approach using machine learning that will be able to detect
several banking malware variants. Although other researchers [26–28] have done some
experimental work on detecting malware, there is little to no research that aims to detect
a range of malware variants by only training one dataset, i.e., one malware variant. This
research paper aims to use only one dataset for training and then use this to build a machine
learning model. This model is then used to detect multiple banking malware variants and is
also used to distinguish between benign and malware communication traffic. This research
is also analysing banking malware variants that have emerged recently and those that have
been around since they were developed, and this should ensure that both the older and
newer versions of the banking malware are detectable by the machine learning algorithms.

4. Research Methodology

This research paper aims to classify network traffic flows as either Zeus (malware) or
benign (good). For this research, the raw network traffic samples were collected as pcap
files, and each pcap file is made up of network flows, which refers to a sequence of packets
flowing between a source and a destination host. In this paper, the flows are referred to as
ML samples and the features are extracted from these samples.

4.1. Data Collection and Preperation

Figure 2 depicts the data collection and preparation steps and is discussed further in
this section. To prepare the data for the ML algorithms, the features were extracted from the
samples using Netmate-flowcalc (NF), a tool developed by [38], and were then exported

J. Cybersecur. Priv. 2023, 3 5

into a CSV file. NF was used because it is an open-source tool that can extract the features
required by the ML algorithms and has also been used by other researchers [39–42]. A total
of 44 features were extracted by NF (see Appendix A for a brief description of the features),
and the features from the benign and Zeus flows were extracted into separate CSV files
and labelled. A label of ‘1’ was applied to the Zeus samples and a label of ‘0’ was applied
to the benign samples. The two files were then combined into one CSV file, and this was
used for the empirical analysis conducted during this research.

J. Cybersecur. Priv. 2023, 3, x FOR PEER REVIEW 5 of 24

4.1. Data Collection and Preperation
Figure 2 depicts the data collection and preparation steps and is discussed further in

this section. To prepare the data for the ML algorithms, the features were extracted from
the samples using Netmate-flowcalc (NF), a tool developed by [38], and were then ex-
ported into a CSV file. NF was used because it is an open-source tool that can extract the
features required by the ML algorithms and has also been used by other researchers [39–
42]. A total of 44 features were extracted by NF (see appendix A for a brief description of
the features), and the features from the benign and Zeus flows were extracted into sepa-
rate CSV files and labelled. A label of ‘1’ was applied to the Zeus samples and a label of
‘0’ was applied to the benign samples. The two files were then combined into one CSV
file, and this was used for the empirical analysis conducted during this research.

Figure 2. Methodology for collecting and preparing the data.

4.2. Feature Selection
One of the main issues in ML is selecting the appropriate features for the ML algo-

rithm, and the criticality of this has been discussed by many researchers such as [43,44].
Selecting the right features has the following benefits:
• Variance (overfitting) is reduced.
• Computational cost and the time for running the algorithm is reduced.
• Enables the ML algorithm to learn faster.

There are several techniques that can be used for selecting the appropriate and best
features and [45,46] discuss these in detail. For example, two of these techniques are:
• Filter method—Feature selection is independent of the ML algorithm.
• Wrapper method—A subset of the features are selected and used to train the ML

algorithm. Based on the results, features are either removed or added until the best
features are determined.
For this research, the features were studied [47–50] and based on this, the features

were divided into two groups, called Feature set1 and Feature set2, and only the features
from Feature set1 were used during this research. Feature set2 contained those features
that were not used during this research and were excluded. This was because these fea-
tures could potentially be related to the characteristics of the network from which the
packets were extracted, resulting in the ML algorithm making false correlations. For ex-
ample, if the benign and malware traffic came from a particular IP address range, the ML
algorithm might use the IP address information to make predictions. Table 1 shows the
features that were excluded (Feature set2). All the remaining features were included in

Figure 2. Methodology for collecting and preparing the data.

4.2. Feature Selection

One of the main issues in ML is selecting the appropriate features for the ML algorithm,
and the criticality of this has been discussed by many researchers such as [43,44]. Selecting
the right features has the following benefits:

• Variance (overfitting) is reduced.
• Computational cost and the time for running the algorithm is reduced.
• Enables the ML algorithm to learn faster.

There are several techniques that can be used for selecting the appropriate and best
features and [45,46] discuss these in detail. For example, two of these techniques are:

• Filter method—Feature selection is independent of the ML algorithm.
• Wrapper method—A subset of the features are selected and used to train the ML

algorithm. Based on the results, features are either removed or added until the best
features are determined.

For this research, the features were studied [47–50] and based on this, the features were
divided into two groups, called Feature set1 and Feature set2, and only the features from
Feature set1 were used during this research. Feature set2 contained those features that were
not used during this research and were excluded. This was because these features could
potentially be related to the characteristics of the network from which the packets were
extracted, resulting in the ML algorithm making false correlations. For example, if the be-
nign and malware traffic came from a particular IP address range, the ML algorithm might
use the IP address information to make predictions. Table 1 shows the features that were
excluded (Feature set2). All the remaining features were included in Feature set1 and were
used during this research. These features are: total_fpackets, total_fvolume, total_bpackets, to-
tal_bvolume, min_fpktl, mean_fpktl, max_fpktl, std_fpktl, min_bpktl, mean_bpktl, max_bpktl,
std_bpktl, sflow_fpackets, sflow_fbytes, sflow_bpackets, sflow_bbytes, fpsh_cnt, bpsh_cnt,

J. Cybersecur. Priv. 2023, 3 6

furg_cnt, burg_cnt, total_fhlen, total_bhlen, duration, min_active, mean_active, max_active,
std_active, min_idle, mean_idle, max_idle and std_idle.

Table 1. The features that were not used during this research.

Feature That
Was Removed Justification

srcip This is the source IP which was removed to negate any correlation
with a network characteristic

srcport The is the source port number which was removed to negate any
correlation with a network characteristic

dstip This is the destination IP address which was removed to negate
any correlation with a network characteristic

dstport The is the destination port number which was removed to negate
any correlation with a network characteristic

proto
This is the protocol that was being used (i.e., TCP = 6, UDP = 17)

which was removed to negate any correlation with a
network characteristic

min_fiat
This is the minimum time between two packets sent in the
forward direction (in microseconds) which was removed to

negate any correlation with a network characteristic

mean_fiat
This is the mean amount of time between two packets sent in the

forward direction (in microseconds) which was removed to
negate any correlation with a network characteristic

max_fiat
This is the maximum time between two packets sent in the
forward direction (in microseconds) which was removed to

negate any correlation with a network characteristic

std_fiat This is the standard deviation from the mean time between two
packets sent in the forward direction (in microseconds)

min_biat
This is the minimum time between two packets sent in the

backward direction (in microseconds) which was removed to
negate any correlation with a network characteristic

mean_biat
This is the mean time between two packets sent in the backward

direction (in microseconds) which was removed to negate any
correlation with a network characteristic

std_biat

This is the standard deviation from the mean time between two
packets sent in the backward direction (in microseconds) which

was removed to negate any correlation with a
network characteristic

4.3. Datasets (Samples)

This paper analyses and compares the performance of the ML algorithms using nine
datasets obtained from four locations. One location was Zeustracker [51], a website that
monitors Zeus C&C activities, and these samples were downloaded on 4 February 2019.
The other datasets were obtained from Stratosphere, Abuse.ch and Dalhousie University,
and these datasets are a combination of older and newer versions of the Zeus malware
and three other variants of the Zeus malware, which are ZeusPanda, Ramnit and Citadel.
Stratosphere [52] specializes in collecting malware and benign traffic captures, and they
have multiple datasets which have been made available for research purposes. Abuse.ch is
a research project that identifies and tracks malware and botnets, and is a platform inte-
grated with many commercial and open-source platforms, including VirusTotal, ClamAV,
Karspersky and Avast [53]. Dalhousie University has botnet samples that are available
for download and these samples are part of the NIMS botnet research dataset and have
been used by other researchers [54]. Table 2 describes the datasets that were used for the
research reported in this paper.

J. Cybersecur. Priv. 2023, 3 7

Table 2. Datasets used in this research.

Dataset Type Malware Name/Year Number of Flows Name of Dataset for
This Paper

Malware
Benign

Zeus/2022 272,425
Dataset1N/A 272,425

Malware
Benign

Zeus/2019 66,009
Dataset2N/A 66,009

Malware
Benign

Zeus/2019 38,282
Dataset3N/A 38,282

Malware
Benign

Zeus/2014 200,000
Dataset4N/A 200,000

Malware
Benign

Zeus/2014 35,054
Dataset5N/A 35,054

Malware
Benign

Zeus/2014 6049
Dataset6N/A 6049

Malware
Benign

ZeusPanda/2022 11,864
Dataset7N/A 11,864

Malware
Benign

Ramnit/2022 10,204
Dataset8N/A 10,204

Malware
Benign

Citadel/2022 7152
Dataset9N/A 7152

4.4. Machine Learning Algorithms

The ML algorithms used for this research are discussed in this section, and they are
supervised machine learning algorithms as these are used and are the most suitable for
classification problems, as discussed by [55]. The machine learning algorithms used during
this research include the decision tree (DT) algorithm, the random forest (RF) algorithm
and the keras neural network (KNN) deep learning algorithm.

The decision tree algorithm is a common machine learning algorithm that can be used
for classification problems [56] and is especially useful when used for binary classification
problems [56]. For this reason, the decision tree algorithm is well suited for this prediction
problem because this analysis is trying to determine if the network flow is malicious (Zeus
banking malware traffic), or benign. The authors of [57] also state that the decision tree
algorithm can produce good prediction results.

The random forest (RF) algorithm works by building and combining multiple decision
trees [58]. It can be more efficient and provide better prediction results than the decision
tree algorithm [59], and it reduces the possibility of overfitting [60]. It is important to tune
the parameters to try and increase the prediction accuracy when using the RF algorithm;
however, it is difficult to predict the best parameters ahead of time as the parameters are
selected based on trial and error. One of these parameters is the number of trees built
during the training and testing of the data. The author of [61] states that building more than
128 trees provides no significant gain in the accuracy and can increase costs. The authors
of [61] also state that the optimum number of trees for the random forest classifier was
found to be between 64 and 128. For this empirical analysis, the random forest algorithm
was coded to build between 64 and 128 decision trees, and once the training was complete,
the optimal number of trees was selected based on the best prediction results.

Keras is a popular neural network library implemented in Python [62] and can be
used for classification problems such as the one examined during this research [63]. The
keras neural network (KNN) deep learning algorithm was used for training and testing
the datasets and for this empirical analysis, a sequential KNN model [64] was used, which
means that the output of one layer is input into the next layer. For this research, the deep
learning model consisted of one input layer, three hidden layers and one output layer, and

J. Cybersecur. Priv. 2023, 3 8

a graphical representation of this can be seen in Figure 3. It is important to note that only
one of the datasets was used for training and the remaining datasets were used for testing.

J. Cybersecur. Priv. 2023, 3, x FOR PEER REVIEW 8 of 24

classifier was found to be between 64 and 128. For this empirical analysis, the random
forest algorithm was coded to build between 64 and 128 decision trees, and once the train-
ing was complete, the optimal number of trees was selected based on the best prediction
results.

Keras is a popular neural network library implemented in Python [62] and can be
used for classification problems such as the one examined during this research [63]. The
keras neural network (KNN) deep learning algorithm was used for training and testing
the datasets and for this empirical analysis, a sequential KNN model [64] was used, which
means that the output of one layer is input into the next layer. For this research, the deep
learning model consisted of one input layer, three hidden layers and one output layer,
and a graphical representation of this can be seen in Figure 3. It is important to note that
only one of the datasets was used for training and the remaining datasets were used for
testing.

Figure 3. A neural network.

4.5. System Architecture and Methodology
The system architecture is depicted in Figure 4 and shows the steps that are com-

pleted to prepare the samples for the ML algorithms. These include:
• The datasets are identified and collected.
• Features are extracted from these datasets.
• The extracted features are transferred to a CSV file and prepared.
• The features are selected for training and testing.
• The algorithm is trained and tested, and a model is created. Only one dataset is used

for the training.
• The model is tuned and trained and tested again if required.
• The model is used to test and evaluate the remaining datasets.
• Deploy the final model, test all the data samples and create a report highlighting the

evaluation metrics.

Figure 3. A neural network.

4.5. System Architecture and Methodology

The system architecture is depicted in Figure 4 and shows the steps that are completed
to prepare the samples for the ML algorithms. These include:

• The datasets are identified and collected.
• Features are extracted from these datasets.
• The extracted features are transferred to a CSV file and prepared.
• The features are selected for training and testing.
• The algorithm is trained and tested, and a model is created. Only one dataset is used

for the training.
• The model is tuned and trained and tested again if required.
• The model is used to test and evaluate the remaining datasets.
• Deploy the final model, test all the data samples and create a report highlighting the

evaluation metrics.
J. Cybersecur. Priv. 2023, 3, x FOR PEER REVIEW 9 of 24

Figure 4. System Design.

4.6. Evaluation
Precision, recall and f1-score evaluation metrics [65] are used to determine the accu-

racy of the ML algorithms. Precision is the percentage of correctly identified positive cases
from the whole data sample, which in this case is the malware and benign samples [65].
Recall is the percentage of correctly identified positive cases from the positive samples
only [66], which in this case is the malware samples. The formulas to calculate precision
and recall are: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ 𝑇𝑃𝑇𝑃 𝐹𝑃 (1)

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ 𝑇𝑃𝑇𝑃 𝐹𝑁 (2)

The f1-score is another measure used for evaluation, and this considers both the pos-
itive and negative cases. The author of [67] states that the precision and recall are both
combined during the evaluation of the ML algorithm. The formula to calculate the f1-
Score is set out below: 𝐹1 െ 𝑆𝑐𝑜𝑟𝑒 ൌ 2 ൈ ሺ𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙ሻ𝑇𝑟𝑒𝑐𝑖𝑠𝑖𝑜 𝑅𝑒𝑐𝑎𝑙𝑙 (3)

A confusion matrix [67] will also be generated, and an example of this is shown in
Table 3. The confusion matrix will be used to measure the performance and prediction

Figure 4. System Design.

J. Cybersecur. Priv. 2023, 3 9

4.6. Evaluation

Precision, recall and f1-score evaluation metrics [65] are used to determine the accuracy
of the ML algorithms. Precision is the percentage of correctly identified positive cases
from the whole data sample, which in this case is the malware and benign samples [65].
Recall is the percentage of correctly identified positive cases from the positive samples
only [66], which in this case is the malware samples. The formulas to calculate precision
and recall are:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

The f1-score is another measure used for evaluation, and this considers both the
positive and negative cases. The author of [67] states that the precision and recall are both
combined during the evaluation of the ML algorithm. The formula to calculate the f1-Score
is set out below:

F1 − Score =
2 × (Precision ∗ Recall)

Trecisio + Recall
(3)

A confusion matrix [67] will also be generated, and an example of this is shown in
Table 3. The confusion matrix will be used to measure the performance and prediction
accuracy of the algorithm when tested and evaluated on the unseen datasets, and it will
identify how many Zeus and benign samples were correctly identified.

Table 3. An example of the confusion matrix used to measure the detection accuracy.

Predicted Benign Predicted Zeus

Actual Benign (Total) TN FN
Actual Zeus (Total) FP TP

5. Results

This section presents the training and testing results of the three algorithms and
compares the prediction results.

5.1. Training and Testing the Machine Learning Algorithms Using the Data Sets

The DT and RF algorithms were trained on Dataset1, using all the features from
Feature set1, and a model was created and used for testing all the remaining datasets. The
precision, recall and f1-score results for the DT algorithm can be seen in Table 4, and the
precision, recall and f1-score results for the RF algorithm can be seen in Table 5. A confusion
matrix was generated for testing all the datasets and the results of these can be seen in
Tables 6 and 7. They also show the number of Zeus samples tested, how many of the Zeus
samples were correctly classified (true positives) and how many of the Zeus samples were
misclassified (false negatives). The table also shows the number of benign samples tested,
how many of these were classified correctly (true negatives) and how many of these were
misclassified (false positives).

J. Cybersecur. Priv. 2023, 3 10

Table 4. Test results when using the decision tree algorithm.

Dataset
Name

Benign
Precision Score

Benign
Recall Score

Benign
f1-Score

Malware
Precision Score

Malware
Recall Score

Malware
f1-Score

Dataset1 0.99 1 0.99 1 0.99 0.99
Dataset2 0.94 1 0.97 1 0.94 0.97
Dataset3 0.95 1 0.97 1 0.94 0.97
Dataset4 0.71 0.87 0.78 0.83 0.64 0.72
Dataset5 0.67 1 0.8 1 0.52 0.68
Dataset6 0.62 1 0.76 1 0.39 0.56
Dataset7 0.99 1 0.99 1 0.99 0.99
Dataset8 0.98 0.87 0.92 0.88 0.98 0.93
Dataset9 0.96 1 0.98 1 0.96 0.98

Table 5. Test results when using the random forest algorithm.

Dataset
Name

Benign
Precision Score

Benign
Recall Score

Benign
f1-Score

Malware
Precision Score

Malware
Recall Score

Malware
f1-Score

Dataset1 1 1 1 1 1 1
Dataset2 0.98 1 0.99 1 0.98 0.99
Dataset3 0.98 1 0.99 1 0.98 0.99
Dataset4 0.75 0.89 0.82 0.86 0.71 0.78
Dataset5 0.8 1 0.89 1 0.74 0.85
Dataset6 0.68 1 0.81 1 0.53 0.69
Dataset7 0.99 1 0.99 1 0.99 0.99
Dataset8 0.94 0.88 0.91 0.89 0.94 0.92
Dataset9 0.95 1 0.98 1 0.95 0.97

Table 6. Confusion matrix for testing with the decision tree algorithm.

Dataset
Name

Benign
Precision Score

Benign
Recall Score

Benign
f1-Score

Malware
Precision Score

Malware
Recall Score

Malware
f1-Score

Dataset1 272,425 271,721 704 272,425 270,109 2316
Dataset2 66,009 65,832 177 66,009 61,920 4089
Dataset3 38,222 38,127 95 38,282 36,061 2221
Dataset4 200,000 173,219 26781 200,000 127,706 72,294
Dataset5 35,054 34,963 91 35,054 18,116 16,938
Dataset6 6049 6040 9 6049 2333 3716
Dataset7 11,864 11,836 28 11,864 11,715 149
Dataset8 10,204 8865 1339 10,204 10,041 163
Dataset9 7152 7138 14 7152 6839 313

Table 7. Confusion matrix for testing with the random forest algorithm.

Dataset
Name

Benign
Precision Score

Benign
Recall Score

Benign
f1-Score

Malware
Precision Score

Malware
Recall Score

Malware
f1-Score

Dataset1 272,425 272,200 225 272,425 271,312 1113
Dataset2 66,009 65,946 63 66,009 64,438 1571
Dataset3 38,282 38,252 30 38,282 37,546 736
Dataset4 200,000 177,309 22,691 200,000 142,286 57,714
Dataset5 35,054 35,025 29 35,054 26,104 8950
Dataset6 6049 6046 3 6049 3179 2870
Dataset7 11,864 11,852 12 11,864 11,740 124
Dataset8 10,204 9014 1190 10,204 9642 562
Dataset9 7152 7145 7 7152 6803 349

J. Cybersecur. Priv. 2023, 3 11

5.2. Training and Testing the Deep Learning Algorithm Using the Data Sets

The DL algorithm was also trained in a similar manner and the precision, recall and
f1-score results can be seen in Table 8, and the confusion matrices can be seen in Table 9.

Table 8. Test results when using the deep learning algorithm.

Dataset
Name

Benign
Precision Score

Benign
Recall Score

Benign
f1-Score

Malware
Precision Score

Malware
Recall Score

Malware
f1-Score

Dataset1 0.98 0.97 0.98 0.97 0.98 0.98
Dataset2 0.92 0.97 0.94 0.97 0.91 0.94
Dataset3 0.92 0.98 0.95 0.97 0.92 0.95
Dataset4 0.69 0.95 0.8 0.93 0.56 0.7
Dataset5 0.7 0.97 0.81 0.96 0.58 0.72
Dataset6 0.87 0.99 0.93 0.99 0.86 0.92
Dataset7 0.97 0.97 0.97 0.97 0.97 0.97
Dataset8 0.91 0.94 0.93 0.94 0.91 0.92
Dataset9 0.92 0.98 0.95 0.98 0.92 0.95

Table 9. Confusion matrix for using the deep learning algorithm.

Dataset
Name

Benign
Precision Score

Benign
Recall Score

Benign
f1-Score

Malware
Precision Score

Malware
Recall Score

Malware
f1-Score

Dataset1 272,425 265,452 6973 272,425 266,091 6334
Dataset2 66,009 64,123 1886 66,009 60,310 5699
Dataset3 38,282 37,356 926 38,282 35,177 3105
Dataset4 200,000 190,935 9065 200,000 112,731 87,269
Dataset5 35,054 34,155 899 35,054 14,753 20,301
Dataset6 6049 5973 76 6049 5180 869
Dataset7 11,864 11,566 298 11,864 11,551 313
Dataset8 10,204 9605 599 10,204 9260 944
Dataset9 7152 7023 129 7152 6547 605

5.3. Comparing the Predication Results of the Three Algorithms Tested

The results obtained from testing the three algorithms are all compared in this section.
Figure 5 shows the true positive results of all the algorithms when tested against all the
datasets, and Figure 6 shows the true negative results when tested against all the datasets.

The Zeus malware prediction accuracy for dataset1, dataset2, dataset3, dataset7,
dataset8 and dataset9 were all above 90%, with the random forest algorithm performing
the best with an average accuracy prediction result of 97% across these datasets. The three
2014 Zeus datasets (dataset4, dataset5 and dataset6) produced mixed results with the deep
learning algorithm, performing better than the other two, with a detection result of 86% for
dataset6. For dataset4 and dataset5, the random forest algorithm performed the best with a
result of 71% and 74%, respectively.

For the benign traffic, the prediction results showed that for dataset1, dataset2,
dataset3, dataset5, dataset6, dataset7, dataset8 and dataset9, the prediction accuracy for
all the algorithms were above 90%, with the random forest algorithm performing the best
with an average accuracy prediction result of 98% across these datasets. For dataset4
and dataset8, the deep learning algorithm performed best with a result of 95% and 94%,
respectively, and the decision tree algorithm had the lowest prediction with a result of 87%
for both these datasets.

This paper has demonstrated a methodology that could be used to detect the Zeus
malware and its variants and has demonstrated that the methodology does work across mul-
tiple datasets and three other variants of the Zeus malware. The next section (Section 4.4)
investigates the impact of the prediction accuracy when the number of features used during
testing and training are reduced.

J. Cybersecur. Priv. 2023, 3 12

J. Cybersecur. Priv. 2023, 3, x FOR PEER REVIEW 12 of 24

Dataset5 35,054 34,155 899 35,054 14,753 20,301
Dataset6 6049 5973 76 6049 5180 869
Dataset7 11,864 11,566 298 11,864 11,551 313
Dataset8 10,204 9605 599 10,204 9260 944
Dataset9 7152 7023 129 7152 6547 605

5.3. Comparing the Predication Results of the Three Algorithms Tested
The results obtained from testing the three algorithms are all compared in this sec-

tion. Figure 5 shows the true positive results of all the algorithms when tested against all
the datasets, and Figure 6 shows the true negative results when tested against all the da-
tasets.

Figure 5. Comparison of the Zeus prediction results for all three ML algorithms.

Figure 6. Comparison of the benign prediction results for all three ML algorithms.

Figure 5. Comparison of the Zeus prediction results for all three ML algorithms.

J. Cybersecur. Priv. 2023, 3, x FOR PEER REVIEW 12 of 24

Dataset5 35,054 34,155 899 35,054 14,753 20,301
Dataset6 6049 5973 76 6049 5180 869
Dataset7 11,864 11,566 298 11,864 11,551 313
Dataset8 10,204 9605 599 10,204 9260 944
Dataset9 7152 7023 129 7152 6547 605

5.3. Comparing the Predication Results of the Three Algorithms Tested
The results obtained from testing the three algorithms are all compared in this sec-

tion. Figure 5 shows the true positive results of all the algorithms when tested against all
the datasets, and Figure 6 shows the true negative results when tested against all the da-
tasets.

Figure 5. Comparison of the Zeus prediction results for all three ML algorithms.

Figure 6. Comparison of the benign prediction results for all three ML algorithms. Figure 6. Comparison of the benign prediction results for all three ML algorithms.

5.4. Reducing the Features to the Minimum Number of Possible Features

Multiple experiments were conducted by reducing the features from Feature set1 and
this section seeks to investigate the prediction accuracy of both the malware and benign
traffic as the number of features are reduced. To do this, the ML algorithms were trained
and tested using dataset1, and the impact rating of each feature was determined and
then used to establish which features have the highest impact ratings and which features
have the lowest impact ratings. Some of these impact ratings can be seen in Figure 7.
For example, Figure 7 shows that the mean active feature has an impact rating of 13.103%
and that max_bpktl has an impact rating of 6.025%. Analysing the features in this way
supported the systematic removal of the features, and this process can be seen in Figure 8.
This process is described here.

• Remove one feature which has the lowest impact score.
• Training a dataset with this one feature redacted.
• Test the remaining datasets.
• Calculate the prediction accuracy and record the results.
• Remove another feature and re-train the dataset.

J. Cybersecur. Priv. 2023, 3 13

• Test the remaining datasets.
• Calculate the prediction accuracy and record these results.
• Repeat this process until the accuracy of two of the datasets fall below 50% during

testing, as this would mean that more than half of the Zeus samples were misclassified
for two or more of the datasets.

J. Cybersecur. Priv. 2023, 3, x FOR PEER REVIEW 14 of 24

Figure 7. Feature impact scores.

Figure 8. Flow diagram showing the feature redaction process.

5.5. Training and Testing with the Minimum Number of Features with the DL Algorithm
Following the process discussed in Section 5.4, it was determined that the minimum

number of features that could be used by the DL algorithm are as follows: total_fvolume,
total_bpackets, total_bvolume, min_fpktl, mean_fpktl, max_fpktl, std_fpktl, min_bpktl,
mean_bpktl, max_bpktl, std_bpktl, sflow_fbytes, sflow_bbytes, bpsh_cnt, duration,
min_active, mean_active, max_active, min_idle and max_idle. The precision, recall and
f1-score results can be seen in Table 10 and the confusion matrices can be seen in Table 11.

Table 10. Predication results when using the DL algorithm with minimum features.

Dataset Name Benign
Precision Score

Benign
Recall Score

Benign
f1-Score

Malware
Precision Score

Malware
Recall Score

Malware
f1-Score

Dataset1 0.98 0.97 0.97 0.97 0.98 0.97

Figure 7. Feature impact scores.

J. Cybersecur. Priv. 2023, 3, x FOR PEER REVIEW 14 of 24

Figure 7. Feature impact scores.

Figure 8. Flow diagram showing the feature redaction process.

5.5. Training and Testing with the Minimum Number of Features with the DL Algorithm
Following the process discussed in Section 5.4, it was determined that the minimum

number of features that could be used by the DL algorithm are as follows: total_fvolume,
total_bpackets, total_bvolume, min_fpktl, mean_fpktl, max_fpktl, std_fpktl, min_bpktl,
mean_bpktl, max_bpktl, std_bpktl, sflow_fbytes, sflow_bbytes, bpsh_cnt, duration,
min_active, mean_active, max_active, min_idle and max_idle. The precision, recall and
f1-score results can be seen in Table 10 and the confusion matrices can be seen in Table 11.

Table 10. Predication results when using the DL algorithm with minimum features.

Dataset Name Benign
Precision Score

Benign
Recall Score

Benign
f1-Score

Malware
Precision Score

Malware
Recall Score

Malware
f1-Score

Dataset1 0.98 0.97 0.97 0.97 0.98 0.97

Figure 8. Flow diagram showing the feature redaction process.

5.5. Training and Testing with the Minimum Number of Features with the DL Algorithm

Following the process discussed in Section 5.4, it was determined that the mini-
mum number of features that could be used by the DL algorithm are as follows: to-
tal_fvolume, total_bpackets, total_bvolume, min_fpktl, mean_fpktl, max_fpktl, std_fpktl,
min_bpktl, mean_bpktl, max_bpktl, std_bpktl, sflow_fbytes, sflow_bbytes, bpsh_cnt, dura-
tion, min_active, mean_active, max_active, min_idle and max_idle. The precision, recall
and f1-score results can be seen in Table 10 and the confusion matrices can be seen in
Table 11.

J. Cybersecur. Priv. 2023, 3 14

Table 10. Predication results when using the DL algorithm with minimum features.

Dataset
Name

Benign
Precision Score

Benign
Recall Score

Benign
f1-Score

Malware
Precision Score

Malware
Recall Score

Malware
f1-Score

Dataset1 0.98 0.97 0.97 0.97 0.98 0.97
Dataset2 0.9 0.97 0.93 0.97 0.89 0.93
Dataset3 0.9 0.97 0.94 0.97 0.9 0.93
Dataset4 0.66 0.95 0.78 0.92 0.51 0.66
Dataset5 0.67 0.97 0.79 0.95 0.51 0.67
Dataset6 0.79 0.99 0.88 0.98 0.74 0.85
Dataset7 0.97 0.97 0.97 0.97 0.97 0.97
Dataset8 0.91 0.94 0.92 0.94 0.9 0.92
Dataset9 0.92 0.98 0.95 0.98 0.91 0.95

Table 11. Confusion matrix for testing the DL algorithm with minimum features.

Dataset
Name

Benign
Precision Score

Benign
Recall Score

Benign
f1-Score

Malware
Precision Score

Malware
Recall Score

Malware
f1-Score

Dataset1 272,425 265,049 7376 272,425 266,052 6373
Dataset2 66,009 64,028 1981 66,009 58,811 7198
Dataset3 38,282 37,298 984 38,282 34,304 3978
Dataset4 200,000 190,820 9180 200,000 102,371 97,629
Dataset5 35,054 34,103 951 35,054 17,996 17,058
Dataset6 6049 5963 86 6049 4499 1550
Dataset7 11,864 11,553 311 11,864 11,535 329
Dataset8 10,204 9575 629 10,204 9233 971
Dataset9 7152 7015 137 7152 6544 608

Figure 9 compares the results of detecting the Zeus malware between using all the
features and the minimum number of features. The prediction results of dataset1, dataset2,
dataset3, dataset4, dataset7, dataset8 and dataset9 were all within 5% of each other, dataset5
was within 9% and dataset6 was within 12%. Figure 10 compares the results of detecting
the benign samples between using all the features and the minimum number of features
when tested with the deep learning algorithm and shows that the prediction results of all
the datasets were within 1% of each other.

J. Cybersecur. Priv. 2023, 3, x FOR PEER REVIEW 15 of 24

Dataset2 0.9 0.97 0.93 0.97 0.89 0.93
Dataset3 0.9 0.97 0.94 0.97 0.9 0.93
Dataset4 0.66 0.95 0.78 0.92 0.51 0.66
Dataset5 0.67 0.97 0.79 0.95 0.51 0.67
Dataset6 0.79 0.99 0.88 0.98 0.74 0.85
Dataset7 0.97 0.97 0.97 0.97 0.97 0.97
Dataset8 0.91 0.94 0.92 0.94 0.9 0.92
Dataset9 0.92 0.98 0.95 0.98 0.91 0.95

Table 11. Confusion matrix for testing the DL algorithm with minimum features.

Dataset Name
Benign

Precision Score
Benign

Recall Score
Benign
f1-Score

Malware
Precision Score

Malware
Recall Score

Malware
f1-Score

Dataset1 272,425 265,049 7376 272,425 266,052 6373
Dataset2 66,009 64,028 1981 66,009 58,811 7198
Dataset3 38,282 37,298 984 38,282 34,304 3978
Dataset4 200,000 190,820 9180 200,000 102,371 97,629
Dataset5 35,054 34,103 951 35,054 17,996 17,058
Dataset6 6049 5963 86 6049 4499 1550
Dataset7 11,864 11,553 311 11,864 11,535 329
Dataset8 10,204 9575 629 10,204 9233 971
Dataset9 7152 7015 137 7152 6544 608

Figure 9 compares the results of detecting the Zeus malware between using all the
features and the minimum number of features. The prediction results of dataset1, da-
taset2, dataset3, dataset4, dataset7, dataset8 and dataset9 were all within 5% of each other,
dataset5 was within 9% and dataset6 was within 12%. Figure 10 compares the results of
detecting the benign samples between using all the features and the minimum number of
features when tested with the deep learning algorithm and shows that the prediction re-
sults of all the datasets were within 1% of each other.

Figure 9. Zeus prediction results when tested using the minimum number of features. Figure 9. Zeus prediction results when tested using the minimum number of features.

J. Cybersecur. Priv. 2023, 3 15J. Cybersecur. Priv. 2023, 3, x FOR PEER REVIEW 16 of 24

Figure 10. Benign communication prediction results when tested using the minimum number of
features.

5.6. Training and testing using the minimum number of features with the DT algorithm
Similar experiments were conducted using the DT algorithm and it was determined

that the minimum number of features that could be used by the DT algorithm are: to-
tal_fvolume, total_bpackets, total_bvolume, min_fpktl, mean_fpktl, max_fpktl,
min_bpktl, mean_bpktl, max_bpktl, std_bpktl, sflow_fbytes, sflow_bbytes, furg_cnt,
burg_cnt, duration, min_active, mean_active, max_active, min_idle and max_idle.

The precision, recall and f1-score results can be seen in Table 12, and the confusion
matrices can be seen in Table 13. Figure 11 compares the results of detecting the Zeus
malware between using all the features and the minimum number of features and shows
that the prediction results of dataset1, dataset2, dataset3, dataset4, dataset6, dataset7, da-
taset8 and dataset9 were all within 5% of each other, and dataset5 was within 8%. Figure
12 compares the results of detecting the benign samples between using all the features
and the minimum number of features and shows that the prediction results of all the da-
tasets are within 1% of each other.

Table 12. Predication results when using the DT algorithm with minimum features.

Dataset Name Benign
Precision Score

Benign
Recall Score

Benign
f1-Score

Malware
Precision Score

Malware
Recall Score

Malware
f1-Score

Dataset1 0.99 1 0.99 1 0.99 0.99
Dataset2 0.94 1 0.97 1 0.94 0.97
Dataset3 0.94 1 0.97 1 0.94 0.97
Dataset4 0.69 0.87 0.77 0.82 0.6 0.7
Dataset5 0.71 1 0.83 0.99 0.6 0.75
Dataset6 0.62 1 0.76 0.99 0.38 0.55
Dataset7 0.99 1 0.99 1 0.99 0.99
Dataset8 0.94 0.87 0.9 0.88 0.94 0.91
Dataset9 0.96 1 0.98 1 0.96 0.98

Figure 10. Benign communication prediction results when tested using the minimum number
of features.

5.6. Training and testing using the minimum number of features with the DT algorithm

Similar experiments were conducted using the DT algorithm and it was determined
that the minimum number of features that could be used by the DT algorithm are: to-
tal_fvolume, total_bpackets, total_bvolume, min_fpktl, mean_fpktl, max_fpktl, min_bpktl,
mean_bpktl, max_bpktl, std_bpktl, sflow_fbytes, sflow_bbytes, furg_cnt, burg_cnt, dura-
tion, min_active, mean_active, max_active, min_idle and max_idle.

The precision, recall and f1-score results can be seen in Table 12, and the confusion
matrices can be seen in Table 13. Figure 11 compares the results of detecting the Zeus
malware between using all the features and the minimum number of features and shows
that the prediction results of dataset1, dataset2, dataset3, dataset4, dataset6, dataset7,
dataset8 and dataset9 were all within 5% of each other, and dataset5 was within 8%.
Figure 12 compares the results of detecting the benign samples between using all the
features and the minimum number of features and shows that the prediction results of all
the datasets are within 1% of each other.

Table 12. Predication results when using the DT algorithm with minimum features.

Dataset
Name

Benign
Precision Score

Benign
Recall Score

Benign
f1-Score

Malware
Precision Score

Malware
Recall Score

Malware
f1-Score

Dataset1 0.99 1 0.99 1 0.99 0.99
Dataset2 0.94 1 0.97 1 0.94 0.97
Dataset3 0.94 1 0.97 1 0.94 0.97
Dataset4 0.69 0.87 0.77 0.82 0.6 0.7
Dataset5 0.71 1 0.83 0.99 0.6 0.75
Dataset6 0.62 1 0.76 0.99 0.38 0.55
Dataset7 0.99 1 0.99 1 0.99 0.99
Dataset8 0.94 0.87 0.9 0.88 0.94 0.91
Dataset9 0.96 1 0.98 1 0.96 0.98

J. Cybersecur. Priv. 2023, 3 16

Table 13. Confusion matrix for testing the DT algorithm with minimum features.

Dataset
Name

Benign
Precision Score

Benign
Recall Score

Benign
f1-Score

Malware
Precision Score

Malware
Recall Score

Malware
f1-Score

Dataset1 272,425 271,502 923 272,425 270,408 2017
Dataset2 66,009 65,788 221 66,009 61,804 4205
Dataset3 38,282 38,159 123 38,282 36,018 2264
Dataset4 200,000 174,267 25,733 200,000 120,785 79,215
Dataset5 35,054 34,935 119 35,054 20,984 14,070
Dataset6 6049 6032 17 6049 2328 3721
Dataset7 11,864 11,825 39 11,864 11,724 140
Dataset8 10,204 8857 1347 10,204 9630 574
Dataset9 7152 7130 22 7152 6837 315

J. Cybersecur. Priv. 2023, 3, x FOR PEER REVIEW 17 of 24

Table 13. Confusion matrix for testing the DT algorithm with minimum features.

Dataset Name Benign
Precision Score

Benign
Recall Score

Benign
f1-Score

Malware
Precision Score

Malware
Recall Score

Malware
f1-Score

Dataset1 272,425 271,502 923 272,425 270,408 2017
Dataset2 66,009 65,788 221 66,009 61,804 4205
Dataset3 38,282 38,159 123 38,282 36,018 2264
Dataset4 200,000 174,267 25,733 200,000 120,785 79,215
Dataset5 35,054 34,935 119 35,054 20,984 14,070
Dataset6 6049 6032 17 6049 2328 3721
Dataset7 11,864 11,825 39 11,864 11,724 140
Dataset8 10,204 8857 1347 10,204 9630 574
Dataset9 7152 7130 22 7152 6837 315

Figure 11. DT Zeus prediction results compared between using the minimum number of features
and all the features in Feature set1.

Figure 12. DT benign communication prediction results compared between using the minimum
number of features and all the features in Feature set1.

Figure 11. DT Zeus prediction results compared between using the minimum number of features
and all the features in Feature set1.

J. Cybersecur. Priv. 2023, 3, x FOR PEER REVIEW 17 of 24

Table 13. Confusion matrix for testing the DT algorithm with minimum features.

Dataset Name Benign
Precision Score

Benign
Recall Score

Benign
f1-Score

Malware
Precision Score

Malware
Recall Score

Malware
f1-Score

Dataset1 272,425 271,502 923 272,425 270,408 2017
Dataset2 66,009 65,788 221 66,009 61,804 4205
Dataset3 38,282 38,159 123 38,282 36,018 2264
Dataset4 200,000 174,267 25,733 200,000 120,785 79,215
Dataset5 35,054 34,935 119 35,054 20,984 14,070
Dataset6 6049 6032 17 6049 2328 3721
Dataset7 11,864 11,825 39 11,864 11,724 140
Dataset8 10,204 8857 1347 10,204 9630 574
Dataset9 7152 7130 22 7152 6837 315

Figure 11. DT Zeus prediction results compared between using the minimum number of features
and all the features in Feature set1.

Figure 12. DT benign communication prediction results compared between using the minimum
number of features and all the features in Feature set1.
Figure 12. DT benign communication prediction results compared between using the minimum
number of features and all the features in Feature set1.

J. Cybersecur. Priv. 2023, 3 17

5.7. Training and Testing Using the Minimum Number of Features with the RF Algorithm

Multiple experiments were conducted using the RF algorithm and the features were
manually reduced by following the process described above (Section 5.4). This process was
repeated until two of the dataset prediction results fell below 50% and it was determined
that the minimum number of features that could be used are as follows: total_fvolume, to-
tal_bvolume, min_fpktl, mean_fpktl, max_fpktl, min_bpktl, mean_bpktl, max_bpktl, std_bpktl,
sflow_fbytes, sflow_bbytes, bpsh_cnt, duration, min_active, mean_active, max_active and
min_idle. The precision, recall and f1-score results for testing all the datasets using the mini-
mum number of features with the RF algorithm can be seen in Table 14 and the confusion
matrices can be seen in Table 15.

Table 14. Predication results when using the RF algorithm with minimum features.

Dataset
Name

Benign
Precision Score

Benign
Recall Score

Benign
f1-Score

Malware
Precision Score

Malware
Recall Score

Malware
f1-Score

Dataset1 1 1 1 1 1 1
Dataset2 0.93 1 0.95 1 0.93 0.95
Dataset3 0.94 1 0.97 1 0.93 0.96
Dataset4 0.67 0.89 0.77 0.84 0.57 0.68
Dataset5 0.7 1 0.83 1 0.58 0.73
Dataset6 0.62 1 0.77 1 0.39 0.56
Dataset7 0.99 1 0.99 1 0.99 0.99
Dataset8 0.99 0.89 0.93 0.9 0.99 0.94
Dataset9 0.96 1 0.98 1 0.96 0.98

Table 15. Confusion matrix for testing the RF algorithm with minimum features.

Dataset
Name

Benign
Precision Score

Benign
Recall Score

Benign
f1-Score

Malware
Precision Score

Malware
Recall Score

Malware
f1-Score

Dataset1 272,425 272,233 192 272,425 271,328 1097
Dataset2 66,009 65,961 48 66,009 61,230 4779
Dataset3 38,282 38,256 26 38,282 35,641 2641
Dataset4 200,000 178,346 21,654 200,000 114,030 85,970
Dataset5 35,054 35,029 25 35,054 20,221 14,833
Dataset6 6049 6047 2 6049 2352 3697
Dataset7 11,864 11,855 9 11,864 11,743 121
Dataset8 10,204 9033 1171 10,204 10,081 123
Dataset9 7152 7148 4 7152 6849 303

Figure 13 compares the results of detecting the Zeus malware between using all the
features and the minimum number of features when tested with the DT algorithm, and
shows that the prediction results of dataset1, dataset2, dataset3, dataset7, dataset8 and
dataset9 were all within 5% of each other and that dataset4, dataset5 and dataset6 were
within 16% of each other. Figure 12 compares the results of detecting the benign samples
between using all the features and the minimum number of features and shows that the
prediction results of all the datasets were within 1% of each other.

Figure 14 compares the true positive results of all three algorithms when tested using
the minimum number of features, and the malware prediction results for all the datasets
apart from dataset6 were within 10% of each. Dataset6 was an outlier with a difference of
36%, and in this case, the DL algorithm performing the best with a prediction result of 74%
and the DT performing the worst with a prediction result of 38%. Figure 15 compares the
results of detecting the benign samples between using all the features and the minimum
number of features and shows that the prediction results of all the datasets were within 2%
of each other.

J. Cybersecur. Priv. 2023, 3 18J. Cybersecur. Priv. 2022, 2, x FOR PEER REVIEW 19 of 25

Figure 13. RF Zeus prediction results compared between using the minimum number of features

and all the features in Feature set1.

Figure 14 compares the true positive results of all three algorithms when tested using

the minimum number of features, and the malware prediction results for all the datasets

apart from dataset6 were within 10% of each. Dataset6 was an outlier with a difference of

36%, and in this case, the DL algorithm performing the best with a prediction result of

74% and the DT performing the worst with a prediction result of 38%. Figure 15 compares

the results of detecting the benign samples between using all the features and the mini-

mum number of features and shows that the prediction results of all the datasets were

within 2% of each other.

Figure 14. True positive rates compared for all three algorithms when using the minimum number

of features.

Figure 13. RF Zeus prediction results compared between using the minimum number of features and
all the features in Feature set1.

J. Cybersecur. Priv. 2023, 3, x FOR PEER REVIEW 20 of 24

Figure 15. True positive rates compared for all three algorithms when using the minimum number
of features.

Figure 16. True negative rates compared for all three algorithms when using the minimum number
of features.

6. Conclusions
The empirical analysis has shown that the framework and methodology adopted for

this research can detect both older and newer versions of the Zeus banking malware,
which demonstrates the potential of the framework to detect banking malware that evolve
over time. The framework and methodology can also predict other banking malware var-
iants, which demonstrates the potential to detect a wide range of banking malware vari-
ants without the need to analyse each banking malware variant to learn about their fea-
tures.

Figure 14. True positive rates compared for all three algorithms when using the minimum number
of features.

J. Cybersecur. Priv. 2023, 3 19

J. Cybersecur. Priv. 2023, 3, x FOR PEER REVIEW 20 of 24

Figure 15. True positive rates compared for all three algorithms when using the minimum number
of features.

Figure 16. True negative rates compared for all three algorithms when using the minimum number
of features.

6. Conclusions
The empirical analysis has shown that the framework and methodology adopted for

this research can detect both older and newer versions of the Zeus banking malware,
which demonstrates the potential of the framework to detect banking malware that evolve
over time. The framework and methodology can also predict other banking malware var-
iants, which demonstrates the potential to detect a wide range of banking malware vari-
ants without the need to analyse each banking malware variant to learn about their fea-
tures.

Figure 15. True negative rates compared for all three algorithms when using the minimum number
of features.

6. Conclusions

The empirical analysis has shown that the framework and methodology adopted for
this research can detect both older and newer versions of the Zeus banking malware, which
demonstrates the potential of the framework to detect banking malware that evolve over
time. The framework and methodology can also predict other banking malware variants,
which demonstrates the potential to detect a wide range of banking malware variants
without the need to analyse each banking malware variant to learn about their features.

For future work, there is a potential to further this research by enhancing the method-
ology to incorporate additional banking malware variants. Moreover, further research
can be conducted to detect other malware variants and improve the prediction accuracy
when detecting them. Researchers can also further this research by designing and building
an IDS solution that could detect a wide range of malware, and the findings from this
research could be used for this and by anti-malware vendors when they design malware
detection tools. Action on the malicious traffic could also be taken once the malware has
been detected. The findings from this research can be used by other researchers to develop
their own malware prediction tools to enhance their research.

Author Contributions: Conceptualization, M.A.K.; methodology, M.A.K.; software, M.A.K.; valida-
tion, M.A.K., S.W. and D.G.; formal analysis, M.A.K.; investigation, M.A.K.; resources, M.A.K.; data
curation, M.A.K.; writing—original draft preparation, M.A.K.; writing—review and editing, M.A.K.,
S.W. and D.G; visualization, M.A.K.; supervision, S.W. and D.G.; project administration, M.A.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest.

J. Cybersecur. Priv. 2023, 3 20

Appendix A

srcip (string) The source ip address
srcport The source port number
dstip (string) The destination ip address
dstport The destination port number
proto The protocol (ie. TCP = 6, UDP = 17)
total_fpackets Total packets in the forward direction
total_fvolume Total bytes in the forward direction
total_bpackets Total packets in the backward direction
total_bvolume Total bytes in the backward direction
min_fpktl The size of the smallest packet sent in the forward direction (in bytes)
mean_fpktl The mean size of packets sent in the forward direction (in bytes)
max_fpktl The size of the largest packet sent in the forward direction (in bytes)

std_fpktl
The standard deviation from the mean of the packets sent in the forward
direction (in bytes)

min_bpktl The size of the smallest packet sent in the backward direction (in bytes)
mean_bpktl The mean size of packets sent in the backward direction (in bytes)
max_bpktl The size of the largest packet sent in the backward direction (in bytes)

std_bpktl
The standard deviation from the mean of the packets sent in the
backward direction (in bytes)

min_fiat
The minimum amount of time between two packets sent in the forward
direction (in microseconds)

mean_fiat
The mean amount of time between two packets sent in the forward
direction (in microseconds)

max_fiat
The maximum amount of time between two packets sent in the forward
direction (in microseconds)

std_fiat
The standard deviation from the mean amount of time between two
packets sent in the forward direction (in microseconds)

min_biat
The minimum amount of time between two packets sent in the backward
direction (in microseconds)

mean_biat
The mean amount of time between two packets sent in the backward
direction (in microseconds)

max_biat
The maximum amount of time between two packets sent in the backward
direction (in microseconds)

std_biat
The standard deviation from the mean amount of time between two
packets sent in the backward direction (in microseconds)

duration The duration of the flow (in microseconds)

min_active
The minimum amount of time that the flow was active before going idle
(in microseconds)

mean_active
The mean amount of time that the flow was active before going idle (in
microseconds)

max_active
The maximum amount of time that the flow was active before going idle
(in microseconds)

std_active
The standard deviation from the mean amount of time that the flow was
active before going idle (in microseconds)

min_idle
The minimum time a flow was idle before becoming active (in
microseconds)

mean_idle The mean time a flow was idle before becoming active (in microseconds)

max_idle
The maximum time a flow was idle before becoming active (in
microseconds)

std_idle
The standard devation from the mean time a flow was idle before
becoming active (in microseconds)

sflow_fpackets The average number of packets in a sub flow in the forward direction

J. Cybersecur. Priv. 2023, 3 21

sflow_fbytes The average number of bytes in a sub flow in the forward direction
sflow_bpackets The average number of packets in a sub flow in the backward direction
sflow_bbytes The average number of packets in a sub flow in the backward direction

fpsh_cnt
The number of times the PSH flag was set in packets travelling in the
forward direction (0 for UDP)

bpsh_cnt
The number of times the PSH flag was set in packets travelling in the
backward direction (0 for UDP)

furg_cnt
The number of times the URG flag was set in packets travelling in the
forward direction (0 for UDP)

burg_cnt
The number of times the URG flag was set in packets travelling in the
backward direction (0 for UDP)

total_fhlen The total bytes used for headers in the forward direction.
total_bhlen The total bytes used for headers in the backward direction.

References
1. Wadhwa, A.; Arora, N. A Review on Cyber Crime: Major Threats and Solutions. Int. J. Adv. Res. Comput. Sci. 2017, 8, 2217–2221.
2. Morgan, S. Cybercrime to Cost the World $10.5 Trillion Annually by 2025. Available online: https://cybersecurityventures.com/

hackerpocalypse-cybercrime-report-2016/ (accessed on 2 November 2022).
3. Nokia Banking Malware Threats Surging as Mobile Banking Increases–Nokia Threat Intelligence Report. Available on-

line: https://www.nokia.com/about-us/news/releases/2021/11/08/banking-malware-threats-surging-as-mobile-banking-
increases-nokia-threat-intelligence-report/ (accessed on 2 November 2022).

4. Vijayalakshmi, Y.; Natarajan, N.; Manimegalai, P.; Babu, S.S. Study on emerging trends in malware variants. Int. J. Pure Appl.
Math. 2017, 116, 479–489.

5. Etaher, N.; Weir, G.R.; Alazab, M. From zeus to zitmo: Trends in banking malware. In Proceedings of the 2015 IEEE Trust-
com/BigDataSE/ISPA, Helsinki, Finland, 20–22 August 2015; IEEE: Washington, DC, USA, 2015; Volume 1, pp. 1386–1391.

6. Ibrahim, L.M.; Thanon, K.H. Botnet Detection on the Analysis of Zeus Panda Financial Botnet. Int. J. Eng. Adv. Technol. 2019, 8,
1972–1976. [CrossRef]

7. Owen, H.; Zarrin, J.; Pour, S.M. A Survey on Botnets, Issues, Threats, Methods, Detection and Prevention. J. Cybersecur. Priv. 2022,
2, 74–88. [CrossRef]

8. Tayyab, U.-E.; Khan, F.B.; Durad, M.H.; Khan, A.; Lee, Y.S. A Survey of the Recent Trends in Deep Learning Based Malware
Detection. J. Cybersecur. Priv. 2022, 2, 800–829. [CrossRef]

9. Aboaoja, F.A.; Zainal, A.; Ghaleb, F.A.; Al-rimy, B.A.S.; Eisa, T.A.E.; Elnour, A.A.H. Malware Detection Issues, Challenges, and
Future Directions: A Survey. Appl. Sci. 2022, 12, 8482. [CrossRef]

10. Ahsan, M.; Nygard, K.E.; Gomes, R.; Chowdhury, M.M.; Rifat, N.; Connolly, J.F. Cybersecurity Threats and Their Mitigation
Approaches Using Machine Learning—A Review. J. Cybersecur. Priv. 2022, 2, 527–555. [CrossRef]

11. Bukvić, L.; Pašagić Škrinjar, J.; Fratrović, T.; Abramović, B. Price Prediction and Classification of Used-Vehicles Using Supervised
Machine Learning. Sustainability 2022, 14, 17034. [CrossRef]

12. Okey, O.D.; Maidin, S.S.; Adasme, P.; Lopes Rosa, R.; Saadi, M.; Carrillo Melgarejo, D.; Zegarra Rodríguez, D. BoostedEnML:
Efficient Technique for Detecting Cyberattacks in IoT Systems Using Boosted Ensemble Machine Learning. Sensors 2022, 22, 7409.
[CrossRef]

13. Singh, A.; Thakur, N.; Sharma, A. A review of supervised machine learning algorithms. In Proceedings of the 2016 3rd
International Conference on Computing for Sustainable Global Development 2016, (INDIACom), New Delhi, India, 16–18 March
2016; pp. 1310–1315.

14. Aswathi, K.B.; Jayadev, S.; Krishna, N.; Krishnan, R.; Sarath, G. Botnet Detection using Machine Learning. In Proceedings of the
2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India,
6–8 July 2021; pp. 1–7. [CrossRef]

15. Kazi, M.; Woodhead, S.; Gan, D. A contempory Taxonomy of Banking Malware. In Proceedings of the First International
Conference on Secure Cyber Computing and Communications, Jalandhar, India, 15–17 December 2018.

16. Falliere, N.; Chien, E. Zeus: King of the Bots. 2009. Available online: http://bit.ly/3VyFV1 (accessed on 12 November 2022).
17. Lelli, A. Zeusbot/Spyeye P2P Updated, Fortifying the Botnet. Available online: https://www.symantec.com/connect/blogs/

zeusbotspyeye-p2p-updated-fortifying-botnet (accessed on 5 November 2019).
18. Riccardi, M.; Di Pietro, R.; Palanques, M.; Vila, J.A. Titans’ Revenge: Detecting Zeus via Its Own Flaws. Comput. Netw. 2013, 57,

422–435. [CrossRef]
19. Andriesse, D.; Rossow, C.; Stone-Gross, B.; Plohmann, D.; Bos, H. Highly Resilient Peer-to-Peer Botnets Are Here: An Analysis of

Gameover Zeus. In Proceedings of the 2013 8th International Conference on Malicious and Unwanted Software: “The Americas”
(MALWARE), Fajardo, PR, USA, 22–24 October 2013; pp. 116–123.

20. Kazi, M.A.; Woodhead, S.; Gan, D. Comparing the performance of supervised machine learning algorithms when used with a
manual feature selection process to detect Zeus malware. Int. J. Grid Util. Comput. 2022, 13, 495–504. [CrossRef]

https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://www.nokia.com/about-us/news/releases/2021/11/08/banking-malware-threats-surging-as-mobile-banking-increases-nokia-threat-intelligence-report/
https://www.nokia.com/about-us/news/releases/2021/11/08/banking-malware-threats-surging-as-mobile-banking-increases-nokia-threat-intelligence-report/
http://doi.org/10.35940/ijeat.f7941.088619
http://doi.org/10.3390/jcp2010006
http://doi.org/10.3390/jcp2040041
http://doi.org/10.3390/app12178482
http://doi.org/10.3390/jcp2030027
http://doi.org/10.3390/su142417034
http://doi.org/10.3390/s22197409
http://doi.org/10.1109/ICCCNT51525.2021.9579508
http://bit.ly/3VyFV1
https://www.symantec.com/connect/blogs/zeusbotspyeye-p2p-updated-fortifying-botnet
https://www.symantec.com/connect/blogs/zeusbotspyeye-p2p-updated-fortifying-botnet
http://doi.org/10.1016/j.comnet.2012.06.023
http://doi.org/10.1504/IJGUC.2022.126167

J. Cybersecur. Priv. 2023, 3 22

21. Md, A.Q.; Jaiswal, D.; Daftari, J.; Haneef, S.; Iwendi, C.; Jain, S.K. Efficient Dynamic Phishing Safeguard System Using Neural
Boost Phishing Protection. Electronics 2022, 11, 3133. [CrossRef]

22. Ibrahim, L.M.; Thanon, K.H. Analysis and detection of the zeus botnet crimeware. Int. J. Comput. Sci. Inf. Secur. 2015, 13, 121.
23. Gu, G.; Porras, P.; Yegneswaran, V.; Fong, M.; Lee, W. BotHunter: Detecting Malware Infection Through IDS-Driven Dialog

Correlation. In Proceedings of the USENIX Conference on Security Symposium, Anaheim, CA, USA, 9–11 August 2007; pp.
167–182.

24. Thorat, S.A.; Khandelwal, A.K.; Bruhadeshwar, B.; Kishore, K. Payload Content Based Network Anomaly Detection. In
Proceedings of the 2008 First International Conference on the Applications of Digital Information and Web Technologies
(ICADIWT), Ostrava, Czech Republic, 4–6 August 2008. [CrossRef]

25. Guofei, G.; Perdisci, R.; Zhang, J.; Lee, W. BotMiner: Clustering analysis of network traffic for protocol- and structure-independent
botnet detection. In Proceedings of the 17th Conference on Security Symposium, San Jose, CA, USA, 28 July–1 August 2008; pp.
139–154.

26. Azab, A.; Alazab, M.; Aiash, M. Machine Learning Based Botnet Identification Traffic. In Proceedings of the 2016 IEEE
Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26 August 2016; pp. 1788–1794.

27. Soniya, B.; Wilscy, M. Detection of Randomized Bot Command and Control Traffic on an End-Point Host. Alex. Eng. J. 2016, 55,
2771–2781. [CrossRef]

28. Venkatesh, G.K.; Nadarajan, R.A. HTTP botnet detection using adaptive learning rate multilayer feed-forward neural network.
In Proceedings of the IFIP International Workshop on Information Security Theory and Practice, Egham, UK, 20–22 June 2012;
Springer: Berlin/Heidelberg, Germany, 2012; Volume 7322 LNCS, pp. 38–48.

29. Haddadi, F.; Runkel, D.; Zincir-Heywood, A.N.; Heywood, M.I. On Botnet Behaviour Analysis Using GP and C4.5; Association for
Computing Machinery: New York, NY, USA, 2014; pp. 1253–1260.

30. Fernandez, D.; Lorenzo, H.; Novoa, F.J.; Cacheda, F.; Carneiro, V. Tools for managing network traffic flows: A comparative
analysis. In Proceedings of the 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA),
Cambridge, MA, USA, 30 October–1 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5.

31. Fuhr, J.; Wang, F.; Tang, Y. MOCA: A Network Intrusion Monitoring and Classification System. J. Cybersecur. Priv. 2022, 2, 629–639.
[CrossRef]

32. He, S.; Zhu, J.; He, P.; Lyu, M.R. Experience report: System log analysis for anomaly detection. In Proceedings of the 2016 IEEE
27th international symposium on software reliability engineering (ISSRE), Ottawa, ON, Canada, 23–27 October 2016; pp. 207–218.

33. Zhou, J.; Qian, Y.; Zou, Q.; Liu, P.; Xiang, J. DeepSyslog: Deep Anomaly Detection on Syslog Using Sentence Embedding and
Metadata. IEEE Trans. Inf. Forensics Secur. 2022, 17, 3051–3061. [CrossRef]

34. Ghafir, I.; Prenosil, V.; Hammoudeh, M.; Baker, T.; Jabbar, S.; Khalid, S.; Jaf, S. BotDet: A System for Real Time Botnet Command
and Control Traffic Detection. IEEE Access 2018, 6, 38947–38958. [CrossRef]

35. Agarwal, P.; Satapathy, S. Implementation of signature-based detection system using snort in windows. Int. J. Comput. Appl. Inf.
Technol. 2014, 3, 3–4.

36. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: Techniques, datasets and challenges.
Cybersecurity 2019, 2, 1–22. [CrossRef]

37. Sharma, P.; Said, Z.; Memon, S.; Elavarasan, R.M.; Khalid, M.; Nguyen, X.P.; Arıcı, M.; Hoang, A.T.; Nguyen, L.H. Comparative
evaluation of AI-based intelligent GEP and ANFIS models in prediction of thermophysical properties of Fe3O4-coated MWCNT
hybrid nanofluids for potential application in energy systems. Int. J. Energy Res. 2022, 37, 19242–19257. [CrossRef]

38. Arndt, D. DanielArndt/Netmate-Flowcalc. Available online: https://github.com/DanielArndt/netmate-flowcalc (accessed on 6
November 2019).

39. Montigny-Leboeuf, A.D.; Couture, M.; Massicotte, F. Traffic Behaviour Characterization Using NetMate. In International Workshop
on Recent Advances in Intrusion Detection 2019; Springer: Berlin/Heidelberg, Germany; pp. 367–368.

40. De Montigny-Leboeuf, A.; Couture, M.; Massicotte, F. Traffic Behaviour Characterization Using NetMate. Lect. Notes Comput. Sci.
2009, 5758, 367–368. [CrossRef]

41. de Menezes, N.A.T.; de Mello, F.L. Flow Feature-Based Network Traffic Classification Using Machine Learning. J. Inf. Secur.
Cryptogr. 2021, 8, 12–16. [CrossRef]

42. Miller, S.; Curran, K.; Lunney, T. Multilayer perceptron neural network for detection of encrypted VPN network traffic. In
Proceedings of the International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA),
Glasgow, UK, 11–12 June 2018.

43. Kasongo, S.M.; Sun, Y. A Deep Learning Method with Filter Based Feature Engineering for Wireless Intrusion Detection System.
IEEE Access 2019, 7, 38597–38607. [CrossRef]

44. Reis, B.; Maia, E.; Praça, I. Selection and Performance Analysis of CICIDS2017 Features Importance. Found. Pract. Secur. 2020,
12056, 56–71. [CrossRef]

45. Maldonado, S.; Weber, R. A wrapper method for feature selection using Support Vector Machines. Inf. Sci. 2009, 179, 2208–2217.
[CrossRef]

46. Wald, R.; Khoshgoftaar, T.; Napolitano, A. Comparison of Stability for Different Families of Filter-Based and Wrapper-Based
Feature Selection. In Proceedings of the 2013 12th International Conference on Machine Learning and Applications, Miami, FL,
USA, 4–7 December 2013. [CrossRef]

http://doi.org/10.3390/electronics11193133
http://doi.org/10.1109/icadiwt.2008.4664331
http://doi.org/10.1016/j.aej.2016.04.004
http://doi.org/10.3390/jcp2030032
http://doi.org/10.1109/TIFS.2022.3201379
http://doi.org/10.1109/ACCESS.2018.2846740
http://doi.org/10.1186/s42400-019-0038-7
http://doi.org/10.1002/er.8010
https://github.com/DanielArndt/netmate-flowcalc
http://doi.org/10.1007/978-3-642-04342-0_27
http://doi.org/10.17648/jisc.v8i1.79
http://doi.org/10.1109/ACCESS.2019.2905633
http://doi.org/10.1007/978-3-030-45371-8_4
http://doi.org/10.1016/j.ins.2009.02.014
http://doi.org/10.1109/icmla.2013.162

J. Cybersecur. Priv. 2023, 3 23

47. Schmoll, C.; Zander, S. NetMate-User and Developer Manual. 2004. Available online: https://www.researchgate.net/publication/
246926554_NetMate-User_and_Developer_Manual (accessed on 22 December 2022).

48. Saghezchi, F.B.; Mantas, G.; Violas, M.A.; de Oliveira Duarte, A.M.; Rodriguez, J. Machine Learning for DDoS Attack Detection in
Industry 4.0 CPPSs. Electronics 2022, 11, 602. [CrossRef]

49. Alshammari, R.; Zincir-Heywood, A.N. Investigating Two Different Approaches for Encrypted Traffic Classification. In Pro-
ceedings of the 2008 Sixth Annual Conference on Privacy, Security and Trust, Fredericton, NB, Canada, 1–3 October 2008.
[CrossRef]

50. Yeo, M.; Koo, Y.; Yoon, Y.; Hwang, T.; Ryu, J.; Song, J.; Park, C. Flow-Based Malware Detection Using Convolutional Neural
Network. In Proceedings of the 2018 International Conference on Information Networking (ICOIN), Chiang Mai, Thailand, 10–12
January 2018. [CrossRef]

51. Shomiron. Zeustracker. Available online: https://github.com/dnif-archive/enrich-zeustracker (accessed on 25 July 2022).
52. Stratosphere. Stratosphere Laboratory Datasets. Available online: https://www.stratosphereips.org/datasets-overview (accessed

on 25 November 2022).
53. Abuse, C. Fighting Malware and Botnets. Available online: https://abuse.ch/ (accessed on 13 May 2022).
54. Haddadi, F.; Zincir-Heywood, A.N. Benchmarking the effect of flow exporters and protocol filters on botnet traffic classification.

IEEE Syst. J. 2014, 10, 1390–1401. [CrossRef]
55. Khodamoradi, P.; Fazlali, M.; Mardukhi, F.; Nosrati, M. Heuristic metamorphic malware detection based on statistics of

assembly instructions using classification algorithms. In Proceedings of the 2015 18th CSI International Symposium on Computer
Architecture and Digital Systems (CADS), Tehran, Iran, 7–8 October 2015; pp. 1–6.

56. Salzberg, S.L. C4.5: Programs for Machine Learning by J. Ross Quinlan; Morgan Kaufmann Publishers, Inc.: Burlington, MA, USA, 1993.
57. Xhemali, D.; Hinde, C.J.; Stone, R.G. Naïve Bayes vs. Decision Trees vs. Neural Networks in the Classification of Training Web

Pages. Int. J. Comput. Sci. Issues 2009, 4, 16–23.
58. Bernard, S.; Heutte, L.; Adam, S. On the selection of decision trees in random forests. In Proceedings of the 2009 International

Joint Conference on Neural Networks, Atlanta, GA, USA, 14–19 June 2009; pp. 302–307.
59. Maimon, O.; Rokach, L. (Eds.) Data Mining and Knowledge Discovery Handbook; Springer: Berlin/Heidelberg, Germany, 2005.
60. Liu, Z.; Thapa, N.; Shaver, A.; Roy, K.; Siddula, M.; Yuan, X.; Yu, A. Using Embedded Feature Selection and CNN for Classification

on CCD-INID-V1—A New IoT Dataset. Sensors 2021, 21, 4834. [CrossRef]
61. Oshiro, T.M.; Perez, P.S.; Baranauskas, J.A. How Many Trees in a Random Forest? Mach. Learn. Data Min. Pattern Recognit. 2012,

7376, 154–168. [CrossRef]
62. Jiang, Z.; Shen, G. Prediction of House Price Based on the Back Propagation Neural Network in the Keras Deep Learning

Framework. In Proceedings of the 2019 6th International Conference on Systems and Informatics (ICSAI), Shanghai, China, 2–4
November 2019; pp. 1408–1412. [CrossRef]

63. Nagisetty, A.; Gupta, G.P. Framework for detection of malicious activities in IoT networks using keras deep learning library. In
Proceedings of the 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), Erode, India,
27–29 March 2019; pp. 633–637.

64. Heller, M. What Is Keras? The Deep Neural Network API Explained. Available online: https://www.infoworld.com/article/333619
2/what-is-keras-the-deep-neural-network-api-explained.html (accessed on 25 November 2022).

65. Ali, S.; Rehman, S.U.; Imran, A.; Adeem, G.; Iqbal, Z.; Kim, K.-I. Comparative Evaluation of AI-Based Techniques for Zero-Day
Attacks Detection. Electronics 2022, 11, 3934. [CrossRef]

66. Kumar, V.; Lalotra, G.S.; Sasikala, P.; Rajput, D.S.; Kaluri, R.; Lakshmanna, K.; Shorfuzzaman, M.; Alsufyani, A.; Uddin,
M. Addressing Binary Classification over Class Imbalanced Clinical Datasets Using Computationally Intelligent Techniques.
Healthcare 2022, 10, 1293. [CrossRef] [PubMed]

67. Maudoux, C.; Boumerdassi, S.; Barcello, A.; Renault, E. Combined Forest: A New Supervised Approach for a Machine-Learning-
Based Botnets Detection. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain,
7–11 December 2021. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.researchgate.net/publication/246926554_NetMate-User_and_Developer_Manual
https://www.researchgate.net/publication/246926554_NetMate-User_and_Developer_Manual
http://doi.org/10.3390/electronics11040602
http://doi.org/10.1109/pst.2008.15
http://doi.org/10.1109/icoin.2018.8343255
https://github.com/dnif-archive/enrich-zeustracker
https://www.stratosphereips.org/datasets-overview
https://abuse.ch/
http://doi.org/10.1109/JSYST.2014.2364743
http://doi.org/10.3390/s21144834
http://doi.org/10.1007/978-3-642-31537-4_13
http://doi.org/10.1109/icsai48974.2019.9010071
https://www.infoworld.com/article/3336192/what-is-keras-the-deep-neural-network-api-explained.html
https://www.infoworld.com/article/3336192/what-is-keras-the-deep-neural-network-api-explained.html
http://doi.org/10.3390/electronics11233934
http://doi.org/10.3390/healthcare10071293
http://www.ncbi.nlm.nih.gov/pubmed/35885819
http://doi.org/10.1109/globecom46510.2021.9685261

	Introduction
	Need for Malware Detection
	Zeus Malware Architecture

	Related Studies
	Problem Statement
	Research Methodology
	Data Collection and Preperation
	Feature Selection
	Datasets (Samples)
	Machine Learning Algorithms
	System Architecture and Methodology
	Evaluation

	Results
	Training and Testing the Machine Learning Algorithms Using the Data Sets
	Training and Testing the Deep Learning Algorithm Using the Data Sets
	Comparing the Predication Results of the Three Algorithms Tested
	Reducing the Features to the Minimum Number of Possible Features
	Training and Testing with the Minimum Number of Features with the DL Algorithm
	Training and testing using the minimum number of features with the DT algorithm
	Training and Testing Using the Minimum Number of Features with the RF Algorithm

	Conclusions
	Appendix A
	References

