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Noémi ÉltetőID
1*, DezsőNemethID

2,3,4, Karolina Janacsek3,5, Peter DayanID
1,6

1 Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2 Lyon Neuroscience Research
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Abstract

Humans can implicitly learn complex perceptuo-motor skills over the course of large num-

bers of trials. This likely depends on our becoming better able to take advantage of ever

richer and temporally deeper predictive relationships in the environment. Here, we offer a

novel characterization of this process, fitting a non-parametric, hierarchical Bayesian

sequence model to the reaction times of human participants’ responses over ten sessions,

each comprising thousands of trials, in a serial reaction time task involving higher-order

dependencies. The model, adapted from the domain of language, forgetfully updates trial-

by-trial, and seamlessly combines predictive information from shorter and longer windows

onto past events, weighing the windows proportionally to their predictive power. As the

model implies a posterior over window depths, we were able to determine how, and how

many, previous sequence elements influenced individual participants’ internal predictions,

and how this changed with practice.

Already in the first session, the model showed that participants had begun to rely on two

previous elements (i.e., trigrams), thereby successfully adapting to the most prominent higher-

order structure in the task. The extent to which local statistical fluctuations in trigram frequency

influenced participants’ responses waned over subsequent sessions, as participants forgot the

trigrams less and evidenced skilled performance. By the eighth session, a subset of partici-

pants shifted their prior further to consider a context deeper than two previous elements.

Finally, participants showed resistance to interference and slow forgetting of the old sequence

when it was changed in the final sessions. Model parameters for individual participants covar-

ied appropriately with independent measures of working memory and error characteristics. In

sum, the model offers the first principled account of the adaptive complexity and nuanced

dynamics of humans’ internal sequence representations during long-term implicit skill learning.

Author summary

A central function of the brain is to predict. One challenge of prediction is that both exter-

nal events and our own actions can depend on a variably deep temporal context of
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previous events or actions. For instance, in a short motor routine, like opening a door, our

actions only depend on a few previous ones (e.g., push the handle if the key was turned).

In longer routines such as coffee making, our actions require a deeper context (e.g., place

the moka pot on the hob if coffee is ground, the pot is filled and closed, and the hob is

on). We adopted a model from the natural language processing literature that matches

humans’ ability to learn variable-length relationships in sequences. This model explained

the gradual emergence of more complex sequence knowledge and individual differences

in an experiment where humans practiced a perceptual-motor sequence over 10 weekly

sessions.

Introduction

“[. . .] even intuition might be reduced to mathematics”.
Isaac Asimov

The fluency and accuracy of perception and action depend critically on our preternatural

ability to predict. For instance, when learning a new action routine, the steps are generated

independently of each other, yielding slow and error-prone performance. Routines that are

practiced extensively, like opening the front door at home, become fast, accurate, and effort-

less. This is because the sequence of actions comprising the routine becomes predictable via

the gradual learning of dependencies among sequence elements. This sequence learning mech-

anism that creates skills is ubiquitous: along with its role in the genesis of fluent motor perfor-

mance [1], it operates in spatio-temporal vision, assisting scene perception [2], and in the

auditory domain, underlying speech perception [3–5] and speech production [6, 7].

Skill production in the form of sequence learning has been most widely studied in serial

reaction time (SRT) tasks [8] in which participants are instructed to follow a repeating pattern

of key presses like A − B − A − C. With practice, they become faster to produce the key presses

obeying this sequence than those associated with a random sequence. Notably, this increase in

fluency is not always accompanied by explicit knowledge of the sequence. Some participants

who become faster to respond to the pattern are not able to verbally report or themselves gen-

erate the true pattern, suggesting that they learned it implicitly [9]. As such, this paradigm can

capture non-intentional sequential behavior that does not require conscious awareness.

Conventional SRT tasks pose higher-order sequence learning problems. That is, the

sequence elements depend on more than one previous element. In the example sequence A −
B − A − C, whether B or C follows A is uncertain; but C follows BA with certainty. That is, the

first-order dependence of C on A is uncertain but its second-order dependence on BA is cer-

tain. Learning the second-order dependencies ensures predictability, and thus fluency, for all

elements of this example sequence. However, if the order of the sequence generating process is

not known or instructed a priori, the learner has to arrive at the second-order solution by

themselves. The same is true in real-life sequence learning problems. Indeed, a central chal-

lenge of sequence prediction is to determine the exploitable predictive context, the depth of

which can vary from sequence to sequence, and even from element to element. Humans spon-

taneously adopt the depth of context appropriate to the sequence statistics [10]. Furthermore,

learners in the wild accommodate substantial noise. For instance, we might have to greet a

neighbor while opening our front door. Such intervening elements should be flexibly ignored

in our sequence input in order to condition only on the parts of the input that belong to the

door opening routine and correctly generate the next step.
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The Alternating Serial Response Time (ASRT) task [11] was developed to study higher-

order sequence learning in the face of noise. The paradigm is identical to that of the SRT but

the sequence of key presses is predictable only on every alternate trial. Participants gradually

respond more quickly on predictable trials, presumably because they learn to exploit a suffi-

ciently deep context—that is to say, they form larger context-action chunks. However, due to

the probabilistic sequence, participants’ knowledge in the ASRT is completely implicit [12], as

opposed to the mixed explicit-implicit knowledge that is typically exhibited in the SRT. There-

fore, one can assume that the response times in the ASRT are predominantly influenced by the

probability of the upcoming elements and not by other, explicit, strategies. We used the ASRT

to study how humans adapt implicitly to higher-order structure in a noisy sequence—provid-

ing unique insight into the long-term learning of a complex skill.

Since Shannon [13], so-called n-gram models have been a conventional approach to model-

ing non-deterministic higher-order sequential dependencies. An n-gram model learns to pre-

dict the next element given the previous n − 1 elements. For instance, a 3-gram (or trigram)

model predicts an element given two previous elements. In essence, an n-gram is a chunk of n
adjacent elements, and we use the terms interchangeably. One major limitation of such models

is that the number of n-grams grows exponentially as a function of their size n. Thus, acquiring

or storing an n-gram table becomes statistically and computationally infeasible, respectively,

even at moderate values of n. Critically, a simple n-gram model fails to exploit the typically

hierarchical nature of chunks: i.e., that a chunk ‘inherits’ predictive power from its suffix. For

instance, in the speech prediction example, given a context of ‘in California, San’, the most dis-

tant word ‘in’ is weakly predictive, while ‘California’ and ‘San’ are strongly predictive of ‘Fran-

cisco’. The entire context ‘in California, San’ inherits most of its predictive power from the

shallower context ‘California, San’. Similarly, action chunks underlying our motor skills, like

opening a door, are often embedded into, and interrupted by, previously unseen or irrelevant

actions. Humans appear capable of exploiting the hierarchical statistical structure of sequences

by down-weighting, or ignoring, parts of the context that have not convincingly been observed

to be predictive.

Teh [14] suggested a Bayesian non-parametric extension of n-gram models as a principled

machine learning solution to both the problem of complexity and hierarchical context weight-

ing. This model builds structure on the fly as evidence accumulates, extending from (n − 1)- to

n-gram dependencies according to the observed statistics. Thus, it flexibly reduces to a uni-

gram model if no chunk is present, or builds the bigram, trigram, etc. levels if appropriate. For

prediction, it smooths over all chunks that are consistent with the available context, propor-

tional to their prior evidence. This model was originally suggested as a language model; here,

we consider its use for a more general cognitive contextual sequence learning problem.

In our experiment, participants practiced the same visuo-motor second-order sequence in

the ASRT task for 8 long sessions, each separated by a week. In two subsequent sessions, the

sequence was changed in order to test participants’ resistance to interference. We tracked the

evolution of sequence knowledge using the Bayesian non-parametric sequence model, captur-

ing representational dynamics and sensitivity to local statistical fluctuations by adapting it to

learn online and be suitably forgetful. We fitted the sequence model to participants’ response

times assuming that faster responses reflect more certain expectations. We show how shifting

their priors over the predictive contexts allowed participants to grow and refine their internal

sequence representations week by week. Already in the first session, participants began to rely

on two previous elements for prediction, thereby successfully adapting to the main task struc-

ture. However, at this early stage, trigram recency influenced their responses, as captured by

the forgetting mechanism of our model. With training, trigram forgetting was reduced, giving

rise to robustness against local statistical fluctuations. Thus, our model reduced to a simple,
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stationary trigram model. However, by the last training session, we observed that a subset of

participants shifted their prior further to consider a context even deeper than two previous ele-

ments. The fitted parameter values guiding higher-order sequence learning were correlated

with independently measured working memory scores. Finally, reduced chunk forgetting pre-

dicted the resistance to interference in the last two sessions.

1 Methods

1.1 Ethics statement

All participants provided written informed consent before enrollment and received course

credits for taking part in the experiment. The study was approved by the United Ethical Review

Committee for Research in Psychology (EPKEB) in Hungary (Approval number: 30/2012) and

by the research ethics committee of Eötvös Loránd University, Budapest, Hungary. The study

was conducted in accordance with the Declaration of Helsinki.

1.2 Experiment

A detailed description of the task, procedure, and participants can be found in [15] where this

data was first published. In brief, we tested participants’ long-term sequence learning on a

serial reaction time task with second-order dependence (the Alternating Serial Reaction Time

task or ASRT [11]). On each trial, a cue appeared in one of four equally spaced, horizontally

arranged locations. Participants had to press a corresponding key as accurately and quickly as

possible. The next trial started 120ms after the response (Fig 1a). An eight-element second-

order sequence dictated the cue locations, i.e. the sequence elements. In this, four deterministic

Fig 1. The Alternating Serial Reaction Time (ASRT) task with second-order dependence structure. (a) Participants

had to press the key corresponding to the current sequence element (i.e. cue location) on the screen as accurately and

quickly as possible, using the index and middle fingers of both hands. In the display, the possible locations were

outlined in black and the cue always looked the same, fill color and saturation are only used here for explanatory

purposes. (b) The structure of the example sequence segment in (a). Color saturation and outline indicate the element

that was presented on a trial. The vertical arrow indicates the current trial. The task was generated from an eight

element second-order sequence where every second element was deterministic and the elements in between were

random. The deterministic components in this example are: red-blue-yellow-green. The element on any random trial

(including the current one) is unpredictable. However, this current trial happens to mimic the deterministic second-

order dependence where green is followed by red after a gap of one trial, making it a high probability trigram trial (H).

The other random elements were associated with lower probability trigrams (L). (c) Under the true generative model,

when in a random state, high-probability trigrams (rH) and low-probability trigrams (rL) are equally unexpected. (d)

A learner who can pick up second-order dependencies, but who is agnostic to the higher-order alternating state

structure, would expect rH more than rL. (e) In the last training session (session 8; after more than 14,000 trials),

participants responded faster to deterministic than random trials, suggesting that they learned to predict the upcoming

element. They also responded quickly even on random trials if those happened to complete a high probability trigram

(rH). The y axis shows the standardised reaction time (RT) averaged over the different trial types on the last session of

learning. The error bars indicate the 95% CI.

https://doi.org/10.1371/journal.pcbi.1009866.g001
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states, each associated with a unique element, were interleaved with four random states, which

produced the four elements with equal probabilities.

This second-order rule implies that a deterministic element is predictable from the ele-

ment two time steps ago. If one ignores the deterministic/random state of the alternating

sequence, this also means that some trigrams (i.e., sequences of three elements) have high

probabilities. Such trigrams can also arise, by chance, in the random states (Fig 1b), and so

allowed [11] a test of whether participants had learned the global alternating rule in the task,

in which case any element in a random state would be unexpected (by the time the state had

been inferred), or if they had instead merely learned local dependencies or frequent chunks,

in which cases a random state that happened to complete a (so-called random) high fre-

quency trigram would also be expected. The excess speed of responses to the final elements

of random high-frequency trigrams compared to random low-frequency trigrams shown in

Fig 1c suggests chunk learning. Learning was purely implicit in this task, as none of the par-

ticipants could verbalize or reproduce the sequence structure in the debriefing at the end of

the experiment.

Participants completed nine sessions of 2125 trials each, and a tenth session of 1700 trials,

each separated by a week. For each participant, one of the six unique permutations of the

deterministic second-order sequences was selected in a pseudo-random manner and the same

sequence was practiced for 8 (training) sessions. On session 9, unbeknownst to the partici-

pants, two elements in the deterministic second-order sequence were swapped and thus all but

one of the second-order pairs were changed. Over four, 425 trial, epochs of session 10, old and

new sequences alternated according to old! new! old! new. We refer to sessions 9 and 10

as interference sessions. Of the 32 participants, we analysed data from the 25 (22 females and 3

males; Mage = 20.4 years, SDage = 1.0 years) who completed all ten sessions.

1.3 Modeling strategy

We assume that a learner predicts the probabilities of successive elements in the sequence, and

that the response alacrity for pressing key k on trial t (τt) scales logarithmically with the proba-

bility the model awards to that k. Thus high-probability responses are the fastest [16] due to

being most expected (recent neural evidence in [17]) (Fig 2 upper box). Note that fitting to the

participants’ responses rather than the actual events allows us to make inferences about their

Fig 2. Modeling strategy. We adopted a model-based approach, fitting the hyperparameters θ of an internal sequence

model (upper box), together with low level effects (the spatial distance between subsequent response locations,

response repetition, error and post-error trials; lower box) to participants’ response times. The contribution of the

sequence model is the scaled log of the predictive probability of each key press k (one of the four keys, marked as

transparent square), given the context u (previous events, marked as a string of colored squares). The sequence model

makes predictions by flexibly combining information from deepening windows onto the past, considering fewer or

more previous stimuli.

https://doi.org/10.1371/journal.pcbi.1009866.g002
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internal sequence model from their errors as well as their correct responses. For this, we make

the assumption that errors reflect not only less caution but also expectations (as captured by

lower response threshold and biased starting point in evidence accumulation models, i.e.

[18]). Indeed, individuals are prone to respond according to their internal predictions, even if

these do not match the actual upcoming elements [19]. In the ASRT, where the current ele-

ment is already presented at the time of the response, supposedly a conflict arises between the

instructed response and the error response. However, the nature of the conflict is not within

the scope of this study.

The learner faces the problem of finding a model that considers a wide enough context of

predictive past elements, whilst not suffering from combinatorial explosion and overfitting by

considering too many past elements that are redundant for prediction. The solution we con-

sider in this paper is a Bayesian nonparametric n-gram model [14]. In a nutshell, the model

combines the predictive information from progressively deeper windows onto the past: no pre-

vious element; one previous element; two previous elements etc., corresponding to the uni-

gram, bigram, trigram, etc., levels. The hierarchies in the model provide a principled way of

combining information: a deeper window ‘inherits’ evidence strength from the shallower win-

dows that it contains.

Teh [14] employed an offline algorithm to model a given static sequence such as a text cor-

pus. However, the model can be fitted in an online sequential fashion instead, updating the

beliefs at each observation and using the updated model for predicting the next observation.

This captures representational dynamics: more complex models are employed as the data to

justify them accumulates. We hypothesized that humans build their internal sequence repre-

sentation in a similar way, starting with learning short-range dependencies and gradually add-

ing long-range dependencies if they are indeed significantly present in the data. Therefore, we

adopted this model to serve as an internal sequence model.

In order to isolate the effect of the internal sequence prediction on reaction times (RTs), we

controlled for low-level effects that exert significant influence in serial reaction time tasks (S2

Table). These included the spatial distance between subsequent elements, repetition of the

same location, errors, and post-error trials (Fig 2 lower box). Thus, we performed a single,

integrated fit of the free parameters of the sequence predictor and the low-level effects to the

recorded RTs.

1.4 The internal sequence model

The model from [14] infers a nested predictive context of sequence elements, probabilistically

choosing the level of the nesting for a particular prediction based on priors and data. Since we

treat it as an internal and subjective rather than a normative and objective model (fitting

parameters to participants’ reaction times rather than to the actual structure of the second

order sequence), we can infer how much sequence information participants used for adapting

their behavior. Using online model fitting, we capture the dynamic, trial-by-trial refinement of

individuals’ sequence representation.

At the core of the model is the Dirichlet process (DP) mixture [20]. This places a prior on

the unigram probabilities G(k) of key presses k:

k � G � DPða;HÞ ð1Þ

where α is called a strength parameter, and H is a base probability distribution. The DP is a

prior over how to cluster data points together, with the strength parameter determining the

propensity for co-affiliation. In our case, each cluster is labeled by k. Thus, the DP expresses a

prior over of a future key press, given a history of key presses. The base distribution determines
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the prior probabilities of cluster labels k. In our case, H is uniform, expressing that we have no

information about the probabilities of the key presses before observing the data.

A commonly used procedure for sampling from G is the Chinese restaurant process (CRP)

[21]. The CRP is both a generative and recognition procedure as we explain below. In the CRP

metaphor, a new customer either joins an occupied table with a probability proportional to the

number of customers at that table (making the model affiliative) or opens up a new one (making

the model infinite), with probability proportional to parameter α (Fig 3a). Each table corre-

sponds to a cluster and, in our case, is labeled by a key press (e.g., ‘key 1’, marked as colors in Fig

3a). The customers correspond to observations of the certain key press (see the summary of the

terminology in Table 1). In the recognition procedure, we treat the response as given and the

customer is bound to sit at or open a table with the corresponding label, i.e. the probability of

the given key press belonging to each cluster is computed. The fact that the same key press can

be the label of different clusters reflects that the same response could arise from different latent

causes, e.g., different contexts. In the generative model, the probabilities of sitting at or opening

tables that share the label are summed, i.e. predicts how likely, on average, each key press is. The

strength parameter α controls the expected number of clusters: the higher α is, the more prone

Fig 3. Treating the sequence learning problem as an hierarchical nonparametric clustering problem. (a) The

traditional, unforgetful Chinese restaurant process (CRP) is a nonparametric Bayesian model where the probability

that a new observation belongs to an existing cluster or a new one is determined by the cluster sizes and the strength

parameter α. In the metaphor, the new customer (new observation; see the terminology in Table 1; shown as black

dots) sits at one of the existing tables (clusters labeled by key press identity, e.g., ‘response to left side of the screen’;

shown as colored circles) or opens up a new table (shown as open circle) with probabilities proportional to the number

of customers sitting at the tables and α. Here, the most likely next response would be of the type pink. (b) The distance-

dependent or ‘forgetful’ Chinese restaurant process (ddCRP) is governed by a distance metric, according to the ‘close

together sit together’ principle. In our case, the customers are subject to exponential decay with rate λ, as shown in the

inset (and illustrated by the grey colours of the customers). Even though the same number of customers sit at the tables

as in (a), this time the predictive probability of a yellow response is highest because most of the recent responses were

yellow. (c) In the distance-dependent hierarchical Chinese restaurant process (HCRP), restaurants are labeled by the

context of some number of preceding events and are organized hierarchically such that restaurants with the longest

context are on top. Thus, each restaurant models the key press of the participant at time point t, kt, given a context of n
events (et−n, . . .et−1). A new customer arrives first to the topmost restaurant that corresponds to its context in the data

(in the example, the customer is bound to visit the restaurant labeled by the context ‘yellow-blue’ when he arrives to

level 2). If it opens up a new table, it also backs off to the restaurant corresponding to the context one element shorter

(in the example, to the restaurant labeled by the context ‘blue’).

https://doi.org/10.1371/journal.pcbi.1009866.g003

Table 1. Terminology of the hierarchical Chinese restaurant process mapped onto the experimental measures of

the current study.

ddHCRP metaphor Experimental measures

customer observation at t
table subset of observations up to t − 1

dish label of the observation at t (key press kt or event et)
restaurant on level n context of n previous events (et−n:t−1)

https://doi.org/10.1371/journal.pcbi.1009866.t001
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customers will be to open their own cluster. The resulting seating arrangement S is a sample of

G. Since in the generative procedure the labels of new tables are sampled independently from H,

a high strength value α will cause G to resemble H (hence, enhancing the ‘strength of H’).

The affiliative process gives rise to the ‘rich gets richer’ property where clusters with more

data points attract other data points more strongly. This captures, for instance, the fact that the

more often we gave a response in the past, the more likely we are to repeat the same response

in the future [22]. However, these clusters would ultimately grow without bound. Since our

participants are forgetful and might be sensitive to local statistical fluctuations, we used a vari-

ant called the distance-dependent CRP (ddCRP) [23] (Fig 3b). Here, affiliation among custom-

ers decreases as a function of sequential distances D. D is the set of distances between all

customers that form sequential pairs, measured in the number of past trials relative to the cur-

rent customer. We set the affiliation decrease to be exponential, with rate λ, crudely modeling

human forgetting curves.

This yields the distance-dependent Dirichlet process (ddDP) prior:

kt � Gt � ddDPða; l;H;DÞ ð2Þ

So far, we have a suitable model of (potentially nonstationary) marginal probabilities of

key presses that corresponds to a unigram model. We can use this building block to represent

the key press probabilities at time point t conditioned on a context of n preceding key press

instructions or events ut = (et−n, . . .et−1) hierarchically. The Dirichlet process prior in Eq 2 can

be modified to give a distance-dependent hierarchical Dirichlet process (ddHDP) prior:

kt � Gut
� ddHDPðajut j; ljut j;GpðutÞ

;DÞ ð3Þ

where π(ut) is the suffix of the context ut containing all but the earliest event. Both the strength

and decay constant are functions of the length |ut| of the context. Crucially, instead of an unin-

formed base distribution, we have GpðutÞ
, the vector of probabilities of the current events given

all but the earliest event in the context. Of course, GpðutÞ
also has to be estimated. We do this

recursively, by applying Eq 3 to the distribution given the shallower context. We continue the

recursion until the context is ‘emptied out’ and the probability of the next response given no pre-

vious elements is a DP with an uninformed base distribution. This hierarchical procedure

ensures that context information is weighted proportionally to predictive power. Consider an

example where participants are always instructed to respond ‘red’ after having seen ‘green—yel-

low’. Then, irrespectively of elements preceding ‘green’, the response should be unchanged.

Consider that a novel element ‘cyan’ was inserted and the participant’s full context contains

‘cyan—green—yellow’. According to Eq 3, the probability of the next response being ‘red’ given

the full context ‘cyan—green—yellow’ will depend on the probability of ‘red’ given the shallower

context of the two previous elements ‘green—yellow’—the actually predictive context. The earli-

est element in the context—’cyan’—is redundant to prediction and the probability distribution

over the next response given the longer context will strongly resemble the probability distribu-

tion given the shorter, useful context. Note that we use the completely novel element ‘cyan’ to

illustrate the extreme case of an unpredictive element that should be ignored. However, the prin-

ciple applies to weakly predictive contexts that should be proportionally down-weighted.

We represent the HDP with the distance-dependent hierarchical Chinese restaurant pro-

cess (HCRP) (Fig 3c). Here, we have Chinese restaurants on N+1 levels, each level modeling

the probability distribution over responses given a context of n previous events. At each level

n, we have a potentially unbounded number of restaurants identified by a context u, meaning

that a customer kt can only ever access the restaurant if ut is part of their context in the data.

The ‘reliance’ of deeper contexts on shallower ones is realised by a back-off procedure (C
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Algorithm in S1 Appendix). A customer visits the topmost level first, particularly the restau-

rant corresponding to its context of length N in the data. With probabilities proportional to

the recency of customers and αN, the customer either joins previous customers or opens up a

new table, creating a new cluster. In the latter case, the customer also ‘backs off’ to the restau-

rant below, identified with a context that is one event shallower, where the same seating evalu-

ation takes place. This may be repeated until the customer reaches the level of empty context.

This induces a process where the most predictive segment of a long context will contribute the

most to the prediction of the next key press kt, and superfluous context is organically over-

looked. The most likely next k, given the context, is the k that the participant recently chose in

the same context or a shallower segment of it.

A relevant property of the HCRP is that the ‘rich gets richer’ effect will generalise across

contexts that share the same suffix. For instance, in case of many recent observations of the

response ‘red’ in the context ‘green—yellow’, the longer, previously seen context ‘green—

green—yellow’ and even a previously unseen context ‘cyan—green—yellow’ will also be associ-

ated with increased likelihoods of ‘red’. This is because ‘red’ is likely under the common suffix

of both contexts. This property is desirable for the prediction of behavior, as individuals are

expected to generalize their chunk inventory to previously unseen wider contexts [24, 25].

The α and λ parameters control memory over two timescales; the former controls short-

term memory by tracking the use of the current context and the latter controls long-term

memory by determining the longevity of previous chunks of context and response. Short-term

memory acts as activated long-term memory [26]. That is, the context of a few previous events

is a pointer to responses made in the same context, stored on the long-term. Since the α and λ
parameters are specific to the hierarchy levels and are inferred from the data, the sequence

learning problem is cast as learning a prior over ‘What should I remember?’, as in other

approaches to representation learning [27].

To a learner that knows the alternating structure and the current state of the ASRT, any

context longer than two previous events is superfluous, due to the second-order dependencies

(Fig 1c). However, if the learner is agnostic to the alternating structure (Fig 1d) then no context

can be deemed superfluous, as longer contexts enable the implicit tracking of the sequence

state. Indeed, pure sequence prediction performance increases with the number of levels in the

HCRP hierarchy and with lower values of α (S2 Fig). Similarly, long-term memory is beneficial

in the training sessions, as it allows for a better estimation of the stationary chunk distribution

and provides resistance to local statistical fluctuations. However, human learners are solving

the task under resource constraints, motivating them to increase the complexity of their repre-

sentations only to a level that enables good enough performance [28]. Within our framework, a

parsimonious sequence representation is ‘carved out’ by learning to ignore dispensable context

and enhancing the memory of previous observations in the necessary context.

1.5 Parameter fitting

Given the sequence presented to the participants, their responses, and response times, we are

interested in finding the parameter values of the low-level effects and the internal sequence

model that most likely generated the behavior. We assumed that the likelihood of the log

response times was a Gaussian distribution with a mean value of the log response times pre-

dicted by the full model. We performed approximate Bayesian computation (ABC) to approxi-

mate the maximum a posteriori values of the parameters of interest:

argmax
θ;ρ

Pðθje; k; τ; sÞ ð4Þ

where θ is the parameter vector of the HCRP comprising the strength parameters α and
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forgetting rate parameters λ; ρ is the vector of response parameters, including the weights of

the low-level effects, the weight of the HCRP prediction, and the response noise; e is the

sequence of events (mapping onto required responses); and k is the sequence of key presses

(actual responses); τ is the sequence of response times; and σ is the Gaussian noise of the

response time.

As a first step of our ABC procedure, we parsed e and k chronologically, such that the prob-

ability of a key press at t was influenced by observations up to t − 1, modeling sequential infor-

mation accumulation (A Algorithm in S1 Appendix). At each time step, the HCRP operated as

both the generative and recognition model, based on the same hierarchical back-off scheme.

On trial t, we evaluated the probability of seating a new customer to a table serving dish kt,
according to the generative process (B Algorithm in S1 Appendix). This corresponded to com-

puting the predictive probability p(kt) of the participant’s response. Then, the seating arrange-

ment was updated by seating a customer to a table serving the dish et, according to the

recognition process (C Algorithm in S1 Appendix). This corresponded to updating the partici-

pant’s internal model with the event et, that is, the required response (which, in the case of

erroneous responses, was different from the actual response kt). As such, we modeled the gen-

erative process of the actual responses k as a function of having learnt the required responses e.

Note that in the parsing procedure, the seating arrangement was only updated with the current

customer—backtracking (i.e. re-seating old customers) was not possible. This models online,

trial-by-trial learning. We parsed the sequence five times to generate five seating arrange-

ments. p(kt) was averaged over the five seating arrangement samples (yielding a relatively

high-precision estimate of p(kt); see A Fig in S2 Appendix).

The log predictive probability log(p(kt)) of the actual response was assumed to be linearly

related to τ, higher surprise causing slower responses [16]. We mapped log(p(kt)) to τpredicted
using the response parameters ρ. Then we computed the Gaussian densities p(τ|τpredicted, σ).

The goal was to find θ and ρ that maximize the product of these densities, that is, the likelihood

of the measured response latencies to the sequence elements. In order to approximate θ and ρ
that maximize this likelihood, we performed random search in the space of θ for 1000 itera-

tions (for the convergence of the random search procedure, see A Text in S2 Appendix). In

each iteration, we fitted ρ using OLS (thus, ρ was a deterministic function of θ). We repeated

the search procedure 10 times, yielding 10 samples from the posterior distribution, and θ asso-

ciated with the highest likelihood of participants’ responses was chosen as the MAP estimate of

the hypermarameters.

We reran the ABC on consecutive data bins (sessions or within-session epochs when higher

resolution is justified) to track potential shifts in the posteriors over practice. In the first five

bins (five epochs of session 1), the prior was uninformed (S1 Table, left). In each successive

bin, the prior was informed by both the fitted hyperparameters and learned parameters from

the previous bins. For the hyperparameters θ, we used a Gaussian prior with a mean of the

MAP values of the hyperparameters from the previous bin and a fixed variance, truncated at

the boundaries of the uniform prior for session 1 (S1 Table, right). The learned parameter

values, that is, the seating arrangements S accumulated across all previous bins were carried

over. The ‘heredity’ of the seating arrangements modeled continual learning. Nevertheless,

changes in θ caused the same sequence information to be weighted differently. For instance,

if λ decreased, old instances of chunks that were previously uninfluential, became more

influential.

For later model evaluation, we held out the middle segment of reaction time data from a

session (the central 255 trials) or epoch (the central 85 trials). Middle segments were chosen in

order to ensure a more representative test data, as the beginning and end of a session can be

affected by warm-up [29] and fatigue [30] effects, respectively. The HCRP parsed the entire e
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in order to contain sequence knowledge that could explain τ on later segments. But, impor-

tantly, the middle segment of τ was not used for computing the posterior probabilities of θ and

ρ. Therefore, all predictions reflected all previous observations and only predictions of the

training data were used to optimise the hyperparameters. Holding out the responses but not

the observations, instead of completely held-out data as typical in machine learning, was essen-

tial to provide the model with the right context for predicting behavior without contaminating

it with test behavior.

2 Results

2.1 Practice-related changes in the low-level response model

In Fig 4 we show fitted values of both the response parameters ρ and the internal sequence

model hyperparameters θ. In general, responses were faster if they were repetitions of the pre-

vious responses and and if they were erroneous (Fig 4a, negative coefficients for ‘repetition’

and ‘error’). On the other hand, slowing as a function of spatial distance from the previous

response location and post-error slowing was observed (positive coefficients for ‘spatial dis-

tance’ and ‘post-error’). Since the sequence prediction coefficient (i.e. the weight of the HCRP)

expresses the effect of surprise and the sequence was not completely predictable, the coefficient

was generally above zero.

Parameter dynamics were already evident in the first session. To test practice-related

changes, we conducted repeated measures ANOVAs with practice time unit (epochs or ses-

sions) as within-subject predictor, allowing random intercepts for the participants. In the first

session, while responses became faster in general (p< .01), pre-error speeding (p< .001) and

post-error slowing were attenuated (p< .01). All three temporal trends persisted during ses-

sions 2–8 (p< .001; p< .001; p< .01). At the same time, repetition facilitation became attenu-

ated (p< .001) and the effect of the prediction from the internal sequence model (the HCRP)

was increased (p< .001). Compared with the last training session, in the first epoch of the

interference session (session 9), participants slowed down (p< .001) and the predictions from

the HCRP were less expressed in their responses (p< .001).

Fig 4. Fitted parameter values shown session by session, and at a subsession resolution in the initial and final

sessions. The grey band on the bottom of each plot shows the sequence that participants practiced: the old sequence in

sessions 1–8 (dark grey), the new sequence in session 9 (light grey), and both sequences alternately in session 10. Point

distance in (a) and cell width in (b) are proportional to data bin size—we fitted the model to 5 epochs within sessions 1,

9, and 10 to assess potentially fast shifts. (a) Fitted values of the response parameters in units of τ [ms]. The error bars

indicate the 95% CI for the between-subjects mean. (b) Fitted values of the strength α (left) and forgetting rate λ
(middle) parameters are shown, as well as their joint effect on prediction (right). A context of n previous events

corresponds to level n in the HCRP. Lower values of α and λ imply a greater contribution from the context to the

prediction of behavior. The context gain for context length n is the decrease in the KL divergence between the

predictive distribution of the complete model and a partial model upon considering n previous elements, compared to

considering only n − 1 previous elements. Note that the scale of the context gain is reversed and higher values signify

more gain.

https://doi.org/10.1371/journal.pcbi.1009866.g004

PLOS COMPUTATIONAL BIOLOGY Tracking human skill learning with a hierarchical Bayesian sequence model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009866 November 30, 2022 11 / 28

https://doi.org/10.1371/journal.pcbi.1009866.g004
https://doi.org/10.1371/journal.pcbi.1009866


2.2 Practice-related changes in the hyperparameters of the internal

sequence model

The HCRP hyperparameters guide both learning and inference. Thus, the fitted HCRP hyper-

parameters reflect how participants use previous sequence knowledge as well as how they

incorporate new evidence.

Remember that both α and λ (Fig 4b, left and middle) determine the influence of a given

context, by down-weighting shallower contexts or by reducing the decay of old observations in

the same context, respectively. In order to visualize the joint effect of the two parameters, we

computed the KL divergence between the predictive probability distribution given the whole

context and shallower contexts. A lower KL divergence indicated that the context weighed

strongly into the overall prediction. Then, we computed the degree to which the KL divergence

is reduced by adding more context, and averaged it across all trials and contexts of a given

length. The resulting values reflect the average gain from the context windows to the predic-

tion of the response (Fig 4b, right).

During the first session, α1 increased (p< .001), suggesting that the first-order dependency

of the response on the one previous event was reduced (Fig 4b, left, right). From session 2 to 8,

both λ1 and λ2 decreased prominently (p< .001 and p< .01). This suggests that participants

adaptively increased their memory capacity not just for first-order but also second-order

sequence information. Storing more instances of their previous responses following two events

allowed them to be more robust against local statistical fluctuations due to the random nature

of the task. That is, their behavior became gradually less influenced by the most recent trigrams

and better reflected the true trigram statistics. Even though third-order sequence knowledge

(i.e. conditioning response on three previous events) would further improve performance, λ3

did not decrease during training sessions 2 to 8 (p = .376.). This suggests that participants

carved out the minimal context that is predictive and learned to remember previous instances

in these contexts, ignoring deeper contexts that would give diminishing returns.

During session 9, when 75% of the sequence was changed, participants resisted the interfer-

ence by further enhancing the trigram statistics that they had accumulated in earlier sessions,

as reflected by further decrease in λ2 (p< .01). With such a mild trigram forgetting, the inter-

nal sequence model remains dominated by data from the old sequence throughout sessions 9

and 10. At the same time, the sequence prediction coefficient was reduced sharply from session

8 to 9 (p< .001), indicating that the internal sequence model was not governing the responses

as strongly anymore when it became largely outdated. This implies that the internal sequence

model accounted for less variability in the RTs during the interference sessions than the late

training sessions.

2.3 Correlation of the sequence model hyperparameters and working

memory test scores

α and λ capture how sequence memory is used. We conducted an exploratory analysis (Fig 5A

and 5B) in order to relate the values of the HCRP hyperparameters that were inferred on the

sequence learning task to participants’ performance on independent memory tests. Three tests

were conducted prior to the sequence learning experiment: the digit span test to measure ver-

bal working memory (WM); the Corsi blocks test to measure visuo-spatial WM; and the

counting span test to measure complex WM. The former two, ‘simple’ WM tasks require the

storage of items, while the latter complex WM task requires storage and processing at the same

time.

We found that the complex WM score was negatively correlated with α3 (r = −.50, p = .01)

such that higher complex WM was related to more reliance on longer contexts for prediction
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(Fig 5c). The spatial WM score was related to λ3 (r = − .47, p = .02), reflecting that a higher spa-

tial WM capacity allowed for better retention of previous responses in longer contexts (Fig

5d). Verbal WM was not related to any of the hyperparameters (all ps > .05), probably due to

the fact that the sequence learning task itself was in the visuo-spatial and not the verbal

domain. In case we control for all 24 comparisons presented in the paper, the two significant

correlations do not survive the Benjamini-Hochberg correction (their adjusted p values

increase to.09 and.28, respectively). However, we note that this correction is too harsh, as we

did not have prior hypotheses about all of these 24 relationships. In fact, it was expected that

the hyperparameters governing the role of very short contexts is not related to WM, as the 1–2

item WM capacity variance is expected to be extremely low in healthy adults. However, we

included all comparisons for completeness.

2.4 Trial-by-trial prediction of response times

Using the fitted HCRP parameter values HCRP for each participant and session or epoch, we

generated predicted RTs and evaluated the goodness of fit of our model by computing the

coefficient of determination (r2) between the predicted and measured RTs on held-out test seg-

ments. Fig 6a and 6b show how the predictions from the internal sequence model, as well as

other, low-level effects jointly determine the predicted RTs on the first and the seventh training

sessions of an example participant, respectively. In the first session (Fig 6a, Top), the predicted

RTs (red line) were only determined by a slight effect of spatial distance between subsequent

events and errors (pale green and purple bars). The internal sequence model was insufficiently

mature to contribute to the responses yet. By session 7 (Fig 6b, Top), the sequence prediction

effect (pale red bars) became the most prominent. Responses that previously were highly con-

tingent on some part of the deepening event context were faster. This came from a well devel-

oped internal sequence model whose predictions became more certain and more aligned to

the sequence of events (Fig 6b, Middle). By virtue of the HCRP, the depth of the substantially

predictive context changed trial by trial (Fig 6a, bottom). On high probability trigram trials

(marked by ticks) a context of two previous events was used for prediction, whereas on other

trials only one previous event had substantial weight. Overall, this participant’s responses in

this late stage of learning became more influenced by the internal sequence predictions than

the effects of spatial distance, error, and response repetition. On average across participants,

the fraction of response time variance accounted for by the internal sequence prediction

Fig 5. Correlation between the fitted HCRP parameters and working memory. (a)(b) Pearson correlation matrices of the working memory test

scores and the strength parameters α and decay parameters λ of the HCRP model, respectively. Correlations that met the significance criterion of p<
.05 are marked with black boxes. (c)(d) Scatter plots of the correlations that that met the significance criterion of p< .05. Bands represent the 95% CI.

https://doi.org/10.1371/journal.pcbi.1009866.g005
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increased monotonically from session 1 to 7; it plateaued by session 8 and reduced in the inter-

ference sessions 9 and 10 (Fig 6c).

2.5 The internal sequence model predicts second-order effects during

learning and interference

Our model accounted for participants’ sequence learning largely by enhancing the memory for

trigrams of two predictive elements and a consequent response. This suggested that the HCRP,

by virtue of its adaptive complexity, boiled down asymptotically to a stationary second-order

sequence model (i.e. trigram model) with deterministic (d) and two sorts of random (r) trials,

those following the deterministic scheme (random high; rH), and those not (random low; rL).

Therefore, we tested how well calibrated the HCRP was to the second-order structure by ana-

lyzing the predicted RT differences on the held-out data, contingent on the sequence state and

trigram probability. This follows the sort of descriptive analyses conventionally conducted in

ASRT studies (e.g., [31]). We conducted two-way repeated measures ANOVAs with time unit
(session or epoch) and trial type (state: d/r or P(trigram) in r states: rH/rL) as within-subject

factors and with the measured or predicted RTs as outcome variable.

Fig 6. Trial-by-trial predictive check. In (a) and (b) we show example segments of held-out data from session 1 and 7 of participant 102 (Top) Colored

bars show the positive (slowing) and negative (speeding) effects predicted by the different components in our model relative to the intercept (horizontal

black line). The overall predicted RT value (red line) is the sum of all effects. The color code of the event and the response are shown on the bottom. A

mismatch between the two indicates an error. (Middle) Predictive probabilities of the four responses are shown for each trial. The cells’ hue indicate the

response identity, saturation indicates probability value. The sequence prediction effect (pale red bar in (Top)) is inversely proportional to the

probability of the response, i.e. higher probability yields faster response. The ticks at the bottom indicate high-probability trigram trials. (Bottom) We

show what proportion of the predictive probability comes from each context length. Higher saturation indicates a larger weight for a context length. (c)

Test prediction performance of the full model and each model component in terms of unique variance explained, averaged across participants. Bands

represent the 95% CI.

https://doi.org/10.1371/journal.pcbi.1009866.g006
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During training sessions 1–8, participants gradually became faster for d than r trials, as well

as for rH than rL trials. These divergence patterns were matched by the HCRP predictions (Fig

7a and 7b; significant session�trial type interactions in Table 2). In the interference sessions 9

and 10, we tested the relationship between the RTs and the trigram probabilities for both old

and new sequences. In order to study the effect of the old and new sequence statistics sepa-

rately, we only included non-overlapping H trials (trials that are H in the old trigram model

and L in the new one and vice versa) and contrasted them with overlapping L trials (trials that

are L in both the old and new trigram models). In these analyses, we only consider r trials but

we drop the r from the trial type notation for brevity.

In session 9, the effect of the old sequence statistics progressively waned, as evidenced by

the coalescence of the curves for Hold and Lold trials (Fig 7c; Hold: diamond, Lold: circle). This

Fig 7. Calibration of the HCRP model. (a) RTs predicted by our HCRP model are shown against measured RTs for d
versus r trials on held-out test data. (b) Same as (a) for rH versus rL trials. The two dashed lines mark the mean RTs for

d and rH trials in session 8. The RT advantage of d over rH by session 8 marks (> 2)-order sequence learning. (c-d) rH
versus rL trials are labelled according to the old trigram model (i.e. old sequence) or the new trigram model (i.e. new

sequence). The grey band on the bottom shows the sequence that participants practiced: the old sequence in sessions

1–8 (dark grey), the new sequence in session 9 (light grey) and alternating the two sequences in session 10. (e) (> 2)-

order sequence learning, quantified as the standardized RT difference between rH and d trials, shown for measured

and predicted RTs. In session 1, rH trials are more expected because they reoccur sooner on average. By session 8, d
trials are more expected because they are more predictable, given a> 2 context. This was predicted by the HCRP but

not the trigram model. (f) Correlation of the measured and predicted (> 2)-order effect in session 1 and session 8. (g)

Average predictive performance of the HCRP and the trigram models. (a-g) The error bands and bars represent the

95%CI.

https://doi.org/10.1371/journal.pcbi.1009866.g007

Table 2. Repeated measures ANOVAs in sessions 1–8. In the left set of columns, the trial type is defined as the state and in the right set of columns it is defined as P

(trigram).

effect B [ms] F p effect B [ms] F p
measured RT session -10.11 133.38 <.001 session -9.33 97.81 <.001

state -1.99 116.01 <.001 P(trigram) -13.68 272.66 <.001

session�state -3.63 29.07 <.001 session�P(trigram) -2.72 9.25 <.001

predicted RT session -11.06 216.68 <.001 session -10.19 203.70 <.001

state -3.16 171.44 <.001 P(trigram) -7.02 229.83 <.001

session�state -2.76 44.92 <.001 session�P(trigram) -3.01 26.44 <.001

https://doi.org/10.1371/journal.pcbi.1009866.t002
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temporal pattern reflecting unlearning was significant for the RTs predicted by our model,

but, being noisier, was only a trend for the measured RTs (Table 3 top left). The gradual diver-

gence pattern of Hnew and Lnew typically seen in naïve participants was not significant for the

measured RTs, contrary to the clear predicted relearning pattern predicted by our model (Fig

7d; Table 3 top right). Nevertheless, a slight overall speed advantage of Hnew over Lnew was also

significant for the measured RTs, confirming overall learning in spite of the noisy learning

curves. Indeed, by the last epoch of session 9, the mean speed advantage of Hnew to Lnew was

not significantly lower than that of Hold to Lold (8.34 ms versus 13.91 ms, t = 1.42, p = .166),

suggesting substantial learning but also resistance to interference. Surprisingly, the speed

advantage of Hold the in the last epoch of session 9 was positively correlated with Hnew (r = .73,

p< .001). This suggests that the more efficient participants were at acquiring the old sequence,

the better they learned the new one, suggesting a common factor behind the ability of parallel

learning of new information and maintenance of old information. Our HCRP model could

not account for this parallel process, because the forgetting mechanism inherently traded off

the retention of old statistics against adapting to new statistics (r = .16, p = .438).

Due to the resistance to interference, the old trigram statistics were reactivated upon

experiencing the old sequence. In the first epoch of session 10, participants’ behavior was sig-

nificantly influenced by the old sequence statistics, albeit to a lesser degree than prior to inter-

ference, in session 8 (mean RT difference between H and L was 32.87 ms and 21.43 ms,

respectively; time unit�Pold(trigram) interaction: p = .045) and the amount of forgetting was

closely estimated by our model (28.61 ms and 18.08 ms, respectively; p =< .001). Throughout

the four alternating epochs of session 10, the measured RTs reflected the parallel maintenance

of the two sequence representations, as the main effects of both Pold(trigram) and Pnew(trigram)
were significant (Table 3 bottom). The two trigram effects were not temporally modulated

on the measured RTs—overall, there was no change in the influence of the old versus new

sequence statistics due to the alternation between the old and new sequences. Whereas our

model could account for the main trigram effects, it could not account for their joint temporal

stability. Since the maintenance of the new trigram statistics was reflected in the measured RTs

in epoch 2, our HCRP model assumed that this new knowledge traded off against knowledge

Table 3. Repeated measures ANOVAs in session 9 and 10. In the left set of columns, the trial type is defined as Pold(trigram) and in the right set of columns it is defined

as Pnew(trigram).

effect F p effect F p
session 9

measured RT epoch .63 .640 epoch .54 .705

Pold(trigram) 91.48 <.001 Pnew(trigram) 5.58 .023

epoch�Pold(trigram) 2.23 .071 epoch�Pnew(trigram) 1.02 .396

predicted RT epoch 3.65 .008 epoch 3.17 .016

Pold(trigram) 121.31 <.001 Pnew(trigram) 98.38 <.001

epoch�Pold(trigram) 7.16 <.001 epoch�Pnew(trigram) 5.09 <.001

session 10

measured RT epoch 2.29 .085 epoch 2.50 .036

Pold(trigram) 122.57 <.001 Pnew(trigram) 21.71 .002

epoch�Pold(trigram) 1.49 .223 epoch�Pnew(trigram) 1.96 .545

predicted RT epoch 18.45 <.001 epoch 15.00 <.001

Pold(trigram) 207.71 <.001 Pnew(trigram) 152.93 <.001

epoch�Pold(trigram) 5.13 .003 epoch�Pnew(trigram) 1.31 .276

https://doi.org/10.1371/journal.pcbi.1009866.t003
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of the old sequence. Therefore, it incorrectly predicted weaker expression of the old sequence

statistics in the epochs where the new sequence was practiced (notice the zig-zag pattern in the

red lines in Fig 7c; epoch�Pold(trigram) interaction in Table 3). The participants may have been

able to employ meta-learning and invoke either the representation of the old or new sequence

adaptively. Such a process could be captured by two independent HCRP sequence models and

an arbiter that controls the influence of each, potentially based on their posterior probability.

However, a perfect account of the resistance to interference and the parallel learning of two

sequences is beyond the scope of the current paper.

2.6 The internal sequence model predicts (> 2)-order effects

Overall, the HCRP model captured the gradual emergence of second-order sequence knowl-

edge and its resistance to interference. During sessions 1–8, it even captured higher-order

effects, despite the fact that these are much weaker on average and more variable across partici-

pants. To assess this, we quantified a (> 2)-order effect as the (normalized) RT difference

between rH and d, as is conventional in ASRT studies (e.g., [11, 32]). The reason is that d trials

are constrained by the sequence phase, thereby respecting the (> 2)-order dependencies of the

sequence whereas the rH trials are not constrained by the sequence phase and do not have (>

2)-order dependencies. Participants showed a reversal in the (> 2)-order effect whereby they

were faster on rH than d trials in session 1 and they became faster on d than rH trials by session

8 (session�trial type interaction: p = .007). This reversal could not be explained by a stationary

trigram model that is, by design, agnostic to (> 2)-order dependencies and recency (p = .939;

Fig 7e), but could be explained by the HCRP (p = .025).

The explanation based on the HCRP depends on the change in trigram forgetting. Since the

rH trials are not locked to the sequence phase, their average reoccurrence distance is shorter

than that of the d trials. In other words, if a trigram reoccurs in a rH trial, it tends to reoccur

sooner than it would have in a d trial, at the appropriate sequence phase (S3 Fig). Therefore,

stronger forgetting induced a slight speed advantage for rH trials in session 1, although this

effect was not significant across the whole sample on either the measured RTs, or on those pre-

dicted by our model (p = .084 and p = .199, respectively). Individual differences in the initial

recency bias were explained by the HCRP (r = .620, p< .001; Fig 7f, left). By session 8, trigram

forgetting was reduced and the 4-gram statistics had a slight effect on behavior, as expressed

by the advantage of d to rH trials. Due to heterogeneity among the participants, neither the

measured nor the predicted average (> 2)-order effect was significant from zero on session 8

(p = .080 and p = .076, respectively). As in session 1, the individual variability in the (> 2)-

order effect was captured by the HCRP (r = .766, p< .001; Fig 7f, right).

Nevertheless, across all sessions, the (> 2)-order effect was rather small compared to the

second-order effect, even though learning the (> 2)-order dependencies allowed for more cer-

tain predictions. This can be viewed as resource-rational regularisation of participants’ internal

sequence model. Therefore, overall, the HCRP approximated a stationary trigram model and

these two models explained a similar total amount of variance in the RTs (Fig 7g).

2.7 Predicting the response time of errors

So far, we accounted for general pre-error speeding and post-error slowing in the linear

response model. By doing so, we controlled for factors other than sequence prediction influ-

encing the error latency, for instance, a transiently lower evidence threshold (see e.g., [33]).

Sequence prediction influences the latency of errors by providing what amounts to prior evi-

dence for anticipated responses. As such, errors reflecting sequence prediction are predicted to

be even faster than errors arising from other sources (e.g., within-trial noise of evidence
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accumulation rate, not modeled here). To assess this, we categorised participants’ errors based

on the sequence prediction they reflected. ‘Pattern errors’ are responses that are consistent

with the second-order dependencies, i.e. the global statistics of the task, instead of the actual

stimulus. For instance, the following scenario was labelled as a pattern error: ‘red’-X-’blue’ was

a second-order pair in the task and on a random trial that was preceded by ‘red’ two time steps

before the participant incorrectly responded ‘blue’ when the event was ‘yellow’. ‘Recency

errors’ are repetitions of the most recent response given in the same context of two previous

elements, i.e. they reflect sensitivity to local trigram statistics. Only responses that did not qual-

ify as pattern error could be labelled as recency errors. For instance, the following scenario was

labelled as a recency error: on the most recent occurrence of the context ‘red’-’red’, the partici-

pant responded ‘yellow’; in the current context, the participant incorrectly responded ‘yellow’

when the event was ‘green’. Errors that fell into none of these two categories were labelled as

‘other’. We only analyzed those errors that were made on low-probability trigram trials. The

proportion of pattern errors gradually increased due to learning, while the proportions of

recency errors and other errors was reduced (Fig 8).

Paired t-tests revealed that the measured RTs were faster for pattern errors than other errors

(RTother − RTpattern = 27.55 ms, t = 8.58, p< .001), suggesting that expectations based on the

global trigram statistics indeed contributed to making errors. Similarly, participants were

12.84 ms faster to commit recency errors than other errors (RTother − RTrecency = 11.47 ms,

t = 2.38, p = .025) (Fig 9). This indicated that participants’ errors were also influenced by local

statistics, although to a significantly lesser degree (t = 2.76, p = .011). While a stationary tri-

gram model was able to explain the pattern error RTs (RTother − RTpattern = 25.15 ms, t = 11.04,

p< .001), it lacked the distance-dependent inference mechanism that could explain the

recency error RTs (RTother − RTrecency = -1.14 ms, t = -1.18, p = .249).

The HCRP model correctly predicted fast pattern errors (RTother − RTpattern = 21.32 ms,

t = 20.91, p< .001), but underestimated the speed of recency errors (RTother − RTpattern = 4.67

ms, t = 3.91, p< .001, Fig 9). The reason for this was that the HCRP fit the data by reducing tri-

gram forgetting, explaining participants’ overall robustness to the recent history of trigrams

Fig 8. Proportions of errors of different types across training sessions.

https://doi.org/10.1371/journal.pcbi.1009866.g008
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(Fig 4). However, as our error RT analysis revealed, sensitivity to recent history was more

expressed on error trials.

Explaining why error responses were more influenced by recent history than correct

responses is beyond the scope of this paper. However, note that our HCRP model does have

the flexibility to explain the effect in isolation. Therefore, we fitted the HCRP to the same data

but using a different prior for the forgetting hyperparameters, thus projecting the model into a

more forgetful regime (priors defined in S1 Table; posteriors shown in S4 Fig). As shown in

Fig 9, the HCRP with stronger forgetting prior, HCRPf, was able to explain the degree to which

error responses were influenced by global and local trigram statistics, as the speed advantage of

pattern errors (RTother − RTpattern = 21.79 ms, t = 11.10, p< .001) and recency errors (RTother −
RTrecency = 10.92 ms, t = 6.33, p< .001) was more correctly predicted on average. In sum, while

a less forgetful higher-order sequence learning model accounted best for participants’ RTs due

to their general robustness to local noise, a more forgetful model accounted for a slight sensi-

tivity to local noise that was expressed in the speed of error responses.

Fig 9. Predicting the latency of errors. (a) Pattern errors. (b) Recency errors. In the case of HCRPf, the hyperparameter priors were adjusted to express

more forgetfulness. The error bars represent the 95%CI.

https://doi.org/10.1371/journal.pcbi.1009866.g009

Fig 10. The HCRPf weighting of context depth is different among errors of different types. (Left) Weights of all HCRPf levels. (Right)

Zoomed in for HCRPf level 3 only.

https://doi.org/10.1371/journal.pcbi.1009866.g010
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In order to elucidate the relationship between the inferred seating arrangements in the

HCRPf model and participants’ errors, we computed the average seating odds for each level

across the three error types (the same measure as in Fig 6a and 6b, bottom). As shown in Fig 10,

the weight of level 2 in the HCRPf, that is, the recency of trigrams, did not influence the speed

of different types of errors to the same degree (F(2, 72) = 39.90, p< .001). The weight of level 2

was stronger in the case of recency errors than other errors (t = -2.72, p = .009), and it was even

stronger in pattern errors than recency errors (t = -5.61, p< .001). The overall difference in the

weight of level 0, that is, the recency of unigrams (F(2, 72) = 20.94, p< .001) was driven by the

opposite trend. The weight of the unigram observations was stronger when participants com-

mitted other errors than recency errors (t = 2.35, p = .02), and stronger in the case of recency

errors than pattern errors (t = 3.89, p< .001). There were significant differences among the

error types in the weights of level 1 and 3 as well, though more modest and not three-way (F(2,

72) = 10.26, p< .001; F(2, 72) = 8.02, p< .001, respectively). These results demonstrate the

straightforward relationship between the learned parameters of the HCRPf, i.e. proportions of

observations contingent on deepening contexts, and the types of errors that participants made.

2.8 Alternative models

The principled back-off mechanism of the HCRP model was essential to account for partici-

pants’ smoothing behavior—namely, that they flexibly combined higher- and lower-order

information for prediction. Ablated alternative models listed in A Table in S2 Appendix, even

if containing higher-order sequence information, fell short in explaining how participants

combined the higher-order information locally, while also maintaining stable knowledge of

the global chunk statistics (D Fig, E Fig and F Fig in S2 Appendix).

3 Discussion

In this study, we elucidated how humans come to exploit intricate regularities in their sensori-

motor environments. We used a hierarchical non-parametric Bayesian model to characterize

the gradual, implicit learning of the higher-order sequential structure in a serial reaction time

task over thousands of trials. Our model fitted the trajectory of response times, showing how

participants refined their internal sequence models, adapting to larger and larger predictive

chunks. Model parameters correlated with working memory capacity and error characteristics.

As a generative model for sequences, the hierarchical Bayesian sequence model [14] that

we used is able to capture all these dependencies. More than that, it combines the multi-

order information in an adaptive way. As a recognition model for accounting for the reaction

times of our participants, judicious choices of priors per session, adjustment of the model to

allow for forgetting [23], and augmentation with low level effects such as for repetitions and

error, allowed it to fit behaviour rather well (and better than alternative models lacking an

adaptive chunk-smoothing mechanism). Updating the model after every observation

enabled it to track learning at a trial-by-trial resolution. The hyperparameters of the model

that govern the preference to use longer contexts and to be less forgetful were correlated with

participants’ complex and spatial working memory scores, as measured by independent

tests. [34] suggested that there is no substantial influence of working memory capacity on

sequence learning if the task is implicit. However, their review included studies in which the

analyses were based on aggregate sequence learning scores (computed as the response time

difference between predictable and unpredictable trials). Here we show that the parameters

of a mechanistically modeled sequence forgetting process are in fact related to working

memory. This highlights that working memory does play a role in sequence processing—
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whether explicit or implicit—although a relatively elaborate modeling might be needed to

capture its subtle and/or complex contributions.

According to the HCRP, participants gradually enriched their internal sequence model so

that it reflected zero and second-order contingencies. However, in the first session, forgetful-

ness-induced volatility in the sequence model explained why high probability trigram trials

were more expected by the participants in random states. In previous ASRT studies, this effect

was termed ‘inverse learning’ [17, 35]. Here we show that the effect is not counter-intuitive if

we allow for forgetfulness. The effect arises due to the specific distance structure of the ASRT,

namely that the same trigram recurs at smaller distances, on average, in random trials than

deterministic trials (that enforce spacing among the elements; S3 Fig). As such, the ‘random

high’ trials were more readily recalled.

As sessions progressed, trigram forgetfulness was reduced. This can be seen as a form of

long-term skill learning as more importance and less forgetting is gradually assigned to predic-

tive context-response chunks. Thus, after the first session, participants did not expect a globally

frequent trigram less if that trigram happened to be locally rare. Previous work highlighted

one key aspect of well-established skills: that the variability of self-generated actions is

decreased, yielding smoother and more stable performance [36]. By contrast, here, skill is asso-

ciated with more sophisticated methods of managing regular external variability. Simply put,

learners can change the size of chunks they choose to remember better. The context-depth spe-

cific parametrisation of our model allows for the identification of other potential practice-

related changes, which were actually not observed in the ASRT data, but are often observed in

other tasks. For instance, in case of higher memory demands, it is possible that participants

improve their performance by shifting the strength of a chunk size required by the task but

remain forgetful about chunks of that size. This would result in behavior that is increasingly

contingent on the correct chunk size but noisy due to over-reliance on recent observations.

By the last training session, some participants enriched their sequence representation fur-

ther, with increased memory not only for trigrams but also for four-grams, implicitly incorpo-

rating knowledge of the sequence phase and enabling better performance. This shift was much

milder than that in the memory for trigrams, and was not exhibited by all participants. While

many previous studies have focused on the question of whether higher-order learning did, or

did not, take place under certain conditions, special groups, etc., our method uncovers the

degree to which information of different orders was learned.

Our model was able to account for the initial resistance to interference and slow relearning

when a new sequence was introduced in session 9. Sequence interference not only reduced the

response time variance explained by the internal sequence model (which was full of informa-

tion about the old sequence), but also increased the variance explained by low-level effects,

such as the response repetitions and the spatial distance between the current and previous cue.

However, note that the low-level effect sizes did not increase—in fact, they mildly decreased as

a consequence of the interference, as shown in Fig 4a. Therefore, our interpretation is that par-

ticipants did not ‘fall back’ to rely on aspects of the data other than chunk statistics (in which

case our labeling of these effects as ‘low-level’ might be brought into question), but rather that

the low-level effects were less obscured by the effects of learning that became obsolete during

interference.

Finally, our model class could reproduce error speeding that was specific to the type of

errors, that is, whether they reflected the global statistics, local statistics, or no apparent statis-

tics of the task. However, since there were insufficient errors (�10%) in our data for them to

exert sufficient impact on the parameters, to examine a ddHCRP account of go wrong more

precisely, we had to force the model into a more forgetful regime by adjusting the minimum

forgetting rate to a lower level in the prior. Whilst acknowledging the artificiality of this
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procedure, we hope that the result is relevant for cases such as explicit sequence prediction

tasks in which erroneous responses are more prevalent.

The HCRP model has distinct advantages over the two alternatives that have been suggested

for characterizing or modeling the ASRT. Until recently, all papers employing the ASRT stuck

to the kind of descriptive analysis that was used in the first ASRT paper [11]. This purely

descriptive account focuses rather narrowly on the task itself, asking whether participants’

behaviour is appropriately contingent on the frequent and infrequent trigrams that arise from

the structure of the task. Although such descriptions can show what sort of conformance there

is, and how quickly it arises over sessions, they do not provide a trial-by-trial account of learn-

ing. In these terms, trigram dependencies arise more strongly in the HCRP as forgetfulness

wanes—something that happens relatively quickly across sessions, underpinning the general

success of the trigram model in explaining behaviour.

The other, contemporaneous alternative account [15] is mechanistic, and so is rather closer

to ours. [15] fitted their model to the same data set that we present here, therefore the differ-

ences between our models and fitting procedures are straightforwardly understood and we

will elaborate on them here. They use an infinite hidden Markov model (iHMM) [37, 38]

which is a nonparametric Bayesian extension of the classical HMM, capable of flexibly increas-

ing the number of states given sufficient evidence in the data. As such, it can automatically

‘morph’ into the generative process of the ASRT, that is, into a model containing four states,

each deterministically emitting one event, deterministically alternating with four random

states, each emitting either of four events with equal probability. The trouble with the iHMM

for modeling variable length contextual dependencies is that it has to use a proliferation of

states to do so (typically combinatorial in the length of the context), posing some of the same

severe statistical and computational difficulties as n-gram models that we noted in the intro-

duction. Indeed, unlike the case for HMMs, parts of the sequence that have not proved predic-

tive or have proved superfluous—whether beyond or even intervening in the predictive

window—are organically under-weighed in the HCRP. As another alternative, a sequence

compression method was proposed for modeling compact internal representations [39], how-

ever, this method is yet to be extended to non-binary sequences and trial-by-trial dynamic

compression. Our model, apart from capturing parsimony, also captured the nonstationarity

of humans’ expectations. Thus, it explained higher-order perseveration effects whereby recent

chunks were more expected to reoccur.

Apart from the prior structure itself, our modeling approach differed from that employed

by [15] in three ways. First, [15] assumed a stationary model structure for each session, while

we sought to capture how participants update their internal model trial by trial. This is impor-

tant for the initial training session and the interference sessions, where quick within-session

model updating is expected. Second, instead of treating the learning sessions independently,

we assumed that participants refine the same internal model session by session with new infor-

mation, as well as by adjusting the hyperparameter set of that model (i.e. how the learned infor-

mation used). Third, we controlled for the rather strong low-level effects that are ubiquitous in

sequence learning studies and are often controlled for in descriptive analyses: the effect of spa-

tial distance of response cues, repetition facilitation, pre-error speeding, and post-error slow-

ing. Although some of these can, in principle, be characterized by the HCRP and the iHMM, it

is likely that they are generated by rather different mechanisms in the brain (e.g., repetition

effects may arise from the modulation of tuning curves [40]), and so it can be confounding to

corrupt the underlying probabilistic model learning with them. Of course, separating low-

from high-level effects is not always so straightforward.

Serial reaction time tasks of various sorts have been extensively used to assess whether

sequence learning can be implicit [1]; developmentally invariant or even superior in children
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compared to adults [41]; impaired [42], intact [43, 44] or even enhanced [45] in neurological

and psychiatric conditions; persistent for months [31] and resistant to distraction [12] even

after brief learning; (in)dependent on sleep [32, 46] and subjective sleep quality [47], etc. It

would be possible to use the parameterization afforded by models such as the HCRP to ask

what components differ significantly between conditions or populations.

We treat the ddHCRP as a computational-level description of multi-order sequence statisti-

cal learning and use, rather than as a process model that could be transparently implementable

in neural hardware. Non-parametric Bayesian methods in this family are quite prevalent as

computational-level models in cognitive science (e.g., the work of [48] on extinction in classi-

cal conditioning; and [49] in motor control), mostly also without suggested neural implemen-

tations. However, there has been at least one interesting attempt to link Chinese restaurant

processes to cortico-striatal interactions by [50]. They developed a cognitive model of structure

learning based on the CRP, akin to our model, along with a neurobiologically explicit network

model approximation. Later, they demonstrated that EEG signals were predictive of partici-

pants’ CRP-like clustering behavior [51]; along with fMRI-based investigations about prefron-

tal cortical regions involved in cluster creation and use [52]. One could perhaps imagine that

the rich complexities of the expansive and contractive connections between the cortex, the

basal ganglia and the striatum could implement some form of the hierarchy in the ddCRP.

Alternatively, purely cortical mechanisms might be involved.

Given the utility of the HCRP model for capturing higher-order sequence learning in

humans, it becomes compelling to use it to characterize sequential behavior in other animals

too. For instance, the spectacular ‘dance show’ of a bird-of-paradise, the western parotia, com-

prising a series of different ballet-like dances has been recorded extensively but is yet to be

modeled. There has been more computational work on bird songs. Bengalese finches, birds

that are domesticated from wild finches, developed probabilistic, complex songs that a first-

order Markov model of the syllables is not able to capture [53]. [54] modeled second-order

structure of the Bengalese finch songs using a partially observable Markov model where states

are mapped to syllable pairs. However, some individuals or species might use even higher-

order internal models to generate songs, and this would be a natural target for the HCRP.

Structures in birds, such as area HVC, that apparently sequence song [55], or the hippo-

campus of rodents with its rich forms of on-line and off-line activation of neurons in beha-

viourally-relevant sequences [56, 57], or the temporal pole and posterior orbitofrontal cortex

of humans [58], whose activity apparently increases with the depth of the predictive context,

are all attractive targets for model-dependent investigations using the HCRP.

Of course, some behaviour that appears sequentially rich like that of the sphex, the jeweled

cockroach wasps, the fruit flies [59] or indeed of rodents [60] in their grooming behaviour

may actually be rather more dynamically straightforward, proceeding in a simple mandatory

unidirectional order that does not require the complexities of the HCRP to be either generated

or recognized. Thus, fruit flies clean their eyes, antennae, head, abdomen, wings and thorax, in

this particular order. [59] showed that this sequence arises from the suppression hierarchy

among the self-cleaning steps: wing-cleaning suppresses thorax-cleaning, abdomen-cleaning

suppresses both of these, and head-cleaning suppresses all the others. In a dust-covered fly, all

of the cleaning steps are triggered at the same time. But each step can only be executed after

the neural population underlying it is released from suppression, upon completion of the

cleaning step higher in the hierarchy. As such, the suppression hierarchy ensures a strictly

sequential behavior. Notably, behaviour of this sort is closed loop—responding to sensory

input about success—whereas we consigned closed loop aspects to the ‘low level’ of effects

such as post-error slowing. It would be possible to tweak the model to accommodate sensory

feedback more directly.
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In conclusion, we offered a quantitative account of the long-run acquisition of a fluent per-

ceptuo-motor skill, using the HCRP as a flexible and powerful model for characterising learn-

ing and performance associated with sequences which enjoy contextual dependencies of

various lengths. We showed a range of insights that this model offered for the progressive per-

formance of human subjects on a moderately complex alternating serial reaction time task.

We explained various previously confusing aspects of learning, and showed that there is indeed

a relationship between performance on this task and working memory capacity, when looked

at through the HCRP lens. The model has many further potential applications in cognitive sci-

ence and behavioural neuroscience.
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S1 Fig. Sequence predictions of 3-level HCRP models fitted to 100 data points. The models

were trained with batch learning in order to clearly show how the pattern of predictions

depends on the sequence structure without online updates of the model parameters. In (a), the

sequence was the concatenation of repeats of a 12-element determinstic pattern (Serial Reac-

tion Time Task or SRT). In (b), the sequence was generated from the ASRT. (Top) Colors

denote the sequence elements. The vertical bar marks the boundary between the two repeats in

the SRT example segment. (Middle) Predictive probabilities of the four events are shown for

each trial. The cells’ hue indicate the event identity, saturation indicates probability value. The

Xs indicate the event with the highest predicted probability, i.e. the predicted event; Xs are

green for correct predictions and red for incorrect predictions. The ticks at the bottom in (b)

indicate high-probability trigram trials. Note that, after having a context of at least two previ-

ous elements, all predictions are correct in the case of the deterministic SRT. In the ASRT,

incorrect predictions occur for the low probability trigrams. (Bottom) We show what propor-

tion of the predictive probability comes from each context length. Higher saturation indicates

a larger weight for a context length. Note that the context of two previous elements is invari-

ably dominant in the SRT predictions where every event is predictable from the previous two.

In the ASRT, the context weights follow the largely alternating pattern of the high and low

probability trigrams, the former ones being predictable from two previous events, the latter

ones being unpredictable.

(TIFF)

S2 Fig. Negative log likelihood loss of HCRP models fitted to 10.000 ASRT data points.

(a) Negative log likelihood as a function of the maximum number of previous events consid-

ered. (b) Negative log likelihood as a function of the prior importance of two previous events,

i.e. trigrams (b). In (b), lower values of α2 imply higher prior importance. The vertical dashed

line in (a) marks the n that was used for fitting the human data in the Manuscript.

(TIFF)

S3 Fig. Trigram reoccurrence distance in trials. Vertical lines mark the medians. Note the

marked periodicity in the case of d trials that imposes a spacing among the trigrams and

increases the median reoccurrence distance.

(TIFF)
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S4 Fig. Fitted values of the strength α (left) and forgetting rate λ (middle) parameters, as

well as their joint effect on prediction (right), using the constrained prior that places the

model in a forgetful regime, described in S1 Table. A context of n previous events corre-

sponds to level n in the HCRP. Lower values of α and λ imply a greater contribution from

the context to the prediction of behavior. The context gain for context length n is the

decrease in the KL divergence between the predictive distribution of the complete model and

a partial model upon considering n previous elements, compared to considering only n-1

previous elements. Note that the scale of the context gain is reversed and higher values sig-

nify more gain.

(TIFF)

S1 Table. Hyperparameter prior sets for fitting the response times of all responses (sec-

tions 3.2-.3.6) and errors only (section 3.7). In session 1, the prior was uninformed. In all

subsequent sessions, the prior was a truncated Gaussian N ’ with the mean of MAP value in

the previous session, a fixed variance, and the same interval that the uninformed distributions

have in session 1. For most of our results, the first, wider of λ prior was used to allow for

extreme forgetfulness or unforgetfulness. For the prediction of response times of errors, we

restricted our model to a more forgetful regime by narrowing the λ prior.

(PDF)

S2 Table. Mixed effects model with random intercepts for participants and several low-

level predictors, sorted by their absolute fitted slope B (in ms). Due to the large data set, all

factors are significant. However, we made an arbitrary cut-off at the horizontal line for the

low-level effects included in the response model because of the small effect sizes.

(PDF)

Acknowledgments

We thank Sebastian Bruijns for helpful discussions on our model and Eric Schulz for providing

useful feedback on the manuscript.

Author Contributions
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