
MPMI Vol. 36, No. 1, 2023, pp. 26–46, https://doi.org/10.1094/MPMI-06-22-0133-R

Comparative Genomic Analysis of 31 Phytophthora
Genomes Reveals Genome Plasticity and Horizontal
Gene Transfer

Brent A. Kronmiller,1,2,† Nicolas Feau,3 Danyu Shen,4 Javier F. Tabima,5 Shahin S. Ali,6

Andrew D. Armitage,7 Felipe Arredondo,1,2 Bryan A. Bailey,6 Stephanie R. Bollmann,8 Angela Dale,3,9

Richard J. Harrison,10 Kelly Hrywkiw,3 Takao Kasuga,11 Rebecca McDougal,12 Charlotte F. Nellist,10

Preeti Panda,13 Sucheta Tripathy,14 Nari M. Williams,12,15 Wenwu Ye,4 Yuanchao Wang,4

Richard C. Hamelin,3,16,17 and Niklaus J. Grünwald18

1 Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR, U.S.A.
2 Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, U.S.A.
3 Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, Canada
4 Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
5 Department of Biology, Clark University, Worcester, MA, U.S.A.
6 Sustainable Perennial Crops Laboratory, Northeast Area, USDA/ARS, Beltsville Agricultural Research Center-West,

Beltsville, MD, U.S.A.
7 Natural Resources Institute, University of Greenwich, Chatham Maritime, U.K.
8 Department of Integrative Biology, Oregon State University, Corvallis, OR, U.S.A.
9 SC-New Construction Materials, FPInnovations, Vancouver, V6T 1Z4, Canada
10 NIAB EMR, East Malling, U.K.
11 Crops Pathology and Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture,

Davis, CA, U.S.A.
12 Scion (Zealand Forest Research Institute), 49 Sala Street, Te Papa Tipu Innovation Park, Private Bag 3020, Rotorua,

New Zealand
13 The New Zealand Institute for Plant and Food Research Ltd, 74 Gerald Street, Lincoln, 7608, New Zealand
14 CSIR Indian Institute of Chemical Biology, Kolkata, India
15 Department of Pathogen Ecology and Control, Plant and Food Research, Private Bag 1401, Havelock North, New

Zealand
16 Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
17 Département des sciences du bois et de la forêt, Faculté de Foresterie et Géographie, Université Laval, Québec, Canada
18 Horticultural Crop Research Unit, United States Department of Agriculture, Agricultural Research Service, Corvallis, OR,

U.S.A.

Accepted for publication 24 October 2022.

†Corresponding author: B. A. Kronmiller;
brent.kronmiller@oregonstate.edu

Nicolas Feau, Danyu Shen, and Javier F. Tabima contributed equally to this
work. Author order is alphabetical.

Funding: This work was supported in part by grants to Y. Wang from China
National Funds for Distinguished Young Scientists (31225022). Genome
sequencing of Phytophthora pini was supported by the California Walnut
Board and the United States Department of Agriculture Agriculture Re-
search Service (USDA ARS), CRIS Project grant 5306-22000-014-00D to
T. Kasuga. N. J. Grunwald was supported by USDA ARS project 2072-
22000-041-000-D, National Institute of Food and Agriculture grant 2018-
67013-27823, and the J Frank Schmidt Foundation. R. J. Harrison, A. D.
Armitage, and C. F. Nellist were supported by grants from the U.K.
Biotechnology and Biological Sciences Research Council (BB/K017071/1,
BB/K017071/2, and BB/N006682/1). R. McDougal, P. Panda, and N.
Williams were funded by the New Zealand Ministry of Business, Innova-
tion and Employment (grant number CO4X1305), the Forest Growers Levy

Copyright © 2023 The Author(s). This is an open access article
distributed under the CC BY-NC-ND 4.0 International license.

Phytophthora species are oomycete plant pathogens that
cause great economic and ecological impacts. The Phytophthora
genus includes over 180 known species, infecting a wide range
of plant hosts, including crops, trees, and ornamentals. We
sequenced the genomes of 31 individual Phytophthora species
and 24 individual transcriptomes to study genetic relation-
ships across the genus. De novo genome assemblies revealed
variation in genome sizes, numbers of predicted genes, and in
repetitive element content across the Phytophthora genus. A
genus-wide comparison evaluated orthologous groups of genes.
Predicted effector gene counts varied across Phytophthora
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species by effector family, genome size, and plant host range.
Predicted numbers of apoplastic effectors increased as the host
range of Phytophthora species increased. Predicted numbers
of cytoplasmic effectors also increased with host range but
leveled off or decreased in Phytophthora species that have
enormous host ranges. With extensive sequencing across the
Phytophthora genus, we now have the genomic resources to
evaluate horizontal gene transfer events across the oomycetes.
Using a machine-learning approach to identify horizontally
transferred genes with bacterial or fungal origin, we identified
44 candidates over 36 Phytophthora species genomes. Phylo-
genetic reconstruction indicates that the transfers of most of
these 44 candidates happened in parallel to major advances
in the evolution of the oomycetes and Phytophthora spp. We
conclude that the 31 genomes presented here are essential
for investigating genus-wide genomic associations in genus
Phytophthora.

Keywords: effectors, horizontal gene transfer, oomycete plant
pathogens, Phytophthora

Members of the Phytophthora genus are oomycete plant
pathogens that collectively infect a wide range of plants
(Erwin and Ribeiro 1996; Judelson and Blanco 2005) and cause
great economic, environmental, and societal impact (Drake and
Jones 2017). Oomycetes are morphologically similar to fila-
mentous fungi (Gunderson et al. 1987; Jiang and Tyler 2012;
Thines 2014; Thines and Kamoun 2010) but are classified as
stramenopiles, a group that also includes diatoms and brown
algae (Dick 2001; Gunderson et al. 1987). Oomycetes include
many plant-pathogenic species besides Phytophthora, including
numerous Pythium species that cause seed, seedling, root, and
fruit rots and a broad diversity of obligate biotrophs that cause
downy mildew.

Phytophthora species infect numerous plants, including
crops, trees, and ornamentals, in managed and natural ecosys-
tems. The agent responsible for potato blight, Phytophthora in-
festans triggered the 1840s potato famine (Haas et al. 2009;
Turner 2005), and Phytophthora ramorum is responsible for
sudden oak death in North America and sudden larch death in
the United Kingdom, which have destroyed millions of trees in
addition to infecting hundreds of additional tree and ornamen-
tal species (Goheen et al. 2002; Grunwald et al. 2008; Rizzo
et al. 2002, 2005). Some Phytophthora species are relatively
host-specific, such as the soybean pathogen Phytophthora sojae
(Tyler 2007), the strawberry pathogen Phytophthora fragariae
(Kennedy et al. 1986), and the lychee pathogen Phytophthora
litchi (Kao and Leu 1980). In contrast, others including Phytoph-
thora cinnamomi (Hardham 2005), Phytophthora palmivora
(Erwin and Ribeiro 1996), and Phytophthora parasitica
(Erwin and Ribeiro 1996), can infect a vast assortment of plant
hosts. The mechanistic basis of this large variation in appar-
ent host specificity is currently unknown (Haas et al. 2009;
Raffaele and Kamoun 2012).

There are over 180 known Phytophthora species (Kroon
et al. 2012; Yang et al. 2017) phylogenetically falling into 12
or more clades (Brasier et al. 2022; Jung et al. 2017; Kroon
et al. 2012) and further divided into numerous subclades (Yang
et al. 2017). Previous genome sequencing studies have exam-
ined species within the Phytophthora genus (Ali et al. 2017;
Armitage et al. 2018; Dong et al. 2015; Jung et al. 2017;
Raffaele and Kamoun 2012; Tabima et al. 2017; Turner 2005;
Yang et al. 2017; Ye et al. 2016a), with P. sojae and P. ramorum
(Tyler 2006), P. infestans (Haas et al. 2009; Knaus et al. 2020),
and Phythophthora capsici (Lamour et al. 2012) serving as key

models for the genus. Overall, these studies revealed highly dy-
namic genomes containing both rapidly evolving and conserved
regions.

Phytophthora species infect plant hosts through the use
of two broad classes of secreted effector proteins (Asai and
Shirasu 2015; Jiang and Tyler 2012; McGowan and Fitzpatrick
2017; Wang and Jiao 2019; Wang et al. 2017). Apoplastic ef-
fectors act outside the plant cells and include glycoside hydro-
lases, necrosis-inducing proteins (NLPs) (Dong et al. 2012), pro-
teases, lipases, lipid-binding proteins, and protease inhibitors
(Tian et al. 2007). Roles of apoplastic effectors include weak-
ening of plant physical and chemical defenses and are a source
of nutrition early in infection. In contrast, cytoplasmic effectors
enter plant cells, often through the differentiation of specialized
structures called haustoria, and include RxLR effectors (Jiang
et al. 2008; Morgan and Kamoun 2007; Tyler 2006), crinkler
effectors (CRN) (Schornack et al. 2010; Stam et al. 2013; Torto
2003; Win et al. 2006; Zhang et al. 2014) and non-conventionally
secreted effectors (Liu et al. 2014). In oomycetes, as well as other
pathogens, cytoplasmic effectors manipulate numerous aspects
of host physiology and morphology to promote susceptibility,
including suppression of host immunity and programmed cell
death (Oh et al. 2009; Wang et al. 2011), stimulating and in-
hibiting the release of nutrients (Bozkurt et al. 2011; Caillaud
et al. 2012; Jiang and Tyler 2012; Torto-Alalibo et al. 2010; Wang
et al. 2019). The genomes of oomycete pathogens sequenced to
date include large rapidly evolving gene families encoding these
effectors (Haas et al. 2009; Lamour et al. 2012; Tyler 2006).
Many of these effector genes, especially those encoding RxLR
effectors, display evidence of accelerated evolution due to host-
pathogen coevolutionary conflict (Jiang et al. 2008; Shen et al.
2013; Ye et al. 2016b).

Examination of previously sequenced genomes has identified
two distinct partitions, namely gene-dense, repeat-poor regions
and gene-sparse, repeat-rich regions (Haas et al. 2009; Knaus
et al. 2020; Lamour et al. 2012; Tyler 2006). Highly conserved
housekeeping genes are typically found in gene-dense regions,
while rapidly evolving gene families associated with infection
are typically found in gene-sparse regions that are transposon-
rich (Haas et al. 2009; Gijzen 2009; Knaus et al. 2020; Lamour
et al. 2012; Tyler 2006). This arrangement has been labeled “the
two-speed genome” (Dong et al. 2015; Raffaele and Kamoun
2012). It has been hypothesized that transposons in the gene-
sparse, transposon-rich regions may contribute to the genomic
diversity and possibly to epigenetic variability of expression
of genes in those regions including infection-associated genes
(Wang et al. 2020).

To investigate phylogenetic relationships, horizontal gene
transfer (HGT), effector genomics, and possible mechanisms
underlying host ranges across members of the genus Phy-
tophthora, we sequenced 31 genomes, using Illumina short
read technology. Our newly sequenced genomes include most
species in clade 7 as well as representative species from nine of
the phylogenetic clades (Blair et al. 2008). Several genomes
have already been published individually as a result of this
project, i.e., Phytophthora litchii (Ye et al. 2016a), Phytoph-
thora megakarya and Phytophthora palmivora (Ali et al. 2017),
Phytophthora fragariae and Phytophthora rubi (Tabima et al.
2017), and Phytophthora cactorum (Armitage et al. 2018; Nel-
list et al. 2021). Here, we present a combined analysis of the
genome sequences of 37 Phytophthora species, including the
31 species newly sequenced by our sequencing consortium, re-
sulting in the first large-scale comparative genomic study in-
cluding species from nine Phytophthora clades. This work pro-
vides insights into genome architecture and evolution in the
genus Phytophthora as well as novel genomic resources of broad
interest.
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Results
Sequencing and assembly
of the 31 Phytophthora genomes.

The 31 Phytophthora genomes sequenced by our consortium
produced between 16.6 and 44.7 million raw reads per genome
(Table 1; Supplementary Table S1). The sizes of the Phytoph-
thora genome assemblies varied greatly, ranging from 37.3 to
107.8 Mb (mean 61.3 ± 17.6 Mb). Due to variations in the num-
ber of reads per genome and differences in genome sizes, the
quality of assembled genomes varied as well. The number of
contigs per assembly ranged from 2,131 to 28,263 (mean 11,380
± 7,919.2). The more completely assembled genomes benefited
from deeper coverage. For example, the Phytophthora boehme-
riae assembly was composed of 2,866 contigs with an N50 of
41,917 bp; this assembly benefitted from 87× coverage as a re-
sult of receiving 34.7 million reads to cover a 39.7 Mb assembly.
In contrast, the Phytophthora lateralis assembly had only 45×
coverage (23.2 million reads across a 50.5 Mb assembly size),
resulting in 28,263 contigs and an N50 of 2,396 bp (Table 1).
Sequence read length did not seem to make a difference in as-
sembly quality. Two genomes (P. cactorum and Phytophthora
idaei) with 250-bp reads (compared with most assemblies with
50-bp reads) had an N50 and number of contigs that were not
better than the other genomes when compared with genome size
(P. cactorum: contigs 7,888, N50 15,053, size 56 Mb; P. idaei:
contigs 7,163, N50 14,461, size 53.5 Mb) (Table 1).

To aid with gene calling and identify active genes, RNA se-
quencing was conducted for 25 Phytophthora species on V8-
grown mycelia and either germinated cysts or Plich-grown
mycelia for those species that did not readily yield zoospores
(van der Lee et al. 1997). RNA sequencing produced 12.5 to 36.0
million paired-end sequence reads per sample, with resulting
transcriptome assemblies averaging 36,189 contigs per assem-

bly, with an average N50 of 1,822 bp. Transcriptome assemblies
for most species had between 20,000 and 40,000 contigs, with
the exception of Phytophthora parvispora, which produced more
than 109,000 contigs. TransDecoder, which reduces duplication
in de novo transcriptome assemblies by identifying candidate
coding regions and removing duplicates, was run on the Trin-
ity assemblies and lowered average transcriptome assembly to
33,200 contigs and raised average N50 to 2,753 bp. Transcrip-
tome size differences between species are not correlated with
genome size differences with the two largest genome assem-
blies (P. megakarya and P. palmivora) both resulting in midrange
transcriptome assembly sizes (Supplementary Table S1).

De novo repeat identification and analysis.
Repeats were identified, classified, and masked to prepare

genomes for gene prediction. De novo repeat prediction iden-
tified between 27 and 295 different repeat subfamilies per
species. The percent repeat content of the assemblies var-
ied greatly across the Phytophthora genomes sequenced. The
genome assemblies of Phytophthora kernoviae, P. litchii, and
Phytophthora agathidicida contained very low repeat content
of 4.15, 5.76, and 5.98%, respectively (Fig. 1). On the other
end, several genome assemblies had high repeat content, namely,
P. megakarya, Phytophthora hibernalis, and Phytophthora pini-
folia contained 32.94, 32.46, and 33.00%, respectively.

Repeat annotations were classified into types (class I retro-
transposons, class II DNA transposons, and other), families, and
subfamilies (Fig. 1). Fifteen different DNA transposons were
identified across all 31 species. Long terminal repeat (LTR) retro-
transposons were more diverse across Phytophthora species. As
many as 57 Copia LTR retrotransposons and 144 Gypsy LTR
retrotransposon types were found in each genome assembly.

Table 1. Sequencing and assembly statistics for 31 Phytophthora species, grouped by clade

Genome Annotations

Species Clade Contigs N50 Assembly length Repeat percent Predicted genes

P. cactorum 1 7,888 15,053 56,443,298 19.96 18,027
P. idaei 1 7,163 14,461 53,468,943 16.19 18,038
P. pini 2 2,131 42,987 38,730,000 7.31 14,019
P. multivora 2 2,844 46,133 40,059,192 10.86 13,682
P. pluvialis 3 4,340 30,816 53,616,150 16.04 16,285
P. litchii 4 2,543 34,546 38,200,938 5.98 12,391
P. palmivora 4 24,815 6,694 107,798,747 29.62 37,283
P. megakarya 4 24,073 7,093 101,609,312 31.94 33,614
P. agathidicida 5 3,754 19,544 37,337,699 5.76 12,923
P. taxon totara 5 4,425 30,809 55,576,372 16.56 17,619
P. parvispora 7 9,906 6,820 46,825,958 8.75 15,642
P. pisi 7 7,667 15,253 58,856,683 16.80 18,953
P. robiniae 7 14,865 8,754 69,938,814 25.58 23,128
P. niederhauseri 7 26,463 4,805 90,270,009 20.96 29,587
P. cajani 7 18,255 5,113 64,854,085 20.65 19,840
P. vignae 7 10,330 8,363 56,137,732 17.45 18,535
P. melonis 7 11,353 15,342 73,416,743 25.93 21,276
P. pistaciae 7 10,414 10,302 63,209,321 18.56 19,423
P. uliginosa 7 8,955 10,095 57,072,031 24.16 17,226
P. europaea 7 8,301 11,551 58,787,065 23.33 17,117
P. fragariae 7 8,544 20,362 76,969,737 30.81 20,448
P. rubi 7 9,434 17,808 74,863,594 29.48 23,476
P. pinifolia 6 22,610 6,021 74,478,861 33.00 23,717
P. lateralis 8 28,263 2,396 50,496,828 23.39 19,503
P. hibernalis 8 6,587 21,408 71,256,216 32.46 23,578
P. foliorum 8 5,320 15,800 48,973,082 19.26 16,083
P. brassicae 8 12,447 12,337 72,849,437 28.39 26,010
P. syringae 8 6,572 15,987 57,045,526 21.71 18,234
P. cryptogea 8 25,944 4,730 69,446,343 17.65 24,936
P. boehmeriae 10 2,866 41,917 39,747,814 7.83 13,325
P. kernoviae 10 13,710 5,225 42,698,878 4.15 14,322
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Phytophthora gene prediction and annotation.
Gene predictions ranged from 12,391 to 37,283 (mean

19,943 ± 5,864) across the newly sequenced genomes. These
gene counts per species are within the general range of previ-
ously published Phytophthora genomes (P. sojae, P. ramorum,
P. infestans, P. capsici, P. cinnamomi, and P. parasitica) ranging
from 16,066 to 26,584 genes per species, considering that we ob-
served higher gene counts in genomes with genome duplications
(P. palmivora and P. megakarya [Ali et al. 2017]).

Some of the previously published Phytophthora genome se-
quences were annotated with the MAKER gene prediction pro-
cess outlined here to validate the methods. The P. capsici genome
was reported to contain 19,805 predicted genes (Lamour et al.
2012), while we obtained 18,917 predicted genes. The P. sojae
genome v3.0 was reported to contain 26,584 predicted genes
(Tyler 2006), whereas we identified 21,447 MAKER-predicted
genes. Therefore, our MAKER pipeline may slightly undercount
the gene content compared with other methods.

The completeness of the gene sets predicted from the genomes
and transcriptomes was assessed by identifying single-copy
core orthologs using the benchmarking universal single-copy
orthologs (BUSCO) pipeline with the Alveolata_Stramenopiles
database (234 genes) as the reference. BUSCO analysis of the 31
genome assemblies identified 147 to 231 complete genes (mean
204 ± 27) of the 234 single-copy genes in the database (Fig. 2A).
Analysis of the 24 transcriptome assemblies identified 18 to 228
complete genes (mean 187 ± 54) (Fig. 2B). The P. kernoviae
and P. lateralis transcriptomes were outliers, with only 20 and
18 complete genes identified, respectively. When P. kernoviae
and P. lateralis were removed, transcriptome assemblies ranged

from 142 to 228 complete (single and duplicated) genes (mean
203 ± 18). Results of BUSCO analyses run on predicted proteins
ranged from 139 to 222 complete (single and duplicated) genes
(mean 192 ± 25) of the 234 conserved orthologous proteins in
the database (Fig. 2C).

Predicted proteins from the MAKER gene prediction were
functionally annotated by matching to published Phytophthora,
stramenopile, and fungal proteins. Across the 614,862 pro-
teins predicted in the 31 Phytophthora species, when aligned
to the National Center for Biotechnology Information (NCBI)
database and UniProt TrEMBL, 294,146 Phytophthora proteins
produced alignments that passed the cutoff filter. Removing ‘Un-
characterized Protein’ or similarly uninformative functional an-
notations yielded 196,652 proteins with functional classifica-
tions (mean 6,343.6 ± 3,191.7). When aligned to the Phytoph-
thora, stramenopile, and fungal sequence databases, 445,458
proteins passed the alignment cutoffs, with 304,951 proteins
(mean 9,837.1 ± 2,523.3) that had informative functional an-
notations.

InterProScan was used to identify domains and motifs in all
predicted proteins. Of the 614,862 proteins, 173,727 had do-
mains identified. Gene ontology (GO) terms were assigned from
BLASTX alignments between the UniProt BLASTX alignments
and the InterProScan predictions, identifying 321,953 proteins
with GO terms assigned.

Effector protein identification in Phytophthora spp.
The cytoplasmic effector identification process predicted a

total of 10,354 RxLR effector proteins and 4,415 CRN effec-
tor proteins from the genomes and transcriptomes of the species

Fig. 1. Analysis of 31 Phytophthora species shows an abundance of repetitive elements. Species are shown in phylogenetic clade order; clade designations are
shown on the left. Repeat content is displayed as percentage of the total genome content. Repeat classifications are shown as colored bar segments.
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sequenced in this study (Fig. 3). The numbers of predicted RxLR
effector genes differed greatly across genomes. P. pinifolia ex-
hibited the lowest number, with 46 predicted RxLR effectors,
while P. megakarya exhibited the highest number, with 1,183
predicted proteins. We also observed great variation in the num-
ber of predicted CRN effectors, with P. litchii showing the low-
est number of CRN effectors, 27, while Phytophthora cajani
showed the highest, 274.

Our search for apoplastic effectors identified 6,671 glycoside
hydrolases, 1,191 NLPs, and 1,046 protease inhibitors across
the 31 Phytophthora genomes (Fig. 3). The predicted glycoside
hydrolase genes range from 139 (Phytophthora brassicae) to
386 (P. palmivora). The numbers of NLP genes range from five
(P. pinifolia) to 78 (Phytophthora niederhauserii). The counts
of protease inhibitor genes range from 23 (P. brassicae) to 67
(P. palmivora).

Orthology clustering of Phytophthora proteins.
The 715,980 predicted genes from the 31 genome assemblies

along with those of P. sojae, P. ramorum, P. infestans, P. cap-
sici, P. cinnamomi, and P. parasitica were subjected to orthology
analysis. In the first step, the Phytophthora genes were matched
against the pre-computed publicly available orthologous groups.
From this analysis, 560,201 genes were assigned to 7,829 unique
clusters, leaving 155,779 genes unassigned. In step two, these re-
maining genes were clustered using OrthoMCL, yielding 13,474
additional unique clusters. In total, the 715,980 genes were as-
signed to 21,303 orthologous clusters.

Orthologous groups were assigned functional annotations
based on the proteins that composed the group. Of the 21,303
orthologous clusters, 9,806 could be assigned informative func-
tional annotations, as defined in the gene annotation section.

The numbers of genes present in orthologous groups encom-
passing all 37 Phytophthora species shows a bimodal frequency
distribution (Fig. 4), with peaks observed at one to six genes per
group and 34 to 41 genes per group. We hypothesize this first
peak represents rapidly evolving genes that are conserved in only

a few of the 37 Phytophthora species in this study. This first peak
was much smaller when only genes with meaningful annotations
were considered, suggesting an enrichment for genes that have
previously uncharacterized functions. This peak included both
small orthologous groups in which all genes were from the same
Phytophthora clade and groups consisting of genes from mul-
tiple clades. The second large peak was centered at 37 genes
per ortholog group, thus representing ortholog groups that have
one gene per species. Additional groups include one or a few
species missing the orthologous gene or one or a few species
with a second copy of an orthologous gene.

Phylogenetic relationship across Phytophthora species.
We reconstructed the phylogenetic relationships of the se-

quenced Phytophthora species (Fig. 5) based on 61 single-copy
core orthologous genes shared across 37 species. Predicted genes
and amino acid protein sequences used to build the phylogeny
are found in Supplementary Table S2. The RAxML phyloge-
netic tree clustered these species into phylogenetic clades con-
sistent with previous studies (Blair et al. 2008; Martin et al. 2014;
McCarthy and Fitzpatrick 2017; Kroon et al. 2012; Yang et al.
2017), with the exception of Phytophthora taxon totara placed
into clade 5. The separation of P. taxon totara from clade 3
containing Phytophthora pluvialis has been reported previously
(McCarthy and Fitzpatrick 2017).

Relationship of Phytophthora effector gene numbers
to plant host range.

To examine the assemblies for clues as to the genomic basis
for the diverse host ranges of the sequenced species, Phytoph-
thora species were categorized into plant host ranges as follows.
Thirteen species were defined as having narrow, 12 having mul-
tiple, six having wide, and six having huge host ranges (Fig. 5).
The numbers of genes predicted to encode various families of
effectors were plotted for each host range class. Paralogous ef-
fectors with greater than 95% nucleotide identity over the full
sequence length were counted only once. Counts were plotted

Fig. 2. Benchmarking universal single-copy orthologs (BUSCO) analysis demonstrates completeness of the 31 Phytophthora species in this study. A, Genomic
assembly, B, transcriptome assembly, and C, predicted proteins. Species are shown in phylogenetic clade order and clade designations are shown on the left.
For each BUSCO analysis, results from searching 234 single-copy orthologs in the Alveolata_Stramenopiles dataset are shown.
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for each of two cytoplasmic effector categories (RxLR and CRN)
and three apoplastic effector categories (glycoside hydrolases,
protease inhibitors, and NLPs) (Fig. 6). Subcategories of the
apoplastic effectors glycoside hydrolases and protease inhibitors
were individually plotted (Supplementary Fig. S1A and B). In
each case, numbers of genes predicted to encode each effector
subcategory for each species were plotted against the host range.

Apoplastic effectors show a distinct overall pattern; Phytoph-
thora species with smaller host ranges had fewer predicted effec-
tor genes, with numbers of predicted effector genes increasing
with increased host range (Fig. 6A, B, and C). Predicted cyto-
plasmic effector genes show a similar pattern, starting with low
numbers of predicted genes in Phytophthora species with nar-
row host ranges and increasing in those with multiple and wide
host ranges. However, for both the RxLR and CRN effector cate-
gories, the numbers of predicted genes per species decrease from
the wide to the huge host range (Fig. 6D and E). Two species
were outliers with respect to the number of apoplastic NLP ef-
fector genes, Phytophthora pistaciae in the narrow host range
category and P. sojae in the multiple host range category had
many more predicted apoplastic effector genes than the other
species in each of their host range categories, respectively. Four
species were outliers with respect to the numbers of predicted
RxLR effector genes, namely, P. megakarya and P. pistaciae in
the narrow host range category, P. parvispora in the multiple host
range category, and P. palmivora in the huge host range category
all had many more predicted RxLR genes than the other species
in those categories. One outlier was observed in the CRN effec-
tor genes; P. infestans in the wide host range category had many
more genes than the other species in that category.

HGT.
We evaluated all 31 genomes for evidence of HGT. We used

machine learning to identify HGT candidates and phylogenetic
approaches to validate candidate HGT genes.

Support vector machine (SVM) classifier predicted HGT
candidates. Analysis of the 722,232 transcripts with our SVM
classifier over the 31 genome assemblies and the six previously
published Phytophthora genomes identified 35,246 HGT can-
didates. A total of 28,791 of these transcripts that could be re-
grouped in orthology groups encoding putative transposable el-
ements (TEs) were discarded, resulting in 6,455 non-TE HGT
candidates. The number of candidates predicted ranged from 91
in P. agathidicida to 233 in P. megakarya and 262 in P. palmivora
(mean 160.13 ± 36.68). P. agathidicida has one of the lowest
numbers of transcripts annotated (12,923 transcripts), while P.
palmivora and P. megakarya have the highest gene content with
37,283 and 33,614 transcripts, respectively. Overall, we identi-
fied a significant linear correlation between gene space in each
genome and the number of HGT candidates predicted with the
SVM classifier (r2 = 0.45; P < 0.0001).

Phylogenetic filtering of HGT candidates. The 6,455 non-
TE HGT candidates predicted with the SVM classifier were sub-
ject to a two-step filtering process to discard false positives. In
the first step, we searched for homologs among a database of se-
quences built from seven clades (including putative fungal and
bacterial donors), followed by phylogenetic tree reconstruction
with bootstrap analysis. The phylogenetic filter retained 2,214
candidates, among which 1,113 (50.3%) showed a strong phy-
logenetic discordance and were seen nested within a distantly
related clade (Fungi, Bacteria, or Amoebozoa) in direct contra-

Fig. 3. The number of predicted effectors varied across the Phytophthora genomes. Bar chart representing amounts of effector genes found in 31 Phytophthora
species for crinkler (CRN), RxLR, glycoside hydrolases, necrosis-inducing proteins (NLPs), and protease inhibitors. Species are shown in phylogenetic clade
order, clade designations are shown on the left.
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diction to the expected phylogenetic relationships of the respec-
tive organisms. The 1,110 other candidates left also branched
within a clade of fungal or bacterial genes; however, in these
cases, placement of the Phytophthora transcript with Fungi or
Bacteria was caused by the absence of homologs in one or more
of the intermediate clades Viridiplantae, Alveolata, and Amoe-
bozoa. The number candidates that passed this filter ranged
from 36 in Phytophthora europea to 127 in P. palmivora. There
was a significant correlation between the total number of genes
and the number of HGT candidates across the analyzed species
(r2 = 0.49; P < 0.0001) (Supplementary Fig. S2).

Sequence identity filtering of HGT candidates. The 2,214
HGT candidates retained after the phylogenetic filtering were
submitted to a sequence identity discrepancy filter. A total of
1,688 candidates were rejected after the first “identity test,” re-
sulting in a “relaxed” set of 526 HGT candidates for which the
sequence identity between the Phytophthora candidate HGT se-
quence and its closest homolog sequences in the putative donor
species was shorter than the average identity between the two
species; an average of 14.6 (±6.2) candidates were retained per
Phytophthora genome, with a maximum of 33 for P. palmivora
and P. niederhauserii (Supplementary Fig. S2). A gene enrich-
ment analysis of this candidate set showed a significant enrich-
ment for GO terms related to oxidoreductase activity and hydrol-
ysis and metabolism of carbohydrates (cutinase activity, carbo-
hydrate metabolic process) and proteins (Supplementary Table
S3).

Among the 526 candidates of the relaxed set, 44 passed the
second identity test, constituting a “strict” set of HGT candi-

dates. For 28 of them (56.0%), BLAST search results indi-
cated a strong homology with the clade of the putative donor
where the BLAST E-values with species of the putative donor
clade were lower than the E-values observed with species from
non-donor clades. We then looked at their physical location on
their respective scaffold to eliminate potential contaminants. All
the candidates were found on scaffolds that had at least two
gene models predicted on them. GO term enrichment analysis
of this strict set indicated significant enrichment for GO terms
related to oxidoreductase activity (GO:0055114, GO:0016491,
GO: 0008670), and carbohydrate activity and cell-wall modifica-
tion (GO:0000272, GO:0045490, GO: 0042545, GO:0045493,
GO:0031176, GO:0030599) (Table 2).

Phylogenetic reevaluation of the strict set of HGT candi-
dates. The 44 candidates of the strict set of HGT candidates were
subjected to reevaluation by sampling additional taxa within
the oomycetes. Their amino-acid sequences were first clustered
into closely related groups of sequences by assigning them to
the 21,303 orthologous clusters previously defined (discussed
above). This process reduced the set of 44 candidates into 28
orthologous clusters that were then searched against the se-
quences of the 31 genome assemblies, five Phytophthora species
sequenced in previous studies, and 36 oomycete genomes (Sup-
plementary Table S4). Protein members of six of these clusters
had homologs (BLASTP E-values ≤ 1e-025) (Supplementary
Table S4) in the set of 21 strongly supported HGT candidates
identified in the genome of P. ramorum, P. infestans, and P. sojae
by Richards et al. (2011). Following these searches, we recon-
structed maximum likelihood phylogenies for 19 of these can-

Fig. 4. Distribution of genes in Phytophthora orthology shows a bimodal frequency distribution, highlighting genes that are conserved in only a few genomes
and orthology groups that have one gene per species. Numbers of genes assigned to orthology clusters with OrthoMCL (Li 2003) are shown. The 31 sequenced
Phytophthora spp. and six additional previously sequenced Phytophthora genomes (P. capsici, P. cinnanomi, P. infestans, P. parasitica, P. ramorum, P. sojae) are
included. Bars representing all orthology groups (orange) show all genes assigned into orthology groups; those representing informative functional annotations
show genes assigned into orthology groups that have useful functional definitions and exclude genes labeled as ‘uncharacterized’, ‘hypothetical’, or similar.
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didates that had putative functions related to the modification of
compounds of the plant cell wall (e.g., pectin esterase, xylulose
reductase, tannase, and endo-1,4-beta-xylanase), peptidases, ox-
idoreductases, and putative elicitors such as a NPP1 protein and
an ATP-binding cassette (ABC) transporter (Supplementary Fig.
S3). In 15 cases, the HGT candidate was found nested within a
group of fungi or bacteria, as expected under the hypothesis of
a transfer from one of these groups through a horizontal transfer
event; comparative topology analysis of alternative tree hypothe-
ses (expected phylogeny and transfer from an oomycete donor to
a fungus or bacterium) using the Shimodaira-Hasegawa test pro-

vided support for this observation in 14 cases (Table 3). In four
other cases, the topology test was significant for the opposite
relationship, in which a transfer occurred from the oomycetes to
fungi or bacteria. For HGT9, taxon sampling was not sufficient
to accurately infer with confidence the putative HGT donor and
enable tree topology testing (Table 3).

The distribution of sequence homologs of the strict set of
HGT candidates among the oomycete phylogeny was strongly
variable (Fig. 7; Supplementary Table S4). The majority of trans-
fer events to oomycetes appear to have occurred relatively re-
cently; three candidates had strong statistical support for trans-

Fig. 5. Phylogenetic relationships of the 31 sequenced Phytophthora spp. and six additional previously sequenced Phytophthora spp. Sixty-one single-copy
core orthologous proteins shared across 37 species were used to create a RAxML (Stamatakis 2014) phylogenetic tree, using each gene as an independent
partition with its own substitution model and bootstrapped 1,000 times. Ranges of infected hosts are shown next to the phylogenetic tree species, defined as
narrow (host species confined to one plant host genus), multiple (host species confined within two to nine host genera), wide (host species spanning 16 to 55
host genera), and huge (host species spanning 107 to 327 host genera). Clade assignments are shown on the right.
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fer from bacteria or fungi to a common ancestor of the Phy-
tophthora genus (HGT5, HGT7, and HGT10), two candidates
to members of genus Phytophthora and order Peronosporales
with hemibiotrophic lifestyle (HGT2 and HGT15), and two to
members of order Peronosporales with a hemibiotrophic or an
obligate biotrophic lifestyle (HGT12 and HGT20) (Fig. 7A).
Four of these transfers reached close to gene fixation within the
Phytophthora genus, as they were found in more than 80% of
the species surveyed and in the nine Phytophthora phylogenetic
clades considered (Fig. 7A). However, fixation was not the gen-
eral rule accompanying recent transfers. For instance, two HGT
candidates with functions related to plant pathogenicity (NPP1
protein and peptidase S9) were unique to Phytophthora clade
8 and did not have a homolog in any other Phytophthora clade
or oomycete species (HGT5 and HGT7). Several HGT events
with strong statistical support (Fig. 7A) appear to have occurred
following major lifestyle transitions within the oomycetes, i.e.,
necrotrophy in order Pythiales (HGT6, HGT13 and HGT14) to
obligate biotrophy and hemibiotrophy in order Peronosporales
(HGT2, HGT12, HGT15, and HGT20) and transition to para-
sitism with three events trackable to a common ancestor of orders
Saprolegniales, Pythiales, and Peronosporales (HGT1, HGT4
and HGT8). Eight of these ten genes had homologs (BLASTP E-
values from 1e-137 to 1e-012) with pathogenicity, virulence, and
effector genes of the Pathogen Host Interaction database (PHI-
base) (Urban et al. 2019). Transition to the necrotrophic lifestyle
involved transfers of genes encoding enzymes potentially in-
volved in redox activity and toxin production (2,4-dienoyl-CoA
reductase and phenol acid decarboxylase), while two of the four

genes transfer at the transition to hemibiotrophic lifestyle com-
prehended have putative functions related to the degradation of
the cell wall (xylulose reductase and endo-1,4-beta-xylanase).

Finally, the four significant transfers for the opposite relation-
ship (oomycetes to bacteria or fungi) were all for genes fixed in
the Phytophthora genus and mapped within order Peronospo-
rales (three candidates) or orders Peronosporales and Pythiales
(one candidate), suggesting relatively recent transfer events (Fig.
7B). Annotation of these genes indicates that they are potentially
involved in the plant-pathogen interaction as they encode pro-
teins involved in protection against plant defensive molecules
(tannase and ABC transporter) and the oxidative stress occur-
ring during the plant defense response (quinone oxidoreductase)
and remodeling of the plant cell wall (pectinesterase) (Table 3;
Supplementary Table S5).

Discussion
In this comparative genome study of 37 Phytophthora spp.,

we sequenced and assembled 31 genomes de novo. We inves-
tigated these genomes for evidence of HGT, phylogenetic re-
lationships of genome structure and effectors, and association
of host ranges. HGT has been identified as a significant source
of variation in connection with the evolution of pathogenicity
in Phytophthora spp. So far, genome-wide analyses of HGT
impact on oomycete and Phytophthora genome evolution has
identified putative transfers from fungi (Richards et al. 2006,
2011) and bacteria (McCarthy and Fitzpatrick 2016), many of
which involve functions related to carbohydrate metabolism and

Fig. 6. Generally, Phytophthora spp. with a larger host range showed a greater predicted number of effector genes. Box plots showing numbers of effectors
found per Phytophthora species, categorized into narrow (one plant genus), multiple (two to nine plant genera), wide (16 to 55 host genera), and huge (107
to 327 host genera) host ranges. A, Effectors glycoside hydrolases, B, protease inhibitors, C, necrosis-inducing proteins (NLPs), D, RxLRs, and E, crinklers
(CRNs) are shown. Near identical paralogs were removed; proteins with greater than 95% amino acid identity over the full sequence length were reduced to
one representative effector sequence. Statistically significant classifications were seen between the narrow-wide and narrow-huge comparisons in glycoside
hydrolases (A).
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pathogenicity. Our analysis supports these findings, identifying
a set of 44 HGT candidates in Phytophthora species associ-
ated with enzymes putatively involved in the deconstruction
of plant cell-wall components, evasion and protection against
host defenses (Table 3; Supplementary Table S5). Our machine
learning approach to identify HGT candidates aimed to identify
genes likely inherited from bacteria or fungi; validation of these
candidates with classical methods based on the identification
of topological incongruence in phylogenies and the detection
of discrepancies between gene and species distances resulted
in a more conservative list of candidates than those previously
proposed for Phytophthora species (McCarthy and Fitzpatrick
2016; Richards et al. 2006, 2011). Such a stringent approach
had the power of rejecting the alternative evolutionary scenario
in which the gene was present in the last common ancestor of
the donor and recipient and was lost in intermediate lineages.
Despite such a conservative approach, 30% of HGT candidates
identified in a previous study (Richards et al. 2011) that included
only three Phytophthora genomes were retrieved in our analysis.

An underlying hypothesis related to laterally transferred genes
is that they may have functional or ecological roles, allowing the
recipient to adapt to a novel lifestyle or to exploit a new ecolog-
ical niche (Keeling and Palmer 2008). Using the comprehensive
collection of Phytophthora genomes sequenced in this study and
the oomycetes for which genome assemblies were available, we
have been able to assess the extent of distribution of homologs
of these candidates across the oomycete phylum. We confirmed
that most of the HGTs into the oomycetes have occurred coin-
cident with the emergence of major lifestyle innovations, such
as the acquisition of plant parasitism or biotrophy (obligate or
hemibiotrophy). Many candidates were detected in a large major-
ity of the Phytophthora genomes sequenced, for example, seven

candidates (HGT6, HGT11, HGT17, HGT18, HGT19, HGT21,
and HGT22) were found in 94% or more of the 36 genomes
surveyed. In some instances, homologs have been retained in
distinct genetic lineages among the oomycetes, suggesting that
these candidate genes may confer a function conserved across
lineages with different lifestyles; for example, the endonuclease-
encoding gene HGT1 was likely transferred before the radiation
of the oomycetes and was retained in the five oomycete orders
surveyed in this study. On the other hand, in some cases, the ac-
quisition or retention of specific key pathogenicity genes appears
to be restricted to some specific clades within genus Phytoph-
thora (e.g., HGT5 and HGT7, NPP1) (Fig. 7), suggesting recent
transfers following divergence of Phytophthora clades. In cases
in which a putative HGT gene is present in a limited number
of Phytophthora species from diverse clades, e.g., HGT13, gene
loss by drift in species in which there was little benefit may be an
explanation. Rapid diversification of the HGT gene under posi-
tive selection might make the gene undetectable to our algorithm
in some species.

Oomycete-derived transfers to other kingdoms have been
identified in a few rare instances, usually with limited statis-
tical support (Richards et al. 2011). With the comprehensive
genome sampling of our study, we found strong support for four
transfers (of 44) from oomycetes to either bacteria or fungi, indi-
cating bi-directional exchanges across kingdoms. By providing
a source of novel genetic material that can increase the fitness
of micro-organisms to their environments or their hosts (Feurtey
and Stukenbrock 2018; Husnik and McCutcheon 2018; van Etten
and Bhattacharya 2020), genes transferred horizontally have the
potential to be traded back and forth across kingdoms. In the con-
text of an ecological system in which a host plant interacts with
a multitude of micro-organisms (microbiota), we can hypothe-

Table 2. Over-represented Gene Ontology (GO) terms for a set of candidate horizontal gene transfer (HGT) transcripts found in Phytophthora genomes

No. of terms in

GO Term Full seta HGT setb Pr(X) = kc

Biological process
GO:0055114 Obsolete oxidation-reduction process 1,543 5 <0.001
GO:0034079 Butanediol biosynthetic process 28 5 <0.001
GO:0045493 Xylan catabolic process 151 1 <0.01
GO:0008152 METABOLISM 3,663 3 <0.01
GO:0042545 Cell wall modification 493 1 <0.02
GO:0000272 Polysaccharide catabolism 635 1 <0.02
GO:0002084 Protein depalmitoylation 374 1 <0.02
GO:0006118 Electron transport 1,389 1 <0.05
GO:0045490 Pectin catabolic process 865 1 <0.05

Molecular function
GO:0016491 Oxidoreductase activity 10,881 11 <0.001
GO:0000721 (R,R)-butanediol dehydrogenase activity 28 5 <0.001
GO:0003939 L-iditol 2-dehydrogenase activity 11 1 <0.001
GO:0016831 Carboxy-lyase activity 201 6 <0.001
GO:0008080 N-acetyltransferase activity 1082 3 <0.001
GO:0008270 Zinc ion binding 26,982 8 <0.001
GO:0005488 Binding 2,200 2 <0.01
GO:0031176 Endo-1,4-beta-xylanase activity 111 1 <0.01
GO:0008670 2,4-Dienoyl-CoA reductase (NADPH) activity 15 1 <0.01
GO:0004022 Alcohol dehydrogenase activity 102 1 <0.01
GO:0030599 Pectinesterase activity 498 1 <0.02
GO:0008474 Palmitoyl-(protein) hydrolase activity 457 1 <0.02
GO:0051213 Dioxygenase activity 460 1 <0.02
GO:0045330 Aspartyl esterase activity 423 1 <0.02
GO:0030570 Pectate lyase activity 657 1 <0.02
GO:0015267 Channel activity 742 1 <0.05

Cellular component
GO:0005576 Extracellular region 4,624 2 <0.02

a Transcriptome of 37 Phytophthora genomes.
b Set = 44 HGT candidates.
c Probability (q value) of obtaining the same number of transcripts (k) or more by chance as given by a hypergeometric probability distribution.
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size that some of the evolutionary innovations that are generated
during the coevolutionary arms race between a pathogen and the
host could be shared within the microbiota. For host-associated
micro-organisms sharing the same ecological niche, the transfer
of genetic material from those that are fit to the shared envi-
ronment should represent a straightforward mechanism that will
drive rapid adaptation of others to this environment (Soucy et al.
2015).

We investigated multiple aspects of Phytophthora genome
structure and how this relates to the genus phylogeny. Genome
size, gene amounts, and counts of orthologous genes varied
within phylogenetic clades, highlighting the great diversity

within the Phytophthora genus, and likely reflect the large ob-
served differences in repeat content, some of which resulted
from genome duplication. While some variation in repeat con-
tent may be due to differences in repeats collapsed in the genome
assembly, repeat types and lengths identified in this study and
sequences used for assembly are generally consistent across the
sequenced genomes and should therefore collapse in assembly at
similar rates. Interestingly, we noted that none of the genomes se-
quenced in this study approaches the 73% repeat content reported
in the Sanger-assembled P. infestans genome (Haas et al. 2009)
and is possibly due to the differences in sequencing technolo-
gies, including longer sequence lengths. Greater repeat content

Table 3. Summary of 19 horizontal gene transfer (HGT) candidates with strong phylogenetic support identified among Phytophthora spp.

No. of Phytophthora

Candidate Putative function
Best hit on PHI-base

(E-value)a
HGT

identificationb Species Clades Closest cladec Most likely donord Most likely recipientd

Transfer from other groups to oomycetes
HGT_1 Endonuclease PHI:5754, endonuclease,

Fusarium
graminearum
(3.0e-024)

SVM, IP, D, T 29 8 Fungi Fungi Oomycetes

HGT_2 Xylulose reductase PHI:2256, xylitol
dehydrogenase,
Parastagonospora
nodorum (1.0e-128)

SVM, IP, D, T 12 5 Fungi Fungi Peronosporales (HB)

HGT_15 Zinc-binding
dehydrogenase,
polyketide synthase,
enoylreductase
domain

PHI:8321, gluconate
5-dehydrogenase,
Salmonella enterica
(1.0e-016)

SVM, IP, D, T 21 8 Bacteria Bacteria Peronosporales (HB)

HGT_4 Aquaporin PHI:7047, water channel
protein aquaporin,
Cryptococcus
neoformans (4.0e-012)

SVM, IP, D, T 30 8 Bacteria Bacteria Oomycetes

HGT_5 NPP1 – SVM, IP, D, T 4 1 Bacteria Bacteria Phytophthora spp.
HGT_6 Phenol acid carboxylase – SVM, MC, D, T 35 9 Fungi Fungi Peronosporales/

Pythiales (plants)
HGT_7 Peptidase S9 – SVM, IP, D, T 8 1 Fungi Fungi Phytophthora spp.
HGT_8 UDP-N-

acetylglucosamine-
peptide
N-acetylglucosaminyl-
transferase

PHI:4921, flagellin
glycosyltransferase,
Burkholderia
cenocepacia
(1.0e-021)

SVM, IP, D, T 2 2 Bacteria Bacteria Oomycetes

HGT_9 Alternative oxidase – SVM, IP, D 10 4 Fungi Fungi (ns) Oomycetes (ns)
HGT_10 Dioxygenase – SVM, MC, D, T 33 9 Fungi Fungi Phytophthora
HGT_11 Thioesterase PHI:4988, sfp-type 4’-

phosphopantetheinyl
transferase, Bipolaris
maydis (3.0e-005)

SVM, IP, D, T 35 8 Amoebozoa Amoebozoa Peronosporales/
Pythiales/
Lagediniales

HGT_12 Endo-1,4-beta-xylanase
GH10

PHI:7912, endo-beta-1,4-
xylanase
Phytophthora
parasitica (1.0e-137)

SVM, IP, D, T 33 9 Fungi Fungi Peronosporales

HGT_13 4-coumarate CoA ligase PHI:10606, long-chain-
fatty-acid–Co Aligase,
Pseudomonas
aeruginosa (1.0e-032)

SVM, IP, D, T 4 4 Fungi/
Bacteria

Bacteria/
Fungi

Peronosporales/
Pythiales

HGT_14 2,4-dienoyl-CoA
reductase

PHI:8134, 3-Oxoacyl-
[acyl-carrier-protein]
reductase, Salmonella
enterica (1.0e-014)

SVM, IP, D 28 7 Bacteria/
Archaea

Bacteria/
Archaea

Peronosporales/
Pythiales

HGT_20 Ribosomal-protein-
alanine
acetyltransferase

– SVM, IP, D 29 9 Bacteria Bacteria Peronosporales

Transfer from oomycetes to other groups
HGT_3 Quinone oxidoreductase – SVM, IP, D, T 23 9 Fungi Peronosporales (HB) Fungi (Fusarium)
HGT_16 Putative tannase PHI:10222, feruloyl

esterase, Valsa mali
(4.0e-030)

SVM, IP, D, T 33 8 Bacteria Peronosporales/
Pythiales

Bacteria

HGT_17 Putative pectinesterase
CE8

PHI:278, pectin
methylesterase,
Botrytis cinerea
(4.0e-077)

SVM, IP, D, T 34 9 Fungi Peronosporales Fungi

HGT_18 ATP-binding cassette – SVM, IP, D 34 9 Fungi Peronosporales Fungi

a Best BLASTp hit on the Pathogen Host Interaction database PHI-base (Urban et al. 2019).
b SVM = support vector machine, IP = incongruent phylogeny, MC = missing clades, D = distance, T = Alternate topology test (Shimodaira-Hasegawa test) significant.
c As reported in BLASTp analysis.
d ns = not significant according to Shimodaira-Hasegawa tests between the observed tree and alternative tree topologies; HB = only hemibiotrophic Peronosporales, i.e., genera

Phytophthora, Phytopythium, and Nothophytophthora.
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was not necessarily an indicator of large genome assembly size.
While the five species with reported repeat content of greater
than 30% (P. pinifolia, P. megakarya, P. palmivora, P. fragariae,
and P. hibernalis) were within the nine largest assembly sizes,
other species with large assembly sizes had less repeat content.
For example, P. niederhauserii had an assembly size of 90 Mb
but only 20.9% repeat content, which was considerably lower
than expected when compared with even moderately repetitive
Phytophthora genomes such as P. sojae (40%) (Tyler 2006).
Genome size estimation using k-mer analysis also shows as-
semblies are shorter than expected (Supplementary Table S1).
These observations suggest that repeat content may be under-
estimated in short-read genome assemblies and would expand
with improved assembly and may also indicate missing repeat
sequences from the de novo repeat identification process.

The numbers of predicted genes per species, genes per orthol-
ogous groups, and effector genes per species were consistent

with those previously reported for Phytophthora species. Both
the numbers of genes and the average sizes of genes were well
within the ranges of the six previously sequenced Phytophthora
species, for example, P. sojae was shown to have 26,000 genes
with an average size of 1,181 bp (Tyler 2006). This supports our
observation that the smaller assembly sizes of the Phytophthora
genomes presented in this study were mainly associated with an
overall reduction in repetitive regions, while the gene-containing
sequences are relatively consistent in size. BUSCO analysis of
the sequenced core ortholog content also showed similar results
to previous Phytophthora studies. Some genome assemblies, in-
cluding P. palmivora, which underwent whole-genome duplica-
tion, had lower single-copy gene numbers due to duplications.
But overall, censuses of single-copy orthologs showed that both
the genome assemblies and gene predictions were quite complete
and comprised the majority of genes in each individual species
sequenced. This suggests, that while genomes were small due

Fig. 7. Conservation level of the 44 Phytophthora HGT candidates in oomycetes. Set of 19 horigzontal gene transfer (HGT) candidates for which a maximum
likelihood phylogeny was reconstructed and alternate tree topologies were tested with the Shimodaira-Hasegawa test (asterisks indicate significant topological
difference [P < 0.05] between the constrained alternate topology and the observed topology. A, HGT to oomycetes, B, HGT for the opposite relationships,
i.e., transfers from oomycetes to fungi or bacteria, C, HGT candidates with no maximum likelihood phylogeny support. For each HGT candidate the number
of sequence homologs identified among 37 Phytophthora and 30 oomycete transcriptomes (identified by reciprocal DIAMOND BLASTp, minimum E value
of 1e-03, sequence subject coverage of 50% and sequence query coverage of 50%; a dash indicates the absence of a one-to-one ortholog) is reported. The
filamentous brown alga Ectocarpus siliculosus (Ectocarpales, Ectocarpaceae) was used as an outgroup. Putative functions are indicated on the right. Top rows:
Pyth. = Pythiales, Lag. = Lagenidiales, Alb. = Albuginales, HB = hemibiotrophic lifestyle, OB = obligate biotrophic, S = saprotrophic, N = necrotrophic.
Species names, Phytophthora clade names and the group of species names are indicated on the bottom; numbers between brackets indicate the number of
species considered in a group.
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to collapsed repeat regions, the majority of core orthologs were
captured in the assemblies and it can be extrapolated that the
majority of the gene regions are assembled.

Effectors are proteins produced by pathogens that assist in
host infection. Effectors are considered rapidly evolving genes
that are usually conserved among a few closely related species
and quickly diverge along the phylogeny. Two types of ortholog
groups were identified in our Phytophthora genus analysis
supporting this hypothesis; one group corresponds to well-
conserved genes among all Phytophthora species responsible
for core cellular functions, while a second group includes rapidly
evolving gene families likely responsible for host infection and
adaptation. We also investigated how the amounts of predicted
apoplastic and cytoplasmic effectors related to the host range
of each Phytophthora species. There were large differences in
the numbers of effector genes identified per species. We did not
observe a correlation between the number of predicted effectors
with phylogenetic relationships or genome size. However, a
clear relationship with host range was observed. Species with
smaller host ranges had, on average, fewer predicted effectors
than those with larger host ranges. When the Phytophthora
species in this study were separated into four host-range cate-
gories, the distribution of apoplastic effectors increased as the
range of infected hosts increased, from narrow to multiple, mul-
tiple to wide, and wide to huge. Cytoplasmic effectors showed
a similar pattern; however, both the RxLR and CRN effector
numbers dropped from wide to huge host ranges. Our study does
not include a detailed measurement of gene expression levels of
these effector genes during infection of numerous hosts, so there
are limitations in how these correlations can be interpreted. In
the absence of that information, we speculate that a large diver-
sity of apoplastic effectors may be important for successfully
overcoming the apoplastic defenses of a large diversity of host
plants.

There may be a similar requirement for larger numbers of
cytoplasmic effectors, but expression of very large numbers of
cytoplasmic effectors may limit host range due to plant immune
surveillance mechanisms. Detection of a single cytoplasmic ef-
fector by an NLR resistance protein may be sufficient to prevent
infection, therefore a limited number of cytoplasmic effectors
may result in a greatly expanded host range. Our observation of
reduced cytoplasmic effector complements in huge host range
species may also be indicative of cryptic host-specialization
within these Phytophthora species. Recent work in P. cactorum,
commonly considered a broad host–range pathogen, has shown
genomic signatures of host specificity (Nellist et al. 2021). In
this case, high-resolution phylogenetics demonstrated that host
adaptation was associated with effector gene gain or loss be-
tween strawberry and apple infecting clades. Where such cryptic
host-adaptation is present, pangenomic analysis may be a useful
tool to infer broad or narrow host range and provide insight to
associations of effector diversity across Phytophthora spp.

Materials and Methods
Collection and isolation of a genus-wide
Phytophthora collection.

Mycelium samples were isolated for all Phytophthora species
in this study, as well as germinated cyst samples for RNA se-
quencing of a subset of the species. For mycelium tissue, plugs
of mycelium grown on standard V8 agar plates were added to a
flask with 20% liquid V8 media clarified with calcium carbon-
ate and were incubated with shaking at 45 rpm at 25°C for 1
week. Agar plugs were removed from the mycelium mass and
the tissue was ground to a powder with liquid nitrogen, followed
by DNA extraction using the methods described by Möller et al.
(1992), except using 1% CTAB and phenol/chloroform treat-

ment or total RNA extraction (Johansen and Carrington 2001)
using TRIzol (Invitrogen), following manufacturer instructions.

For Phytophthora robiniae and Phytophthora vignae, simi-
lar to the protocol for P. sojae (Tyler 2006), zoospores were
produced by repeated washing of 11-day-old V8-200 plates
of mycelium with sterile double distilled water, followed by
overnight incubation at 14°C. Germinated cysts were produced
by exposing collected zoospores to cleared V8 broth for 1 h.
For P. parvispora, mycelium mats were grown in liquid V8 for
5 days, then, the liquid V8 was changed out for soil extract
(soil collected with stream water, mixed, and filter-sterilized),
and zoospores were collected after 3 days, followed by ger-
minated cyst induction as above. For P. cajani, Phytophthora
europaea, Phytophthora foliorum, P. hibernalis, P. pistaciae,
and Phytophthora uliginosa species that did not readily yield
zoospores, mycelium was grown in Plich medium (Kamoun
1993) for RNA sequencing to compare against V8 medium
growth. Known intergenic transcribed spacer and CoxII se-
quences for each species were used to confirm species iden-
tification before high-throughput sequencing. DNA and RNA
quality were checked with electrophoresis (DNA), Bioanalyzer
(RNA), and NanoDrop.

Isolate P414 of the strawberry crown rot pathogen P. cacto-
rum and isolate SCRP371 of the raspberry root rot pathogen
P. idaei were sequenced at the National Institute of Agricul-
tural Botany at East Malling Research (NIAB EMR). P414
and SCRP371 were isolated from symptomatic strawberry and
raspberry plants, respectively. DNA extraction was performed
on freeze-dried mycelium, using a GenElute plant genomic
DNA miniprep kit (Sigma), following the manufacturer pro-
tocol with the following modifications. The RNase A diges-
tion step was not performed and samples were eluted us-
ing 2 × 100 µl elution buffer for P414 and 2 × 75 µl for
SCRP371. Genomic libraries were prepared using a Nextera
XT library preparation kit (Illumina) or TruSeq DNA LT kit
(Illumina) for P. cactorum and P. idaei, respectively.

P. kernoviae, P. lateralis, Phytophthora cryptogea, and P. pini-
folia were collected and isolated as described (Feau et al. 2016).
P. agathidicida, Phytophthora multivora, P. pluvialis, and P.
taxon totara were collected and isolated as described (Studholme
et al. 2016).

Genome sequencing and assembly.
Thirty-one Phytophthora species were sequenced by our con-

sortium. Genomes of 21 Phytophthora species were sequenced
by BGI Genomics (Shenzhen, China) (P. boehmeriae, P. bras-
sicae, P. cajani, P. pini, P. europaea, P. foliorum, P. fragariae,
P. hibernalis, P. litchii, P. megakarya, Phytophthora melonis, P.
niederhauserii, P. palmivora, P. parvispora, Phytophthora pisi,
P. pistaciae, P. robiniae, P. rubi, Phytophthora syringae, P. ulig-
inosa, and P. vignae), using 90-bp paired-end reads produced on
the Illumina HiSeq2000 platform. Four Phytophthora species
were sequenced by the University of British Columbia (P. ker-
noviae, P. lateralis, P. pinifolia, and Phytophthora crypogea),
using Illumina HiSeq 2000 100-bp paired-end reads (Feau et al.
2016). Genomes from four Phytophthora species isolated from
New Zealand (P. agathidicida, P. multivora, P. pluvialis, and
P. taxon totara) were sequenced by Scion (New Zealand For-
est Research Institute, Ltd.), using primarily Illumina HiSeq
100-bp paired-end reads (Studholme et al. 2016). Two Phy-
tophthora genomes were sequenced by NIAB EMR (P. idaei
and P. cactorum), using 250-bp paired-end reads produced on a
MiSeq Benchtop Analyser (Illumina). BGI-sequenced genomes
were adapter trimmed to remove Illumina adapters and qual-
ity trimmed to remove Phred scores of less than Q20 from
the ends of reads (Martin 2011). Genome sequences were as-
sembled with SOAPdenovo2 (Luo et al. 2012). Several initial

38 / Molecular Plant-Microbe Interactions



assemblies were done to identify an optimal k-mer length for
each genome. Gap filling and single base proofreading were
conducted with SOAPAligner (Gu et al. 2013). The University
of British Columbia (UBC) genomes were quality trimmed and
assembled using ABySS (Simpson et al. 2009) and a range of
k values from 32 to 96 (Feau et al. 2016). Scion genomes were
assembled using SPAdes (Bankevich et al. 2012) and contigs
were extended using SSPACE (Boetzer et al. 2011; Studholme
et al. 2016). Genomes sequenced at NIAB EMR were trimmed
and adapters were removed using fastq-mcf (Aronesty 2013),
prior to de novo assembly of the data, using Velvet (Zerbino and
Birney 2008), at k-mer lengths of 61 and 41 bp for P. cactorum
and P. idaei, respectively.

Genome size was estimated using k-mer counts of the raw
Illumina sequence; k-mers were counted using Jellyfish count
(version 2.2.6, -m 32) (Marçais and Kingsford 2011) Histograms
created using Jellyfish hist were plotted using R (R Core Team
2019) to identify the apex and boundaries of the single copy
k-mer peak. Genome size was calculated by dividing the total of
unique k-mers by the mean coverage (peak k-mer frequency).

To separate mitochondrial genome contigs from the nuclear
genome assembly, full-length mitochondrial genome sequences
were collected from GenBank (Clark et al. 2016) for the follow-
ing nine Phytophthora species: Phytophthora andina, P. infes-
tans, Phytophthora ipomoeae, Phytophthora mirabilis, P. para-
sitica, Phytophthora phaseoli, Phytophthora polonica, P. ramo-
rum, and P. sojae. The 31 consortium-assembled Phytophthora
genomes were aligned with Blat (Kent 2002) to identify mito-
chondrial contigs. Blat alignments were filtered to return align-
ments greater than 50% of the aligned contig length, greater than
100 bp, and with gaps less than 50% of the contig length. Con-
tigs identified as mitochondrial were removed from the genome
assembly and are a part of a different study.

Transcriptome sequencing and assembly.
Twenty-four of the genome-sequenced Phytophthora species

underwent RNA sequencing (P. brassicae, P. cactorum, P. ca-
jani, P. pini, P. europaea, P. foliorum, P. fragariae, P. hibernalis,
P. kernoviae, P. lateralis, P. litchii, P. megakarya, P. melonis, P.
niederhauserii, P. palmivora, P. parvispora, P. pinifolia, P. pisi,
P. pistaciae, P. robiniae, P. rubi, P. syringae, P. uliginosa, and
P. vignae). Two samples, V8-grown mycelia and either Plich-
grown mycelia or germinated cysts, were sequenced for each.
Twenty-one species were sequenced by BGI Genomics, using
custom library construction protocol. Random hexamer-primers
were used to synthesize the first-strand cDNA; second-strand
cDNA was synthesized using buffer, dNTPs, RNase H, and DNA
polymerase I; short fragments were purified with QiaQuick PCR
extraction kit, were resolved with EB buffer, and were connected
with sequencing adaptors. Each Phytophthora transcriptome re-
ceived 90-bp paired-end reads. Two of the above species were
sequenced by UBC (P. kernoviae and P. lateralis). RNA of P.
cactorum was sequenced by NIAB EMR.

To create a transcriptome reference for gene predictions, Trin-
ity assemblies (Grabherr et al. 2011) were made for each Phy-
tophthora species, using both RNA sequence samples (–seqType
fq –min_contig_length 200). The de novo transcriptome as-
semblies were cleaned using the three-step TransDecoder pro-
cess (Haas et al. 2013). A set of predicted protein sequences
was made by combining Phytophthora protein sequences from
GenBank (Clark et al. 2016) with protein sequences from the
six previously sequenced and annotated Phytophthora species
(P. sojae [Tyler 2006], P. ramorum [Tyler 2006], P. infestans
[Haas et al. 2009], P. capsici [Lamour et al. 2012], P. cinnanomi
[JGI PhycoCosm], and P. parasitica [NCBI database]). Trans-
decoder.LongOrfs (Haas et al. 2013) was used to identify the
longest open reading frames (ORFs) in the Trinity assembly.

BLASTP (Altschul et al. 1990) was used to align the longest
ORFs to the set of constructed proteins identified from GenBank
(parameters: -max_target_seqs 1 -evalue 1e-5). Finally, Trans-
decoder.Predict was used to predict the gene structure from the
transcriptome assembly. The resulting cleaned transcriptome as-
semblies were used in the subsequent gene prediction methods.

De novo repeat identification.
Each genome was repeat-masked to create a genome assembly

ready for gene prediction, as described below. Repeat elements
were de novo identified separately by species. De novo predic-
tions were combined along with previously identified Phytoph-
thora repeats for species-specific repeat identification.

To identify de novo discovered LTR retrotransposons,
LTRharvest (Ellinghaus et al. 2008) and LTR_(Xu and Wang
2007) finder were run on each genome assembly. By species,
LTR retrotransposon predictions from both LTRharvest and
LTRfinder were condensed by coordinates and reduced by Blat
alignments. LTR retrotransposons, non-LTR retrotransposons,
DNA transposons, and other repeat elements were identified fol-
lowing the MAKER ‘Repeat Library Construction-Advanced’
(Cantarel et al. 2007) method (available online). This process
utilizes the following programs: MITE-Hunter (with default
parameters) (Han and Wessler 2010); GenomeTools suffixora-
tor, LTRharvest, LTRdigest (run with 99% and 85% identity)
(Gremme et al. 2013); RepeatModeler (Smit and Hubley 2015a),
which calls RECON (Bao 2002), RepeatScout (Price et al. 2005),
TRF (Benson 1999), NSEG (Wootton and Federhen 1996) and
RMBlast; and sequence databases provided by the MAKER
‘Repeat Library Construction-Advanced’ method.

De novo repeat identification was further supplemented by
LTR_retriever (Ou and Jiang 2018), using results from LTRhar-
vest and LTRfinder. LTR_retriever retrotransposons were clas-
sified into subfamilies by species.

For each assembled genome, predicted repetitive elements
identified in the above methods were combined with GIRI Rep-
Base (volume 18, issue 9) (Bao et al. 2015) Phytophthora
repeats. Genomes were repeat-masked using RepeatMasker
(v 4.0.6, run with the described combined custom Phytophthora
library and default parameters) (Smit et al. 2015b) and the com-
bined repeat database to create gene prediction-ready genome
assemblies.

Gene prediction and annotation
in 31 Phytophthora species.

For each species sequenced, gene training models were made
with both AUGUSTUS (Stanke and Morgenstern 2005) and
SNAP (Korf 2004). AUGUSTUS was trained using the genome
assembly and the set of previously sequenced Phytophthora
proteins described in the transcriptome sequencing and as-
sembly process in the text above. To train SNAP, for each
species, BUSCO (Seppey et al. 2019) was run, using the Alveo-
lata_Stramenopiles database in genome mode on each genome
assembly to identify core orthologs. BUSCO gff files were con-
verted to zff using maker2zff (Cantarel et al. 2007), SNAP
tools fathom (-categorize 1000, -export 1000), forge, and hmm-
assembler were used to create a training HMM. Genes identified
as single copy core orthologs were combined and were used as
the SNAP training set.

Several supplementary files were created to run the MAKER
gene prediction pipeline. For the ‘EST Evidence’ section of
MAKER, the transcriptome result of the three-step TransDe-
coder process (Haas et al. 2013) was used as the expressed
sequence tag (EST) field. In the seven cases where RNA was
not sequenced and, therefore, the TransDecoder transcriptome
was not created, the phylogenetically closest species with RNA
sequences was used. A concatenation of the gene sequences
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of previously sequenced Phytophthora species and TransDe-
coder transcriptome assemblies was used for the alt-est field.
For each genome assembly, P. sojae, P. infestans, and P. ramo-
rum gene predictions were combined with five representa-
tive TransDecoder-cleaned transcriptome assemblies. To cre-
ate species-specific alt-est sets, the five representative species
were selected from within the Phytophthora phylogenetic clade
(excluding the species of interest). If fewer than five species
received RNA sequencing, nearby clades were used until five
transcriptome assemblies were combined. This set of eight gene
predictions and transcriptome assemblies was used in the alt-est
field. For the ‘Protein Homology’ section of MAKER, all pre-
viously identified Phytophthora proteins were combined from
GenBank together with the six previously sequenced Phytoph-
thora species.

To predict genes, MAKER was run on the 31 genomes. The
repeat-masked genome for each assembly was run using the
AUGUSTUS and SNAP training models described above and
the EST and protein evidence sequence sets as described above.

For validation purposes, three sets of BUSCO analyses were
run. BUSCO 3.02 was run on the 31 genomic assemblies, on the
24 transcriptome assemblies, and on the 31 sets of predicted
proteins. In all cases, the Alveolata_Stramenopiles BUSCO
database of 234 single-copy orthologs was used.

Predicted genes were functionally annotated using BLASTX
(Altschul et al. 1990) to align against known proteins. First,
all predicted proteins were aligned against all Phytophthora
species proteins obtained from the Reference Sequence collec-
tion (RefSeq) nonredundant protein database in NCBI (Clark
et al. 2016; O’Leary et al. 2016) and the UniProt TrEMBL
(UniProt Consortium 2019) database. Second, all predicted pro-
teins were aligned against all Stramenopile proteins from NCBI
RefSeq and UniProt. Third, all predicted proteins were aligned
against all Fungi proteins from NCBI RefSeq and UniProt.
BLASTX alignments were generated with the following param-
eter settings: -evalue 1e-5, -max_target-seqs 50 and were further
filtered to return only hits that were at least 50% identical for 50%
of the length of the subject protein. Protein functional annotation
was made from the consensus of the top five protein alignments
for each taxonomic classification. All results per query protein
were screened to return proteins with informative functional an-
notations ranked by the two rounds of alignments.

Predicted proteins from MAKER were screened using Inter-
ProScan version 5.20-59.0 (Jones et al. 2014) to identify func-
tional domains. GO (Ashburner et al. 2000; Gene Ontology
Consortium 2019) terms were obtained from UniProt BLASTX
alignments and the InterProScan runs.

Identification of effector proteins.
The prediction of cytoplasmic effectors of the RxLR and

CRN families was performed on the six-frame translations of
the Phytophthora whole-genome assemblies, using the applica-
tion getorf (EMBOSS suite) (Rice et al. 2000). We searched for
evidence of the presence of the motifs of interest (RxLR+EER
motif for RxLR effectors [Win et al. 2007] and LxLAK for CRN
effectors [Haas et al. 2009; Stam et al. 2013]) in each ORF trans-
lation by using a combination of regular expressions, using ef-
fectR (Tabima and Grünwald 2019).

To identify additional effector proteins that may not include
one the canonical motifs, thus, may not be recognized by the
RxLR or CRN regular expression, we searched against a profile
hidden Markov model (HMM) (Eddy 1998). We built the HMM
profile using an intersect of each set of candidate effectors pre-
dicted, using regular expressions for each sequenced species in
the consortium and the previously predicted effectors from the
reference genomes of P. infestans, P. ramorum, and P. sojae
(Haas et al. 2009; Tyler 2006). We searched for additional ef-

fectors in all ORF translations against each HMM profile, using
the hmmsearch program in HMMER (available online), using
default threshold parameters. Predicted effectors from the motif
method and the HMM method were examined for signal pep-
tides, using SignalP 3.0 (Bendtsen et al. 2004).

Putative apoplastic protease inhibitors were annotated by
batch BLASTP (E-value < 1e-30) against the MEROPS
database (Rawlings et al. 2012). The glycoside hydrolase pro-
teins were annotated using the carbohydrate-active enzyme
database (CAZy) annotation web server dbCAN (Yin et al.
2012). The HMM profile of the NLP family (PF05630) was
downloaded from Pfam database (El-Gebali et al. 2019). The
hmmsearch program (with default threshold parameters) was
used to search for NLP proteins in each genome assembly.

Classification into orthologous groups.
Predicted proteins from the 31 sequenced Phytophthora and

from the six previously sequenced Phytophthora species were
combined into orthologous groups, using OrthoMCL (Li 2003).
Due to the large dataset of 37 full genomes, a two-stage pro-
cess was used. In stage one, proteins were assigned to the online
pre-constructed OrthoMCL orthology groups (Chen 2006). Pre-
dicted proteins from the MAKER process were uploaded to the
OrthoMCL web site. This returned a file of proteins assigned to
OrthoMCL groups. In stage two, all unassigned proteins were
assigned to groups using the stand-alone version of OrthoMCL.
All unassigned proteins from all 37 species were combined into a
single FASTA sequence file. The protein FASTA file was aligned
against itself using BLASTP. The BLASTP output was converted
for input into OrthoMCL, which was run in mode 4.

Phylogenetic analysis of single-copy orthologs
across Phytophthora species.

To estimate phylogenetic relationships across the 31 genomes
and the six previously sequenced Phytophthora species, we first
identified the single-copy, core orthologous genes shared across
all sequenced species. We selected each of the orthology groups
that contain exactly one gene from each of the 37 genomes in
the orthology construction.

We constructed a phylogenetic tree using 61 genes from each
species. Each set of orthologous proteins were multiply aligned
using MAFFT ver. 7.271 (Nakamura et al. 2018; Katoh and
Standley 2013). The phylogenetic tree was reconstructed using
RAxML (Stamatakis 2014), using each gene as an independent
partition with its own substitution model, bootstrapped 1,000
times. Only one tree was calculated, using all partitions.

Effector distribution across plant host ranges.
The United States Department of Agriculture fungal database

(available online) was used to define the number of known plant
hosts infected by each Phytophthora species considered in this
study. With this information, host ranges were classified into
four categories defined by the number of host genera contain-
ing known hosts. The narrow category encompasses host species
confined to one plant host genus (one to three host species total),
multiple encompasses host species confined within two to nine
host genera (two to 32 host species total), wide encompasses host
species spanning 16 to 55 host genera (22 to 119 host species to-
tal), and the category designated huge encompasses host species
spanning 107 to 327 host genera (163 to 718 host species total).

Numbers of predicted cytoplasmic and apoplastic effector
genes were plotted for each host range. To reduce errors caused
by genome assembly artifacts, and to limit counts of function-
ally identical effector genes, near-identical paralogs were re-
moved from the counts. To identify near-identical paralogs, ef-
fector amino acid sequences were aligned to one another, using
the Smith-Waterman local aligner from the EMBOSS package
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(Rice et al. 2000) to identify similarity. Effectors with greater
than 95% amino acid identity over the full sequence length were
reduced to one representative effector sequence. The resulting
reduced set of effector predictions was used for analysis of the re-
lationship of effector repertoires to host range. Host ranges were
plotted for each effector type using ggplot2 (Wickham 2016) in
R (R Core Team 2019).

HGT.
We used a two-step process to identify HGT gene candidates

in Phytophthora genomes. In the first step, we used an SVM clas-
sifier to predict HGT candidates. In the second step, we applied
two filters to screen out false-positive candidates and assess the
likelihood that the candidates were acquired through HGT.

SVM classifier for prediction of HGT candidates.
We hypothesized that DNA sequence-composition features

such as G+C content, codon bias, and codon usage frequency
(Sharp and Matassi 1994) can be used to identify genes of recent
bacterial or fungal origin in Phytophthora genomes. We con-
structed a multiclass SVM (Boser et al. 1992) for composition-
based analysis of Phytophthora protein-coding genes and classi-
fication as either Phytophthora, bacterial, or fungal origin. SVM
is well-suited for sequence-composition classification because
of the availability of SVM libraries that perform well with large
datasets with numerous variables and the ability of SVM to min-
imize unimportant features (Pedregosa et al. 2011). The SVM
algorithm was implemented in a custom Python script using
the SVC function, available from Scikit-learn Python library
(Pedregosa et al. 2011).

Training sets consisted of 15,000 each of ascomycete, Phy-
tophthora and bacterial transcripts, for a total of 45,000 tran-
scripts. Ascomycete transcripts were selected by submitting
a collection of complete transcript sets predicted from the
genomes of representative species of eight main ascomycete
classes, namely, Tuber melanosporum (Pezizomycetes, GCA_
000151645) (Martin et al. 2010), Arthrobotrys oligosporus (Or-
biliomycetes, GCA_000225545) (Yang et al. 2011), Penicillium
chrysogenum (Eurotiomycetes, GCA_000226395) (van den
Berg et al. 2008), Leptosphaeria maculans (Dothideomycetes,
GCA_000230375) (Rouxel et al. 2011), Cladonia grayi
(Lecanoromycetes) (Yang et al. 2011), Sclerotinia sclerotio-
rum (Leotiomycetes, GCA_000146945) (Amselem et al. 2011),
Fusarium graminearum (Sordariomycetes, GCA_000240135.3)
(Cuomo et al. 2007), and Xylona heveae (Xylonomycetes,
GCA_001619985) (Gazis et al. 2016). Potential genes that un-
derwent HGT were discarded from each transcript set by ap-
plying the following protocol: i) transcripts were translated
into proteins and clustered using OrthoMCL (coverage and
identity of at least 50%, E-value cut-off of 1e-05, inflation
parameter = 2.5) (Li 2003); ii) one protein from each clus-
ter was then queried against the NCBI Nonredundant (nr)
database (max target sequences = 500); iii) clusters with at
least one hit in any other organisms than a fungal taxon were
discarded; iv) for each remaining cluster, each protein was
queried against the nr database (max target sequences = 500)
and the previous step was re-applied. Phytophthora genes were
selected by the same process, using transcripts from P. sy-
ringae (this study), P. sojae (GCA_000149755) (Tyler 2006), P.
ramorum (GCA_000149735) (Tyler 2006), P. lateralis (GCA_
000500205) (Feau et al. 2016), P. pinifolia (GCA_000500225)
(Feau et al. 2016), P. cryptogea (GCA_000468175) (Feau et al.
2016), P. infestans (GCA_000142945) (Haas et al. 2009), P.
brassicae (this study), and P. kernoviae (GCA_000448265)
(Feau et al. 2016) and eliminating clusters with any protein
match other than with an oomycete taxon. Bacterial transcripts
were selected following the same filtering approach on 21,096

transcripts retrieved from GenBank (representing 23 bacterial
classes).

Sequence-composition features were used as input vectors
to an SVM classifier and the curated training sets (discussed
above) were used as model data. Following a preliminary anal-
ysis, codon usage frequency and GC content were selected as
the sequence features, as they resulted in a higher prediction ac-
curacy than codon bias (0.976 ± 0.002 vs. 0.973 ± 0.004, t =
10.4, P < 0.0001) (data not shown). This is consistent with the
point that codon use frequency is inherently the fusion of both
codon usage bias and amino acid composition signals (Wu 2007).
To choose the best kernel for the SVM, we first used principal
component analysis to explore the relationships among the three
different classes (Supplementary Fig. S4). Radial basis function
(rbf) kernel parameters (C and gamma) were systematically var-
ied to optimize prediction accuracy, using a two-dimensional
grid on which both parameters were chosen from the set {10−3,
10−2, …, 106}. All these optimizations were performed with
fivefold cross-validation of the training set (randomly withhold-
ing one-fifth of the training data as a testing dataset; 100 random
draws for each pair of parameters tested) (Supplementary Fig.
S4). Accuracy as defined by (TP + TN)/(TP + TN + FP + FN)
was used as a measure of the quality of the classification. Best
classification accuracy (98.3%) was obtained with rbf kernel
parameters of C = 1,000.0 and gamma = 1.0 (Supplementary
Fig. S4).

Phytophthora transcript classification for HGT.
The 618,240 transcripts predicted from the 31 genomes and

103,992 transcripts predicted from five previously sequenced
Phytophthora species (i.e., P. sojae, P. ramorum, P. infestans,
P. capsica, and P. cinnamomi [discussed above]) were submit-
ted to the classifier and were sorted into Phytophthora-origin,
bacterial-origin, or fungal-origin classes, depending on the prob-
ability returned by the classifier for each of these classes. To gen-
erate a confidence score, we repeated the training of the classifier
100 times before running the classification on each genome. To
maximize the training process of the classifier without increas-
ing computing time and overloading memory, we used a random
subsample of 45,000 transcripts (15,000 genes in each of the
three classes) as a training set each time. Preliminarily, we de-
termined the minimum threshold number of bootstrap replicates
in which an HGT candidate was found that would minimize the
probability that this candidate was a false positive (e.g., mis-
classifying a Phytophthora or a bacteria sequence as deriving
from a fungal donor via HGT). This was done by submitting a
subsample of 1,500 sequences randomly picked in the training
set (500 transcripts in each class) to the classifier with the boot-
strap procedure; then, false-positive and true-positive rates were
calculated for incremental values of bootstrap replicates. Based
on this test, we determined that the chance of misclassifying a
fungal transcript as a Phytophthora or a bacterial sequence (i.e.,
a false positive) was <0.2% (1/500) if it was classified as fungal
in at least 89/100 bootstrap replicates; in such case, the true posi-
tive rate [recall; TP/(TP + FN)] would be 92.3% (Supplementary
Fig. S5A). For the bacterial sequences, this value was ≥79/100
bootstrap replicates; this corresponded to a true-positive rate (re-
call) of 97.5% (Supplementary Fig. S5B). These two bootstrap
replicate thresholds were then used for the identification of HGT
candidates in Phytophthora species.

HGT candidate false-positive filtering.
HGT candidates predicted with the SVM classifier were sub-

mitted to a phylogenetic filtering step by assessing the con-
gruence of the gene phylogeny with the organism phylogeny.
Each candidate transcript was translated into a protein se-
quence and searched using DIAMOND BLASTP (minimum
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BLASTP E-value of 1e-03, sequence subject coverage of 50%,
and sequence query coverage of 50%) (Buchfink et al. 2015)
for closest homologs against protein-coding sequences down-
loaded from the NCBI RefSeq collection (O’Leary et al.
2016) for Phytophthora species (72,639 sequences) and the
following clades: heterokonts (excluding Phytophthora spp.,
164,619 sequences), Alveolata (1,527,928 sequences), Amoebo-
zoa (113,408 sequences), Viridiplantae (5,556,940 sequences),
Fungi (2,912,973 sequences), Archaea (1,830,006 sequences),
and Bacteria (131,971,793 sequences). Candidates with no hits
in the Bacteria or Fungi clades were directly rejected. Protein
sequences for the top three DIAMOND BLASTP hits within
each of the above clades were retrieved and aligned with the
query protein, using MAFFT ver. 7.271 (Katoh and Standley
2013). Amino acid sites with a gap in more than one third of
the sequences were removed. IQ-TREE was used to determine
the best-fitting substitution model and reconstruct a maximum-
likelihood tree for each of the alignments (Kalyaanamoorthy
et al. 2017; Nguyen et al. 2015) with node support assessed
by using the ultrafast bootstrap approximation method (Hoang
et al. 2018). Each phylogenetic tree was exported in Newick for-
mat, was automatically rooted with sequences from the Archaea
or Bacteria clades, and was exported into a .png file, using the
BioPython package Phylo. For facilitating visual examination of
trees, png files were gathered into one single pdf catalog with
the Python library PyFPDF. Tree nodes were visually inspected
to identify phylogenetic discordance (Stöver and Müller 2010).
Two types of discordance were examined: i) “complete incon-
gruence”, when the HGT candidate sequence clusters with the
fungi or bacteria clade with bootstrap support ≥50%, resulting in
a phylogenetic tree completely discordant with the expected or-
ganism phylogeny, i.e., ((((((Phytophthora, Heterokonta), Alve-
olata), Viridiplantae), (Fungi, Amoebozoa)), Archaea), Bacte-
ria) (Burki et al. 2020; Keeling and Burki 2019) and ii) “missing
clades”, when the HGT candidate sequence clusters with the
fungi or bacteria clade because other clades are missing (i.e., the
HGT candidate sequence did not have orthologs in intermediate
clades such as Viriplantae, Amoebozoa, and Alveolata).

HGT candidates that passed phylogenetic filtering were sub-
mitted to a sequence identity discrepancy filter. Assuming a
molecular clock, the sequence identity between a pair of or-
thologous genes should be in the same range as the average
sequence identity between their respective species. However,
for a pair of sequences related through an HGT event between
two species, the proportionality should be broken, leading to an
identity discrepancy when compared with the pairwise species
identity (Novichkov et al. 2004). To identify such discrepancies,
we performed “identity tests.” We calculated the nucleotide se-
quence identity between the candidate HGT sequence in Phy-
tophthora spp. and its closest homolog sequences in the putative
donor species in Bacteria or Fungi. Then, the full transcriptome
of the putative donor species was downloaded and searched with
BLASTN for 1,000 random transcripts from the Phytophthora
species to identify one-to-one orthologs and plot a distribution
of expected nucleotide identity values. In a first identity test, dis-
crepancies were identified by comparing the observed nucleotide
sequence identity found between the HGT candidate in Phytoph-
thora spp. and its homolog sequence in the putative donor to the
expected distribution using a Wilcoxon sign-rank test. Candi-
dates were rejected if the difference between the observed value
(sequence identity between the Phytophthora HGT candidate
and its homolog sequence in the putative donor) and the aver-
age of the expected distribution was not significant and lower
than an arbitrary “discrepancy cutoff” of 8.56 (corresponding
to the top quartile of the distribution of the difference between
the observed values and the expected values). Proteins retained
at this step were included into a relaxed list of candidates. To

ascertain that the discrepancy was not caused by a high con-
servation of the gene among the different clades, we validated
this list with a second identity test that consisted of examining
if the nucleotide sequence identity between the HGT candidate
and the closest species in the non-donor clades was not signif-
icantly higher than the average identity expected between the
two species. Only candidates for which the difference in nu-
cleotide sequence identity between the Phytophthora HGT can-
didate and its homolog sequence in the putative donor was lower
than 52% (corresponding to the uppermost quartile of the dis-
tribution of the difference between the observed values and the
expected values of nucleotide sequence identity between pairs
of homologs from the two species) were retained after this stage.
When the second identity test could not be performed due to the
absence of sequence homologs in non-donor clades (i.e., Viri-
plantae, Amoebozoa, and Alveolata), the discrepancy cutoff, i.e.,
the difference between the nucleotide sequence identity for the
Phytophthora HGT candidate and its homolog sequence in the
putative donor and the average of the expected distribution was
raised to 80.83% identity corresponding to the 5% upper quan-
tile of the distribution of the difference between the observed
values and the expected values. Proteins that passed this second
filter were kept in a strict list of candidates.

We assessed if the HGT candidate could have been a bacterial
or fungal contaminant mistakenly sequenced and assembled with
a genome assembly generated in this study. HGT candidates
were considered as putative contaminant candidates if they were
the only coding sequences to map to a given scaffold.

Data availability.
Genome assemblies and genome and transcriptome sequences

that were created in this study have been deposited in the NCBI
database under BioProjects PRJNA746351, PRJNA714689, and
PRJNA702516. P. cactorum and P. idaei data are available under
BioProjects PRJNA383548 and PRJNA391273. Other genomic
resources including assembly files, gene/protein predictions and
annotations, differential expression analysis, and orthology anal-
ysis can be accessed on the Phytophthora Genome Sequencing
Consortium download website.
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