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5, Ben CarterID
6,

Daisy CrawleyID
1, Bethany OakleyID

1, Hannah HaywardID
1, Jennifer CookeID

1,

Antonia San José CáceresID
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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Over the past decade, biomarker discovery has become a key goal in psychiatry to aid in the

more reliable diagnosis and prognosis of heterogeneous psychiatric conditions and the

development of tailored therapies. Nevertheless, the prevailing statistical approach is still

the mean group comparison between “cases” and “controls,” which tends to ignore within-

group variability. In this educational article, we used empirical data simulations to investigate

how effect size, sample size, and the shape of distributions impact the interpretation of

mean group differences for biomarker discovery. We then applied these statistical criteria to

evaluate biomarker discovery in one area of psychiatric research—autism research. Across

the most influential areas of autism research, effect size estimates ranged from small (d =

0.21, anatomical structure) to medium (d = 0.36 electrophysiology, d = 0.5, eye-tracking) to

large (d = 1.1 theory of mind). We show that in normal distributions, this translates to approx-

imately 45% to 63% of cases performing within 1 standard deviation (SD) of the typical

range, i.e., they do not have a deficit/atypicality in a statistical sense. For a measure to have

diagnostic utility as defined by 80% sensitivity and 80% specificity, Cohen’s d of 1.66 is

required, with still 40% of cases falling within 1 SD. However, in both normal and nonnormal
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distributions, 1 (skewness) or 2 (platykurtic, bimodal) biologically plausible subgroups may

exist despite small or even nonsignificant mean group differences. This conclusion drasti-

cally contrasts the way mean group differences are frequently reported. Over 95% of studies

omitted the “on average” when summarising their findings in their abstracts (“autistic people

have deficits in X”), which can be misleading as it implies that the group-level difference

applies to all individuals in that group. We outline practical approaches and steps for

researchers to explore mean group comparisons for the discovery of stratification

biomarkers.

Author summary

Currently, a striking paradox is often found in neuropsychiatric research. On the one

hand, most clinicians and researchers accept that many neuropsychiatric conditions

involve tremendous individual variability. On the other hand, the prevailing statistical

approach is still the mean group comparison between “cases” and “controls.” Statistically

significant mean group differences tell us that a given characteristic in brain, behaviour,

or genes is onAU : PerPLOSstyle; italicsshouldnotbeusedforemphasisofwords:Pleaseconfirmthatallinstancesofitalicizedwordsshouldbechangedtoregulartextorbeenclosedwithquotationmarks:average different between the 2 groups. Yet, they do not delineate variability

within groups. Moreover, using autism research as an example, we show that in up to 95%

of abstracts, when reporting or interpreting findings, researchers omit the “on average.”

This can be misleading because it evokes the impression as though the group-level differ-

ence would generalise to all individuals with that condition. Here, we used simulations to

show that the latter statement is only true at very large effect sizes. We demonstrate that

across different areas of autism research, mean group differences with small to large

effects indicate that approximately 45% to 68% [cases] do not have an atypicality on cogni-

tive tests or brain structure. However, we also show that across normal and nonnormal

distributions, subgroups may exist despite small or nonsignificant overall effects. We pro-

pose practical approaches and steps for researchers to use mean group comparisons as the

starting point for the discovery of clinically relevant subgroups.

Introduction

Currently, there is a striking paradox in neuropsychiatric research. On the one hand, the clini-

cal and etiological heterogeneity of most neurodevelopmental and psychiatric conditions (as

well as substantial overlap between conditions) is widely accepted among researchers and cli-

nicians [1]. This means that individuals with a particular “umbrella” clinical diagnosis do not

necessarily share the same neurocognitive and neurobiological characteristics [2,3]. These

findings have prompted increasing interest in biomarker discovery to enable participant strati-

fication and precision medicine approaches [4]. On the other hand, the prevailing statistical

approach in neuropsychiatry remains the mean group comparison between a clinical case

group A and a “neurotypical control” group B. This analysis approach is rooted in the tradi-

tional categorical framework to psychiatry that assumes that a given clinical condition involves

one or more defining neurocognitive or neurobiological characteristic(s) that is (are) universal
and specific to that condition [2,5]. Moreover, statistically significant mean group differences

only indicate what is different between group A (e.g., Autism) and group B (e.g., a “neurotypi-

cal” comparison group) on average. However, those differences do not delineate variability

within groups. Mean group differences may reflect a systematic shift in the distribution of the
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clinical group and thus provide useful information on altered processes in that population.

However, whether or not the characteristic is indeed universal to the clinical group and accu-

rately distinguishes cases from controls—which would be required for the measure to have

diagnostic utility—or may only apply to a subset of individuals depends on the strength of the

separation between the distributions [6].

In this educational article, we consider how effect size, sample size, and the shape of the dis-

tributions impact the interpretation of mean group differences for the discovery of clinically

useful biomarkers in biomedical research.

Biomarkers in neuropsychiatry

Broadly, a biomarker has been defined as “a characteristic that is objectively measured and

evaluated as an indication of normal biological processes, pathogenic processes, or pharmaco-

logic responses to a therapeutic intervention” [7]. Recent interest in biomarker discovery has

been sparked by their successful clinical use in multiple areas of medicine [8], to aid in more

objective and reliable diagnosis of a condition, or in predicting individual treatment response

[9]. For example, in cancer research, the use of a stratification biomarker (HER2) significantly

accelerated the development of an adjuvant immunotherapy for breast cancer, which reduced

the risk of death by 33% in the subgroup of patients that were positive for the biomarker (cf.

[10]).

In essence, a biomarker could be any characteristic or test outcome derived from genetic

testing, biochemical assays, brain imaging scans, eye-tracking, or cognitive tests that make reli-

able predictions about an individual. It could be a continuous score that indicates clinical rele-

vance from a certain cutoff point, a categorical score (e.g., the presence/absence of a particular

genetic variant) that indicates the probability of a particular condition or subtype, or a com-

posite derived from multiple indices.

Biomarkers in homogeneous versus heterogeneous conditions

A diagnostic biomarker refers to a measurable characteristic that reflects the presence of a clini-

cal umbrella condition and allows for definitive diagnosis [7]. Assuming that a condition is rel-

atively homogeneous, such a marker should apply to all or most individuals with the

condition, i.e., have high sensitivity (correctly classifying individuals as having the condition),

high specificity (correctly classifying individuals as not having that particular condition), as

well as high positive and negative predictive values. Currently, there are no established bench-

marks for the statistical characteristics that diagnostic biomarkers have to fulfil. However, cut-

offs of quantitative measures that allow classification [of the condition] with 80% sensitivity

(correctly classifying individuals that are biomarker positive as having the condition) and 80%

specificity (correctly classifying individuals that are biomarker negative as not having the con-

dition (Cohen’s d of 1.66) is often considered as acceptable for diagnostic utility [11,12].

By contrast, assuming that a clinical condition is heterogeneous, a stratification biomarker
refers to a measurable characteristic that can be used to identify more homogeneous biological

subgroups within or across established diagnostic categories [4,7,13]. Thus, stratification bio-

markers can be used to aid in the diagnosis of a subpopulation within a condition, to ascertain

the likely development/progression of an individual with an umbrella condition and/or esti-

mate the likely response to a given treatment/intervention [14] (see Table 1). These subgroups

may be defined by particular participant characteristics (e.g., sex or age group). Alternatively,

they may be defined by particular neurobiological characteristics (e.g., neurocognitive profile,

brain atypicalities). In this case, we do not know how many subgroups may exist, how big they

are, and what are the clinically relevant cutoffs.
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Hence, an important step in biomarker discovery consists of moving beyond the focus on

mean group differences and to establishing the frequency and severity of atypicalities on a

given test or measure among individuals with a clinical condition.

Here, we first carried out simulations to examine how effect size, sample size, and the shape

of distributions impact the likely utility of a biomarker. To exemplify this, we then applied

these statistical criteria to evaluate the current state of biomarker discovery in one area of psy-

chiatry where heterogeneity is well established—autism research. Other conditions with clini-

cal and neurobiological heterogeneity include depression [15,16], ADHD [17], and even

schizophrenia [18,19].

Empirical data simulation

We generated 2 populations with varying sample sizes per group (20 and 100; see S1 Text for

more details about the simulations). These sample sizes were chosen because approximately 15

to 30 participants per group has been the typical size of the majority of cognitive [20–22] or

neuroimaging studies [23,24] in autism research (see S1 Table for a summary of representative

meta-analyses, by domain).

Identifying biomarkers in normal distributions: To what degree do 2

groups overlap at different effect sizes?

In our first set of simulations, we assumed that the test values of both the case and control

groups are normally distributed (i.e., Gaussian). Fig 1A shows the average percentages of cases

falling within 1 standard deviation (SD) (i.e., 68% around the control mean) and within 2 SDs

(i.e., 95%). At Cohen’s d = 0.2 (which is considered a “small effect”), on average 67% of cases

would fall within 1 SD of the control mean, at d = 0.5 (“medium effect”), on average 63% and

at d = 1 (“large effect”), 48% of autistic people. For a normally distributed measure to have

diagnostic utility as defined by 80% sensitivity and 80% specificity, Cohen’s d of 1.66 is

required [12]. S1 Fig shows that in these distributions, still, 40% of cases have scores that fall

Table 1. Biomarkers in homogeneous vs. heterogeneous conditions.

Biomarker definitions$ Homogeneous conditions Heterogeneous conditions

Diagnostic biomarker: used to detect or confirm

presence of a condition or to identify individuals with a

subtype of the condition

Characteristic applies to most/all individuals

with the umbrella condition. Mean group
difference with large effect size necessary

a) Characteristic only applicable to a subset of individuals

to aid in the diagnosis of a subtype of the condition.

Mean group difference with small effect size possible (or
no effect if size of subgroup very small)

b) Different etiologies converge on a “final common

pathway.” In this scenario, the characteristic may apply

to most/all individuals with the umbrella condition;

mean group difference with large effect size necessary

Prognostic biomarker: used to identify likelihood of a

clinical event, recurrence, or progression in patients

who have the condition.

Quantitative marker used to predict state of

progression

Qualitative or quantitative marker used to predict

different developmental trajectories/progression in

individuals with the same umbrella condition

Predictive biomarker: used to identify individuals who

are more likely than similar individuals without the

biomarker to experience a favourable or unfavourable

effect from exposure to a medical product

N/A. Predicts that a treatment/intervention

only works in individuals with the given clinical

condition—but not necessarily in others.

Marker predicts differential treatment response in

individuals with/without biomarker positivity among

umbrella condition

Risk/likelihood biomarker: indicates the potential for

developing a condition in an individual who does not

currently have [. . .] the medical condition.

Marker predicts the likely development of the

condition

Marker predicts the likely development of the condition in

only a subtype

$Definitions abridged from [13].

https://doi.org/10.1371/journal.pcbi.1009477.t001
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within 1 SD of the control mean. To separate the scores of 75% of cases from the vast majority

(>97.5%) of the control scores, very large effect sizes of Cohen’s d = 2.7 (AUC = 0.97) are

needed [25].

However, a closer look at Fig 1 also indicates that there may be subgroups of individuals

with nonoverlapping scores at medium or even small effect sizes. Note that even if a subgroup

is relatively small (e.g., 5% to 10%), it could be clinically useful if for these individuals treat-

ment response or developmental progress could be accurately predicted.

Fig 1B shows that assuming the same SD and absolute mean difference at the population

level, the precision of effect size estimates depends on the sample size. For example, a study

may report an effect size of d = 0AU : Pleasenotethatleadingzeroeshavebeenaddedtodecimalswithmissingleadingzeroestoenforceconsistencythroughoutthetext:Pleaseconfirmthatthischangeisvalid:.5. However, with a sample size of 20 per group, the percent-

age of cases who fall within 1 SDs of the control mean may actually vary between 35% to 80%.

With a sample size of 100 per group, this range is reduced to 55% to 75%. This shows that with

small samples, the range of estimates can be so large that they may be effectively meaningless.

Identifying biomarkers in nonnormal distributions

The next examples show that it is not sufficient to only focus on the shift in the central ten-

dency between 2 groups; the shape of the distributions of both groups has to be considered as

well (Fig 2). Although differences in sample distributions may be minimised by careful experi-

mental design, including selection of the comparison group, in clinical studies, quantitative

measures have frequently been found to be nonnormally distributed [26–28]. Note that in

nonnormal distributions, common reference values, such as means and SDs, as well as fre-

quently used effect size measures, such as Cohen’s d, are not suitable [26]. S2 Text and S2

Table give a brief tutorial and a summary of how central tendencies of means and SDs can be

translated into their nonparametric counterparts of median and percentiles. It is important to

note that despite the increase of Type 1 error, most parametric statistical tests remain relatively

robust when data depart from normality. However, despite such robustness in significance at

the statistical level, the extent to which distributions diverge from normality can strongly

impact effect sizes and thus could lead to misleading conclusions at the clinical level [29].

Skewness. When the data of only 1 group are skewed (Fig 2C), the number of individuals

with atypical values increases relative to 2 normal distributions, yet this may not be obvious

from the effect size value only. Skewness may indicate a larger subgroup with atypical (non-

overlapping) scores, while the majority of cases have scores in the same range as the compari-

son group. For instance, in the EU-AIMS LEAP cohort, we observed shifted developmental

trajectories where the control group reached a ceiling effect in spatial working memory earlier

Fig 1. Simulations of the degree to which 2 groups overlap at different effect sizes. (a) Percentage of autistic

individuals (red) falling within 1 SD and 2 SDs of the control (blue) distribution at effect size of d = 0.2, 0.5, 1, and 2.7.

0 = mean, σ = SD. Simulations based on 10,000 random draws assuming the same SD and absolute mean difference in

the population. The red shaded area indicates the % of cases above 2 SDs. (b) Although sample size does not bias the

effect size estimates themselves, it does substantially affect their precision, which is reflected in the width of the CI. The

precision of effect size estimates with sample sizes of N = 20 and N = 100. Purple shading denotes CIs around 1 SD of

the mean and red shading CIs around 2 SDs of the mean. For example, for a small effect size at Cohen’s d of 0.2, with

N = 100 participants per group, between 60% and 75% of autistic people would fall within 1 SD of the control mean.

With smaller samples of N = 20 per group, ranges grow to 40%–85% within 1 SD and to 75%–100% within 2 SDs. At

Cohen’s d of 0.5, with N = 100 versus N = 20, 55%–71% versus 45%–80% of people with ASD would fall within 1 SD

and between 89%–97% versus 85%–100% within 2 SDs of the TD mean, etc. Hence, with small sample sizes, the range

of possible results is so wide that it is difficult to make accurate inferences of the frequency or severity of cases who

have abnormalities on that measure from single studies. As recently noted, studies with small sample sizes (low power),

paired with publication bias and file drawer effects as well as high sample variability (true heterogeneity within a

condition), can lead a whole field to overestimate the magnitude of the true population effect [49,50]. ASD, autism

spectrum disorder; CIAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1 � 3:Pleaseverifythatallentriesarecorrect:, confidence interval; SD, standard deviation.

https://doi.org/10.1371/journal.pcbi.1009477.g001
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than the autism group [30]. If the 2 groups are equally skewed, for example, due to a systematic

bias in the measures, the degree of nonoverlap depends on the difference in the median

(Fig 2D).

Platykurtosis. Fig 2E describes a distribution with negative kurtosis. They have lighter

tails than a normal distribution, with more extreme scores at both ends. In psychiatric

research, biologically plausible platykurtic distributions could be functional connectivity,

where some cases might show hypoconnectivity and others hyperconnectivity relative to the

control distribution.

The opposite case is leptokurtosis, with distributions presenting an excess positive kurtosis.

Those distributions have fatter tails than normal. One scenario in which this could happen in

psychiatric research is when the control group’s “true” distribution on a test or measure is nor-

mal, but participants are sampled from a specific subpopulation, such as University students,

who may display a narrower range of scores. If 1 group is platykurtic (or leptokurtic), we could

find the seemingly paradoxical situation where the 2 group means and medians are identical,

i.e., statistically no effect was obtained—and yet 2 subgroups exist with nonoverlapping values.

In other words, we can have a stratification biomarker indicating biologically plausible sub-

groups in the absence of a significant mean group difference.

Bimodality/multimodality. Similarly, bimodal distributions are more likely to indicate a

stratification biomarker than diagnostic marker, as they are a continuous probability distribu-

tion with 2 different modes. A simple bimodal distribution could be a mixture of 2 normal dis-

tributions with different means but the same variance (Fig 2F). Similar to other situations

discussed above, one can measure how far each individual deviates from the median of the

nearest relevant mixture distribution.

Fig 2. Simulation of how central tendencies and the shape of the distributions impact group overlap. Translating the central tendencies of mean and SD into median

and interquartile ranges in (a) normal distribution and (b) skewed distribution. Illustration of group overlap when (c) case group is skewed but control group is normal,

(d) both groups are skewed, (e) exponentially modified gamma distribution with strong skewness, and (f) with milder skewness, (g) platykurtosis, (h) leptokurtosis, (i),

bimodal equal, (j) bimodal asymmetric. SD, standard deviation.

https://doi.org/10.1371/journal.pcbi.1009477.g002
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If the weights are not equal, the distribution could still be bimodal but with peaks of differ-

ent heights (Fig 2G). In autism research, this is exemplified by hyperserotonemia that has been

found in approximately 30% of autistic individuals [31,32].

S2 Table gives examples of the percentage of individuals within 68% and 95% of the median

values as a function of (i) differences in the group medians; and (ii) specific levels of skewness

or distribution width.

Comparison of effect sizes reported in meta-analyses of different areas of

autism research

Next, we investigated whether mean group differences obtained across the most influential

areas of autism research meet our theoretical considerations for diagnostic biomarkers. For

illustrative purposes, we selected 1 representative published meta-analysis per domain and

compiled average effect sizes for theory of mind [21], executive function [22], emotion recog-

nition [20], eye-tracking [33], EEG of mismatch negativity [23], and N170 [34], functional

MRI of reward processing [24], structural MRI [35], and genetics [36].

As shown in Fig 3, the largest effect sizes were found in theory of mind (with d’s from 0.8 to

1.1) [37]. Moderate effect sizes were found in meta-analyses of emotion recognition d = 0.8

[20], across different aspects of executive function (d = 0.45 to d = 0.55), in eye-tracking studies

(d = 0.4 to 0.5) [22,33], and EEG studies of the N170 event-related potential response to faces

(increased latency d = 0.36). One of the first meta-analysis of fMRI studies that did report

effect sizes showed that in the area of reward processing, effect sizes ranged from d = 0.025 to

0.42 [24]. A recent mega-analysis of brain anatomy reported effect sizes ranging from Cohen’s

d = 0.13 for subcortical volumes to d = 0.21 for cortical thickness [35]. Finally, GWAS results

from a recent meta-analysis [36] yielded small effect sizes d = 0.06 with single-nucleotide poly-

morphisms (SNPs) passing corrected p-value for association to d = 0.37 with those passing

nominal threshold of (i.e., p< 0.05). Effect sizes of polygenic risk score (PRS), which combines

the signal across the SNPs [38], translated to a Cohen’s d of 0.16 [36]. Notice that with such

small effect sizes, genetics studies often employ much larger sample sizes (see S2 Fig for addi-

tional simulations).

S3 Table shows for the area of emotion recognition that original papers often do not report

how the data were distributed. However, if we take the authors’ use of parametric statistics as

an index that the data were normally distributed and compare these findings to our simula-

tions we find that—across the different areas of autism research and despite significant mean

group differences—approximately 48% to 68% of autistic individuals would fall within 1 SD of

the typical range; i.e., they do not have a deficit or atypicality in a statistical sense, or of likely

clinical relevance. This conclusion drastically contrasts the way mean group differences are

often reported in the autism literature where the “on average” is very frequently omitted. To

quantify the extent of this practice, we carried out a PubMed search with the search terms

“autism,” [domain], e.g., “eye-tracking,” “structural MRI,” “EEG,” with or without the addi-

tional terms “on average” in the abstract. Table 2 shows that across domains, only between

1.8% and 4.6% of studies used the term “mean group difference” or “on average” when sum-

marising their findings. Of studies that investigated mean group differences as potential bio-

markers, these were up to 5.5%. Instead, common interpretations of findings included phrases,

such as, “we demonstrate that people with autism have reduced [X], “[X] is characteristic for

autism,” or even “findings suggest that [X] may be a biomarker for autism.” (References were

here deliberately omitted so not to single out individual studies/authors). This way of reporting

can be misleading as it tacitly implies that the group level difference generalises to all individu-

als in that group.
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Using case–control comparisons to explore the potential value of a measure

as a stratification biomarker

Even if mean group differences with medium to even large effects may often not be indicative

of a diagnostic biomarker, they may still provide pointers for possible subgroups (stratification

biomarker) with the given characteristic. Box 1 provides a checklist of some concrete steps that

may help interested researchers to interrogate their data from a biomarker perspective. Several

of our examples highlight that identification of stratification biomarkers (subgroups) within or

even across diagnostic disorders requires considerably larger sample sizes than those that have

previously been typically carried out. Sample size not only affects p-values and the precision of

the effect size, small samples may make it difficult to detect a potentially small but clinically rel-

evant subgroups (e.g., 10% of a disorder). Recently, across psychiatry, larger consortia have

been funded that address this issue.

In addition to analytic validation of the candidate biomarker, we also need to demonstrate

its clinical relevance and determine clinically relevant cutoffs, such that individuals with (dif-

ferent degrees of) biomarker positivity differ from those with biomarker negativity in terms of

specific clinical features. This biomarker-clinical phenotype relationship could be linear or

nonlinear such that the atypicality only becomes clinically relevant from a certain degree or

“tipping point” [39]. There are currently no general benchmarks for the accuracy of biomark-

ers, as, for example, the required sensitivity/specificity of a subgroup may depend on the par-

ticular context of use of the biomarker (e.g., treatment prediction, prognosis) and associated

cost-benefits (e.g., financial cost of treatment, side effects, etc.) [40].

As a limitation of our illustrations, it should be noted that we only considered biomarkers

based on a single continuous measure because of the historical prevalence of univariate

approaches in neuropsychiatry. In the context of precision medicine, a host of multivariate

Fig 3. Average effect sizes of meta-analyses per modality. The distributions of the original data included in the meta-analyses were often not reported. This is

exemplified in S1 Table where we checked information on the data distributions of the 49 original papers included in a review of emotion recognition [20].

However, in the majority of papers, parametric statistics were employed, which may be taken as indicating normal distribution. EF, executive function; ET, eye-

tracking; fMRI, functional MRI; MMN, mismatch negativity; PRS, polygenic risk score; ROI, region of interest; sMRI, structural MRI; SNP, single-nucleotide

polymorphism; ToM, theory of mind.

https://doi.org/10.1371/journal.pcbi.1009477.g003

Table 2. Use of terms “on average” and/or “biomarker” in published papers using PubMed search, across domains.

Autism Autism + on average� Autism + biomarker Autism + biomarker + on average

Eye-tracking 567 26 43 0

Structural MRI 1,058 41 99 5

fMRI 3,284 118 229 13

EEG 1,807 86 159 8

Executive function 896 37 19 0

Emotion recognition 869 23 15 0

Theory of mind 1,169 18 7 0

Genetics 15,524 281 979 22

�The figures in this column are likely an overestimation as they include the use of “on average” in contexts other than referring to group differences, for example, to

characterise participants (e.g., “the ASD group had IQ on average between X and Y”).

The meta-analyses were selected based on the following search criteria:

((autism[Title/Abstract]) AND (meta analysis[Title/Abstract])) AND [“DOMAIN”/Title/Abstract]. Searches were repeated iteratively for the domains structural MRI,

emotion recognition, theory of mind, eye-tracking, fMRI, EEG, and genetics, each for the past 10 years. For illustrative purposes, we then selected 1 meta-analysis per

domain based on the following criteria: number of citations, journal impact, and comprehensiveness of the meta-analysis.

https://doi.org/10.1371/journal.pcbi.1009477.t002

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009477 November 18, 2021 10 / 16

https://doi.org/10.1371/journal.pcbi.1009477.g003
https://doi.org/10.1371/journal.pcbi.1009477.t002
https://doi.org/10.1371/journal.pcbi.1009477


methods have been recently applied to high-dimensional data sets. Given the complexity of

processes and mechanisms underpinning most psychiatric conditions, it is likely that they can-

not be captured by 1 biomarker. Moreover, independent single features may have small effect

size, yet a group of such features considered in a multivariate fashion might effectively have a

“high effect size”—the so-called Lewontin’s fallacy [41]. Hence, multiple scores may be com-

bined through predictive pattern-learning algorithms to identify subtypes [42–44] (for review,

see [45]).

Box 1. Checklist for researchers

• Check if data are normally distributed or not using Kolmogorov–Smirnoff or Sha-

piro–Wilk tests; graphical methods such as simple histograms or robust graphical

methods help to visually understand the distribution of the data. Rule of thumb: if the

standard deviation (SD) exceeds half of the mean value, the distribution of the data is

likely nonnormal.

• Use the shape of the distribution as a starting point to evaluate data points in addition

to means or medians. For example, Bayesian information criterion (BIC) and Akaike

information criterion (AIC) can be used to decide whether a distribution may be best

described as “skewed” versus harbouring a mixture model.

• Reference values to estimate the frequency and severity of atypicalities: Although

means and SDs can be appropriately used when data are normally distributed (or can

be transformed to normal distributions), we recommend using median and percentiles

(e.g., interquartile ranges, SD from the median) in order to facilitate the comparison of

results across different data distributions.

• Always provide confidence intervals irrespective of sample size so that readers can

judge whether the estimate is sufficiently precise for their purposes. If the data set is

small, be aware of limited “precision” of effect size estimates.

• Preanalytic validation: We recommend carrying out test–retest reliability for any new

measures or measures for which such information is not available. While no univer-

sally acceptable values are available, several textbooks recommend r> 0.70. Test vari-

ability (and potentially known moderating factors, e.g., fatigue, time of day) should be

included in the interpretation of scores. Standardisation of instructions, standard

operating procedures (SOPs), acquisition, and preprocessing parameters are essential

to ensure comparability between researchers, clinicians, and laboratories. Measures

should be optimised and key dependent variables specified.

• Clinical validation and/or validation against another level of explanation: Relate single

measure to clinical outcome, define cutoff for clinical relevance accordingly.

• Increase scientific knowledge by facilitating replication, script, and data sharing: Seek

to replicate findings of percentages and relationship to external variables in an inde-

pendent data set.

• Actively deposit your data set in open data repositories (e.g., Zenodo, Open Science

Framework) and share your task paradigm and scripts with other colleagues to enable

data pooling and replication.
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Conclusions

Our systematic simulations show that the statistical significance of mean group differences

alone is a poor indicator of the likely utility of a measure or test as a (diagnostic) biomarker.

Although statisticians are well aware of these basic principles [6,26,46–48], a review of these

principles is timely since they are still too often ignored or misunderstood. By using autism

research as an example, we have shown that mean group differences with moderate to even

large effect sizes (Cohen’s ds from 0.5 to 1.0) are not indicative of a “diagnostic biomarker.”

Instead, significant mean group differences with moderate effect sizes often indicate that

many, if not the majority of cases do not have an impairment or atypicality on that measure.

However, 1 (skewness) or 2 (platykurtic, bimodal) subgroups may exist despite small or non-

significant overall effects. The same principles apply to other areas of neuropsychiatry or medi-

cine more broadly. We outline some specific steps to further explore these findings as

potential stratification biomarkers and surmise that similar considerations may be applicable

for other areas of neuropsychiatry.

Supporting information

S1 Table. Example meta-analyses across the most influential areas of autism research.

Authors, effect size, total, and average sample sizes per group.

(DOCX)

S2 Table. Examples of effect sizes and reference boundaries for different types of distribu-

tions.

(DOCX)

S3 Table. Author’s reporting of the distribution of data and the use of parametric vs. non-

parametric statistics, using the meta-analysis of emotion recognition (Uljarevic and Ham-

ilton, 2013) as an example.

(DOCX)

S1 Fig. Relationship between ROC curve and distribution overlap for an effect size of

d = 1.66. The coloured circles indicate key thresholds at half the control group distribution

(blue; i.e., 0.5 specificity), at the best separation between the groups (purple; 80% sensitivity,

80% specificity), and at half of the patient distribution (red; i.e., 50% sensitivity). Inspired by

the ROC curve interactive demonstration http://arogozhnikov.github.io/2015/10/05/roc-

curve.html. AUC, area under the curve; ROC curve, receiver operating characteristic curve.

(TIF)

S2 Fig. Complementary simulations for the quantification of the impact of sample size on

the reliability of effect size estimates. (a) Case of an effect size of 1, corresponding to approxi-

mately the largest observed in the meta-analysis. (b) Case of an effect size of 0.16, correspond-

ing to the one associated with PRS. For the latter, the point estimate is indicated by the vertical

black line, while the colour lines represent the probability distribution of the effect size esti-

mates across 10,000 simulations and with sample sizes of the PGC (18,381 individuals with

ASD and 27,969 controls), EU-AIMS (500 ASD and 500 controls), and those used for Fig 1,

i.e., N = 20 and 100. ASD, autism spectrum disorder; PRS, polygenic risk score.

(TIF)

S1 Text. Scientific computing and empirical simulations. Python (Python Software Founda-

tion; https://www.python.org/) was selected as the scientific computing engine. Capitalising

on its open-source ecosystem helps enhance replicability, reusability, and provenance tracking.

The Numpy (van der Walt and colleagues, 2011), ScipyAU : PleasenotethatreferencecitationJonesandcolleagues; 2001hasbeenreplacedwithVirtanenandcolleaguestomatchwiththecitationintheS1Textfile:Pleaseconfirmthatthischangeisvalid:(Virtanen and colleagues, 2020), and
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Matplotlib (Hunter, 2007) packages were used to generate all numerical simulations. Scripts

that reproduce the results of the present study are readily accessible and open for reuse

(https://gist.github.com/deep-introspection/4280aeee34a0f1ab4491a386adcd5dad/). We gen-

erated 2 populations with varying sample sizes per group (20 and 100).

(DOCX)

S2 Text. Translating means and SDs into nonparametric equivalents to assess the fre-

quency and severity of atypicalities in nonnormal distributions. Here, we review how we

can calculate the frequency and severity of atypicalities when the data of one or both groups

are nonnormally distributed. The degree to which 2 distributions overlap depends both on the

differences between the central tendencies and the shape of the distributions. Previously, we

used the mean and SD of the comparison group as reference points to estimate how far a given

individual diverges from the typical range. Cohen’s d was used as an index of the magnitude of

the group separation. In normal distributions, the mean and median are the same and repre-

sent the most typical value in the data set. However, in skewed or gamma distributions, the

mean is dragged more into the direction of the skew (“longer tail”) than is the median. In

many instances of skewed distributions, the median is therefore the more appropriate central

tendency as it characterises where the majority of individuals scored. There are a number of

effect size measures available that are more “robust” to skewness, such as the scaled/unscaled

robust d or the common language effect size (Li and colleagues, 2016). However, our primary

interest is not in an index of the magnitude of the effect per se, but in finding a way to ascertain

the frequency and severity of atypicalities on a test/measure in a clinical group. This requires

us to move to nonparametric statistics. Therefore, we translated the central tendencies of

means and SDs into their nonparametric counterparts of median and percentiles. The IQR is

calculated by dividing the data set into 4 equal portions and refers to the “middle 50%,” i.e.,

the range between the 25th percentile (Q1) and the 75% percentile (Q3). The 50th percentile

or (Q2) is then the same as the median. The IQR is somewhat narrower than 1 SD. The equiva-

lent to 1 SD (68% of values) of the mean would be 68% around the median. This now provides

us with a universal way to express frequencies and severities across different types of distribu-

tions. IQRAU : AbbreviationlistshavebeencompiledforthoseusedinS2TextandS1andS2Figs:Pleaseverifythatallentriesarecorrect:, interquartile range; SD, standard deviation.

(DOCX)
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