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a b s t r a c t

Ample evidence shows that the momentary performance can dissociate from the under-

lying knowledge (competence). Under what circumstances such dissociation occurs,

however, remains unclear. Here we tested how temporal factors, and more specifically, the

elapsed time between subsequent events affects the dissociation between performance

and competence by systematically manipulating the stimulus presentation rates during

and after learning. Participants completed a probabilistic sequence learning task with a

fast (120 msec) or a slow (850 msec) response-to-stimulus-interval (RSI) during the Learning

phase and they were tested with both RSIs 24 h later (Testing phase). We also tested

whether they gained explicit knowledge about the sequence or their knowledge remained

implicit. Our results revealed higher reaction time learning scores when tested with the

fast RSI, irrespective of the RSI during learning, suggesting that faster presentation rates

can help better express the acquired knowledge, leading to increased performance mea-

sures. For accuracy, participants showed higher learning scores when tested with the same

presentation rate as the one that they encountered during learning. The acquired knowl-

edge remained implicit in both groups, suggesting that the observed findings were not

confounded by differences in awareness gained in the two groups. Overall, our study
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highlights that the momentary performance does not always accurately reflect the un-

derlying knowledge, and temporal factors seem to influence this dissociation. Our findings

have theoretical, methodological, and translational implications that likely extend beyond

learning and memory to other functions and domains as well, including aspects of

decision-making, perception, theory of mind, and language.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Ample evidence shows that learning can occur in the absence

of any performance gain, and vice versa, momentary perfor-

mance often fails to accurately reflect the underlying knowl-

edge (Kantak & Winstein, 2012; Schmidt & Bjork, 1992;

Soderstrom & Bjork, 2015). It is a common experience to

performweaker in a task inwhichwe previously showed good

performance; for example, we may experience a temporary

drop in performance when playing sports or speaking a

foreign language. These examples illustrate that there is a

temporary fluctuation in behavior, and performance in a given

momentmay not accurately reflect the underlying knowledge

(competence) (Soderstrom & Bjork, 2015). This phenomenon

has been highlighted by previous theoretical work in language

(Chomsky, 1965) as well as in learning and memory, with

experimental evidence coming from latent learning in ani-

mals, and verbal learning and motor skill learning in humans

(Kantak & Winstein, 2012; Schmidt & Bjork, 1992; Soderstrom

& Bjork, 2015). Although experimentally this dissociation has

been demonstrated mainly within learning and memory, its

importance likely extends to other cognitive domains and

more complex abilities that rely on learning and memory as

well, including aspects of decision-making, perception, theory

of mind, and language performance (Mutter, Alcorn, & Welsh,

2006; Rieskamp & Otto, 2006; Turk-Browne, Scholl, Johnson, &

Chun, 2010; Ullman, Earle, Walenski, & Janacsek, 2020). While

there are many examples for a dissociation between the

momentary performance and the underlying competence in

research as well as in our daily lives, it has remained elusive

under what circumstances such dissociation occurs.

Here we aimed to test how temporal factors, and more

specifically, the elapsed time between subsequent events,

may contribute to this dissociation. We focused on this factor

because previous research has shown that the elapsed time

between subsequent events (items) can determine how our

mind processes those events and whether it discovers po-

tential relationships among them (Davachi & DuBrow, 2015;

Destrebecqz & Cleeremans, 2003; Karlsen, Allen, Baddeley, &

Hitch, 2010; Wlotko & Federmeier, 2015). Elapsed time also

affects whether the formed memories of those events and

relationships are retained for a longer period or become

forgotten (Barrouillet, Bernardin, & Camos, 2004; Brown,

Neath, & Chater, 2007; Cornelissen & Greenlee, 2000; Zhang

& Luck, 2009). Moreover, elapsed time between subsequent

events can alter our neural responses as well and shift the

reliance from one neural network to another (e.g., Buhusi &

Meck, 2005; Foerde & Shohamy, 2011; Schultz, Tremblay, &
Hollerman, 2003). Therefore, here we aimed to systemati-

cally test, by manipulating the stimulus presentation rates, to

what extent the elapsed time between subsequent items

affect the momentary performance versus the acquired

knowledge (competence) itself. We chose a learning task that

involves sequentially presented perceptual stimuli, which

participants are required to process, respond to, and learn

predictable inter-stimulus relationships, serving as an ideal

model task for testing the effect of presentation rate on these

processes.

Extracting sequential regularities embedded in the envi-

ronment is a fundamental cognitive function that is involved

in aspects of perception, predictive processing and procedural

learning (Armstrong, Frost, & Christiansen, 2017; Bar, 2007;

Fiser & Aslin, 2002; Turk-Browne et al., 2010; Ullman et al.,

2020). Learning such regularities typically occurs implicitly

(i.e., without conscious access either to whatwas learned or to

the fact that learning occurred), although explicit (conscious)

knowledge about the regularities can also emerge in certain

cases (Cleeremans & Jim�enez, 2002; Conway, 2020; Reber,

1993). Sequence learning tasks, such as the variants of the

Serial Reaction Time (SRT) task, are the most commonly used

paradigms to assess learning of sequential regularities

(Janacsek & Nemeth, 2012; Nissen & Bullemer, 1987; Ullman

et al., 2020).

The stimulus presentation rate can be manipulated by

setting the Response-to-Stimulus Interval (RSI), that is, the

time interval between a response and the next stimulus

(Willingham, Greenberg, & Thomas, 1997). Previous studies

using different RSIs in sequence learning tasks such as the

SRT task have yieldedmixed findings. Most studies found that

shorter or more congruent RSIs led to better learning, partic-

ularly when measured by reaction time (RT) indices

(Destrebecqz & Cleeremans, 2003; Dominey, 1998; Frensch &

Miner, 1994; Howard, Howard, Dennis, & Yankovich, 2007;

Nissen & Bullemer, 1987; Soetens, Melis, & Notebaert, 2004;

Stadler, 1995). Others however reported an opposite pattern,

with longer RSIs leading to better learning, at least in accuracy

and judgment-based measures of performance (Arciuli &

Simpson, 2011; Emberson, Conway, & Christiansen, 2011).

These mixed findings may be explained by differences in the

performance measures used in the task (e.g., accuracy or RT),

while others suggested that differences in the level of

awareness about the relevant task characteristics (e.g.,

whether the acquired knowledge remained implicit or explicit

knowledge about the sequence structure also emerged during

the task) could also affect the observed effects (Destrebecqz &

Cleeremans, 2003; Frensch & Miner, 1994). Importantly, these

http://creativecommons.org/licenses/by/4.0/
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studies did not distinguish momentary performance from the

underlying knowledge (i.e., competence), therefore how the

elapsed time between subsequent items affects these pro-

cesses remains unclear. Here we systematically tested the

effect of the elapsed time on performance versus competence

by manipulating the stimulus presentation rates (more spe-

cifically, the RSI) during learning, by analyzing both accuracy

and RT measures, and by testing whether participants'
knowledge remained implicit during the task or they also

gained explicit knowledge about the sequence structure.

It has been suggested that a transfer condition could be

employed to differentiate between performance and compe-

tence (Willingham et al., 1997). Using such transfer conditions,

Willingham et al. (1997) showed that those who learned with

longer RSIs showed higher learning scores when tested with

shorter RSIs, suggesting that the participants' momentary

performance in the former conditions did not accurately

reflect their acquired knowledge that could better expressed

when tested in the latter conditions. However, in that study,

learning scores were measured only at the end of the learning

phase due to the characteristics of the deterministic SRT task

(for a review see Janacsek&Nemeth, 2012); therefore, how the

RSI affects the time course of learning remains unclear.

Moreover, only RT measures were used due to ceiling effects

in accuracy, and the effect of RSI on whether participants

gained explicit knowledge during the task was not tested,

potentially leading to confounded effects. In the current

study, we used a probabilistic sequence learning task, namely

the Alternating Serial Reaction Time (ASRT) task (Howard &

Howard, 1997; K�obor, Janacsek, Tak�acs, & Nemeth, 2017;

Nemeth et al., 2010). In contrast to the deterministic SRT

(Nissen & Bullemer, 1987), in the ASRT task, repeating

sequence elements alternate with random ones throughout

the task (see Fig. 1AB). This enables to track the time course of

learning and provides reliable measures of learning both in

accuracy and RT (Farkas, Krajcsi, Janacsek, & Nemeth, 2022;

Stark-Inbar, Raza, Taylor, & Ivry, 2016; West, Vadillo, Shanks,

& Hulme, 2017). Due to the probabilistic nature of the se-

quences, knowledge in the ASRT task remains implicit inmost

cases, minimizing the potential confounds of gaining explicit

knowledge by some participants but not others.

Overall, the aim of our study was to test how the elapsed

time between subsequent items, as manipulated by the

stimulus presentation rate, affects the momentary perfor-

mance versus the underlying competence. To this end, two

versions of the ASRT task were compared in healthy young

adults: the fast RSI group performed the task with 120 msec

RSI and the slow RSI group performed the task with 850 msec

RSI in the Learning phase. The RSI lengths were determined

based on previous studies (Howard & Howard, 1997; K�obor

et al., 2017; Nemeth et al., 2010; Willingham et al., 1997). To

test how the fast versus. slow RSI affected the momentary

performance versus the acquired knowledge (competence),

the two groups performed both RSI versions of the task 24 h

later in the Testing phase. This retention periodwas chosen to

ensure that well-consolidated knowledge is tested, thus the

effect of RSI change is not confounded with further learning

effects in the Testing phase (K�obor et al., 2017; Nemeth &

Janacsek, 2011). At the end of the Testing phase, participants

also completed the so-called Inclusion-Exclusion task, in
which they were asked to generate responses based on the

sequence that they learned in the ASRT task (Inclusion con-

dition) or based on a different sequence (Exclusion condition).

This additional task enabled us to test the effect of RSI on

whether participants gained explicit knowledge about the

underlying sequence of the ASRT task or their knowledge

remained implicit. Overall, our study addresses three ques-

tions: (1) Does the stimulus presentation rate affect the

learning scores in the Learning phase? (2) Do the learning

scores accurately reflect the acquired knowledge (i.e.,

competence) or do they reflect momentary performance

instead? (3) Does the stimulus presentation rate affect

whether explicit knowledge is gained in the task or the

knowledge remains implicit, irrespective of the presentation

rate encountered during learning?

First, based on previous research described above (Frensch

&Miner, 1994; Soetens et al., 2004; Willingham et al., 1997), we

expected the slow RSI group to show lower learning scores

compared to the fast RSI group in the Learning phase of the

ASRT task. However, based solely on the Learning phase, it is

unclear to what extent these learning scores reflect their ac-

quired knowledge versus momentary performance. That is, if

the slowRSI group showed lower learning scores in this phase,

they either learned less than the fast RSI group (i.e., the level

of competence is lower), or the characteristics of the task/

learning situation (such as timing) influenced howmuch they

could express what they learned (i.e., their learning scores

might have not reflected accurately their acquired knowl-

edge). Second, to clarify this, we looked at the Testing phase of

the ASRT task, in which both groups were tested with both

RSIs. Following from the prediction above, if presentation

rates lead to a dissociation between the momentary perfor-

mance and the underlying knowledge, then two effects could

be observed. The fast RSI group (i.e., the group that learned

with fast RSI) would exhibit lower learning scores when they

are tested with the slow RSI (vs when tested with the fast RSI).

Additionally, the slow RSI groupwould exhibit higher learning

scores when they are tested with the fast RSI (vs when tested

with the slow RSI). These observations would suggest that the

learning scores measured in the slow RSI condition do not

accurately reflect the underlying knowledge but their

momentary performance, and the acquired knowledge could

be better expressed in the fast RSI condition (Willingham

et al., 1997). Third, compared to the fast RSI group, we hy-

pothesized that the slow RSI group would exhibit greater

explicit sequence knowledge as measured by the Inclusion-

Exclusion task if the presentation rate affected the level of

awareness about the relevant task characteristics as sug-

gested by Destrebecqz and Cleeremans (2003).
2. Materials and methods

2.1. Participants

Seventy-nine individuals (68 females and 11 males) aged be-

tween 19 and 30 (MAge ¼ 22.01 years, SDAge ¼ 1.87 years) took

part in the experiment (for details on how required sample

size was calculated, see Supplementary methods). All partic-

ipants were university students (MYears of education ¼ 14.67

https://doi.org/10.1016/j.cortex.2022.09.003
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years, SDeducation ¼ 1.62 years) from Budapest, Hungary. None

of them reported history of developmental, psychiatric,

neurological or sleep disorders, and they had normal or

corrected-to-normal vision. They performed in the normal

range on standard neuropsychological tests of short-term and

working memory (Digit span task: M ¼ 6.06, SD ¼ 1.04;

Counting span task: M ¼ 3.76, SD ¼ .84; 1 missing data) (Case,

Kurland, & Goldberg, 1982; Fekete et al., 2010; Janacsek &

Nemeth, 2013; Racsm�any, Luk�acs, N�emeth, & Pl�eh, 2005).

Handedness was measured by the Edinburgh Handedness

Inventory (Oldfield, 1971); the Laterality Quotient of the sam-

ple varied between �80 and 100 (where �100 means complete

left-handedness, and 100 means complete right-handedness;

MLQ ¼ 47.31, SDLQ ¼ 47.54; 1 missing data; 82% of partici-

pants were right-handed).

All recruited participants were included in the study.

Participants were randomly assigned to one of two groups

based on the RSI of the Learning phase, and they were further

divided into two subgroups each in the Testing phase in

order to counterbalance the testing order of the RSIs (see

Procedure and Fig. 1C). Before the assessment, all partici-

pants gave signed informed consent and received course

credit for participation. The study was approved by the

Institutional Review Board of E€otv€os Lor�and University,

Hungary.

2.2. Tasks

2.2.1. ASRT task
Learning wasmeasured by the ASRT task (Howard&Howard,

1997; Nemeth et al., 2010). In this task, a stimulus (a dog's
head) appeared in one of four horizontally arranged empty

circles on the screen and participants were asked to press the

corresponding button as quickly and accurately as they could

when the stimulus occurred. The computer was equipped

with a keyboard with four heightened keys (Z, C, B, M on a

QWERTY keyboard), each corresponding to a circle in a hor-

izontal arrangement. Participants were asked to respond to

the stimuli using their middle- and index fingers bimanually.

The stimulus remained on the screen until the participant

pressed the correct button. The next stimulus appeared after

a 120 or 850 msec response-to-stimulus-interval (RSI) (for

more details on the presentation rates see Procedure). The

task was presented in blocks of 80 trials: unbeknownst to the

participants, an eight-element alternating sequence was

presented ten times (e.g., 2r4r3r1r, where each number rep-

resents one of the four circles on the screen and r represents

a randomly selected circle out of the four possible ones)

(Fig. 1A). Due to the alternating sequence structure, some

triplets (i.e., runs of three consecutive events) were more

probable to occur than others. Following previous studies, we

refer to the former as high-probability triplets and the latter

as low-probability triplets (Fig. 1B). Note that due to the

higher occurrence probability, the final event of high-

probability triplets was more predictable from the initial

event of the triplet compared to the low-probability triplets

(Howard & Howard, 1997; Nemeth et al., 2010). For each trial,

we determined whether it was the last event of a high- or

low-probability triplet.
2.2.2. Inclusion-Exclusion task
To test whether the participants gained explicit knowledge

about the regularities of the ASRT task, we administered the

widely used Inclusion-Exclusion task (Buchner, Steffens, &

Rothkegel, 1998; Destrebecqz & Cleeremans, 2001; Dienes &

Scott, 2005; Jim�enez, Vaquero, & Lupi�anez, 2006; K�obor et al.,

2017), which is based on the Process Dissociation Procedure

(PDP; Jacoby, 1991). Before performing this task, participants

were informed that the order of the stimulus appearance in

the ASRT task followed a hidden sequence. First, they were

asked to generate this sequence (Inclusion condition) using

the same response buttons as the ones they used during the

ASRT task. They were told to rely on their intuitions if they

were unsure about the sequence. They performed four runs of

this Inclusion condition. Then they were asked to generate a

sequence of responses that was different from the learned

ASRT sequence (Exclusion condition). They were instructed to

try generating realistic sequences that could have occurred in

the task, and therefore, use all response buttons equally and

try to avoid simple repetitive sequences such as 12341234 or

11112222. Since participants were explicitly told that such

sequences would have never occurred in the task, if they still

generated such sequences, it clearly indicated that they did

not follow the instructions. They performed four runs of this

condition as well. In both conditions, each run was finished

after 24 key presses (for more details see Horv�ath, T€or€ok,

Pesthy, Nemeth, & Janacsek, 2020; K�obor et al., 2017).

First, we removed runs inwhich participants did not follow

the instructions. This was determined as follows: a run was

removed from the analysis if the same response button was

pressed for 50% or more of a run, or if simple repetitive se-

quences such as in the example above were generated

consecutively for 50% or more of a run. We chose these

thresholds to find a right balance between including as much

data in the analysis as possible, while at the same time

excluding those runs in which instruction was clearly not

followed. These exclusion criteriawere determined during the

revision process of the paper and constitute a more lenient

approach than the one used originally (notably, the pattern of

results and conclusions remained unchanged during this

process, suggesting a certain level of robustness in the data,

irrespective of the different exclusion strategies). All data,

including the runs removed from the analyses reported in the

paper, are available on OSF for transparency (https://osf.io/

cy5j6).

After removing those runs in which participants did not

follow the instructions, we calculated the percentage of pro-

ducing high-probability triplets in the Inclusion and Exclusion

conditions separately. Then, we compared these scores to

chance level, which was 25%. According to PDP, producing

high-probability triplets above chance in the Inclusion con-

dition could be achieved by relying on either implicit or

explicit knowledge about the learned sequence. In contrast,

producing high-probability triplets above chance in the

Exclusion condition would indicate that participants' re-

sponses were primarily driven by implicit knowledge as they

lacked sufficient explicit/conscious control to exclude their

sequence knowledge and generate a different sequence than

the learned one (Destrebecqz et al., 2005; Fu, Dienes, & Fu,

https://osf.io/cy5j6
https://osf.io/cy5j6
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Fig. 1 e Design of the experiment. (A) In the Alternating Serial Reaction Time (ASRT) task participants were asked to respond

to the stimuli (a dog's head) appearing in one of four locations, and press the corresponding key as fast and as accurately as

they could. Unbeknownst to them, every second stimulus was part of a repeated alternating sequence (P e pattern) and

every second stimulus was random (r e random). (B) As a result of the alternation of pattern and random trials, there were

more probable and less probable combinations of three consecutive stimuli (high- and low-probability triplets, respectively).

Learning was measured as differences in responses to high- versus low-probability triplets, both in reaction time and

accuracy. An example of a possible sequence is shown in this panel. (C) The experiment consisted of two sessions,

separated by a 24-h delay. On Day 1 (Learning phase) participants were randomly assigned to one of two groups: the fast RSI

group performed 25 blocks (5 epochs) of the ASRT task with 120 msec response-to-stimulus interval (RSI), the slow RSI

group performed 25 blocks (5 epochs) of the task with 850 msec RSI. On Day 2 (Testing phase), all participants performed 10

blocks (2 epochs) of the task: 5 blocks with the fast (120 msec) and 5 blocks with the slow (850 msec) RSI version of the task,

in counterbalanced order.

c o r t e x 1 5 7 ( 2 0 2 2 ) 6 5e8 0 69
2010; Jim�enez et al., 2006; K�obor et al., 2017). Consequently,

producing a similar percentage of high-probability triplets

above chance both in the Inclusion and Exclusion conditions

would indicate that participants relied on implicit knowledge

in both conditions. Contrary, a combination of producing

high-probability triplets above chance in the Inclusion con-

dition and (closer to or) at chance level in the Exclusion con-

dition would indicate that participants gained (at least some)

explicit knowledge about the task.

2.3. Procedure

There were two sessions in the experiment: a Learning phase

and a Testing phase separated by a 24-h delay (Fig. 1C). On Day

1, the Learning phase of the ASRT task took place. Participants

were not given any information about the regularity that was

embedded in the task (Nemeth et al., 2010). They were
informed that the main aim of the study was to test how

extended practice affected performance on a simple reaction

time task. Therefore, we emphasized performing the task as

accurately and as fast as they could. Between blocks, the par-

ticipants received feedback about their average accuracy and

reaction timepresented on the screen, and then they had a rest

period of between 10 and 20 sec before starting the next block.

Participants were randomly assigned to one of two groups

on Day 1: 40 participants performed the fast RSI version, and

39 performed the slow RSI version of the ASRT task. In the fast

version of the task, the RSI was 120 msec, while in the slow

version, the RSI was 850 msec. The ASRT consisted of 25

blocks on Day 1. Thus, participants completed 2000 trials of

the alternating sequence (25 � 80 trials/block) in this phase.

Previous studies have shown that this amount of practice is

sufficient to acquire the regularities embedded in the task

(Janacsek, Ambrus, Paulus, Antal, & Nemeth, 2015; Nemeth

https://doi.org/10.1016/j.cortex.2022.09.003
https://doi.org/10.1016/j.cortex.2022.09.003
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et al., 2010; Unoka et al., 2017). In the fast version of the task,

one block took about 1e1.5 min, and in the slow version of the

task, one block took about 1.5e2.5 min, therefore the fast

version of the task took approximately 30 min, and the slow

one approximately 45 min.

On Day 2, all participants performed 10 blocks of the ASRT

task: 5 blocks with the fast and 5 blocks with the slow version

of the task, in counterbalanced order (see Fig. 1B). For testing

the potential order effects, see Supplementary results I. The

fast blocks took about 5e8 min, and the slow ones approxi-

mately 10e13 min, therefore, the Testing phase was

15e22 min long in total.

For each participant, one of the six unique permutations of

the four possible ASRT sequence stimuli was selected in a

pseudorandommanner (Howard&Howard, 1997; K�obor et al.,

2017; Nemeth et al., 2010). On Day 2, participants were tested

with the sameASRT sequence as the one they learned onDay 1.

After performing the ASRT task on Day 2, we tested the

amount of explicit knowledge the participants acquired about

the task with a short questionnaire and the Inclusion-

Exclusion task (see task description in Section 2.2.2 above).

The short questionnaire (Nemeth et al., 2010; Song, Howard,&

Howard, 2007a) included two questions: „Have you noticed

anything special regarding the task?” and „Have you noticed

some regularity in the sequence of stimuli?”. None of the

participants reported noticing the hidden regularity in the

task. The results of the Inclusion-Exclusion task are discussed

in the Results section.

2.4. Statistical analysis

We followed the standard data processing and analysis pro-

tocols of previous ASRT studies (Janacsek, Borb�ely-Ipkovich,

Nemeth, & Gonda, 2018; K�obor et al., 2017; Nemeth et al.,

2010; Nemeth, Janacsek, Kir�aly, et al., 2013; Song, Howard, &

Howard, 2007b). Based on these protocols, epochs of five

blocks were analyzed instead of single blocks (thus, Epoch 1

corresponds to Blocks 1e5, Epoch 2 corresponds to Blocks

6e10, etc.). We calculated mean accuracy for all trials and

median RTs for correct responses only for each participant

and each epoch, separately for high- and low-probability

triplets. Accumulating evidence indicates that participants

respond increasingly accurately and faster to high-probability

triplets compared with low-probability ones as the ASRT task

progresses, revealing learning of the regularities embedded in

the task (e.g. Howard & Howard, 1997; Nemeth, Janacsek, &

Fiser, 2013; Song et al., 2007b; Tak�acs et al., 2018). Therefore,

triplet learning scores were calculated as a difference in ac-

curacy/RT for high- versus low-probability triplets (for accu-

racy: high- minus low-probability; for RTs: low- minus high-

probability). Higher learning scores indicate better learning/

performance in the task. There triplet learning scores were

submitted to a series of mixed-design analyses of variance

(ANOVAs) on Day 1 and Day 2 (for details see the Results

section).

To probe whether participants gained explicit knowledge

of the ASRT regularities or their knowledge remained implicit,

performance in the Inclusion-Exclusion task was analyzed

following the procedures described in previous ASRT studies

(Horv�ath et al., 2020; K�obor et al., 2017). To ensure that the data
accurately reflect the instructions given to participants in the

two conditions, we excluded those runs in which participants

did not follow the instructions and generated systematic

combinations of stimuli (see the task description in Section

2.2.2). From the total of 632 runs, we excluded 39; thus, the

analysis reported in the Results section contained 93.9% of the

answers. For two participants, all four runs had to be removed

from the Exclusion condition; for the remaining participants,

the average number of runs remaining in this condition was

3.61 out of 4. No runs were excluded from the Inclusion con-

dition since the specific instructions described in Section 2.2.2

were given only for the Exclusion condition. The percentage of

the high-probability triplets produced by participants was

calculated separately for the runs of the Inclusion and Exclu-

sion conditions, and then it was averaged across runs to

obtain one measure per condition. These measures were

submitted to one-sample t-tests to see whether participants

generated high-probability triplets above chance level in

either condition. To test any potential differences across

conditions or groups, the percentage of high-probability trip-

lets generated by participants in the two conditions were also

submitted to a mixed design ANOVA.

We also conducted Bayesian analyses to overcome the

limitations of the frequentist approach (i.e., null-hypothesis

significance testing) and gain statistical evidence for null-

results where relevant (Dienes, 2011; Wagenmakers, 2007).

For example, if participants' knowledge of regularities

remained implicit in both the fast and slow RSI groups, the

frequentist ANOVA on the Inclusion-Exclusion task data

would yield non-significant results for group differences; in

such a case, a Bayesian ANOVA could provide evidence for no

difference. In Bayesian ANOVA, the evidence provided by the

data for including a factor (e.g., condition or group) or an

interaction in a model is quantified by BFExclusion values.

BFExclusion values reflect the change from prior inclusion odds

to posterior inclusion odds. The null model, which contains

the grand mean only, always has a value of 1 (Jarosz & Wiley,

2014; Wagenmakers et al., 2018). BFExclusion values above 1

support the exclusion and values below 1 the inclusion of a

given factor or interaction in the model that best predicts the

data. Thus, the BFExclusion values show if the data provides

evidence for similar (BFExclusion > 1) or different performance

(BFExclusion < 1) across groups and/or conditions.

In addition to Bayesian ANOVA, Bayesian t-tests were also

performed for pair-wise comparisons of ASRT data where

evidence for no difference between conditions or groups was

important to establish for the interpretation of non-significant

results. For these Bayesian t-tests, BF01 values are reported,

where values above 1 support the null hypothesis (i.e., no

difference between conditions or groups) and values below 1

support the alternative hypothesis. Values around 1 do not

support either hypothesis. For a more detailed interpretation,

see Wagenmakers, Wetzels, Borsboom, and van der Maas

(2011).

Frequentist analyses were conducted using IBM SPSS Sta-

tistics version 22 and Bayesian analyseswere performed using

JASP version 0.13.1. In all frequentist ANOVAs, the

Greenhouse-Geisser epsilon (ε) correction (Greenhouse &

Geisser, 1959) was used when necessary. Original df values

and corrected p values are reported (if applicable) together

https://doi.org/10.1016/j.cortex.2022.09.003
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with partial eta-squared (hp
2) as the measure of effect size.

LSD (Least Significant Difference) tests were used for pair-wise

comparisons. For all Bayesian analyses, Cauchy prior distri-

butionwas used, with a fixed-effects scale factor of r¼ .5 and a

random-effects scale factor of r ¼ 1 for Bayesian ANOVA.

The tasks used in the experiment, the data and the analysis

code are publicly available at https://osf.io/cy5j6. The study

procedures and analyses were not preregistered prior to the

research being conducted. We report how we determined our

sample size, all data exclusions, all inclusion/exclusion

criteria, whether inclusion/exclusion criteria were established

prior to data analysis, all manipulations, and all measures in

the study.

3. Results

3.1. Does the RSI length affect the performance in the
Learning phase?

To test whether the length of the RSI affected performance in

the Learning phase of the ASRT task, we compared the per-

formance of the fast (120 msec) versus slow (850 msec) RSI

groups on Day 1. The triplet learning scores, separately for

accuracy and RTs, were analyzed using a mixed design

ANOVA with EPOCH (1e5) as a within-subject factor, and

LEARNING RSI (fast vs slow RSI) as a between-subject factor.

These results are shown on Fig. 2. The same analyses were

performed on the raw accuracy and RT data (see Fig. 3) to

explore to what extent the responses to high- or low-

probability triplets accounted for the effects reported below;

for conciseness, the analyses involving the raw accuracy and
Fig. 2 e Triplet learning scores in the Learning phase,

measured by accuracy (A) and reaction time (B). The fast

RSI group showed overall higher triplet learning scores

compared to the slow RSI group, that was significant in

terms of the accuracymeasures of learning. A similar trend

was observed for reaction time learning scores, with

significant group differences in the second part of the

Learning phase (for details see the Results section). The

error bars represent the standard error of the mean (SEM).
RT data are reported in Supplementary results III and dis-

cussed where relevant in the Discussion.

Accuracy. The ANOVA revealed significant triplet learning

[indicated by the significant INTERCEPT: F(1, 77) ¼ 90.113,

p < .001, hp
2 ¼ .539], such that participants weremore accurate

on high- than on low-probability triplets. As the task pro-

gressed, the triplet learning scores increased [indicated by the

significant main effect of EPOCH: F(4, 308) ¼ 5.265, p < .001,

hp
2 ¼ .064]. The two groups showed different triplet learning

scores overall [significant main effect of LEARNING RSI: F(1,

77) ¼ 5.660, p ¼ .020, hp
2 ¼ .068]: the fast RSI group showed

higher triplet learning scores than the slow RSI group [2.8%

vs 1.7%, respectively] (Fig. 2A), suggesting that the length of

the RSI affected triplet learning scores on Day 1. The time

course of learning did not differ significantly between the two

groups [EPOCH� LEARNING RSI: F(4, 308) ¼ .271, p ¼ .897,

hp
2 ¼ .004].

Reaction Time. A similar ANOVAwas conducted for the RT

data. The ANOVA revealed significant triplet learning [shown

by the significant INTERCEPT: F(1, 77) ¼ 174.124, p < .001,

hp
2 ¼ .693], such that RTs were faster on high- than on low-

probability triplets. As the task progressed, the participants'
triplet learning scores increased [indicated by the significant

main effect of EPOCH: F(4, 308)¼ 11.563, p < .001, hp
2 ¼ .131]. The

two groups did not differ significantly in overall triplet

learning [main effect of LEARNING RSI: F(1, 77) ¼ 1.935, p ¼ .168,

hp
2 ¼ .025] (Fig. 2B), however, the time course of learning

was significantly different between the groups [EPOCH -

� LEARNING RSI interaction: F(4, 308) ¼ 2.424, p ¼ .048,

hp
2 ¼ .031]. The post-hoc test revealed no significant difference

in learning scores between the two groups in the first 3 epochs

[all ps > .365], while the fast RSI group showed significantly

higher triplet learning scores than the slow RSI group in Epoch

4 and 5 [all ps < .033].

3.2. How does the RSI length affect the acquired
knowledge (competence) versus the momentary
performance? Results of the Testing phase

To test how the RSI length affected the acquired knowledge

versus the momentary performance, we analyzed the accu-

racy and RT learning scores in the Testing phase of the ASRT

task. Irrespective of the RSI during the Learning phase, here all

participants were tested with both RSIs (120 and 850 msec), in

a counterbalanced order. We conducted a mixed design

ANOVA with TEST RSI (tested with 120 vs 850 msec RSI, irre-

spective of whether it was the first or the second epoch) as a

within-subject factor, and LEARNING RSI (fast vs slow RSI) as a

between-subject factor. These results are shown on Fig. 4. The

same analyses were performed on the raw accuracy and RT

data (see Fig. 5) to explore to what extent the responses to

high- or low-probability triplets accounted for the effects re-

ported below; for conciseness, these analyses are reported in

Supplementary results IV, and discussed where relevant in

the Discussion.

Accuracy. The ANOVA on the accuracy learning scores

shown in Fig. 4A revealed no significant main effect of TEST

RSI [F(1, 77) ¼ 1.774, p ¼ .187, hp
2 ¼ .023], nor LEARNING RSI

https://osf.io/cy5j6
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Fig. 3 e Average accuracy (A) and reaction times (B) separately for high- and low-probability triplets for the fast and slow RSI

groups in the Learning phase. The two groups did not differ significantly in average accuracy or reaction time in the

Learning phase. (A) As learning progressed, accuracy decreased on low-probability triplets to a greater extent than on high-

probability triplets, indicating triplet learning, confirming the interpretation of the ANOVA performed on the learning

scores. The difference in accuracy for low- versus high-probability triplets was larger in the fast RSI group compared to the

slow RSI group. (B) Reaction times decreased for high-probability triplets to a greater extent than for low-probability triplets,

indicating triplet learning (again, confirming the interpretation of the ANOVA performed on the learning scores). The

difference between high- and low-probability triplets was greater for the fast RSI group in Epochs 4 and 5 than for the slow

RSI group. For further details, see Supplementary results III. The error bars represent the SEM.
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[F(1, 77) ¼ .670, p ¼ .416, hp
2 ¼ .009]. The TEST RSI� LEARNING

RSI interaction was, however, significant [F(1, 77) ¼ 14.086,

p < .001, hp
2 ¼ .155], suggesting that the performance in the

Testing phase depended on both the RSIs during learning and

during testing. From a between-group perspective, the post

hoc tests revealed that, when testedwith the 120 msec RSI, the

group that learned with 120 msec (i.e., the fast RSI group)

showed significantly higher learning scores than the group

that learned with 850 msec [i.e., the slow RSI group; orange

vs blue circles in Fig. 4A, 4.3% vs 1.9%, respectively; p ¼ .001].

When tested with the 850 msec RSI, the fast RSI group

demonstrated marginally lower learning scores than the slow

RSI group [orange vs blue triangles, 1.6% vs 3.1%, respectively;

p ¼ .062]. Importantly, from a within-group perspective, the

fast RSI group showed significantly lower learning scores

when tested with the 850 msec versus 120 msec RSI [orange

triangle vs circle, respectively; p ¼ .001]. This finding suggests

that, in the slow RSI condition, their momentary performance

did not accurately reflect the underlying knowledge that they

could readily express when tested with the fast RSI. The group

slow RSI group showed marginally lower learning scores

when tested with the 120 versus 850 msec RSI [blue circle
vs triangle, respectively; p ¼ .093], suggesting a minor distur-

bance of the performance in the former testing condition.

Reaction Time. The ANOVA on the RT learning scores

shown in Fig. 4B revealed a significant main effect of TEST RSI

[F(1, 77)¼ 5.798, p¼ .018, hp
2 ¼ .070]: participants, irrespective of

the RSI during learning, showed higher learning scores when

tested with 120 than with the 850 msec RSI [11.4 vs 7.7 msec,

respectively]. This suggests that a faster presentation rate

generally results in better performance. Consequently, this

result also suggests that the higher learning score of the fast

RSI group in the Learning phasemore accurately reflected their

acquired knowledge than that of the slow RSI group.

The main effect of LEARNING RSI was also significant

[F(1, 77) ¼ 7.155, p ¼ .009, hp
2 ¼ .085]: the fast RSI group showed

on average lower learning scores, which was likely driven by

the lower learning scores of the fast RSI groupwhen testedwith

the 850 msec RSI (see Fig. 4B). Although the TEST

RSI� LEARNING RSI interaction did not reach significance

[F(1, 77) ¼ 2.267, p ¼ .136, hp
2 ¼ .029], an exploratory post hoc

analysis suggests that this is indeed the case: the learning

scores in the 120 and 850 msec testing conditions significantly

https://doi.org/10.1016/j.cortex.2022.09.003
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Fig. 4 e Triplet learning scores in the Testing phase, measured by accuracy (A) and reaction time (B). The colors represent the

groups that learned with different presentation rates (orange e fast RSI group, blue e slow RSI group), and the shapes

represent different presentation rates during testing (circlee testedwith the 120msec RSI, triangle e testedwith the 850msec

RSI). (A) In terms of the triplet learning scores measured by accuracy, both groups showed higher learning scores when

tested with the same presentation rate as the one they encountered during learning. (B) In terms of the triplet learning

scores measured by reaction time, the groups showed generally higher learning scores when tested with the faster

presentation rate. For further details, see the Results section. The error bars represent SEM.

Fig. 5 e Average accuracy (A) and reaction times (B) separately for high- and low-probability triplets for the fast and slow RSI

groups in the Testing phase. Both groups showed more accurate (A) and faster (B) responses on the high-probability triplets

compared to the low-probability ones, indicating triplet learning in all conditions. For further details regarding group and

condition differences, see Supplementary results IV. The error bars represent the SEM.
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differed in the fast RSI group (orange circle vs triangle, 10.4

vs 4.5msec, respectively, p¼ .007) but not in the slow RSI group

(blue circle vs triangle, 12.3 vs 10.9 msec, respectively, p ¼ .528,

BF01 ¼ 5.029). The fast RSI group's learning score was also

significantly lower than that of the slowRSI group's scorewhen

tested with the 850 msec RSI (orange vs blue triangle, respec-

tively, p ¼ .002), while there was no significant difference be-

tween the two groups' scoreswhen testedwith the 120msec RSI

(orange vs blue circles, respectively, p ¼ .433, BF01 ¼ 3.267).
3.3. Does the RSI affect whether participants gained
implicit or explicit knowledge about the hidden ASRT
regularities? Results of the Inclusion-Exclusion task

Overall, the percentage of high-probability triplets generated

in the Inclusion-Exclusion task were significantly above

chance level both in the Inclusion and Exclusion conditions

[one-sample t-tests, Inclusion condition: 7.6%, t(78) ¼ 9.595,

p < .001; Exclusion condition: 6.1%, t(76) ¼ 7.266, p < .001].

https://doi.org/10.1016/j.cortex.2022.09.003
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To test potential differences across conditions or groups, a

mixed design ANOVA on the generated percentage of high-

probability triplets was performed with CONDITION (Inclu-

sion vs Exclusion) as a within-subject factor, and LEARNING

RSI (fast vs slow) and TESTING ORDER (congruent-first

vs incongruent-first) as between-subject factors. (Note that

the TEST RSI factor used in the previous analyses was a

within-subject factor of the ASRT task, and therefore it could

not be used here. Instead, only the TESTING ORDER could be

included in this ANOVA because participants were testedwith

the two RSIs in a counterbalanced order, forming two sub-

groups based onwhich RSI was presented in Session 2 first; for

details, see the procedure in Section 2.3, Fig. 1C, and

Supplementary results I). The ANOVA revealed no significant

main effects or interactions [all ps � .109], suggesting no sig-

nificant differences across conditions or groups. This inter-

pretation was supported by the Bayesian ANOVA results,

providing evidence that none of the main effects or in-

teractions predicted the data better than the null model,

which included the grand mean only (for further details see

Section 2.4 above and Supplementary results V). In other

words, based on the Bayesian ANOVA, we can conclude that

the percentage of high-probability triplets generated by par-

ticipants was similar across conditions and across groups.

According to the PDP, generating high-probability triplets

above chance in the Inclusion condition could indicate either

implicit or explicit knowledge about the ASRT regularities. In

contrast, generating high-probability triplets above chance in

the Exclusion condition would indicate a lack of/insufficient

conscious control over the acquired knowledge (for more de-

tails on PDP see the task description in Section 2.2.2). Our re-

sults of generating high-probability triplets above chance in

both conditions, together with the similar performance across

conditions and groups, suggest that participants' knowledge

about the regularities remained implicit in the ASRT task,

irrespective of the presentation rate during learning or the

testing order in Session 2.
4. Discussion

4.1. Summary of the results

In our study, we systemically tested how the elapsed time

between subsequent items, as manipulated by the stimulus

presentation rate, affected momentary performance

versus the underlying competence using a probabilistic

sequence learning task. Our findings revealed a partially

different effect of the presentation rates on performance

versus competence depending onwhether learning took place

with the faster or slower presentation rate and whether ac-

curacy or RT measures were analyzed.

The slower presentation rate led to lower learning scores in

the Learning phase, consistent with our hypothesis. This was

the case for the whole Learning phase for the accuracy

learning scores, while this pattern emerged only around the

end of the Learning phase for the RT learning scores. Impor-

tantly, based on the Learning phase alone, it is unclear

whether the measured performance accurately reflects the

acquired knowledge or not. For example, the lower learning
scores may result from a suboptimal context in which the

acquired knowledge cannot be fully expressed. To test this

possibility, performance was probed with another presenta-

tion rate as well that was different from the one encountered

during learning.

The Testing phase revealed different patterns of results for

accuracy and RT measures. For RTs, participants showed

generally higher learning scores when tested with the faster

presentation rate. For accuracy, participants showed higher

learning scores when tested with the same (fast or slow)

presentation rate as the one that they encountered during

learning. Thus, RT results are consistent with the prediction

that a faster presentation rate can help better express the

acquired knowledge (i.e., performance ~ competence), while

with slower presentation rates, performance might be poorer

than the acquired knowledge (performance < competence).

The accuracy results are inconsistent with this prediction;

instead, they suggest that the presentation rate during

learningmay become part of acquired knowledge, leading to a

better expression of that knowledge when tested with the

same presentation rate as the one encountered during

learning (performance ~ competence) and weaker perfor-

mance when tested with a different presentation rate

(performance < competence). Thus, dissociation between

performance and competence seemed to occur both in RT and

accuracy measures but under different circumstances

(different testing conditions). Based on the results of the

Inclusion-Exclusion task, the acquired knowledge remained

implicit in both groups, suggesting that the level of awareness

about the learned ASRT regularities did not have a con-

founding effect on the observed patterns.

4.2. Interpretation of the findings

As outlined in the Introduction, the phenomenon that the

momentary performance does not necessarily reflect the un-

derlying knowledge (competence) has been highlighted by

previous theoretical work in language (Chomsky, 1965) as well

as in learning and memory, with experimental evidence

coming from latent learning in animals, and verbal learning

and motor skill learning in humans (Kantak & Winstein, 2012;

Schmidt & Bjork, 1992; Soderstrom & Bjork, 2015). While there

are many examples for a dissociation between momentary

performance and the underlying competence in research as

well as in our daily lives, it has remained elusive under what

circumstances such dissociation occurs.

Here we tested how the elapsed time between subsequent

eventsmay contribute to this dissociation. We focused on this

factor because a great body of research has shown that the

elapsed time between subsequent events (items) can deter-

mine how our mind processes those events and whether it

discovers potential relationships among them (Destrebecqz &

Cleeremans, 2003; Staresina & Davachi, 2009; Wlotko &

Federmeier, 2015). Overall, our findings suggest that the

elapsed time between subsequent items, as manipulated by

stimulus presentation rates, can affect the acquired knowl-

edge (competence) as well as whether that knowledge is

accurately reflected in momentary performance. In the

following subsections, we will focus on three channels by

which the elapsed time between subsequent items could have

https://doi.org/10.1016/j.cortex.2022.09.003
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contributed to the observed pattern of findings. Namely, we

will discuss how the elapsed time could affect implicit

versus explicit knowledge acquisition (i.e., awareness of the

acquired knowledge), binding, and response facilitation, and

which aspects of the observed findings support the role of

these channels in the competence versus performance

dissociation. The channels considered here are based, at least

partly, on previous theories developed in the field of learning

and memory, and interpretations of behavioral patterns that

emerged in previous studies. Importantly, the purpose of our

study was to empirically test how the elapsed time between

subsequent items (as manipulated by the stimulus presenta-

tion rate) affects the momentary performance versus the

underlying competence, and not to contrast different theories.

Nevertheless, we believe that exploring how these channels

could explain aspects of the observed behavioral pattern can

help better understand the effect of elapsed time on perfor-

mance versus competence.

4.2.1. The effect of elapsed time on implicit versus explicit
knowledge acquisition
The elapsed time between subsequent items can affect howwe

extract information from the task at hand. For example, as

presented in the Introduction, learning regularities typically

occurs implicitly, although explicit, consciously accessible

knowledge about the regularities can also emerge in certain

cases (Cleeremans& Jim�enez, 2002; Conway, 2020; Reber, 1993).

It has been previously theorized that the longer the interval

between subsequent events, the more time is available to

consciously elaborate on those events, potentially leading to

greater awareness (explicit knowledge) about the relevant task

features (Destrebecqz & Cleeremans, 2003). In this view, the

elapsed time between subsequent events would affect the level

of awareness about the relevant task characteristics (and

consequently, the acquired knowledge), and if this is not

considered when dissociation between performance and

competence is evaluated, it could lead to confounding effects.

We tested whether the different presentation rates

affected implicit versus explicit knowledge acquisition by

administering an additional task, the Inclusion-Exclusion

task, at the end of the Testing phase. With this task, we

found that knowledge about the regularities embedded in the

ASRT task remained implicit in both groups, regardless of the

presentation rate during learning. Based on this finding, it

seems unlikely that the effect of presentation rates on the

performance versus competence dissociation was driven or

confounded by the level of awareness about the regularities.

Nevertheless, it is possible that in other tasks or other do-

mains of cognition (e.g., perception, decision-making) elapsed

time between subsequent events could have a differential

effect on the level of awareness about the relevant task fea-

tures and consequently on the dissociation between perfor-

mance and competence. Therefore, this possibility should be

considered in future studies as well.

4.2.2. The effect of elapsed time on the binding of subsequent
items
The elapsed time between subsequent events could also affect

whether our mind discovers potential relationships among
them, for instance, by binding them together (Davachi &

DuBrow, 2015; Karlsen et al., 2010). The more time elapses

since the previous event, the more likely the memory trace of

that event fades away, consistent with the temporal decay

theory of forgetting (Altmann, 2009; Barrouillet, De Paepe, &

Langerock, 2012; Brown, 1958; Mercer & McKeown, 2014;

Ricker & Cowan, 2010). This, in turn, decreases the likelihood

of subsequent items to be represented and bound together in a

local short-term storage or cache (Janacsek & Nemeth, 2013,

2015). Consequently, during learning, a slower presentation

rate may decrease the number of consecutive items that can

be simultaneously maintained, potentially hindering the

learning of the regularities; and vice versa, a faster presenta-

tion rate may increase the number of simultaneously main-

tained items, leading to better learning as it was observed in

several previous studies (Destrebecqz & Cleeremans, 2003;

Dominey, 1998; Frensch & Miner, 1994; Soetens et al., 2004;

Stadler, 1995). Thus, in this view, the elapsed time between

subsequent items could affect the acquired knowledge itself

by either limiting or enabling the binding of subsequent items.

As outlined in Section 4.1, the results of the Testing phase

can reveal whether the presentation rates indeed affect the

amount of the acquired knowledge, or instead they affect

whether that knowledge is accurately expressed in the

momentary performance. Based on the results of the Testing

phase, both may be true. Interestingly, the effect of presen-

tation rates revealed a different pattern for accuracy and RT

measures. The finding that participants showed generally

higher RT learning scores when tested with the faster

presentation rate suggests that a faster presentation

rate can help better express the acquired knowledge

(performance ~ competence), while a dissociation occurs be-

tween performance and competence with slower presenta-

tion rates (performance < competence). Thus, this finding

suggests that the elapsed time between subsequent items

primarily affects the momentary performance instead of the

acquired knowledge.

At the same time, participants showed higher accuracy

learning scores when tested with the same (fast or slow) pre-

sentation rate as during learning. This finding can be explained

by assuming that the temporal properties (elapsed time be-

tween subsequent events) became part of the acquired

knowledge. Then, when participants were tested with a

different presentation rate in the Testing phase, they showed a

weaker performance because their knowledge was disrupted

by this change in the task. This interpretation is consistentwith

the theory proposed by Dominey (1998) who showed that the

temporal properties can be learned (together with the regular-

ities embedded in the task), and themeasured performance can

deteriorate if a change occurs in those properties.

Overall, this pattern of findings suggests that the temporal

properties (elapsed time between subsequent events) can

become part of the acquired knowledge as well as affect

whether momentary performance accurately reflects the un-

derlying competence in a given condition. These findings also

highlight that different behavioral (e.g., RT and accuracy)

measures should be considered simultaneously to provide a

more detailed characterization of the acquired knowledge and

performance.
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4.2.3. The effect of elapsed time on response facilitation
In contrast to the previous interpretations that focus on the

possible effects of the elapsed time on the acquired knowl-

edge (competence), the time window in which consecutive

events are simultaneously represented could affect the

momentary performance as well (Burle, van den Wildenberg,

& Ridderinkhof, 2005; Scharlau, 2007; Wlotko & Federmeier,

2015). Specifically, we suggest that if consecutive events are

closer to one another, the representation of the previous

events may be still active in the time window when response

is made to the current event, potentially leading to response

facilitation. Since the previous events predict the current

event with a certain probability in the ASRT task, their acti-

vation in this time window may facilitate the response to the

current event, whichmay be reflected in higher accuracy and/

or faster RTs (Janacsek et al., 2018; Tak�acs et al., 2018). This

response facilitation may be greater for more predictable

event combinations (such as the high-probability triplets)

compared to the less predictable ones. As more time elapses

between subsequent events, response facilitation may be

weaker for slower presentation rates, resulting in smaller

differences in the responses to more versus less predictable

events (i.e., lower triplet learning scores).

Our findings revealed that, while the presentation rate did

not have a significant overall effect on average accuracy or RTs

during learning (see Supplementary results III), it differen-

tially affected the responses to more versus less-predictable

items under certain testing conditions, which could at least

partly explain why the momentary performance did not

accurately reflect the acquired knowledge in one condition but

did in the other. For example, the group that learned with the

faster presentation rate showed lower learning scores when

tested with the slower presentation rate, suggesting that the

performance in this testing condition did not accurately

reflect the participants’ knowledge that they could better ex-

press when testedwith the faster presentation rate. This effect

was present both in accuracy and RT measures. The more

fine-grained analyses presented in Supplementary results IV

revealed the following pattern.

While accuracy on low-probability triplets did not differ

significantly when tested with the slower versus the faster

presentation rate, the group that learned with the faster pre-

sentation rate exhibited lower accuracy on high-probability

triplets in the former condition (see Fig. 5A), resulting in the

lower triplet learning scores discussed above. This finding

suggests that the slower presentation rate affected response

facilitation on high-probability triplets to a greater extent than

on low-probability triplets, consistent with the argument

above. In terms of RTs, they were faster on low-probability

triplets but did not differ significantly on high-probability

triplets when tested with the slower presentation rate

compared to the faster one (Fig. 5B). This suggests that the

lower learning score in the former condition was primarily

driven by the slower presentation rate speeding up the re-

sponses on low-probability triplets in this group, which seems

to be at odds with the response facilitation account.

For the group that learnedwith the slower presentation rate,

the more fine-grained analyses revealed that the presentation

rates did not have a significantly different effect on the
responses to either the high- or the low-probability triplets,

either in accuracy or RT measures. However, the analyses

revealed more accurate and slower responses on both triplet

typeswhen testedwith the faster presentation rate compared to

the slower one (see Fig. 5AB). These differences in average ac-

curacy and RTs suggest that the presentation rates affect some

aspects of the momentary performance in this group as well.

Thus, overall, the pattern of our findings suggests that

multiple channels may be simultaneously at play since pre-

sentation rates did not affect implicit versus explicit knowl-

edge acquisition (Section 4.2.1) but seemed to affect both

aspects of the acquired knowledge (possibly through binding;

Section 4.2.2) and the momentary performance (possibly

through response facilitation presented in this section).

4.3. Open questions

We used a within-participant design in which all participants

were testedwith both the fast and slow presentation rates in a

counterbalanced order. This design enabled us to probe if the

testing order (congruent or incongruent presentation rate

used first) affected the results, and if so, was this different for

the two groups depending on the presentation rate encoun-

tered during learning (see Supplementary results I). Our re-

sults revealed that the group that learned with the faster

presentation rate was significantly affected by the testing

order (overall higher learning scores when tested with the

congruent versus the incongruent presentation rate first)

while there was no significant difference in the testing order

for the group that learned with the slower presentation rate.

These findings suggest that when learning takes place with

faster temporal settings, performance may be more suscep-

tible to later changes in those settings (e.g., a subsequent test

under slower conditions, without a warm-up in the original,

fast condition first). At the same time, when learning takes

place with slower temporal settings, later temporal changes

may have a smaller effect on performance, perhaps by

developing a larger window of tolerance in timing (i.e., one

tolerates a greater range of possible time windows in which

subsequent events might occur). Since it was not the purpose

of the current study, future research is needed to systemati-

cally probe and clarify the details of such a possible effect.

Toobtainamorefine-grainedpictureabout theperformance

versus competence dissociation, an exploratory analysis was

performed on the so-called ‘within block position effect’ (see

MethodsandSupplementary results II). Thiseffect relates to the

phenomenon that during a longer reaction time task arranged

into blocks (spanning several seconds or minutes) participants

show different performancewhen the earlier versus later parts

of each block are compared (Nemeth, Janacsek, Kir�aly, et al.,

2013; Pan & Rickard, 2015; T€or€ok, Janacsek, Nagy, Orban, &

Nemeth, 2017). The analysis on this within block position ef-

fect revealed that the group that learned with the slower pre-

sentation rate exhibited lower learning scores in the second

halves of the blocks of the Learning phase compared to the first

halves, while the learning scores of the group that learnedwith

thefasterpresentationratedidnotdiffersignificantly in thetwo

halvesof theblocks.Additionally, the learningscores in thefirst

versus secondhalves of the blocks didnot differ significantly as

https://doi.org/10.1016/j.cortex.2022.09.003
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a function of the presentation rate of the Testing phase.

Nevertheless, for the sake of completeness and potential com-

parisons with future studies, we reported these results in the

Supplementary materials.

In the present study, we used two presentation rates (120

and 850 msec RSI) that are considered as relatively fast and

slow, respectively, based on previous studies of sequence

learning (Destrebecqz & Cleeremans, 2003; Frensch & Miner,

1994; Howard et al., 2007; Howard & Howard, 1997; Soetens

et al., 2004). These studies have typically found differences

in learning measures when contrasting presentation rates of

0e500 versus 500e2000 msec, suggesting that values below

versus above ~500 msec could lead to differential effects.

Importantly, however, these studies did not directly test the

role of presentation rates in the dissociation between perfor-

mance and competence. Therefore, how other presentation

rates would affect this dissociation remains to be tested.

Finally, it seems reasonable to assume that how the

elapsed time between subsequent events (as measured with

different presentation rates) affect the dissociation between

performance and competence likely depends on other factors,

such as the domain of the task (e.g., visual or auditory; verbal

or nonverbal) and task/stimulus complexity as well. The role

of elapsed time has received much attention in studies

focusing on forgetting, particularly in short-term and working

memory (Barrouillet et al., 2004; Brown et al., 2007;

Cornelissen & Greenlee, 2000; Oberauer, Farrell, Jarrold, &

Lewandowsky, 2016; Zhang & Luck, 2009). Although the

elapsed time that led to forgetting varied greatly across do-

mains and tasks, ranging from 50e100 msec up to 10e30 sec

(Horoufchin, Philipp, & Koch, 2011; Mercer & McKeown, 2014;

Schweickert & Boruff, 1986; Zhang & Luck, 2009), these results

together with the findings of the present study highlight that

the elapsed time has a fundamental role inmultiple aspects of

learning and memory. Our study contributes to this literature

by showing that the elapsed time between subsequent events

can affect not only the competence (e.g., the acquired

knowledge or memory of items) but also whether that

competence is accurately reflected in the momentary perfor-

mance. Further studies seemwarranted to systematically test

this dissociation, including how the length of the elapsed time

between subsequent events affects it, across a wide range of

cognitive functions, domains and tasks.

4.4. Implications

Our findings have theoretical, methodological as well as

translational implications. From a theoretical perspective, our

study highlights that performance in a given moment may not

accurately reflect the underlying knowledge (competence), and

temporal factors such as the elapsed time between subsequent

events seem to influence this dissociation. As learning and

memory support a wide range of functions and abilities (e.g.,

decision-making, perception, theory of mind, and language

performance) (Mutter et al., 2006; Rieskamp & Otto, 2006; Turk-

Browne et al., 2010; Ullman et al., 2020), the importance of the

dissociation between performance and competence likely ex-

tends beyond the cognitive domains of learning and memory.

Therefore, our findings can open new avenues of research in a

wide range of cognitive functions and domains.
From a methodological perspective, we propose that

experimental designs should be used that are able to reveal

possible dissociations between momentary performance and

the underlying knowledge. A key element of such designs is to

test performance in multiple contexts, which could be

created, for example, by different stimulus presentation set-

tings (such as in the present study) or by changes in in-

structions given to the participants (V�ekony et al., 2020). Such

designs could help find optimal experimental settings that

could be used in research to accurately measure a given

cognitive function or mental representation, including both

its behavioral and neural aspects. Moreover, the different

pattern of findings in accuracy versus RT measures highlight

that both measures should be assessed in future studies as

they may be related to at least partially distinct cognitive

processes (Burgess, Gilbert, & Dumontheil, 2007; Janacsek,

Fiser, & Nemeth, 2012; Prinzmetal, McCool, & Park, 2005;

Tak�acs et al., 2018; V�ekony et al., 2020). This could further

enrich our understanding of participants' competence in a

given task and whether that competence is accurately re-

flected in the momentary performance.

From a translational perspective, our findings could have

implications for applied fields such as education, language

learning, and sports, as well as for clinical diagnosis and

rehabilitation. For instance, when learning a foreign language

or mastering sports, students might show better performance

if speeded processing and responding is required. In clinical

settings, some patient populationsmay showgenerally slower

responses in self-paced tasks compared to healthy partici-

pants, which can mask their competence (knowledge, un-

derstanding, or mental representation of the relevant task

features), potentially leading to incorrect interpretations.

Therefore, the temporal parameters of the tasks should be

considered in these settings; for example, multiple testing

sessions with different temporal parameters could be

employed to precisely characterize the cognitive deficits in

these patient populations.
4.5. Conclusions

In summary, we systemically tested how the elapsed time

between subsequent events, as manipulated by the stimulus

presentation rate, affected the momentary performance

versus the underlying competence using a probabilistic

sequence learning task. Our study revealed that the presen-

tation rate differentially affected whether the momentary

performance accurately reflected the acquired knowledge

depending on whether learning took place with the faster or

slower presentation rate. We discussed three channels by

which the elapsed time between subsequent events could

have contributed to the observed pattern of findings: the role

of awareness, binding and response facilitation. Altogether,

our study contributes to a better understanding of the disso-

ciation between performance and competence by showing

how temporal factors can affect it and calls for further theo-

retical and empirical research as such dissociations are likely

to be present not only in learning and memory but also in

other functions and domains, including aspects of decision-

making, perception, and language.
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