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Budapest, Hungary, 4 Institute of Physics, Eötvös Loránd University, Budapest, Hungary, 5 Institute of
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Abstract

Internal models capture the regularities of the environment and are central to understanding

how humans adapt to environmental statistics. In general, the correct internal model is

unknown to observers, instead they rely on an approximate model that is continually

adapted throughout learning. However, experimenters assume an ideal observer model,

which captures stimulus structure but ignores the diverging hypotheses that humans form

during learning. We combine non-parametric Bayesian methods and probabilistic program-

ming to infer rich and dynamic individualised internal models from response times. We dem-

onstrate that the approach is capable of characterizing the discrepancy between the internal

model maintained by individuals and the ideal observer model and to track the evolution of

the contribution of the ideal observer model to the internal model throughout training. In par-

ticular, in an implicit visuomotor sequence learning task the identified discrepancy revealed

an inductive bias that was consistent across individuals but varied in strength and

persistence.

Author summary

Instead of mapping stimuli directly to response, humans and other complex organisms

are thought to maintain internal models of the environment. These internal models repre-

sent parts of the environment that are most relevant for deciding how to act in a given sit-

uation and therefore are key to explaining human behaviour. In behavioural experiments

it is often assumed that the internal model in the subject’s brain matches the true model

that governs the experiment. However this assumption can be violated due to a variety of

reasons, such as insufficient training. Furthermore, the deviation of the internal model

from the true model is not uniform across individuals, and therefore it summarizes the
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subjective beliefs of humans. In this paper, we provide a method to reverse engineer the

internal model for individual subjects by analysing trial by trial behavioural measurements

such as reaction times. We then track and analyse these reverse engineered models over

the course of the experiment to see how participants trade off between an early inductive

bias towards Markovian dynamics and the model that reflects the evidence that humans

accumulate during learning about the actual statistics of the stimuli.

Introduction

Building internal models is key to acting efficiently in the environment [1–3]. Consider for

example observing the surface of a swift river: understanding how ripples and intermittent

smooth patches are shaped by underwater rocks and understanding the strength required for

pulling the paddle to propel a raft in the desired direction helps to plan the route of our raft

downstream. Internal models represent expectations of what is going to happen next, how

objects and other people can be expected to behave (often termed intuitive physics and intui-

tive psychology), what is the state of unobserved parts of the environment and consequently

what actions lead to desired outcomes.

An ideal observer maintains an internal model that perfectly reflects the properties of the

environment and our observations. Assuming that humans maintain an ideal observer model

has been instrumental to understand behavior in a wide array of situations [4–8]. However,

limited experience with rafting and uncertainty about riverbed geometry introduces deviations

between the ideal observer model and the internal model actually maintained by individuals.

Indeed, deviations from the true model of the environment were key to accurately predict

human judgements when they interacted with physical constructs [9]. Identifying potential

deviations can be crucial since assuming an ideal observer model instead of the actual internal

model can result in misinterpretation of the computations underlying human decisions [10].

Extensive experience with the environment contributes to closing the gap between the ideal

observer model and the internal model but individual differences can persist due to variance

in prior experience, learning strategies and a range of other factors [11–14]. Consequently,

accurate prediction of behavior, especially in early stages of learning, is only possible if we can

retrieve the actual subjective internal models.

Potential sources of the deviation between the ideal observer model and the maintained

internal model has recently been the subject of intense research [15, 16]. Studies have demon-

strated that learning novel and complex statistics can lead to systematic deviations from the

ground truth model [17, 18]. Mismatch between the predictions of an ideal observer model

and human behaviour has been shown to be a consequence of computations relying on an

internal model that deviates from the ground truth rather than sub-optimal computations [10,

19, 20]. Insights on the reasons for such deviations come from theoretical considerations. In

general, perfect knowledge of the ideal observer model can be challenged by the high task and

stimulus statistics complexity or by the insufficiency of available information early during

learning [21–24]. From a theoretical perspective, learning can be more efficient if observers

not only rely on observations but recruit earlier knowledge as well. For instance, previous

experience with sea kayaking can provide skills for dealing with surface features such as whirl-

pools or rapids, despite the fact that more regular and larger amplitude waves are characteristic

of the sea. Relying on earlier knowledge can be phrased as an inductive bias since this might

help the interpretation of the current stimulus but at the expense of potentially introducing
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distortions [25]. In summary, characterising inductive biases is key to understanding how the

actual internal model maintained by humans is related to the ideal observer model.

To identify internal models, a method is required that can perform efficient inference of a

flexible class of possible internal models from behavior. Recent years have seen a number of

studies where behavior was used to infer complex internal models [26–28]. These studies

investigated internal models adapted to natural-like stimuli, in which case the ideal observer

was not feasible to identify. We seek to investigate a scenario where the internal model is com-

plex but the ideal observer model is well defined. Importantly, unlike [28], we aim to develop a

tool that can efficiently infer subjective internal models, such that individual differences in

learning curves can identify the evolution of the internal model as the participant learns about

unfamiliar stimulus statistics. For this, we need a (i) highly expressive class of internal models

and (ii) behavioural measurements that are highly informative about the internal model. We

proceed by choosing an experimental paradigm that satisfies (ii). In an experiment where trials

are governed by temporal dynamics and therefore individual trials are not independent, the

sequence of behavioural measurements have information content that far exceeds that of an

independent and identically distributed (i.i.d.) experimental setting. It has been extensively

documented that participants do pick up temporal regularities in experiments with stochastic

dynamics [29–31]. Furthermore, individuals show high variation in their initial assumptions

[29, 32]. Relying on a paradigm which features inter-trial dependencies unknown to partici-

pants, we aim to reverse-engineer the newly formed dynamical internal models of individuals.

In order to satisfy (i), we propose to use infinite Hidden Markov Models (iHMMs, [33], for a

brief introduction please read S1 Appendix). To infer the structure and dynamics of the

iHMM we adopt and extend the Cognitive Tomography (CT) framework [27]. The proposed

Cognitive Tomography model combines iHMMs and the linear ascend to threshold with ergo-

dic rate (LATER) model [34] to relate subjective probabilities of individuals to response time

measurements on a trial-by-trial basis.

In this paper we set out to infer individualised dynamical internal models from response

time data using the Cognitive Tomography principle. We use an implicit sequence learning

paradigm in which the stimulus sequence is characterised by challenging statistics novel to

participants.

We take a data-driven approach where the structure of the internal model is discovered

through modelling the subtle statistical structure present in response times. We track the evo-

lution of the internal model over multiple days and thus obtain individual learning curves that

provide unique insight into the way internal models are acquired by learning. After introduc-

ing the CT framework, we validate that the model structure inferred by CT corresponds to the

internal model of individuals by testing the generalization capability of the inferred model

across tasks and stimulus statistics. After validating CT we use it to gain insights into learning

by assessing how the inferred model relates to a stimulus statistics driven component, the ideal

observer model. We track the contribution of the ideal observer model to the internal model

by assessing the amount of variance in response time explained by the ideal observer model

relative to the internal model inferred by CT. The residual variance in the CT predictions not

explained by the ideal observer is identified with the inductive bias that humans use when

learning the task. We attempt to break down the variances in response times into two indepen-

dent components: the ideal observer model and an inductive bias. We show that the internal

model inferred through CT can be reliably broken down into the contributions of the ideal

observer model and a simple dynamical model, the so called Markov model. While the contri-

bution of the Markov model varies across participants, it can consistently account for the dom-

inant portion of the residual variance across all participants. Finally, by tracking the evolution

of the contributions of the two models we show how the two models are traded off during
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learning. While learning strategies and efficiency of learning varies considerably across indi-

viduals, a consistent trend can be identified over days, in which initial dominance of the Mar-

kov model is gradually taken over by the ideal observer, indicating that the Markov model is a

general inductive bias for learning the temporal structure of the stimulus. Taken together, our

findings demonstrate that complex internal models can be inferred from response time mea-

surements. Furthermore, our results suggest a new perspective on how humans trade-off

inductive biases and evidence over the course of learning and also provide new tools to mea-

sure such inductive biases.

Results

In order to test how behavioural data from individuals can be used to infer a dynamical proba-

bilistic variable internal model and assess the contribution of inductive biases to the internal

model, we used an experimental paradigm that could fulfil a number of key desiderata. First,

the paradigm relies on across-trial dependencies; second, as in everyday tasks, the state of the

environment cannot be unambiguously determined from the observation of momentary sti-

muli; third, the structure of the task is new to participants; fourth, the complexity of the task is

relatively high, i.e. an a priori unknown number of latent states determine the observations;

fifth, behavioural measurements during task execution are continuous, which ensures that rich

inferences can be made. In the alternating serial response time task (ASRT, [35]) a stimulus

can appear at four locations of a computer screen and the sequence of locations (untold to par-

ticipants) follows a pre-specified structure (Fig 1A). In odd trials, the stimulus follows a 4-ele-

ment sequence, while in even trials the stimulus appears at random at any of the positions with

equal probability independently of all other trials (Fig 1, Methods). Such stimuli precluded

unambiguously determining the state of the task solely based on a single trial’s observation.

There are an additional 5 random trials at the beginning of each block. Participants are tasked

to give fast and accurate manual responses through key presses corresponding to the locations

of the stimuli. We collected response time measurements for sequences of stimuli organized

into blocks of 85 trials. A session consisted of 25 blocks and the performance was tracked for 8

days with one session on each day, during which the same stimulus statistics governed the sti-

muli, followed by two additional sessions on later days where the statistics of stimuli was

altered (sessions were weekly spaced when possible, on occasions 2–3 day shifts were in place

due to participant availability, S1 Fig).

We used the response times of individuals to infer a dynamical probabilistic latent variable

model underlying their behaviour (Fig 1, Methods). We invoked the concept of CT to infer the

internal model from a limited amount of data. CT requires the formulation of the generative

model of the data, i.e. the process that produces behavioral data from observations. CT distin-

guishes two components of the model (Fig 1B, blue boxes): the internal model, which summa-

rizes an individual’s knowledge about the stimulus statistics and the behavioral model, which

describes how behavioral responses are related to the internal model during the task that is

being performed. Inference of the internal model requires inference how latent states evolve

and how these determine the stimuli. By knowing the dynamics of latent states we can make

predictions for the upcoming stimuli by establishing the subjective probability of possible sub-

sequent elements of the stimuli. The behavioral model establishes how subjective probabilities

of the internal model are related to behavioral outcome, which is the response time in our

case. We used the LATER model to predict response times from subjective probabilities [34,

36]. The experimenter uses the observed data (Fig 1B, grey boxes), the stimulus sequence and

response times, for the inference. The resulting CT model (S2 Fig) is implemented as a proba-

bilistic program with components implemented in Stan [37].
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The iHMM model provides a flexible model class to infer latent variable models [33]. Simi-

lar to the classical Hidden Markov Model, learning entails the specification of transition prob-

abilities between latent states along with the probability distributions of observations given a

particular latent state (Fig 2A). Additional flexibility of iHMM is provided by not fixing the

number of latent states but inferring this from data. This is implemented as a non-parametric

Bayesian model (for a brief introduction into iHMM see S1 Appendix). In an iHMM, partici-

pants filter the information gained from the observations over time to estimate the possible

latent state of the system (Fig 2Ba, filled purple circles). That is, they infer what history of events

Fig 1. Experimental paradigm and Cognitive Tomography (CT). A Top: Behavioural responses: participants are

responding with key presses on a keyboard where stimulus identities (shown as different coloured squares) are

associated with unique keys.Middle: An example deterministic pattern sequence, which recurrently occurs in the

stimulus sequence of a particular participant. Different participants are presented with permutations of this four-

element sequence. Bottom: In the actual stimulus sequence presented to participants, the deterministic pattern

sequence is interleaved with random items (small squares. Random items can be any of the four stimuli and can occur

with equal probability (size of the square is proportional to the probability of a stimulus). Grey line indicates one

particular realization of the stochastic sequence. B The probabilistic generative model underlying Cognitive

tomography. The generative model describes the process how a stimulus sequence (top grey box) results in a

behavioural response. A participant is assumed to use the internal model top blue box to make a prediction for the

upcoming stimulus. The internal model assumes dynamics over the latent states. The current latent state is determined

jointly by earlier states and the current observation. Based on the current latent state a prediction can be made on the

probability of possible upcoming stimuli. The predicted probability (size of squares corresponds to the probability of

prediction) is related to the behaviour through a behavioral model (bottom blue box). The behavioral model depends

on the task being performed and therefore the type of response being predicted. Here, the logarithm of the predictive

probability is mapped to a mean response time and actual response times are assumed to be noisy versions of this

mean. Response times (bottom grey box) shown here are 400 trials from an example participant. Cognitive tomography

uses the stimulus sequence and the sequence of behavioural responses (grey boxes) to infer the components of CT, the

internal model and the behavioral model (blue boxes).

https://doi.org/10.1371/journal.pcbi.1010182.g001
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could best explain the sequence of their stochastic observations. Then, they use their dynamical

model to play the latent state forward (Fig 2Ba, open purple circles) and predict the next stimu-

lus (Fig 2Bb).

During the eight days of exposure to the ASRT task participants undergo learning, which

leads to a substantial reorganization of the internal model. Learning can be present on short

(within day) or longer time scales. In our analysis we aimed at tracking the across-day changes
in the internal model of individuals. The rationale behind this choice is twofold. First, while

the non-parametric Bayesian approach is relatively data-thrifty, flexibility of the model comes

at a price that it is still characterized by a larger number of parameters (a transition matrix

with N � (N + 1) parameters and emission matrix with 4N parameters, where N is the number

of latent states). As a result, changes in the internal model cannot be reliably captured by a few

button presses. In order to have a cross-validated measure of model performance we use non-

overlapping data sets for learning the model and testing it. This also imposes a limit to how

finely we can track changes in the internal model. Consequently, while theoretically there will

be changes on a smaller time scale (especially on day one of the exposure), for practical rea-

sons, to have a stable inference, we learn the model from the response times once in every ses-

sion. Second, our analysis showed that there are substantial changes in the internal model even

days after first exposure, which suggests slower learning processes, which can be reliably cap-

tured with across-day comparisons.

To test that the proposed inference algorithm is capable of the retrieval of the probabilistic

model underlying response time sequences, we validated our inference algorithm on synthetic

Fig 2. Inference and predictions using the internal model. A We formulate the internal model as an iHMM, where the number of latent states (grey circles),
transitions between the states (arrows), and the distribution of possible stimuli for any given state (coloured squares) needs to be inferred by the experimenter. Width of

arrows is proportional to transition probability and arrows are pruned if the transition probability is below a threshold; size of dots indicates the probability of self-

transition. Size of stimuli is proportional to appearance probability in the given state. The result of inference is a distribution over possible model structures, the figure

represents a single sample from such a distribution. B Evolving the internal model from trial t to trial t + 1. At time t, participants use the internal model components

to update their beliefs over the current state of the latent states (Ba, size of dark purple discs represent the posterior belief of the latent state based on the current

observation, blue square). Then, participants play the model forward into the future (open purple circles). Finally, they generate predictions for the upcoming stimulus

(Bb, squares in grey boxes) by summing over the possible future states (open purple circles in grey boxes). Participants use previous state beliefs and the new stimulus to

update latent state beliefs. In this particular example, at trial t + 1 only one of the possible states can generate the observation, hence there is only one dark purple disk.

Again, they play the dynamics forward and predict the next stimulus. C Predicted response times against actual response times are shown for individual trials for an

example participant (dots). After training our inference algorithm on a training dataset of 10 blocks, we predict response times of another 10 blocks on the same day.

Performance is measured as the trial-by-trial coefficient of determination between measured and predicted response times (R2, coloured label).

https://doi.org/10.1371/journal.pcbi.1010182.g002
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data (Methods, S3 Fig). We used three different model structures for validation, which were

HMMs inferred from three different-length stimulus sequences (one sample from the iHMM

inference in [33]). Similar to our human experiment data, we assessed CT by computing its

predictive performance on synthetic response times. Further, since synthetic participants pro-

vide access to true subjective probabilities we also calculated performance on the ground truth

subjective probabilities. We showed that the subjective probabilities can be accurately recov-

ered from response times. As shown on S3(D) Fig, standard deviations of participants’

response times are within the range of successful model recovery.

To infer an internal model from response times, we inferred the internal model along with

the parameters of the response time model on 10 blocks of trials measured at the second half

of the session. Individual differences in internal models was captured by inferring internal

models for every participant separately. We inferred the internal model from a single set of 10

blocks, once in a session. To check the validity of our response time model, we validated its

basic assumptions. The response time model assumes that variance in response times comes

from the joint effect of the variance in log predictive probabilities and an inverse Gaussian

noise corrupting the subjective probabilities. If the fit of the internal and the response models

are appropriate, the the residual variance, i.e. the variance not accounted for by the variance in

the subjective probabilities predicted by the CT model, is expected to be inversely normally

distributed. We checked this on the CT model on a subject by subject basis by contrasting the

expected cumulative distribution of residuals with the measured cumulative distribution. This

analysis demonstrated that residuals are close to a normal distribution (S4 Fig) with a single

subject apparently having a bimodal residual distribution, potentially indicating additional

structure in the internal model not captured by CT. Note, that throughout the analysis trials

with fast response times are discarded (see Methods for details).

Response times could be predicted by CT efficiently even for individual trials as shown by

the analysis of the response times from a single participant (R2(550) = 0.284, p< 0.001, Fig

2C). The predicted distribution of response times closely matched that of the empirical distri-

bution of response times (for an example, see S5 Fig). It is important to note that the predictive

power was substantially increased by averaging over trials in the same positions of the

sequence (S6 Fig). Despite the significant advantage of trial-averaged predictions, we believe

that single trial predictions provide a more rigorous and important characterization of human

behaviour therefore we evaluate model performances on an individual trial basis in the rest of

the paper.

Alternative models

Whether and how much the inferred internal model reflects the structure of the environment

can be tested by contrasting the inferred CT model with the ideal observer model. Since we

have full control over the generating process of the sequence of stimuli, the ideal observer

model is identified with a generative model that has complete knowledge about the stimulus

statistics and the only form of uncertainty afflicting inference stems from the ambiguity in the

interpretation of observations rather than uncertainty in model structure or parameters.

Assessment of the deviation of the CT and the ideal observer models can reveal the richness of

the strategies pursued by humans when exposed to unfamiliar artificial stimulus statistics.

Fixed parameters of the ideal observer also ensured that the changing task performance of

humans could be directly compared across the course of learning to the same baseline. Impor-

tantly, ‘learning’ by participants during extended exposure throughout the experiment does

not necessarily mean that their internal model gets gradually closer to the ideal observer model

since even when more evidence is provided towards the true underlying model one can
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commit more and more to a superstitious model. As a consequence, deviation can temporarily

accumulate before converging towards the true model, resulting in nonlinear learning trajecto-

ries. The ideal observer model is the one that perfectly corresponds to the task structure.

Importantly, this ideal observer model is part of the set of models that iHMM can learn. This

internal model corresponds to a graphical model in which eight states are present representing

the four alternating pattern and random states, such that pattern states are characterized by a

single possible stimulus and random states are characterized by equal probability stimuli

(Fig 3B). Thus, the ideal observer models bear strong similarities with the CT model but differ

conceptually: the ideal observer model parameters are determined by stimulus statistics, while

CT structure and parameters are determined by behavioral data.

A defining characteristic of the CT model was that it could model an arbitrarily rich tempo-

ral dependence between subsequent scenes by using latent states. A model that can only

account for direct dependencies between consecutive scenes is the Markov model, which lacks

the capability to represent latent states. This model learns the transition probabilities directly

between observations, which is a simple but feasible model that can account for a wide range

of everyday observations. Importantly, a Markov-like dynamics is a special case of the internals

models that CT can represent.

Finally, the gold-standard for characterizing learning in an ASRT task is the so-called triplet

model that tests the correlation of response times with the summary statistics of the stimulus

sequence. We formulated this model as a trigram model. We include this model as well to

Fig 3. Alternative models. A Table of models and the maximum likelihood parameter sets for the stimuli in our experiment. The ideal observer model (the true

generative model of the stimuli) can be formalized as an 8-state HMM with states Pattern1, Random1, Pattern2, Random2, Pattern3, Random3, Pattern4, Random4

where the pattern states produce the corresponding sequence element with probability 1 and all the random states produce any of the four observations with equal

probability independently. The Markov model (where predictions are produced by conditioning only on the previous observation) fits the observations best when it

predicts all observations with equal probability, since the marginal probabilities of any one stimulus is equal regardless what the previous observation was, because

every other trial is random. The trigram model produces a “high triplet” prediction, where the next stimulus is the successor of the stimulus two trials ago in the

pattern sequence (the current observation is either a random or a pattern element, each with 50% probability, with conditional probabilities of 100% or 25%,

respectively). All alternatives have equal probability of 0.125. Note that the exact probabilities in this case are not relevant since the trials are categorized into two

groups (high and low) and therefore the parameters of the response time model and these probabilities are underspecified. The CT model produces a prediction for

the next stimulus via filtering. A latent state of the sequence is estimated from previous observations using a Hidden Markov Model. This flexible model space

includes the ideal observer model as well as the Markov model as special cases. B Structure of the ideal observer model (top panel) and that of the Markov model

(bottom panel). For the description of the graphical elements as Fig 2A.

https://doi.org/10.1371/journal.pcbi.1010182.g003
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compare its predictive performance with alternative models. Since the triplet model reflects

the summary statistics of the stimulus this model bears resemblance to the ideal observer

model albeit without assuming the ability to perform real inference in the model.

Direct comparison of alternative models is presented in Fig 3A (see also Methods).

Comparison of ideal observer and CT performance to predict trial-by-trial

behavior

We tracked the predictive performance of the ideal observer model through the eight days of

exposure to a fixed stimulus statistics in the ASRT task. The ideal observer is determined by

the stimulus structure therefore capturing across-individual differences is limited to different

nuisance parameters, not characteristic of the internal model. Participant-averaged predictive

performance of the ideal observer was not significantly above zero on the first day of training

(one-sided t(24) = −0.7692, p = 0.775, CI = [−0.0214, Inf], d = 0.154). Participant-averaged pre-

dictive performance was constantly increasing with the length of exposure, indicating that par-

ticipants gradually acquire an internal model that accommodates the statistics of stimuli

(Fig 4A).

Comparison of the internal model captured by CT to the ideal observer model reveals a

consistent gap in predictive performance (Fig 4A). CT systematically outperformed the ideal

observer on all eight days of exposure (r(198) = 0.923, p< 0.001) also demonstrating above

chance predictive performance on the first day. The advantage of the CT model over the ideal

observer was very consistent across participants as demonstrated by the participant-by-partici-

pant comparison of predictive performances on the eighth day of exposure (binomial test on

MSE values 0.96, n = 25, p< 0.001, Fig 4B). In summary, while the ideal observer model dem-

onstrates clear evidence that participants do gradually learn the stimulus statistics, CT reveals

structure in responses that is not accounted for by the ideal observer model.

Validation of the internal model

To verify that better predictive performance of the model identified by CT is not only a conse-

quence of a more flexible model but is a signature of inferring a model that reflects better the

Fig 4. Contrasting the ideal observer and CT performance in predicting trial-by-trial response times. A,

Performance of the two models in predicting response times on the eight days of exposure to the stimulus sequences

governed by the same statistics. Performance is measured as the amount of variance in response times (R2) explained

by the particular model. Dots represent mean performance, boxes represent the 25 and 75 percentile of the

performances across the population of 25 participants. B, Violin plot of the distribution of mode l performances across

the participants on the eighth day of exposure. Grey dots indicate individual participants, lines connect model

performances for the same participant. All data on the figure are cross-validated by fitting the model on a set of blocks

late in the session and tested on non-overlapping earlier blocks.

https://doi.org/10.1371/journal.pcbi.1010182.g004
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properties of the internal model maintained by the participants, we perform two additional

analyses. The core principle of Cognitive Tomography is to distinguish an internal model that

captures a task-independent understanding of the statistical structure of the environment and

a response model which describes task-specific behavioural responses. The validity of this

principle can be assessed by manipulating the internal and behavioral models independently.

First, we tested if the same internal model can be used to predict behavioral performance in a

different task, that is, to predict behavioral measures different from those that the model was

trained on. CT was trained on response times when participants pressed the correct key and

here we replaced this task of predicting response times with the prediction of behavior in error

trials, that is, in trials when the participant pressed the incorrect button. In particular, we

aimed at predicting the trials in which a participant is likely to commit errors (because the sub-

jective probability of the correct choice is relatively low) and also the erroneous response when

an error occurs (the subjective probability of the choice relative to other potential choices).

Second, we tested the usage of the internal model when stimulus statistics is manipulated.

After completing eight days of training, participants were exposed to novel stimulus statistics

and we tested if participants recruited the learned internal model only when the stimulus sta-

tistics matched the one the internal model had been learned on.

In error prediction we separated trials based on whether the participant pressed the key cor-

responding to the actual stimulus or any other keys. Note, that the internal models of CT were

inferred only on correct trials using the response time model. We investigated two relevant

hypotheses. First, a participant will more likely commit an error when their subjective proba-

bility of the stimulus is low. Second, when committing an error, their response will be biased

towards their expectations. For reference, we contrasted the predictive performance of CT

with the ideal observer model. We compared the rank of the subjective probability of the

upcoming stimulus both for correct and incorrect trials (Fig 5A). CT ranked highest the

upcoming stimulus in correct trials above chance (0.461, n = 18473, p< 0.001) and signifi-

cantly below chance for incorrect trials (0.175, n = 2777, p< 0.001). Ideal observer model

excelled at predicting the correct responses, as it ranked the correct responses high above

chance (0.635, n = 18473, p< 0.001). However, it also assigned the highest probability to the

upcoming stimulus in incorrect trials (0.315, n = 2777, p< 0.001). Ranking of incorrect

responses was above chance for both models (Fig 5B).

We obtained a participant-by-participant assessment of the difference between model per-

formances in predicting error trials by calculating ROC curves of the models based on the sub-

jective probabilities assigned to upcoming stimuli (Fig 5C and S7 Fig). Area between two ROC

curves characterizes the performance difference between models and CT is shown to consis-

tently outperform the ideal observer model in distinguishing correct choices from incorrect

choices (paired t-test on AUC values one-sided t(24) = 6.185, p< 0.001, CI = [0.033, Inf],
d = 1.1, Fig 5D). Thus, CT can perform across-task predictions and it substantially outper-

forms the ideal observer model as well.

We also tested the hypothesis whether participants use a single model to represent the

sequence or they are capable of holding multiple models and recruiting them appropriately

[38–40]. In particular, when we changed the underlying pattern sequence in the task, we

expected participants to start learning a new model instead recalibrating the same model used

in the first eight days. There are two major pieces of evidence at hand. Firstly, as expected, the

internal model inferred on Day 8 does significantly worse in predicting behaviour when a new

sequence is present on Day 9 (one-sided t(24) = 4.958, p< 0.001, CI = [0.0746, Inf], d = 1.06).

Similarly, the internal model inferred on Day 9 predicts human behaviour significantly worse

on Day 8 (one-sided t(24) = 4.9, p< 0.001, CI = [0.0616, Inf], d = 0.963). The real test to using

two models is on Day 10, when the two underlying sequences are alternating every five blocks,
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Fig 5. Validation of the inferred internal model by selectively changing the task and the stimulus statistics. A-D

Choice predictions by CT (red) and the ideal observer model (green). Models are trained on response times for correct

key presses on Day 8 and tested on both correct and error trials the same day. A, Proportion of trials where the model

ranked the upcoming stimulus first. For correct trials both models have preference for the stimulus. For incorrect

trials, the ideal observer model falsely predicts the stimulus in more than a quarter of the time. B, Proportion of trials

where the model ranked the button pressed by the participant first. For incorrect responses, both models display a

preference towards the actually pressed key over alternatives. C, ROC curves for two example participants based on the

subjective probabilities of upcoming stimuli (held-out dataset). Area under the ROC curve characterizes the

performance of a particular model in predicting error trials. D, Area under ROC curve. Grey dots show individuals,

bars show means. E, Investigating new internal models that emerge when new stimulus sequences are presented.

Participant-averaged performance of predicting response times on Day 8–10 using CT-inferred models that were

trained on Day 8 (filled red symbols) and Day 9 (open red symbols) on stimulus sequences governed by Day 8 or Day 9

statistics. On Day 9 a new stimulus sequence was introduced, therefore across-day prediction of response times

corresponded to across sequence predictions. Training of the models was performed on 10 blocks of trials starting

from the 11th block and prediction was performed on the last five blocks of trials (the index of the blocks used in
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starting with Day 8 sequence in blocks 1–5. Specificity of response time statistics to the stimu-

lus statistics is tested by predicting Day 10 performance using Day 8 and Day 9 models. The

Day 8 model more successfully predicts response times in blocks relying on Day 8 statistics

than on blocks with Day 9 statistics (one-sided t(24) = 3.734, p< 0.001, CI = [0.0236, Inf],
d = 0.594) and the opposite is true for the Day 9 model (one-sided t(24) = 3.528, p< 0.001, CI
= [0.0261, Inf], d = 0.575). Oscillating pattern in the predictive performance of Day 8 and Day

9 models on blocks governed by Day 8 and Day 9 statistics indicates that participants success-

fully recruit different previously learned models for different stimulus statistics (Fig 5E and S8

Fig; note however, that there is high variance across participants in the level of oscillation indi-

cating varying level of success).

In summary, these results demonstrate that the internal model inferred by CT fulfils two

critical criteria: the internal model component is general across tasks but is specific to stimulus

statistics.

Evolution of the internal model with increased exposure

Our initial analyses demonstrated that the internal model captured by CT can account for a

large component of the variance observed in the responses of participants and also that the

ideal observer model can only account for a fraction of this variance. This is expected, since

learning the model underlying observations entails that participants need to learn the number

of states, the dynamics, and observation distributions, which requires substantial exposure to

stimulus statistics. When data is insufficient for an observer to infer the model underlying

observations, they can recruit inductive biases that can reflect earlier experiences. The struc-

ture of such inductive biases can be very rich. Instead of trying to explore the space of potential

forms of inductive biases, we use an Ansatz that is a parsimonious explanation of temporal

dependencies, the Markov model. The Markov model only learns immediate dependencies

between subsequent observations, which is not in line with the statistics of the applied stimulus

sequence but reflects the regularities found in everyday stimuli. In summary, we assume that

the gap between the predictive performance of CT and that of the ideal observer can be

accounted for by the Markov model. Further, if it constitutes an inductive bias then responses

early in the training are governed by Markov model and only gradually wanes. We analyzed

the learning curves of individuals through the eight days of training. Our initial analyses were

extended with an additional model, the Markov model (Fig 6A). For reference, we also ana-

lyzed the trigram model, which can capture essential summary statistics of the stimuli. The

predictive performance of the trigram model closely follows that of the ideal observer, indicat-

ing that the summary statistics captured by the trigram model is indeed responsible for a sub-

stantial part of the statistics reflected by the ideal observer (Fig 6A). The Markov model can

capture a significant amount of variance from response times on the first day of exposure

(M = 0.0677 ranging from 0.00049 to 0.13, one-sided t(24) = 11.68, p< 0.001, CI = [0.205, Inf],
d = 2.34), and its performance is not different from that of CT (binomial test on MSE values

0.72; n = 25, p = 0.0433). Note, that the Markov model is a special case of the model class repre-

sented by CT (Fig 3B), therefore indistinguishable predictive performance of the two indicates

that the internal models on the first day of training are dominated by a Markov structure.

testing is indicated in brackets). On Day 10, stimulus sequence was switched in 5-block segments between sequences

used during Day 8 and Day 9 (purple and grey bars indicate the identity of stimulus sequence with colours matching

the bars used in Day 8 and Day 9. Error bars show 2 s.e.m. over participants. Stars denote p< 0.05 difference.

https://doi.org/10.1371/journal.pcbi.1010182.g005
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Fig 6. Evolution of the internal model with increasing training. A Mean explained variance (dots, averaged over participants) in held-

out response times in sessions recorded on successive days for the CT (red), Markov (blue), ideal observer (green) and trigram (yellow)

models. Error bars denote 2 standard error of the group mean. Error bars show 2 s.e.m. B Color coding of response buttons used in this

figure. C Color coding of sequence showed to participants. D-F Learning in individual participants (left, middle, and right panels

corresponding to different participants: 102, 110, and 119, respectively). E Learning curves of CT, ideal observer, Markov, and trigram

models. Internal models shown on D & F panels (corresponding to Days indicated by red disks on panel E, respectively) are samples from

the posterior of possible internal models inferred by CT. CT predictive performance is calculated by averaging over the predictive

performances of 60 samples. Participant 102 finds a partially accurate model by Day 2 (D) and a model close to the true model by Day 8

(F). Participant 110 retains a Markov model throughout the eight days of exposure. Prediction of their behaviour by the Markov model

gradually improves while the predictive performance of the ideal observer model is floored, indicating that no higher-order statistical

structure was learned. G & H Mismatch between subjective probabilities of upcoming stimuli derived from CT and alternative models: the

ideal observer model (generative probabilities, horizontal axis); and the Markov model (vertical axis). KL-divergences of the predictive

probabilities are shown for individual participants (dots) on Day 2 (G) and Day 8 (H). KL-divergence is zero at perfect match and grows

with increasing mismatch.

https://doi.org/10.1371/journal.pcbi.1010182.g006
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CT offers a tool to investigate the specific structure of the model governing the behaviour of

individuals at different points during learning while exposed to the same sequential statistical

structure (Fig 6B–6D and 6F). We computed learning curves of individuals (Fig 6E and S9

Fig) and analysed the internal model structure at different points during training by taking

posterior samples from the CT model. Early during training where the predictive performance

of the Markov model is close to that of CT, the inferred iHMM indeed tends to have a struc-

ture close to that of the Markov model (see also Fig 3B), which is characterized by a strong cor-

respondence between observations and latent states (Fig 6D). Later in the experiment,

however, the performance of CT deviates from that of the Markov model for most of the par-

ticipants (Fig 6E and S9 Fig) and the model underlying the responses reflects a more complex

structure (Fig 6F). Note that the monotonic improvement of CT performance can hide a richer

learning dynamics: several participants have strong nonlinearities in their learning as initial

improvements correspond to a stronger reliance on a Markov-like structure, which is later

abandoned for a more ideal observer-like structure (Fig 6F and S9 Fig). Importantly, learning

curves and internal models corresponding to different parts of the learning curve reveal quali-

tative differences between participants. There are participants where improved predictability

of response times does not correspond to adopting a model structure that reflects the real stim-

ulus statistics, but the model underlying response times still closely resembles a Markov model

(participant 110, Fig 6F, see also Fig 3B). In the meantime, subjects can be identified where the

contribution of the Markov model to the internal model declines to almost zero and their

internal model seems to faithfully reflect the characteristics of the ideal observer model (subject

119, Fig 6F, note the alternating states with uniformly distributed observations and those with

close to certain prediction of observations).

An objective measure of the match between the subjective probabilities of upcoming stimuli

and the ground truth probabilities can be obtained by calculating the KL-divergence between

the two, a measure commonly used to compare probability distributions. An alternative argu-

ment can also be made for using KL-divergence deduced from the LATER model (see S2

Appendix). We computed the KL-divergence between the ground truth probabilities of the

task and those of the inferred CT model (Fig 6G) as well as the inferred Markov model and the

CT model (Fig 6H), which quantifies the influence of the Markov model on the internal

model. The analysis confirms that some participants move away from a Markov model and

towards the ground truth probabilities (e.g. participants 102 and 119) while others maintain a

model closer to a Markov model throughout the experiment (e.g. participant 110).

Trade-off between ideal observer and Markov model contributions

The Markov model was shown to be present in multiple days of exposure to the stimulus

sequence, and even the internal models of individuals inferred by CT indicated that a Markov-

ian structure largely determines the behavior of individuals early in the training. We assessed

the relative contributions of the Markov and ideal observer models by calculating the number

of individuals for whom the Markov or the ideal observer model showed higher predictive per-

formance. The Markov model could be identified for all of the participants (Fig 7A), albeit its

strength to predict responses varied across participants (S8 Fig). This, along with the observa-

tion that the contribution of the Markov model could decline and even diminish for several

participants, raised the possibility that the Markov model could constitute the inductive bias

participants were relying on.

To investigate this hypothesis, we first tested if the predictive performance of CT can be

understood as a combination of the performances of the Markov and ideal observer models.

For this, we capitalize on the insight that the Markov and the ideal observer models capture
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orthogonal aspects of the response statistics. The Markov model can only account for first

order transitions across observed stimuli. The ideal observer model is sensitive to both first-

order and second-order transitions but since parameters of the ideal observer model are deter-

mined by the stimulus statistics, which lack first-order dependencies the structure that this

model actually captures is only sensitive to second-order transitions (Fig 3). As a consequence,

the variances in response times explained by these two models are additive.

We used the additivity of Markov and ideal observer variances to assess how well the per-

formance of CT can be predicted by combining the predictions of the ideal observer and Mar-

kov models. We contrasted the normalized CT performance, the difference of the variance

explained by CT and the Markov model, with the variance explained by the ideal observer

model on a participant by participant basis (Fig 7B). We chose to contrast the normalized CT

with ideal observer instead of contrasting CT with the sum of the ideal observer and Markov

models because this measure emphasizes the contribution of stimulus-statistics to the internal

model maintained by participants. We found strong correlation between the two measures (r
(23) = 0.88, p< 0.001), indicating that CT performance can be largely explained by a combina-

tion of the Markov and ideal observer models. This strong correlation was consistently present

on all recording days (r(198) = 0.923, p< 0.001, S10 Fig). S9 Fig also reveals that advantage of

CT predictive performance over the Markov model only starts to grow as the ideal observer

model can be identified in the responses of participants.

A closer inspection of the response time data can provide exquisite insight into how the

inductive bias and evidence-based models are combined to determine responses. In particular,

we wanted to assess if trial-by-trial CT predictions can be broken down into the individual

contributions of the Markov and ideal observer models. We modelled the response time pre-

dicted by CT as a linear combination of the predictions obtained by the Markov and ideal

observer models. Response times in all trials of a particular participant for any given day were

fitted with three parameters: the weight of the contributing models and an offset. Combined

response time predictions showed high level of correlation with the predictions obtained from

CT: on any given day the across-participant average correlation was close or above 0.8

(Fig 7C). Thus, despite the changing contributions of Markov and ideal observer models across

days (Fig 7A), the two models could consistently explain a very large portion of the statistics

captured by CT.

We investigated if the statistical structure captured by CT goes beyond that captured by the

Markov and ideal observer models. The normalized CT showed a small but significant advan-

tage over the ideal observer model on day eight of the experiment (one-sided t(24) = 3.646,

p< 0.001, CI = [0.0126, Inf], d = 0.729, Fig 7D). Therefore we sought to understand if the mar-

ginal advantage of the normalized CT predictive performance reflected relevant stimulus sta-

tistics that could be captured by CT but not by the Markov or ideal observer models. We

analyzed response times to the third element of three-stimulus sequences which the trigram

model is unable to distinguish. In one of the analysed conditions, the first and third elements

were pattern elements and we compared these to a condition where the first and third ele-

ments are random elements but the actual observations were the same. Since only the latent

state differed between the two conditions, these cannot be distinguished by the trigram model.

Higher order learning, characterised by response time difference between the two conditions,

was highly correlated with the higher-order statistical learning predictions of CT both early in

the training (Fig 7E, r(22) = 0.756, p< 0.001) and on the last day of training (Fig 7E, r(23) =

0.603, p = 0.0014). Interestingly, early in the training most of those participants whose higher-

order statistical learning measure was significantly different from zero had negative score (Fig

7E, orange dots), a counter-intuitive finding termed inverse learning [41, 42]. In contrast,

higher order statistical learning could not be predicted by the ideal observer (Fig 7E, r(22) =
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−0.265, p = 0.21 and r(23) = 0.0457, p = 0.828 on Days 2 and 8 of training, respectively). On

Day 2, some participants show a significant distinction between these Pattern and Random tri-

als in the reverse direction: responding to Random trials faster than for Pattern trials. The

ideal observer model cannot capture this feature of the data whereas internal models inferred

using CT can do so.

In summary, while the ideal model cannot account for the full statistical structure captured

by CT but together with the Markov model the two models explain the majority of the CT’s

Fig 7. The internal model captured by CT can be reliably broken down into the independent contribution of an

inductive bias and the ideal observer model. A Day-by-day comparison of the number of participants for whom the

predictive performance of Markov (blue) or ideal observer (green) models was higher. B Subject-by-subject

comparison (dots represent individual subjects) of ideal observer model performance and normalized CT performance

(the margin by which CT outperforms the Markov model) on Day 8. Dots close to the identity line (grey line) indicate

cases where CT performance can be reliably accounted for by contributions from the two simpler models. Normalized

CT performance closely follows the performance of the ideal observer model, and deviations tend to indicate slightly

better normalized CT performance. C Performance of a linear model predicting CT model predictions on a trial-by-

trial basis from a Markov and ideal observer model predictions on different days of the training. Thick mid-line

indicates R2 of the trial-by-trial fit of the linear combination to CT performance averaged across participants. Boxes

show 25th and 75th percentile of the distribution. Upper whiskers show largest value within 1.5 from 75th percentile.

Similarly for lower whisker. Dots are data points outside the whiskers. D Histogram of the advantage of normalized CT

performance over the ideal observer model. Red line marks the mean of the histogram. E Higher-order statistical

learning in CT (left panels) and ideal observer model (right panels) on Day 2 (top panels) and Day 8 (bottom panels) of

the experiment. Dots show individual participants. Orange dots represent participants with higher-order learning

score significantly deviating from zero. CT can capture both negative deviations (Day 2) and positive deviations (Day

8) in this test and displays significant correlations across participants on both days between the predicted and

measured higher-order statistical learning, indicating that subtle and nontrivial statistics of the internal model is

represented in CT.

https://doi.org/10.1371/journal.pcbi.1010182.g007
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internal model such that the relative contributions of the two models shifts towards the ideal

observer model during learning.

Discussion

In this paper we built on the idea of Cognitive Tomography [27], which aims to reverse engi-

neer internal models from behavioural responses, and extended it to infer high-dimensional

dynamical internal models from response time data alone. Key to our approach was the com-

bination of non-parametric Bayesian methods that allow discovering flexible latent variable

models, with probabilistic programming, which allows efficient inference in probabilistic

models. The proposed model has a number of appealing properties for studying how acquired

knowledge about a specific domain affects momentary decisions of biological agents: 1, We

used iHMM, a dynamical probabilistic model that can naturally accommodate rich inter-trial

dependencies, characteristic of an array of everyday tasks; 2, iHMM is capable of capturing

arbitrarily complex statistical structure but not increasing the complexity of the model more

than necessary [43, 44]; 3, Response times can be predicted on a trial-by-trial basis; 4, Complex

individualised internal models could be inferred, which allowed inference of individual learn-

ing curves. Using this tool, we could track the deviation of the learned internal model from the

ideal observer model. We identified transient structures that were nurtured temporarily only

to be abandoned later during training. The deviation could be consistently explained by the

contribution of a simpler model, a so-called Markov model, that learns the immediate tempo-

ral dependencies between observations but ignores latent variables. Initial dominance of the

internal model by the Markov model indicated that the Markov model constitutes an inductive

bias that humans fall back to when experience is limited. Indeed, during learning the contribu-

tion of Markov model decreased on an individual-by-individual basis, which coincided with a

gradual decrease in the deviation between the inferred internal model and the ideal observer

model.

Learning in general is an ill-defined, under-determined problem. Learning requires induc-

tive biases formulated as priors in Bayesian models to efficiently support the acquisition of

models underlying the data [45, 46]. The nature of such inductive biases is a fundamental

question which concerns both cognitive science and neuroscience, even machine learning [45,

47, 48]. These inductive biases determine what we can learn effectively. Inductive biases can

effectively support learning if these represent priors, which reflect the statistics of the environ-

ment. Indeed, Markovian dynamics can be a good approximation of the dynamics of the natu-

ral environment therefore can constitute a useful inductive bias. Our analysis demonstrated

that participants are remarkably slow to learn the ground truth statistics of the stimuli. Our

results also showed that this slow learning dynamics can be accounted for by a strong inductive

bias that is consistent across participants. Slow acquisition of the true task statistics might indi-

cate the low a priori probability of the task statistics among the potential hypotheses humans

entertain. The spectrum of inductive biases that humans use can be much richer than the Mar-

kov model. For instance, after the extended exposure to the ASRT, one can expect that the

inductive biases can be updated. It will be an exciting future line of research how we can iden-

tify updates in inductive biases, a question related to the broader topic of meta learning, or

transfer learning [49].

The model class that we use to infer the internal model has a strong effect on the types of

statistics in the data that can be learned effectively. Our proposed model class, iHMM, is

appealing because it can accommodate highly complex statistical structures, including the

ideal observer model or the Markov model. The flexibility of the model comes at a price that

more data is required for inferring the model. This motivated the choice to infer one model
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per session and track learning by comparing inferred models across days. Our choice is moti-

vated by the revealed multi-day learning process that seemed to be characteristic of all partici-

pants. The approach has a limitation too, that early in the training (and especially on the first

day) faster changes in the internal model cannot be captured. Alternative model classes, such

as a hierarchical version that can more effectively perform chunking, can be more effective in

learning from more limited data and can be used to explore the evolution of the internal

model in more detail [50]. Data hunger of model inference can be further curbed by learning a

constrained version of parameters, such as the transition matrix) but at the expense of hinder-

ing potential individual differences. The proposed framework of cognitive tomography natu-

rally accommodates such alternative model classes and we expect further insights into the way

inductive biases are used during learning.

The presented model builds on the original CT analysis performed on faces [27] but differs

in a number of fundamental ways. We sought to infer the evolution of the internal model for

statistics new to participants. In contrast to the earlier formulation using a 2-dimensional

latent space and a static model, here the inference of a dynamical and potentially high-dimen-

sional model yields a much richer insight into the working of the internal model acquired by

humans. Using a structured internal model allows the direct testing of the model against alter-

natives, thus providing opportunities to reveal the computational constraints that might limit

learning and inference in individuals. A well-structured internal model can be used to make

arbitrary domain-related inferences within the same model. Based on this, we can decompose

the complex inference problem into separately meaningful sub-parts which can be reused in

tangential inference problems to serve multiple goals. Our experimental design permitted

some exploration of such across-task generalization capabilities, but suitably updated alterna-

tive designs could provide a more exhaustive test of across-task generalization. By showing

that the same variables can be used for multiple tasks, it is reasonable to look for signatures of

these quantities in neural representations. A possible alternative formalization of this problem

could be using Partially Observed Markov Decision Process (POMDP) [51], where internal

reward structure and the subjective belief of the effect of the participant’s actions are jointly

inferred with the internal model. However, in our experiment, the action model has a simple

structure and hence the problem simplifies to a probabilistic sequence learning problem.

Instead, here we focus on inferring rich internal model structures as well as having an approxi-

mate Bayesian estimate instead of point estimates as in [51]. Still, the ability of POMDP to

model how decisions of the agent affect the state of the state of the sequence can become useful

for investigating the potential inductive bias that actions actually influence states.

Our model produces moment by moment regressors for (potentially unobserved) variables

that are cognitively relevant. Earlier work considered neural correlates of hidden state repre-

sentations in the orbitofrontal cortex of humans [52] but the internal model was not inferred,

rather assumed to be fully known. CT provides an opportunity to design regressors for indi-

vidualised and potentially changing internal models. In particular, the model differentiates

between objective and subjective uncertainties, characteristics relevant to relate cognitive vari-

ables to neural responses [53–56]. The former is akin to a dice-throw, uncertainty about future

outcomes which may not be reduced with more information. The latter is uncertainty arising

from ambiguity and lack of information about the true current state of the environment. We

showed that uncertainties exhibited by a trained individual’s internal model show similar pat-

terns in these characteristics as the ideal observer model, which promises that uncertainties

inferred at intermediate stages of learning are meaningful.

Recently, major efforts have been devoted to learning structured models of complex data

both in machine learning and in cognitive science [9, 57–59]. These problems are as diverse as

learning to learn [57, 60], causal learning [61], learning flexible representational structures
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[58], visual learning [62]. When applied to human data to reverse engineer the internal models

harnessed by humans, past efforts fall into two major categories. 1, Complex (multidimen-

sional) models are inferred from data and fitted to across-participant averaged data [9, 63, 64],

ignoring individual differences. 2, Simple (low dimensional) models are used to predict perfor-

mance on a participant-by-participant manner, thus resulting in subjective internal models

[29, 65]. In particular in a simple two-latent variable dynamical probabilistic model individual-

ised priors have been identified [11]. In this setting binary decisions were sufficient as an

‘expert model’ was assumed and assessment of prior comprised of inferring a single parameter,

which defined the width of a one-dimensional hypothesis space. Findings of this study gave

insights into how individuals differ in their capacity to adapt to new situations. Recently, a

notable approach has been presented, which aims at characterizing individual strategies in a

setting where the complexity of the state space is relatively large [66]. In this study, the rules of

the game (equivalent of the statistics of stimuli in our case) and the relevant features (equiva-

lent to the latent variables in our case) were assumed to be known by the participants. How-

ever, being a two-player task there was uncertainty about the strategy of the opponent and the

limitations in the computational complexity of the inference was investigated. This aspect is

orthogonal to the aspects investigated here and therefore highlight additional appeal of analys-

ing behavior in complex settings. The contribution of the current paper is twofold: 1, We

exploit recent advances in machine learning to solve the reverse-engineering problem in a set-

ting where complex internal models with high-dimensional latent spaces are required; 2, We

contribute to the problem of identifying structured inductive biases by enabling direct access

to the internal model learned by individuals and by dissecting the contributions of evidence

and inductive bias.

A widely studied approach to link response time to quantities relevant to task execution is

the drift diffusion model, DDM [67]. In its most basic form evidence is stochastically accumu-

lated as time passes such that the rate of accumulation is proportional to the information

gained by extended exposure to a stimuli, until evidence reaches a bound where decision is

made. Through a compact set of parameters DDM can explain a range of behavioural phe-

nomena, such as decisions under variations in perceptual variables, adaptation to the volatility

of the environment, attentional effects on decision making, the contribution of memory pro-

cesses to decision making, decision making under time pressure [68–72], and neuronal activity

was also shown to display strong correlation with model variables [73, 74]. Both LATER and

DDM have the potential to incorporate variables relevant to make decisions under uncertainty

and the marginal distributions predicted by the two models are comparable. Our choice to use

the LATER model was motivated by two major factors. First, LATER is formulated with

explicit representation of subjective predictive probability by mapping it onto a single variable

of the model. This setting promises that subjective probability can be independently inferred

from available data and the internal model influences a single parameter of the model. As a

consequence, subjective probability is formally disentangled from other parameters affecting

response times and associated uncertainty can be captured with Bayesian inference. In case of

distributing the effect of subjective probability among more than one parameters (starting

point, slope, variance) the joint inference of subjective probability with other parameters

affecting response times results in correlated distributions. Consequently, maximum likeli-

hood inference, or any other point estimations, the preferred method to fit DDM, will have

large uncertainty over the true parameters due to interactions between other variables. Fur-

thermore, this uncertainty remains unnoticed as there is usually no estimation of this uncer-

tainty, only point estimates. Second, trials are usually sorted based on the design of the

experiment into more and less predictable trials (with notable exceptions like [29]). This leads

to a misalignment between the true subjective probabilities of a naive participant and the
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experimenter’s assumptions. Assuming full knowledge of the task and therefore assuming an

impeccable internal model in more complex tasks, however, implies that potential variance in

the acquired internal models across subjects will be captured in variances in parameters char-

acteristic of the response time model rather than those of the internal model. DDM is consid-

ered to be an algorithmic-level model [75] of choices [76], which is indeed useful for linking

choice behaviour to neuronal responses [77]. The appeal of the Bayesian description offered by

the normative framework used here is that it can accommodate a flexible class of internal mod-

els, without the need to adopt algorithmic constraints. Similar algorithmic-level models of

behaviour that is based on the flexible and complex internal models yielded by Cognitive

Tomography are not available and will be the subject of future research.

In summary, we presented and validated a tool that could flexibly infer complex, dynamical,

individualised internal models from simple behavioral data. We demonstrated that various lev-

els of discrepancy existed between the ideal observer model and the internal model maintained

by individuals. We used this discrepancy to identify an inductive bias with a structure that was

consistent across participants. This approach promises that altered contribution of inductive

biases or learning can be identified in affected populations at the individual level. An addi-

tional promise provided by the presented approach is the separation of the internal model

from the behavioral models: the Cognitive Tomography framework can naturally integrate

diverse behavioral data into a single model, thus by using multiple modalities ensures faster

and more accurate inference of the internal model.

Methods

Ethics statement

All participants provided written informed consent before enrollment and received course

credits for taking part in the experiment. The study was approved by the United Ethical Review

Committee for Research in Psychology (EPKEB) in Hungary (Approval number: 30/2012) and

by the research ethics committee of Eötvös Loránd University, Budapest, Hungary. The study

was conducted in accordance with the Declaration of Helsinki.

Experiment

Participants. Twenty-five individuals (22 females and 3 males) aged between 18 and 22

(MAge = 20.4 years, SDAge = 1.0 years) took part in the experiment (we recruited 32 partici-

pants, but only 26 completed the experiment; we omitted one further participant because of a

system error which resulted in partial loss of their experiment data). They were university stu-

dents (MYears of education = 13.3 years, SDeducation = 1.0 years) from Budapest, Hungary. None of

the participants reported history of developmental, psychiatric, neurological or sleep disorders,

and they had normal or corrected-to-normal vision. They performed in the normal range on

standard neuropsychological tests of short-term and working memory (Digit span task:

M = 6.48, SD = 1.15, Counting span task: M = 3.76, SD = 0.99) [78]. Before the assessment, all

participants gave signed informed consent and received course credit for participation.

Tasks. Alternating Serial Reaction Time (ASRT) Task Learning was measured by the

ASRT task [35, 79]. In this task, a stimulus (a dog’s head) appeared in one of four horizontally

arranged empty circles on the screen and participants were asked to press the corresponding

button as quickly and accurately as they could when the stimulus occurred. The computer was

equipped with a keyboard with four heightened keys (Z, C, B, M on a QWERTY keyboard),

each corresponding to a circle in a horizontal arrangement. Participants were asked to respond

to the stimuli using their middle- and index fingers bimanually. The stimulus remained on the

screen until the participant pressed the correct button. The next stimulus appeared after a 120
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ms response-to-stimulus-interval (RSI). The task was presented in blocks of 85 stimuli: unbe-

knownst to the participants, after the first five warm-up trials consisting of random stimuli, an

8-element alternating sequence was presented ten times (e.g., 2r4r3r1r, where each number

represents one of the four circles on the screen and r represents a randomly selected circle out

of the four possible ones). The sequence started at the same phase in each block.

Procedure. There were ten sessions in the experiment, with one-week delay between the

consecutive sessions. Participants performed the ASRT task with the same sequence in the first

eight sessions, then an interfering sequence was introduced in Session 9, and both (original

and interfering) sequences were tested in Session 10 (see S1 Fig). Participants were not given

any information about the regularity that was embedded in the task in any of the sessions [79].

They were informed that the main aim of the study was to test how extended practice affected

performance on a simple reaction time task. Therefore, we emphasized performing the task as

accurately and as fast as they could. Between blocks, the participants received feedback about

their average accuracy and reaction time presented on the screen, and then they had a rest

period of between 10 and 20 s before starting the next block. On Days 1–9, the ASRT consisted

of 25 blocks. One block took about 1–1.5 min, therefore the task took approximately 30 min.

For each participant, one of the six unique permutations of the four possible ASRT sequence

stimuli was selected in a pseudo-random manner [35, 79, 80]. The ASRT task was performed

with the same pattern sequence in Sessions 1–8. In Session 9, the ASRT was performed with a

new interfering pattern sequence. In Session 10, participants performed 20 blocks of the ASRT

task switching between the pattern sequences of Sessions 1–8 and Session 9 every five blocks.

In Session 10, the task took approximately 24 min. After performing the ASRT task in Session

10, we tested the amount of explicit knowledge the participants acquired about the task with a

short questionnaire. This short questionnaire [79, 81] included two questions: “Have you

noticed anything special regarding the task?” and “Have you noticed some regularity in the

sequence of stimuli?”. The participants did not discover the true probabilistic sequence

structure.

Modelling background

Models for sequential prediction. The experimental stimuli form a sequence of discrete

observations in discrete time, fYtg
T
t¼1

. The task is therefore to predict the upcoming stimulus

conditioned on the history of observations:

PðYTþ1jY1;Y2; . . . ;YTÞ ð1Þ

In practical terms, learning a model for this temporal prediction task requires imposing a

structure over these conditional distributions. Without structural assumptions, there is no sta-

tistical dependence among different histories, that is, there is no generalisation from history to

future observations.

In the following section we introduce a computational model, the Hidden Markov Model,

which can provide a general language for solutions of this problem. It can express arbitrarily

complex models given sufficiently large amounts of data. In order to remain as general as pos-

sible, we will consider a model space (infinite Hidden Markov Models as in [33]) which can

model all the possible distributions in Eq 1. Moreover, we would like to achieve this while

being able to express inductive biases in this language which are useful for constraining the

possible models in the limited data case.

Hidden Markov model. Formally, a Hidden Markov Model comprises of a sequence of

hidden states fStg
1

t¼1
and a sequence of observations fYtg

1

t¼1
. In this work we take both the

latent states and the observations to be discrete, that is St;Yt 2 N. The sequence of hidden
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(latent) states constitute a discrete Markov-chain with transition probabilities πij = P(St+1 = j|St
= i). In a Markov-chain, the sequence element St is conditionally independent of the history

conditioned on the previous state and the transition probabilities:

St ? ðS1; S2; . . . ; St� 2Þ j St� 1; p

At (discrete) time t, observation Yt is governed by the latent state St. The observations are

generated independently and identically, conditioned on the (latent) state:

PðYt ¼ y j St ¼ stÞ ¼ �st ;y and Yt ? ðY1;Y2; . . . ;Yt� 1; S1; S2; . . . ; St� 1Þ j St; �

Importantly, since the latent state can incorporate arbitrary information (identical observa-

tions at different time-points can correspond to different states), assuming arbitrarily many

latent states, we get a completely general solution for the prediction problem in Eq 1. With an

adequate prior (e.g. the Hierarchical Dirichlet Process in [82] we can learn such structures effi-

ciently [33]). In practical terms the length of the observation sequence limits the number of

possible latent states but it is limited by the diminishing posterior probability of high latent

state models.

Cognitive tomography

We construct a model of behaviour which consists of two parts:

1. An internal model maintained by the participant, which formalizes how latent states

assumed to underlie observations evolve and how these states are linked to observations.

2. A model relating the prediction of participants’ internal model to their responses (response

time model).

Doubly Bayesian model. Due to the uncertainty of the participants about the true model

and actual state in the stimulus sequence and to the uncertainty of the experimenter about the

model maintained by participants and about the actual state of this internal model, the prob-

lem can be described as doubly Bayesian. We do Bayesian inference over an internal represen-

tation of individuals who themselves do Bayesian inference. Elements of the experimenter’s

model are introduced in following sections.

Prediction of response times can be described by the following algorithm:

1. We take posterior samples from the behavioural model which consists of parameters of the

internal model and the response time model conditioned on data from ten consecutive

blocks of trials (see explanation for ten below), where:

(a). all stimuli, and

(b). response times (with incorrect trials’, first five random trials’ response times, and

response times smaller than 180 msec in each block removed). According to the original

formulation by [34], fast response times come from an alternative distribution. We cut

off the fast response times (as in [83]) at the fixed 180 msec value. However, we did not

fit the cut-off time parameter. Incorrect trials constitute 11% of trials overall while trials

below the 180msec threshold constitute 2.2% of trials overall and 5.3% on Day 8.

are included.

2. For each of the posterior model samples we compute predicted response times by:

(a). filtering the belief over the latent state over the entire sequence
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(b). produce subjective probabilities for each trial

(c). produce response time prediction (MAP estimate conditioned on the subjective prob-

ability and the response time parameters of the model sample)

Then we marginalize (i.e. average) over the response time predictions of model samples.

3. We evaluate model performance by computing the R2 explained variance measure of the

predicted response times on the response times of the test dataset. In any given session we

train the model on one set of blocks and predict response times on a distinct set of test

blocks. During optimizing our model and algorithm, we concluded that using ten consecu-

tive blocks for training provides the best results for the CT model. We also found that using

ten blocks for the test set decreases variance of the R2 estimator sufficiently to have individ-

ualised learning trajectories.

Note: since actual beliefs depend on past beliefs, one can think of the belief sequence as the

path of a light-ray in a large dimensional fog (representing the state uncertainty). During infer-

ence, we have a noisy measurement of the light-ray in different points of time and we would

like to reconstruct the best explanation of the observation sequence (response times) in terms

of a hidden path. As for prediction, the model produces response time predictions for the

entire stimulus sequence with no further feedback of response times (i.e. estimated

internal beliefs are not updated based on what response time the participant produced on

given trials).

Infinite Hidden Markov model. The infinite Hidden Markov Model is a non-parametric

extension of the Hidden Markov Model, assuming countably infinitely many states. There is a

hierarchical prior imposed over the state transition matrix and the so-called emission distribu-

tions relating the latent (hidden) states to observations (S2 Fig).

The hierarchical prior we used is exactly the one defined in [33]. We extended their imple-

mentation of their model to a doubly Bayesian behavioural model including the response time.

A participant is assumed to learn a probabilistic model of the sequence which is formalized

as an infinite Hidden Markov Model. At (discrete) time t, observation Yt is governed by a

latent (not directly observable) state St. The states {St}t=1,2,. . . constitute a Markov-chain, which

means the following:

pðStjS1; S2; . . . ; St� 1Þ ¼ pðStjSt� 1Þ ð4Þ

That is, the state St−1 holds all information about past regarding the possible evolution of

system. In other terms, conditioning on state St−1 renders St and all previous states S1, S2, . . .,

St−2 statistically independent.

The observation Yt at time t is independent of all other observations, conditioned on the

latent state St (and the model parameters). That is, once the state of the system is decided, the

actual previous observations are independent of Yt.
The parameters governing the state transitions are aggregated in the parameter matrix π:

pi;j ¼ pðSt ¼ jjSt� 1 ¼ iÞ 8t

The observation distributions are given by the parameter matrix ϕ:

�i;k ¼ pðYt ¼ kjSt ¼ iÞ

At any given time during the task, we assume the participant had estimated the parameters

π and ϕ and uses these (point estimates) to do exact filtering over the sequence of observations.

That is, in each trial they use the evidence provided by the current stimulus to update their
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belief over the latent state of the sequence. When doing computations with the participant’s

internal model, we hold the internal model fixed within shorter time-scales of the task (e.g.

one session). The participant represents their belief about the current latent state of the system

by a posterior distribution, updated by each incoming observation, while always conditioning

on their current estimates p̂ and �̂ of π and ϕ respectively. We denote this posterior distribu-

tion over latent states at time t by ŝt (note this is not a point estimate of the state but rather a

vector of probabilities where ðŝt Þi ¼ pðst ¼ iÞ.

ŝt ≔ pðstjy1; y2; . . . ; ytÞ / pðytjstÞpðstjy1; y2; . . . ; yt� 1Þ

¼
X

st� 1

�̂st ;yt
pðstjst� 1Þpðst� 1jy1; . . . ; yt� 1Þ

¼
X

st� 1

�̂st ;yt
p̂st� 1 ;st

ŝt� 1

For predicting the latent state based on previous states and the observation (termed filter-

ing), stimuli of all trials (including initial random trials at the beginning of each block and sti-

muli in trials where participant hit the wrong key initially) are used. That is, even if incorrect

response times are not used when doing inference over the participant’s internal model, the

participant is assumed to update their internal beliefs based on the stimulus shown.

Prediction of the next stimulus is computed by marginalizing over the latent state posterior

distribution:

pðytþ1jy1; y2; . . . ; ytÞ ¼

¼
X

stþ1

pðytþ1jstþ1Þpðstþ1jy1; y2; . . . ; ytÞ

¼
X

stþ1

�̂stþ1ytþ1
pðstþ1jy1; y2; . . . ; ytÞ

¼
X

st ;stþ1

�̂stþ1ytþ1
pðstþ1jstÞpðstjy1; y2; . . . ; ytÞ

¼
X

st ;stþ1

�̂stþ1ytþ1
p̂st ;stþ1

ŝt

Throughout the execution of the task, the internal model of the participants is continually

updating. We do not directly model the computation of the participants that estimates the cur-

rent π and ϕ parameters. That is, within a given train or test dataset (10 consecutive blocks) we

hold π and ϕ fixed. We do allow, however, for these estimates of π and ϕ to change between

sessions. For a summary of when each parameter is allowed to change see Table 1.

Table 1. Summary of when model parameters are allowed to change.

Variable Notation Within train/test Within session, between train-test Between sessions Between participants

State transition distribution p̂ No No Yes Yes

Observation distribution �̂ No No Yes Yes

State belief ŝt Yes Yes Yes Yes

Response time parameters τ0, μ, σ No No No No

Prior of observation distribution H No No No No

Hierarchical prior over state transitions α, γ No No No No

https://doi.org/10.1371/journal.pcbi.1010182.t001
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We do Approximate Bayesian Inference using a custom sampling method that mixes steps

of a Hamiltonian Monte Carlo (HMC) and a Gibbs sampler which samples a slicing parameter

(see [33]). The priors used in the model are listed in Table 2.

In order to handle the infinitely many possible states, we use a modified version of the slice

sampling method described in [33]. In the original beam sampling algorithm, the authors sam-

ple the latent state sequence and make use of the slicing variable to constrain the set of used

states to a finite set. They sample the latent sequence and the slicing variables in an alternating

fashion. In our case we do not sample latent state sequences, instead, we have to estimate the

subjective belief sequence over the latent states. In this latter case, the posterior belief is infinite

dimensional and we use slicing to approximate this infinite-dimensional computation with a

finite one. At each sampling step, we only look at the latent state belief distribution’s 1 − � sup-

port where � is sampled from Uniform(0.02, 0.2).

Four independently and randomly initialised Markov Chains were sampled with 1600 steps

of the slice sampling (outer Gibbs-sampling chain) and 30 NUTS steps were taken in between

the slice sampling steps each time. Samples from the second half of each chain were used to

check if estimates of response time parameter means and confidence intervals were identical.

For prediction, the last 60 unique samples were used from each chain because prediction per-

formance saturates at this number of samples.

Ideal observer model. We formalise the ideal observer the following way: at any given

point of the experiment, the ideal observer entertains an internal dynamical model comprising

of two parts: latent dynamics (the transition probabilities between latent states) and an obser-

vational model (conditional distributions of observations conditioned on the latent state).

In order to produce predictions for the upcoming observation, conditioning on a fixed

model, the ideal observer solves the filtering problem:

PðYtjY1;Y2; . . . ;Yt� 1; p; �Þ ¼

¼
X1

st¼1

PðYtjSt ¼ stÞ � PðSt ¼ stjY1;Y2; . . . ;Yt� 1Þ

¼
X1

st¼1

�st ;yt � PðSt ¼ stjY1;Y2; . . . ;Yt� 1Þ

¼
X1

st¼1

X1

st� 1¼1

�st ;yt � PðSt ¼ stjSt� 1 ¼ st� 1Þ�

PðSt� 1 ¼ st� 1jY1;Y2; . . . ;Yt� 1Þ

¼
X1

st¼1

X1

st� 1¼1

�st ;yt � pst� 1 ;st
� PðSt� 1 ¼ st� 1jY1;Y2; . . . ;Yt� 1Þ

Table 2. Parameter priors. Values of the hierarchical prior over state transitions taken from [33].

Variable Prior

State transition distribution p̂ i � Dirichletða0=K; . . . ; a0=K; a0=K � �Þ
Observation distribution �̂ � Dirichletð0:8; 0:8; 0:8; 0:8Þ
Response time parameters τ0 * Γ(1, 10)

μ* Γ(1, 0.1)

σ* Γ(1, 0.01)

Hierarchical prior over state transitions α = 1.3

γ = 3.8

https://doi.org/10.1371/journal.pcbi.1010182.t002
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The term filtering is used because as we deduced, the relevant quantity is P(St−1|Y1, Y2, . . .,

Yt−1) which can be filtered through our observations. We carry on this quantity and can calcu-

late it for the next time-step using our model parameters and the observation Yt.
Importantly, instead of sampling one possible latent trajectory, we have to marginalise over

these latent sequences to obtain our prediction for the upcoming stimulus. That is, our predic-

tion is the aggregate of the predictions of many possible latent pasts. We combine the predic-

tions of ‘had these been the sequence of causes of my past experiences, I should see this’ for all

possible hypothesised latent cause sequences.

Response time model. In order to connect the predictions of the internal model to mea-

sured behaviour, we need to employ a generative model of response times in the form of a con-

ditional probability distribution conditioned on the subjective predicted probability of the

upcoming stimulus. To achieve this, we employ the reaction time model of [34], which in its

original formulation states that the majority of saccadic response times come from a reciprocal

Normal distribution.

Further studies suggest choice response time distribution should have a similar form [84,

85]. However, in other formulations, there is no explicit dependence of the distribution of the

RT in a single trial depending on the subjective predicted probability, hence those models are

inadequate for our purposes. The generative model for correct response times (LATER model,

[34]) is:

rn � Normalðm;sÞ

RTn ¼
y0 � logðpnÞ

rn

where pn is the subjective probability (output of the internal model) corresponding to the

actual upcoming stimulus and μ, σ, θ0 are the parameters characterising an individual’s

response time model. These parameters jointly describe the mean and variance of the response

times. Note that in our experiment these parameters comprise all idiosyncratic effects at hand,

namely the individual’s state, their response times’ sensitivity to subjective predicted probabili-

ties, the effects of instruction influencing speed-accuracy trade-off. Note, that in order to avoid

assigning probability to negative reaction times, we use a truncated Normal distribution.

The response time parameters are jointly inferred along with the internal representations

(dynamical model, observation distribution, latent state inference).

Validation on synthetic datasets. In order to validate our behavioural model as well as

our inference method, we looked at how well we can recover subjective probabilities on a syn-

thetic dataset. We chose to constrain our analysis to the recovery of subjective probabilities

instead of the generative model structure due to the unsupervised nature of our method: the

objective of inference is to learn the distribution of data (which is in direct relationship with

the predictive probability of upcoming stimuli). This is in contrast with more supervised meth-

ods where the emerging representations can be gauged by performing tasks that rely on the

latent variables. We used the algorithm in [33] on synthetic ASRT data to infer a first set of

three different internal models from different levels of exposure. These models represent inter-

nal models of different synthetic participants (S3(A) Fig). As a prior predictive check, we show

marginal distributions of synthetic response times that approximately match response time

distributions of humans (S11 Fig). We take these models as the ground truth for our synthetic

experiment. We trained one model on 640, 1280 and 2400 trials of ASRT stimuli. We then gen-

erated response times from the generative model with three parameter settings for each of τ0,

μ, and σ resulting in a total of 33 = 27 different synthetic response time sequences. The
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resulting response time distribution’s variance is influenced by all four factors—the subjective

probabilities (which depends on the internal model) and the three response time parameters.

The standard deviation of the response times is an appropriate measure since this can be also

computed for data obtained from human participants. We generated the response times for 10

ASRT blocks (the same number we used for inference on human data). Standard deviation of

the resulting response times (symbol colours on S3(B) Fig) arise from the interaction of all

parameters. Different combinations of the response time parameters resulting in the same

standard deviation are marked by identical colours. Then, we used the CT inference method

to generate a second set of (posterior) internal model samples. We computed the same model

performance measure as for human data (response time prediction performance) and com-

pared it to the prediction performance of that of the original internal model of the participant

(S3(B) Fig). Then, since the recovered model matched in this performance to the ground truth

internal model of the synthetic participants, we also compared how well the actual subjective

probabilities of said synthetic participants can be predicted (S3(C) Fig). The results show that

the prediction performance of the subjective probabilities exceeds that of the individual

response times. Also, as seen in S3(D) Fig, standard deviations of human participant’s response

times are within the range for which we validated our model inference method.

Alternative models

Markov model. Internal model of participants. According to this model, the participants

assume that the sequence of observations constitute a Markov-chain. That is, for the sequence

of observations yt, we have

pðytjy1; y2; . . . ; yt� 1Þ ¼ pðytjyt� 1Þ 8t

The above equation states that the next observation is independent of all previous observations

given the previous observation. This is equivalent to saying that all information (besides

parameters governing the sequence) about the state of the sequence is included in the previous

observation.

Inference. We use the same parameter priors for the response time model as for the iHMM

model and the prior for transition probabilities πi* Dirichlet(α0/K, α0/K, α0/K, α0/K), where

K is the number of states, in this case 4.

Four independently and randomly initialised Markov Chains were sampled with 1600 steps

taken with the NUTS sampler in STAN. Samples from the second half of each chain were used

to check if response time parameter estimates’ means and confidence intervals were identical.

For prediction, the last 60 samples were used from each chain.

Relation to HMM. Note that Markov models are a subset of Hidden Markov Models. We

can always write a Markov model as an HMM if we have a matching number of observation

values and latent state values and each observation is unique to a state.

This is particularly important since for an HMM for which the above condition holds, there

is an equivalent Markov chain that describes the exact same sequence structure. This is the rea-

son why we term some of the internal models identified by our iHMM method “Markov-like”,

since they are closely approximated by an actual Markov model.

Trigram model. The model we describe here is also referred to as ‘triplet model’ in previ-

ous works using the ASRT paradigm. We use the term trigram since it is more commonly

used in a sequential prediction modelling context.

Internal model of participants. The model, established in prior literature, sorts trials into

High probability and Low probability triplets. This is equivalent to assuming that the partici-

pant uses a two-back (or trigram) model for prediction, predicting the most-likely stimulus
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conditioning on the previous two observations. Due to the ground truth generative model of

the task there is no practical dependence on the identity of the immediately preceding stimu-

lus, and only the penultimate stimulus can contribute to making predictions.

Inference. The trigram model has no parameters fitted. Predictive performance is evaluated

by the R2 measure between the response times and the binary variable (high vs low trials) pro-

vided by the trigram model.

Model comparison

Since not all models considered are Bayesian (i.e. provide an explicit marginal log-likelihood

for the response times), we chose to compare models based on explained variance of response

times on a test set. Each model produces response time predictions for each trial and each indi-

vidual separately. When evaluating on a given test set, in order to control for a shift in mean

not related to the inherent structure of the response times, we use R2 as our performance met-

ric. That is equivalent to assuming that the actual observed response times come from a linear

model with the predicted response time as mean and an additive homoscedastic (equal vari-

ance irrespective of predicted response time) normal noise term.

R2 values were calculated separately for each individual’s trials.

Train and Test Datasets. For the reason described in the above paragraph, for each day (out

of 10) of the experiment, out of the 25 blocks each day, we selected blocks 11–20 as a training

dataset and blocks 1–10 as test datasets. The main reason for this choice is that on each day in the

initial few blocks participants may be engaged in a warm-up phenomenon which fundamentally

alters their behaviour in the task. If we use the first 10 blocks as test data, the performance metric

may be influenced by 10–30% depending on how many blocks include altered behaviour. How-

ever, if we used this part as training data, the whole internal model inference would shift funda-

mentally, since our inference algorithm assumes a fixed model the entirety of the 10 blocks.

During model inference (train dataset) and performance evaluation (test dataset) the first

five random trials and all incorrect response trials’ response times are not considered.

Statistical methods

Normality was not checked prior to t-test comparisons. All reported correlations were com-

puted using Pearson’s correlation. T-tests are paired sample tests whenever there is a within-

subject comparison. All binomial tests are one-sided. For effect sizes we calculated Cohen’s d

using the lsr R package.

Error prediction

In the error prediction task we analyzed trials in which participants did not press the button

corresponding to the actual stimulus and instead pressed a wrong button. The analysis assesses

two quantities: the subjective probability of the correct buttons relative to that of the other but-

tons, and the subjective probability of the erroneously pressed button relative to those of other

buttons. Just as with response time prediction, the model outputs (for each posterior model

sample) a subjective probability estimate for each one of the four possible stimuli for each trial.

Then, we take the mean over these probability estimates over the last 60 unique samples of

each chain. We decided on using 60 samples since model performances saturate at this num-

ber. In Fig 5 we compute the rank among the four probability estimates of the stimulus and

the choice in correct and incorrect trials. Then, based on the subjective probability estimates of

the actual occurring stimulus, we plot the receiver operating characteristic curve for predicting

whether a given trial will result in an error. This is done by moving a threshold value from 0 to

1 and predicting a correct trial if the subjective probability of the upcoming stimulus is above
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the threshold and an erroneous trial otherwise. The trigram model has two points (other than

the (0, 0) and (1, 1) points). This is because the trigram model predicts 0.25 probability for the

all stimuli for the first two trials in each block and 0.625 probability for the more high proba-

bility trigram element in all other trials and 0.125 for the other stimuli.

Kullback-Leibler divergence

We computed KL-divergence between the ground truth probabilities of the task (1.0 for Pat-

tern and 0.25 for Random trials) and that of the inferred internal model’s subjective probabili-

ties. For each trial, we computed:
X

i

pi � ð� logðp̂iÞ þ logðpiÞÞ

where i runs over the possible stimuli. Then, we took the mean of all these KL-divergences

over the trials in the test sets for Days 2 and 8 for Fig 6G and 6H.

We did the same computation between the inferred Markov models’ subjective probabilities

and those of the internal models inferred by CT (y-axis on Fig 6G and 6H). For a proof why

KL-divergence can be used as a measure of participants’ task performance, see S2 Appendix.

Supporting information

S1 Appendix. A brief introduction to infinite Hidden Markov Models.

(PDF)

S2 Appendix. Optimal prediction and the LATER model.

(PDF)

S1 Fig. Experimental design. A Experimental stimuli and abstract representation used in the

paper. BDesign of the experiment. The experiment consisted of ten sessions, separated by a

one-week delay. On Days 1–8, participants performed the ASRT task with sequence 1 through-

out 25 blocks (5 epochs) each sessions. On Day 9, an interfering sequence (sequence 2) was

introduced. Both sequences were tested on Day 10 with blocks of 5 alternating.

(TIF)

S2 Fig. Graphical representation of internal model and generative model of behaviour.

Left: Internal model, generative model of the sequence assumed by the participant. Right: gen-

erative model of behaviour.

(TIF)

S3 Fig. Synthetic data experiment. AWe first sampled three versions of synthetic internal

models using the original iHMM inference method in [33]. The internal models of the synthetic

participants differ in their experience (as how many ASRT trials they had seen)—resulting in an

“early”, “middle” and “late” model. Then, we generated subjective probability values for each

model on a new set of ASRT stimuli (holding the pattern sequence intact). B Results of our syn-

thetic data experiment. Performance is measured as the amount of variance in response times

(R2). We ran our inference method for 81 synthetic datasets with different parameter settings

(symbols with different colors and shapes). We use the same number of response times as with

the human participants to recover the internal models. Symbol colours correspond to the

response time standard deviation. The result shows that while the response time prediction may

be at a lower level, the latent predictive probabilities can still be inferred with relatively high

accuracy. This shows the inference method can recover the latent structure from a generated

response time sequence. C Predictive performance (R2) of the actual internal model of the
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synthetic participant vs the predictive performance of the inferred internal model of the same

synthetic participant. The inferred model is evaluated on train data sets (same as on panel B).D
Standard deviations of response times of individuals in the first eight experimental sessions.

(TIF)

S4 Fig. Comparison of quantiles of the (z-scored) r variable in the LATER model. Quantiles

are computed from the response times and predicted subjective probabilities with quantiles of

the expected normal distribution for the analysed models (red, CT; green, ideal observer; blue,
Markov), also known as QQ-plots. Participant-by-participant shows that the empirical distri-

bution of the r parameter on a test set is approximately normal with a few exceptions (see par-

ticipants 124 131 CT and Ideal Observer models), thus validating model assumptions.

(TIF)

S5 Fig. Response time distributions. A Response time samples generated from different mod-

els and the original Data for participant 119. B The density plots of the point clouds in A. C
Predicted response times (mean of maximum a posteriori estimates for each model averaged

over the model samples) vs actual response times. Response times outside mean ±3 s.d. are

omitted for visual clarity. In contrast with panel A, the x coordinates are best predictions rather

than random samples, hence their spread is much smaller. DHistogram of model predictive

performances on Day 8. 9 Box plots of model performance distributions, data same as panel D.

(TIF)

S6 Fig. Predicted response time means vs. measured response time means. Predictions are

on the test set on Day 8 of the experiment grouped by three element sequences for each partici-

pant separately (each dot corresponds to one possible three-element sequence). Only those

sequences were included which had at least 5 measured correct response times in order to

limit the standard error over the measured response time mean. Error bars show 2 s.e.m.

(TIF)

S7 Fig. Predicting when errors will occur for each participant individually.

(TIF)

S8 Fig. Model performances of CT models trained on Day 8 and Day 9 for each individual.

(TIF)

S9 Fig. Model performances for all models and all participants individually.

(TIF)

S10 Fig. Normalized CT performance as a function of the ideal observer model perfor-

mance on different days of the experiment. Dots indicate the performance of the models for

different individuals.

(TIF)

S11 Fig. RT distribution examples of synthetic participants. Each panel shows distributions

with RT model parameters sampled from their respective priors. Distributions are shown as

violin plots as a function of predictive probabilities.

(TIF)

Acknowledgments

Resources for the computational analysis were generously provided by the Wigner Data Cen-

ter. The authors would like to thank to Máté Lengyel, Peter Dayan and Noémi Éltető for com-
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