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a b s t r a c t 

Statistical learning is a powerful ability that extracts regularities from our environment and makes predictions 
about future events. Using functional magnetic resonance imaging, we aimed to probe how a wide range of brain 
areas are intertwined to support statistical learning, characterising its architecture in the whole-brain functional 
connectivity (FC). Participants performed a statistical learning task of temporally distributed regularities. We 
used refined behavioural learning scores to associate individuals’ learning performances with the FC changed by 
statistical learning. As a result, the learning performance was mediated by the activation strength in the lateral 
occipital cortex, angular gyrus, precuneus, anterior cingulate cortex, and superior frontal gyrus. Through a group 
independent component analysis, activations of the superior frontal network showed the largest correlation with 
the statistical learning performances. Seed-to-voxel whole-brain and seed-to-ROI FC analyses revealed that the FC 
between the superior frontal gyrus and the salience, language, and dorsal attention networks were reduced during 
statistical learning. We suggest that the weakened functional connections between the superior frontal gyrus and 
brain regions involved in top-down control processes serve a pivotal role in statistical learning, supporting better 
processing of novel information such as the extraction of new patterns from the environment. 
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. Introduction 

What would be the most fascinating and overarching ability in hu-
an behaviours? Grasping regularities from the world, learning them

y degrees, and utilising them automatically in everyday life might
e the answer. In our rapidly changing world, our brains continuously
eek, attain, and cope with regularities. Scientists have named these pro-
esses ‘statistical learning’ ( Armstrong et al., 2017 ; Aslin, 2017 ). Statis-
ical learning is a powerful process that extracts regularities from our
nvironment and makes predictions about future events. More surpris-
ngly, one can perform statistical learning without awareness of the reg-
larities or an explicit instruction, which is related to an unconscious
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nd automatic attentional process ( Fiser and Aslin, 2002 ; Perruchet and
acton, 2006 ; Turk-Browne et al., 2005 ; Vékony et al., 2022 ). It has
een known to support various cognitive processes such as perception
 Orbán et al., 2008 ; Winkler et al., 2009 ; Yang and Purves, 2003 ),
ssociative learning ( Turk-Browne et al., 2010 ), predictive process-
ng ( Bar, 2007 ; Turk-Browne et al., 2010 ; Winkler et al., 2009 ), and
he acquisition of automatic behaviours and skills including language
 Hallgató et al., 2013 ; Kaufman et al., 2010 ; Ullman et al., 2020 ). In-
eed, statistical learning is an essential process for adaptive human be-
aviours. 

Functional connectivity is defined as statistical dependencies (e.g.
orrelation coefficients) among remote neurophysiological events of
natomically distinct brain regions ( Friston, 2011 ). The statistical de-
un, Daegu, 42988, Republic of Korea 
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a  
endency is used as vital information to classify subjects or to pre-
ict experimental factors ( Friston, 1994 ; Shen, 2015 ). Numerous studies
ave highlighted the significance of functional connectivity, investigat-
ng the contributions of pathological conditions and behavioural traits
o coherent patterns between brain regions ( Bullmore and Sporns, 2009 ;
ohanty et al., 2020 ; Van Den Heuvel et al., 2009 ). To date, exten-

ive research has been conducted on statistical learning that only fo-
uses on the functional mapping of neural correlates involved in ex-
racting and learning statistical regularities ( Schapiro et al., 2017 ; Turk-
rowne et al., 2010 ), instead of investigating how several regions are or-
hestrated together across the whole brain in relation to statistical learn-
ng. More specifically, functional magnetic resonance imaging (fMRI)
tudies on statistical learning have shown that the primary visual cor-
ex and lateral occipital cortex are implicated in the early extraction of
ow-level visual information and category-specific visual information,
espectively ( Gheysen et al., 2011 ; Karlaftis et al., 2019 ; Karuza et al.,
017 ; Turk-Browne et al., 2010 , 2009 ). Depending on the specific char-
cteristics of experimental tasks, a different set of regions was reported
o be actively involved in statistical learning: for example, the inferior
arietal lobule, inferior frontal gyrus, and anterior cingulate for top-
own modulation and the primary motor cortex, supplementary motor
rea, and primary somatosensory cortex for bottom-up sensory func-
ions ( Karlaftis et al., 2019 ; Karuza et al., 2017 ; Turk-Browne et al.,
010 ). However, few studies have investigated how functional connec-
ions across the whole brain support the acquisition of temporally dis-
ributed statistical regularities ( Kahn et al., 2018 ; Karuza et al., 2017 ,
016 ). Therefore, in the present study, we aimed to fill this gap by
utting an emphasis on the functional connectivity through using fMRI
ata from healthy human participants, hoping to delineate how func-
ional connectivity across the whole brain is modulated by statistical
earning and how the neural trait of effective learning is manifested in
arge-scale functional connectivity. 

The functional connectivity in statistical learning can offer the the-
retical framework for explaining how distant brain regions are inter-
wined with statistical learning ( Ambrus et al., 2020 ; Tóth et al., 2017 ).
arlier studies have shown distinct and separable brain networks for ex-
licit and procedural learning ( Yang and Li, 2012 ), and statistical learn-
ng depends on the procedural learning process ( Fiser and Aslin, 2002 ;
erruchet and Pacton, 2006 ; Turk-Browne et al., 2005 ; Vékony et al.,
022 ). Therefore, functional connectivity patterns between statistical
nd explicit learning are expected to be different. Along with this, pos-
tive functional connectivity in the frontoparietal, visual, and motor ar-
as was reported to mediate explicit learning ( Sami and Miall, 2013 ;
un et al., 2007 ). On the other hand, negative correlations were found
etween frontal functional connectivity and statistical learning perfor-
ance ( Tóth et al., 2017 ). In this study, Tóth and colleagues employed a
redictable second-order transitional probability structure to define sta-
istical learning scores, and they discovered a negative correlation be-
ween statistical learning scores and connectivity strength in the anterior
rain regions in slow (theta) and fast (beta) oscillations, and the nega-
ive correlation increased as the learning progressed. In a different study
 Ambrus et al., 2020 ), researchers used inhibitory transcranial magnetic
timulation to determine whether the frontal lobe and statistical learn-
ng are causally associated, and they found that disruption of the frontal
obe had a beneficial effect on statistical learning and consolidation pro-
esses. These previous results indicate a critical role of reduced frontal
onnectivity in statistical learning. However, the oscillatory functional
onnectivity is insufficient to identify which brain regions are critically
nterconnected during statistical learning. 

In the present study, we aim at investigating this theoretical frame-
ork by focusing on the interconnected functional networks across the

ntire brain region. Thirty-five healthy young adults performed a sta-
istical learning task in an MRI scanner. Participants were asked to re-
pond to a series of visual stimuli as fast and accurately as they could
see Figure 1 ). Unbeknown to them, the location of subsequent stimuli
ollowed a predictable second-order transitional probability structure
2 
 Howard and Howard, 1997 ; Kóbor et al., 2020 ). Statistical learning was
videnced by increasingly faster responses to the more predictable stim-
li compared to the less predictable ones ( Kobor et al., 2017 ; Park et al.,
020 ). We used a refined index of statistical learning (SL) as the differ-
nce in mean reaction times between predictable and less predictable tri-
ls to scrutinise whether participants successfully learned the statistical
egularities. SL scores were used for further analyses as it controls for vi-
ual, motor and attentional requirements, general speedup due to prac-
ice, as well as the potential build-up of fatigue ( Török et al., 2017 ). Us-
ng a whole-brain analysis with parametric modulation, we determined
he brain regions in which neural activity was modulated by partici-
ants’ statistical learning performance as quantified by the difference
f mean reaction times between predictable and less predictable con-
itions. Additionally, a whole-brain seed-to-voxel and a separate seed-
o-ROI functional connectivity were investigated to scrutinise how the
iscrete statistical learning-related regions interacted with the rest of the
rain, along with the well-known large scale functional brain networks.
e found that statistical learning was supported by reduced functional

onnections between multiple regions across the brain, particularly be-
ween the superior frontal gyrus and the salience, dorsal attention, and
anguage networks. Finally, using a group independent component anal-
sis (ICA), the superior frontal network emerged as a critical network
or statistical learning. 

. Methods 

.1. Participants 

Thirty-five healthy young adults of Korean nationality (mean
ge = 23.1 years, SD = 2.8; 17 females) participated in the study.
ll were right-handed with normal or corrected-to-normal vision. Ev-
ry participant signed an informed consent form prior to the experi-
ent. Four participants’ data were excluded from the analysis due to

ow behavioural accuracy (i.e. below 80%) in the task. Therefore, the
ata of 31 participants (mean age = 23.0 years, SD = 2.8; 14 females)
ere used for the analysis. A sample size was computed using PASS

oftware ( https://www.ncss.com/software/pass/ ) based on a previous
tudy ( Park et al., 2020 ) that used the same statistical learning task. A
inimum sample size of 19 was calculated to achieve 90% power to de-

ect an effect size of 0.8 (Cohen’s d) using a two-sided one-sample t -test
ith a significance level of 0.05, indicating that the sample size of 31
articipants in the present study was enough to find a significant effect
f statistical learning. 

.2. Task design and procedure 

In the MRI scanner, participants performed an alternating serial reac-
ion time (ASRT) task, which has been a commonly used method to elu-
idate statistical learning ( Howard and Howard, 1997 ; Janacsek et al.,
015 ; Kobor et al., 2017 ; Song et al., 2008 ; Tóth et al., 2017 ). We sep-
rated the ASRT task into three runs, with a break of approximately
ne minute in between. Each run was composed of 12 task blocks (36
ask blocks in total), with each block being alternated with a rest block
 Figure 1 A). A fixation cross was shown for 7.1 s in the rest block. Only
he first run had five additional warm-up blocks at the beginning (85
arm-up trials for each block). The task block started with five warm-
p trials followed by 80 target trials. 

In each target trial, a stimulus (a dog’s face) was presented for 500
s in one of four positions ( Figure 1 B). Participants were asked to press
 button corresponding to the target position as accurately and quickly
s possible. A grey screen with four empty circles was shown between
ach trial (inter-trial interval: 120 ms). The warm-up trials were made
p of a target stimulus being randomly presented in one of the four
ositions and were not included in the analysis. Every task block took
2.9 s and the entire ASRT task was composed of 41 blocks (5 warm-up
nd 36 task blocks), resulting in approximately 41 minutes for the entire

https://www.ncss.com/software/pass/
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Fig. 1. Design of the ASRT task. (A) The ASRT task was composed of 36 task blocks with alternating rest blocks that are depicted as fixations in the figure. The task 
was divided into three scanning runs containing 12 task blocks for each. (B) A task block was composed of 5 warm-up trials and 80 target trials. Unbeknown to the 
participants, the target trials were composed of pattern and random trials that were presented alternately, constructing predictable and less predictable conditions. 
In each trial, a dog’s face was shown for 500 ms as a target in one of the four circles, and participants were instructed to push the button corresponding to the 
target position. Four empty circles were presented between the target trials for 120 ms (not shown in this figure for ease of explanation). Here, the position of the 
target is indicated by the numbers in bold, which were not shown in the actual experiment. (C) For generating three conditions of Pattern-High, Random-High, 
and Random-Low, we combined three trials into a triplet. Probability indicates the number of occurrences (i.e., high probability or low probability). Triplet type 
is determined by a triplet composed of either Pattern-Random-Pattern (Pattern triplet) or Random-Pattern-Random (Random triplet). The example of Pattern-High 
(‘3-1-2’) denotes that the pattern trial (‘2’) is highly predictable after the pattern trial (‘3’) and random trial (‘1’). Among the triplets in the random type, ‘3-1-2’ is 
shown more frequently than others (‘3-1-1’, ‘3-1-3’, ‘3-1-4’). Therefore, ‘3-1-2’ is referred to as Random-High and others are Random-Low. 
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SRT task. E-Prime 3.0 software ( Schneider et al., 2002 ) was used for
unning the tests. 

Unbeknown to the participants, there were two types of target tri-
ls —pattern type trials and random type trials ( Figure 1 B). Adopting
hese types, we constructed an alternating serial sequence made of four
attern trials being alternated with four random trials (i.e. eight tri-
ls in the sequence), and this sequence was repeated ten times in each
lock. This alternating serial sequence was individually determined in
n order of permutation manner (e.g. 1r2r3r4r, 1r2r4r3r, …, 4r3r2r1r;
, random trials) to counterbalance the number of occurrences in every
equence. Within the sequence, the target stimulus was presented in a
xed position in the pattern trial and in a random position in the ran-
om trial. Any three consecutive target trials could establish a triplet
 Howard and Howard, 1997 ; Howard et al., 2004 ) that occurred with
igh or low probability ( Figure 1 C). Please note that except for the first
wo subsequent target trials, all target trials were classified as the last
tem of a high or low probability triplet in a moving window man-
er. Notably, if a triplet had two pattern trials with one random trial
i.e. three consecutive trials of pattern-random-pattern), it was a pat-
ern triplet with a high probability because the third pattern trial was
redicted by the first pattern trial with a high probability. However, if
 triplet had two random trials with one pattern trial (i.e. three con-
ecutive trials of random-pattern-random), it was classified as a random
riplet with either high or low probability, because some of the random
riplets were identical to the pattern triplet with a high probability (i.e.
andom-High, a random triplet with high probability). However, other

riplets, which were not identical to the pattern triplet, had a low prob-
bility (i.e. Random-Low, a random triplet with low probability). The
3 
igh probability triplets were presented five times more often than the
ow probability triplets (see Park et al., 2020 for further details). Here,
omparing the high and low probability triplets in the same type (i.e. the
andom type triplet) enabled us to investigate the genuine effect of sta-
istical learning because it depends only on the probability, controlling
or other factors such as trial types or general speed ( Park et al., 2020 ;
óth et al., 2017 ). After the fMRI scanning, participants were asked if
hey noticed any regular patterns during the experiment. None of them
eported regularities, suggesting participants were unaware of the struc-
ure of the alternating serial sequence. 

.3. MRI acquisition 

Brain imaging data were collected using a 3T Siemens MAGNE-
OM Skyra Scanner (Siemens Healthcare, Erlangen, Germany) with a
4-channel phased-array head coil at Daegu-Gyeongbuk Medical Inno-
ation Foundation (DGMIF). A high resolution T1-weighted structural
mage was collected (Tr = 2300 ms, TE = 3.44 ms, flip angle = 9°,
OV = 256 mm, and voxel size = 1 × 1 × 1 mm) at the beginning of
he first scanning session with a magnetisation-prepared rapid gradient
cho sequence (MPRAGE). Subsequently, a T2 ∗ -weighted gradient-echo
cho-planar-imaging (EPI) sequence was used (Tr = 2000 ms, TE = 30
s, flip angle = 90°, FOV = 192 mm, and in-plane resolution = 3 × 3
m, and 30 slices of 4 mm thickness with a 20% gap) to acquire func-

ional data covering the whole brain from the cerebellum to the ver-
ex. The detailed information about raw fMRI data can be found in
ttps://openneuro.org/datasets/ds003401/versions/1.0.1 . 

https://openneuro.org/datasets/ds003401/versions/1.0.1
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. Data analysis 

.1. Behavioural analysis 

We used only reaction times (RTs) of the correct trials in further
nalyses, since the participants’ accuracy showed ceiling effects (over-
ll accuracy: 91.4 %, SD = 0.7). Outliers were removed with a cut-off of
wo standard deviations from the mean RTs for each subject. To scruti-
ise whether or not participants successfully learned the statistical reg-
larities, we defined statistical learning (SL) scores as the difference in
ean reaction times (RTs) between the high probability triplets and

ow probability triplets of the same type (i.e., random type triplet). To
alculate this score, we subtracted the mean RTs of the high probabil-
ty triplets (Random-High) from those of the low probability triplets
Random-Low). Positive values represent the high performance of sta-
istical learning ( Armstrong et al., 2017 ; Aslin, 2017 ; Kobor et al., 2017 ;
eber, 1967 ; Tóth et al., 2017 ). The SL scores were tested against zero
sing a t-test to investigate the effects of statistical learning. Because
n individual’s overall RT could affect the individual SL scores, we used
ormalised RTs to calculate SL scores ( Horváth et al., 2020 ; Zavecz et al.,
020 ). Normalisation was conducted as follows (1): 

Norm alis ed 𝑅𝑇 ij = 

𝑅𝑇 ij − mean 𝑅𝑇 𝑖 

std 
(
𝑅𝑇 𝑖 

) ; 

i ∶ participant index ; j ∶ trial index (1) 

SL scores were obtained from each block separately to investigate
he behavioural changes as the statistical learning progressed over the
earning time. Subsequently, a one-way analysis of variance (ANOVA)
as used to examine whether or not there was a significant effect of

he learning time (i.e. number of blocks) on participants’ SL scores. We
erformed all the following analyses using Python 3 ( Menczer et al.,
020 ) and MATLAB ( Higham and Higham, 2016 ). 

.2. fMRI preprocessing 

Preprocessing of fMRI data was done using the SPM12 software pack-
ge (http://www.fil.ion.ucl.ac.uk/spm/) with the following steps: slice
iming correction with the first slice as a reference slice, realignment
o correct head motion artifacts using 6 affine head motion parameters,
o-registration to individual T1 structural image, normalisation to Mon-
real Neurological Institute (MNI) template brain image, and smoothing
ith a Gaussian kernel of 6 mm full width at half maximum and resam-
ling of functional images to 3 × 3 × 3 mm. Time series of BOLD signal
ere high-pass filtered to 1/128 Hz (128 s) to remove low-frequency

omponents. 

.3. Whole-brain fMRI analysis 

We analysed participants’ brain activations using a generalised lin-
ar model (GLM). The brain data were concatenated across runs, and
e added run regressors to eliminate run effect. The onsets of the task
locks were entered into the GLM as a task regressor with its duration
f 52.9 s in a box-car function manner. We examined parametric modu-
ation of neural activity by individual block-wise SL scores to scrutinise
he activations that reflect the performance of statistical learning per
lock. To this end, we orthogonalised the task-related and SL-related
ffects by eliminating a collinearity between the task regressor and the
arametric modulation regressor (i.e. SL scores) to investigate how the
eural activity changes in association with the SL scores. Motion pa-
ameters from the realignment process were included in the GLM as
egressors of no-interest to account for variance caused by head mo-
ion. An autoregressive AR(1) model with restricted maximum likeli-
ood (ReML) estimation accounted for serial correlations due to unmod-
lled neuronal activity. The canonical hemodynamic response function
HRF) was convolved to model the hemodynamic response for every
4 
egressor. We calculated a one-tailed t-contrast for the SL-related para-
etric modulation regressor. Through these processes, we obtained indi-

iduals’ contrast images of first-level analysis for the parametric modu-
ation regressor-dependent BOLD signal, which were then entered into a
roup-level random-effects analysis. Results from the whole-brain anal-
ses were thresholded at voxel level ( P < 0.001 uncorrected), and only
ctivations that survived at cluster level of false discovery rate (FDR)
djusted P < 0.05 were reported. A minimum cluster size with a cluster
xtent threshold of 24 was estimated using 3dClustSim ( Forman et al.,
995 ), implemented in the AFNI software package ( Cox, 1996 ; Cox and
yde, 1997 ; Gold et al., 1998 ), and we reported clusters that have at

east 24 significant voxels. For the assignment of MNI coordinates to the
natomical labelling, we used the Harvard-Oxford Cortical Structural
tlas (RRID:SCR_001476) ( Kennedy et al., 1998 ; Makris et al., 1999 )
s distributed with FSL (FMRIB Software Library) ( Jenkinson et al.,
012 ) unless specifically indicated. Brodmann areas were determined
ased on the peak coordinate of the clusters using MRIcron ( Rorden and
rett, 2000 ) and Yale BioImage Suite Medical Image Analysis Software
 Papademetris et al., 2006 ). 

.4. Whole-brain functional connectivity analysis using seed-to-voxel 

orrelation 

We explicitly selected seed regions that were found in the parametric
odulation analysis and hypothesised that functional connectivity be-

ween the seed regions and other brain regions would be modulated by
he SL task. To confirm this, the task-related functional connectivity in
L-related brain regions (obtained from the parametric modulation re-
ults) was tested using a whole-brain seed-to-voxel correlation analysis
ith CONN toolbox (www.nitrc.org/projects/conn, RRID:SCR_009550)
 Whitfield-Gabrieli and Nieto-Castanon, 2012 ). First, we followed the
ONN’s default preprocessing pipeline: functional realignment and un-
arp, slice-timing correction, outlier identification, direct segmenta-

ion and normalisation, and functional smoothing. The preprocessed
ata may still have contained non-neural signal or noise that origi-
ated from cerebral white matter, cerebrospinal areas, movement, out-
ier scans, or physiological sources. Since these residuals strongly in-
uence functional connectivity, we additionally conducted two denois-

ng steps, which were implemented within CONN’s default denoising
ipeline. As the first step, using linear regression, we removed potential
onfounding effects in the BOLD signal, such as noise components from
hite matter and cerebrospinal areas, realignment, scrubbing, and task

ffects ( Behzadi et al., 2007 ; Friston et al., 1996 ; Power et al., 2014 ;
hitfield-Gabrieli and Nieto-Castanon, 2012 ). As the second step, tem-

oral high-pass filtering was adopted to eliminate noise-related signals
ith low frequencies (threshold = 0.008 Hz). Then, using the denoised

unctional data, we explored individuals’ task-related functional connec-
ivity between the whole-brain voxels and predefined seed regions that
ere obtained from the parametric modulations of SL scores. To do this,
e calculated participants’ seed-based connectivity map by correlating

he BOLD timeseries in each seed region and the BOLD timeseries in
very voxel in the brain, using the Fisher-transformed bivariate correla-
ion. 

For the group-level analysis, participants’ functional connectivity
alues (i.e. correlation coefficients) from the seed-based connectivity
aps were concatenated and analysed with GLM to estimate the task-

elated functional connectivity (i.e. functional connectivity in the time
indow of task blocks) and rest-related functional connectivity (i.e.

unctional connectivity in the time window of rest blocks), using an or-
inary least squares solution ( Holmes and Friston, 1998 ). The two con-
ectivity maps were compared to each other by F-contrast to find the
ask-induced changes in functional connectivity. For the functional con-
ectivity results, we used thresholds of P < 0.001 uncorrected at voxel
evel and FDR adjusted P < 0.05 at the cluster level, with a cluster extent
hreshold of 24. Additionally, we averaged the correlation coefficients
ithin the significant cluster (i.e. voxels) for each participant in the task
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Fig. 2. SL scores in each scanning run. The x-axis and y-axis indicate the scan- 
ning run order and SL scores, respectively. Error bars indicate the standard error 
of the mean. Abbreviation: a.u., arbitrary unit. 
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nd rest time windows, separately. After that, we compared the mean
orrelation coefficients between the task and rest time windows (task
 rest) using t-contrast to clarify whether the functional connectivity

ncreased or decreased in the task. 

.5. Functional connectivity analysis using seed-to-ROI correlation 

To further investigate SL-related regions with respect to certain cog-
itive functions, we calculated the functional connectivity between SL-
elated regions and the eight large-scale brain networks (provided by
ONN toolbox) including default mode network (four ROIs), sensorimo-
or (three ROIs), visual (four ROIs), salience/cingulo-opercular (seven
OIs), dorsal attention (four ROIs), frontoparietal (four ROIs), language
four ROIs), and cerebellar (two ROIs) ( Patil et al., 2021 ; Whitfield-
abrieli and Nieto-Castanon, 2012 ). Since we aimed at investigating

unctional connectivity without bias, we used all these eight brain net-
orks instead of selectively choosing specific brain networks/ROIs re-

ated to statistical learning. These networks were obtained from par-
ellation results of Human Connectome Project (HCP) dataset (497 sub-
ects) using independent component analysis (ICA). They are considered
o be the most common and consistently observed whole-brain resting-
tate networks ( Yeo et al., 2011 ), characterizing several brain functions
uch as attention, memory, executive function, default mode, motor, and
ensory systems ( Biswal et al., 1995 ; Cole et al., 2010 ; Damoiseaux et al.,
006 ; De Luca et al., 2005 ; Dosenbach et al., 2007 ; Fox et al., 2006 ;
aichle et al., 2001 ; Vincent et al., 2008 , 2006 ). Denoised functional
ata were used to calculate Fisher-transformed correlation coefficients
etween SL-related regions and the ROIs. In the group-level analysis,
he correlation coefficients were contrasted (t-contrast) between the task
nd rest time windows (task > rest). In the seed-to-ROI correlation anal-
sis, we used an uncorrected threshold 𝛼 = 0.05. 

.6. Data-driven functional connectivity with group independent 

omponent (ICA) analysis 

To scrutinise the SL-related functional connectivity more thoroughly,
e additionally took a data-driven approach, that is, group ICA. ICA
ecomposes data into the neural signals of interest and non interest,
hich helps to reveal the brain functions that cannot be explicitly mod-

lled due to insufficient prior information ( Hyvärinen and Oja, 2000 ).
n the present study, group ICA was performed using GIFT toolbox
http://icatb.sourceforge.net/) ( Calhoun et al., 2001 ). Prior to the ICA
ecomposition, data were temporally concatenated across participants,
nd data dimensions were reduced to 60 components using principle
omponent analysis (PCA) since a relatively large number of princi-
le components improve the performance of component reconstruc-
ion ( Erhardt et al., 2011 ). After the PCA step, 40 independent com-
onents were extracted using the infomax algorithm, which uses a
xed nonlinearity for a higher-order Gaussian distribution ( Bell and Se-

nowski, 1995 ). The infomax algorithm is known to return stable and
eliable results in most cases ( Bell and Sejnowski, 1995 ). The 40 inde-
endent components were sorted by correlation coefficient between the
ime course of mean neural activity in the independent component and
he time course of parametric modulation function that was estimated
n the whole-brain fMRI analysis (i.e. the function that was calculated
y convolving SL scores with HRF). 

. Results 

.1. Behavioural results 

.1.1. Reaction times and accuracies in the alternating serial reaction time 

ASRT) task 

Participants performed an ASRT task ( Fig. 1 ) in which they were
equired to press a button corresponding to a target position. Overall,
articipants showed high accuracy (across three runs: 91.4 %, SD = 0.7;
5 
un 1: 91.4 %, SD = 0.8; Run 2: 92.0 %, SD = 0.6; Run 3: 90.8 %,
D = 1.0) and fast reaction times (across three runs: 349.9 ms, SD = 3.8;
un 1: 356.6 ms, SD = 3.9; Run 2: 347.2 ms, SD = 3.8; Run 3: 346.1 ms,
D = 4.1), indicating that they successfully performed the ASRT task. 

.1.2. Learning performance measured by statistical learning scores (SL 

cores) 

We classified the stimuli into high and low probability and defined SL
cores as differences of mean reaction times between them. Participants’
L scores were significantly higher than zero in the ASRT task [across
hree runs: t(30) = 11.21, P = 3.0 × 10 − 12 ; Run 1: t(30) = 7.26, P = 4.4 ×
0 − 8 ; Run 2: t(30) = 7.18, P = 5.4 × 10 − 8 ; Run 3: t(30) = 13.08, P = 6.2
10 − 14 ] ( Figure 2 ). These results indicate that participants successfully

rasped probabilistic regularities in the ASRT task, and thus they re-
ponded faster to high probability triplets compared to the low proba-
ility ones. A one-way ANOVA with SL scores showed a significant main
ffect of the learning time (i.e. number of blocks) [F(1,1114) = 19.65,
 = 1.0 × 10 − 5 ]. In the post-hoc analysis, we used the Bonferroni correc-
ion using a significance level of 𝛼 = 0.05/3 with a desired significance
evel 𝛼 = 0.05. SL scores were significantly higher in the third run com-
ared to the first run [t(30) = -3.666, P = 0.005]. Specifically, partici-
ants achieved higher SL scores in the late phase of learning compared
o the early phase of learning, indicating that they successfully grasped
robabilistic regularities over the course of statistical learning. 

.2. Functional MRI results 

.2.1. Brain regions associated with statistical learning 

Using parametric modulation analysis, we investigated which brain
reas were significantly activated as participants improved their perfor-
ances in statistical learning. We found five brain regions that were

ignificantly modulated by SL scores: the right lateral occipital cortex,
eft angular gyrus, left precuneus, left anterior cingulate cortex, and left
uperior frontal gyrus ( Fig. 3 and Table 1 ). 

.2.2. Whole-brain functional connectivity of the SL-related brain regions 

We hypothesised that task-dependent functional connectivity would
e observed in SL-related brain regions. To verify this, we first defined
ve seed regions that were obtained from the activations of paramet-
ic modulations by SL scores (see Figure 3 and Table 1 ). Second, we
reated seed-based connectivity maps derived from correlation coeffi-
ients between timeseries of the seed regions and the whole-brain voxels
n the task and rest blocks, separately. Third, we explored task-related
rain connectivity by comparing the task and rest seed-based connectiv-
ty maps (i.e. correlation coefficients) using F-contrast. Lastly, we com-
ared the two connectivity maps using t-contrast to scrutinise the in-
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Fig. 3. SL-related brain activations. The brain regions associated with statistical learning were examined by the parametric modulation of task-related neural activity 
according to the SL scores. Abbreviations: L, left hemisphere; R, right hemisphere; ACC, anterior cingulate cortex; AG, angular gyrus; LOC, lateral occipital cortex; 
PCUN, precuneus; SFG, superior frontal gyrus. 

Table 1 

SL-related brain activations. 

Brain 

regions BA 

Cluster 

size(voxels) Z-value 

MNI coordinates (mm) 

x y z 

R Lateral Occipital Cortex (superior division) 39 223 4.52 51 -61 29 
L Angular Gyrus 39 419 4.08 -45 -58 29 
L Precuneus 18 703 3.88 -6 -67 26 
L Anterior Cingulate Cortex 32/11 344 3.84 -12 41 5 
L Superior Frontal Gyrus 8 213 3.72 -18 26 53 

Notes: Throughout the study, we used the Harvard-Oxford Cortical Structural Atlas (RRID:SCR_001476) ( Kennedy et al., 1998 ; 
Makris et al., 1999 ) as distributed with FSL (FMRIB Software Library) ( Jenkinson et al., 2012 ) for the assignment of MNI 
coordinates to the anatomical labelling, unless specifically indicated. Brodmann areas were determined based on the peak 
coordinate of the clusters using MRIcron ( Rorden and Brett, 2000 ) and Yale BioImage Suite Medical Image Analysis Software 
( Papademetris et al., 2006 ). Abbreviations: BA, Brodmann area; L, left hemisphere; R, right hemisphere. 
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rease or decrease of connectivity during the task blocks in comparison
ith the rest blocks. As a result, we revealed significant connections
etween the seed regions and several brain clusters during statistical
earning ( Table 2 , and Fig. 4 and Figure S1-4). Interestingly, most of
hese connections were weaker in the task blocks compared to the rest
locks (negative T-values in Table 2 ). In Fig. 4 , we highlighted the re-
ult for the seed region of the left superior frontal gyrus because this
rea turned out to be specifically relevant for statistical learning in the
nalysis of data-driven group ICA (in the following Fig. 6 ). Results from
he other four seed regions are displayed in Figure S1–4. 

.2.3. Functional connectivity between the SL-related brain regions and the 

arge-scale intrinsic functional networks 

To further investigate whether SL-related regions ( Figure 3 and
able 1 ) are possibly associated with a number of intrinsic dis-
ributed networks whose topography indicates functional significance,
e conducted seed-to-ROI correlation analysis focusing on the well-
nown large-scale intrinsic networks (i.e. the default mode, sensori-
otor, visual, salience/cingulo-opercular, dorsal attention, frontopari-

tal, language, and cerebellar networks) ( Patil et al., 2021 ; Whitfield-
abrieli and Nieto-Castanon, 2012 ). These networks were composed
f 32 ROIs (see Table S1 for the list of ROIs and CONN website for
heir locations [https://web.conn-toolbox.org/conn-in-pictures]). The
eed regions were obtained from the SL-related brain regions (see
igure 3 and Table 1 ). A data-driven hierarchical clustering proce-
ure ( Sorensen, 1948 ) was used to display connectograms ( Figure 5
nd Figure S5-7) using Euclidean distances computed with connectivity
trengths (i.e. functional criteria) and spatial locations (i.e. spatial crite-
ia). All the connections between all pairs of ROIs were analysed using
6 
 multivariate parametric GLM analysis with an uncorrected threshold
= 0.05 ( Jafri et al., 2008 ). Consequently, the seed in the left supe-

ior frontal gyrus showed significantly decreased functional connectivity
i.e. correlation coefficients) with the salience, dorsal attention, and lan-
uage networks in the task blocks compared to the rest blocks ( Fig. 5 ). 

The same analysis was performed on the other four SL-related re-
ions (the right lateral occipital cortex, left angular gyrus, left pre-
uneus, and left anterior cingulate cortex). The right lateral occipital
ortex had one negative and one positive functional connection with
he frontoparietal and default mode networks, respectively (Figure S5).
he left angular gyrus showed negative functional connectivity with the
our functional networks (i.e. the salience, dorsal attention, language,
nd visual networks) (Figure S6). Positive functional connectivity was
bserved between the left precuneus and default mode network (Fig-
re S7). Lastly, no significant functional connections were observed be-
ween the anterior cingulate cortex and any of the intrinsic functional
etworks. 

.2.4. Data-driven SL-related functional network 

We conducted a group independent component analysis (ICA) to ad-
ress a data-driven functional network during statistical learning. By
sing ICA, we were able to reveal all the possible contributions of func-
ional connectivity to statistical learning, not being biased by a priori
nformation or hypothesis ( Fox and Raichle, 2007 ). Among the 40 inde-
endent components identified by ICA, the BOLD timeseries in the 10 th 

omponent (i.e. the superior frontal network; Fig. 6 ) showed the largest
orrelation coefficient with the time course of SL scores (r = 0.164),
hich was significantly higher than the coefficients of other components

t(38) = -9.66, P = 8.8 × 10 − 12 ]. This result suggests that the superior
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Fig. 4. Functional connectivity between the left superior frontal gyrus and voxels in the whole brain during the SL task. (A) The seed-to-voxel correlation was 
examined in the whole brain. The green colour represents the left superior gyrus as the seed region that is one of the SL-related brain regions. Results from the other 
four seed regions are displayed in Figure S1–4. (B) The effect sizes (i.e., correlation coefficients) indicate the strength of functional connectivity during the rest and 
task blocks. All functional connections shown here were weaker in the task blocks compared to the rest blocks, as indicated by the negative T-values in Table 2 . 
Abbreviations: L, left; R, right; SFG, superior frontal gyrus; SMG, supramarginal gyrus; FP, frontal pole; IFG, inferior frontal gyrus. 

Fig. 5. Reduced functional connectivity between the left superior frontal gyrus and the salience, dorsal attention, and language networks during the SL task. (A) 
A connectogram indicated significantly decreased functional connectivity (uncorrected threshold 𝛼 = 0.05) between the left superior frontal gyrus (L SFG; the seed 
region) and eight ROIs located within the salience, dorsal attention, and language networks during the task blocks. (B) The eight functional connections were rendered 
in the 3D brain. The green and grey spheres denote the seed region (L SFG) and the eight ROIs, respectively. Here, only peak coordinates of the ROIs are shown for 
visualisation purposes. Connectograms with the other seed regions of the right lateral occipital cortex, left angular gyrus, and left precuneus are displayed in Figure 
S5-7. Abbreviations: L, left; R, right; SFG, superior frontal gyrus; FP, frontal pole; SMG, supramarginal gyrus; AInsula, anterior insular; ACC, anterior cingulate cortex; 
IPS, intraparietal sulcus. 

7 
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Table 2 

Task-related functional connectivity. 

Seed regions Brain areas BA 

Cluster size 

(voxels) Z-value T-value 

MNI coordinates (mm) 

x y z 

R lateral Occipital Cortex Cingulate Gyrus - 242 4.37 -5.89 0 -14 26 
L Angular Gyrus L Angular Gyrus 40/39 1596 5.65 -10.21 -42 -52 38 

L Crus II ‡ - 574 4.79 -7.62 -32 -64 -44 
L Inferior Frontal Gyrus 48/44 232 4.49 -6.30 -50 14 14 
L Cingulate Gyrus - 213 4.44 -6.62 -4 -10 28 

L Precuneus R Superior Temporal 
Gyrus 

21/38 437 5.59 6.53 52 2 -20 

L Superior Parietal 
Lobule 

5/7 195 4.90 -5.87 -14 -52 60 

R WM Callosal body † - 634 4.85 6.89 16 -48 24 
L Frontal Orbital Cortex 47 477 4.64 -6.84 -54 22 -8 
L WM Callosal body † - 119 4.48 -6.53 -14 -10 34 
R Frontal Pole 46/10 248 4.32 -5.41 42 48 -2 
L WM Optic radiation † - 241 4.31 -4.95 -14 -82 14 
R Superior Temporal 
Gyrus 

21/22 383 4.22 -5.70 66 -22 2 

L Anterior Cingulate Cortex R Middle Frontal Gyrus 44/8 2608 6.11 -7.78 36 10 40 
R Middle Temporal 
Gyrus 

21 703 5.63 -10.03 64 -36 -8 

R Superior Parietal 
Lobule 

7/39 393 4.87 -5.59 32 -56 42 

R Vermis VI ‡ - 355 4.43 5.17 6 -62 -24 
L Middle Frontal Gyrus 48/8 194 4.40 -5.29 -40 14 30 
R Superior Frontal Gyrus 8 473 4.40 -6.31 4 32 44 
L Lateral Occipital Cortex 19/7 277 4.28 -5.52 -22 -74 38 
L Postcentral Gyrus 4/1 573 4.23 5.91 -26 -30 62 
R Postcentral Gyrus 4 208 4.01 4.96 26 -28 64 

L Superior Frontal Gyrus R Superior Frontal Gyrus 8 1352 4.77 -6.86 8 26 54 
L Supramarginal Gyrus 40/1 638 4.41 -5.92 -38 -36 38 
L Inferior Frontal Gyrus, 
pars opercularis 

44 292 4.40 -5.51 -50 12 20 

L Frontal Pole 46/9 397 4.24 -7.25 -32 38 32 
R Frontal Pole 9 150 4.07 -5.61 22 52 30 

Notes: Z-values are calculated by converting F-statistics to Z scores, which indicate the functional connectivity strengths between seed regions and voxels of 
the cluster. The positive or negative T-values represent the higher or lower strength of functional connectivity in the task blocks compared to the rest blocks, 
respectively. Abbreviations: BA, Brodmann area; L, left hemisphere; R, right hemisphere; WM, white matter. 

‡ Cerebellar Atlas ( Schmahmann et al., 2000 ). 
† Juelich Histological Atlas ( Eickhoff et al., 2007 ). 

Fig. 6. Statistical learning dependent functional network. Group ICA revealed 
a network in the superior frontal area depicted by the red-yellow scale, showing 
a positive relationship with the SL scores. 
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rontal network constitutes a critical functional network for statistical
earning. 

From investigating the whole-brain functional connectivity (i.e.
eed-to-voxel correlation) with the seed region of the left superior
rontal gyrus (i.e. a SL-related region in the analysis of parametric modu-
ation; Fig. 3 and Table 1 ), we found five task-related connections among
hich the strongest connectivity was observed between the left and right

uperior frontal gyri (the highest Z value [4.77] is shown in Table 2 ).
hese two areas showed decreased functional connectivity strength (i.e.
8 
orrelation coefficient) in the task blocks compared to the rest blocks
 Fig. 4 B). This result, together with the group ICA result above, indicates
hat the superior frontal network and particularly the weakened func-
ional connection between the left and right superior frontal gyri during
ask blocks compared to rest blocks is critical for statistical learning. 

. Discussion 

The present study aimed to identify the brain regions and their
unctional connections underlying statistical learning of temporally dis-
ributed regularities. To this end, we used a statistical learning task with
 well-controlled behavioural learning index (i.e. SL scores). Using a
hole-brain parametric modulation analysis, we identified five discrete
rain regions in which neural activity was associated with behavioural
erformances (i.e. SL scores). Next, we revealed how these regions in-
eracted with the rest of the brain during statistical learning using func-
ional connectivity analyses. Surprisingly, most of the SL-related areas
ad decreased functional connectivity across the voxels in the whole
rain as participants progressed in statistical learning, and, specifically,
he superior frontal gyrus had a strong and negative functional connec-
ivity with the salience, dorsal attention, and language networks. Lastly,
he group ICA underscored the critical role of the superior frontal net-
ork during the SL task. Thus, we provide a new framework to demon-

trate the functional connectivity of statistical learning by various tech-
ical innovations and theoretical implications. 
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. Multifaceted approaches for measuring functional connectivity

In the present study, we used three different methods to comprehen-
ively elucidate the functional connectivity involved in statistical learn-
ng. First, using the seed-to-voxel correlation analysis in the whole brain
ith the seed regions associated with statistical learning (the lateral oc-

ipital cortex, angular gyrus, precuneus, anterior cingulate cortex, and
uperior frontal gyrus; see Figure 3 and Table 1 ), we revealed how spa-
ially separated brain areas are functionally connected to each other
ith respect to statistical learning. Second, using a seed-to-ROI analysis
e unveiled how SL-related regions are associated with the well-known

arge-scale functional networks (i.e. the default mode, sensorimotor,
isual, salience/cingulo-opercular, dorsal attention, frontoparietal, lan-
uage, and cerebellar networks). Finally, with the help of a group ICA we
howed the most essential network intertwined with statistical learning.
n particular, this data-driven approach enabled us to reveal the brain
etworks that may be hard to be explicitly modelled due to insufficient
rior information ( Hyvärinen and Oja, 2000 ). In other words, unlike tra-
itional approaches, it is not required to determine predefined brain re-
ions and condition-specific time series in ICA. Moreover, ICA can elicit
eaningful components by denoising artifact-related independent com-
onents ( Salman et al., 2019 ). In summary, by means of multifaceted
pproaches, we succeeded in rigorously elucidating the functional con-
ections contributing to statistical learning. 

. Reduced functional connectivity beneficial to statistical 

earning 

The superior frontal gyrus, as being covaried with behavioural scores
n the parametric modulation ( Figure 3 ) and having SL-related func-
ional connections ( Figure 5 ), needs further discussion. As outlined in
he introduction, the present study’s high and low probability triplets
ad the same amount of visual (i.e., spatial locations of stimuli) and
otor (i.e., button responses) demands and differed only in their oc-

urrence probability. This experimental manipulation is critical in gen-
rating stimulus regularity during statistical learning. A previous study
lso found greater activation in the SFG for objects of structured (pre-
ictable) triplets than for those of random (unpredictable) triplets
 Otsuka and Saiki, 2020 ). In line with this, learning temporally dis-
ributed regularities in the present study seems to pertain to the involve-
ent of the SFG. A more prevailing account of the association between

he SFG and statistical learning can be provided in the functional con-
ectivity results. 

We should scrutinise the superior frontal gyrus in harmony with
ther brain regions comprising SL-related functional connections during
tatistical learning. When the brain works on acquiring novel informa-
ion, it is more advantageous to rely on stimulus-driven bottom-up pro-
esses than complex goal-directed top-down processes ( Ambrus et al.,
020 ; Tóth et al., 2017 ). More specifically, statistical learning is de-
endent more on bottom-up processes than on top-down processes, be-
ng constrained by lower level perceptual organisation ( Emberson et al.,
013 ). This proposal was supported by previous findings, showing that
tatistical learning performance was negatively correlated with goal-
irected control functions; better statistical learning was associated with
eaker top-down control processes ( Nemeth et al., 2013 ; Smalle et al.,
022 ; Virag et al., 2015 ). Likewise, a functional connectivity study us-
ng EEG phase synchronisation ( Tóth et al., 2017 ) found a similar pat-
ern, showing that statistical learning was negatively correlated with
 large-scale functional neural network in slow (theta) and fast (beta)
scillations. Unfortunately, this study was not able to pinpoint the key
odes of this network because it did not use source localisation. How-
ver, thanks to the better spatial resolution of fMRI compared to EEG,
e successfully provided more solid evidence of spatial locations for

his antagonistic relationship by showing reduced functional connectiv-
ty in almost all connections, especially between the seed region of left
uperior frontal gyrus and the language, dorsal attention, and salience
9 
etworks ( Figure 5 ). More interestingly, these networks are involved in
op-down processes such as goal-directed control, language, and atten-
ional shifting functions, and thus their reduced connections with the
eft superior frontal gyrus may seem to implicate the dependency more
n bottom-up processes than on top-down processes, leading to better
tatistical learning. 

We should expound on why these three networks —the dorsal atten-
ion, salience, and language networks —were particularly mediated by
tatistical learning in the present study. The dorsal attention network
nd the salience network (also known as ventral attentional network)
ave been known to interplay with each other to mediate attentional
ontrol from top-down information and bottom-up sensory information
 Uddin, 2015 ; Vossel et al., 2014 ). As mentioned above, attention is
ranted on statistical regularities aiding in effective statistical learn-
ng. Therefore, the link between the SL-related region (i.e. the superior
rontal gyrus) and attention-related intrinsic functional networks (i.e.
he dorsal attention and salience networks) can be construed as the in-
egral role of attention in statistical learning. 

Observation of the language network could be interpreted as a con-
equence of the complex relationship between statistical learning and
anguage processing, not to mention attention. Important (but not ex-
lusive) computations in language processing are grasping statistical re-
ationships between inputs because language is composed of the sta-
istical regularities among an infinite number of possible associations
t various levels such as phonology, morphology, semantics, and syntax
 Evans et al., 2009 ; Finn and Kam, 2008 ; Misyak et al., 2009 ). For exam-
le, one can learn a new word by extracting distributions of syllables,
hat is, how each syllable is likely to appear in connection with each
ther ( Saffran et al., 1996 ). In the same vein, our participants were also
ctively involved in extracting statistical regularities from the incoming
timuli. Therefore, one of the critical characteristics of language process-
ng and statistical learning —extracting regularities —seems to conjoin
he SFG and the language network as one of the SL-related functional
etworks. 

. Limitation 

In the present study, we used relatively short rest blocks (7.1 s) com-
ared to task blocks (52.9 s). In general, block design fMRI experiments
ommonly use 10-30 s duration for rest blocks to obtain robust activa-
ion maps ( Brockway, 2000 ; Elton and Gao, 2015 ; Jones et al., 2010 ;
urkiewicz et al., 2018 , 2007 ; Loubinoux et al., 2001 ; Mikulis et al.,
002 ). The relatively short duration of our rest blocks may have reduced
he strength of task-related functional connectivity. Therefore, a future
tudy is needed to use a lengthened duration for more robust results. 

Another caveat to the present study is that a methodological limi-
ation inherent to the fMRI, that is, observing hemodynamic responses
orrelated with neural activity ( Constable, 2006 ), prevented us from
xamining a causal relationship between neural activations/functional
onnectivity and statistical learning in the present study. Therefore, it
ould be desirable to use non-invasive brain stimulation such as tran-

cranial magnetic stimulation (TMS) to investigate the modulatory ef-
ects of the observed brain areas/connections on statistical learning in
he future study. 

. Conclusion 

Our findings in the present study offer detailed characterisation of
he whole-brain functional brain architecture during statistical learning.

e identified discrete brain regions and their interregional functional
onnectivity underlying the learning of temporally distributed statistical
egularities through three functional connectivity analyses (i.e. seed-to-
oxel whole-brain correlation analysis, seed-to-ROI correlation analysis,
nd group ICA). As a result, we unveiled the supporting role of the atten-
ated large-scale functional connectivity (e.g. between the left superior
rontal gyrus and the salience, dorsal attention, and language networks)
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n statistical learning. These findings may reflect a crucial mechanism
f the brain, suggesting weaker functional connections with regions in-
olved in goal-directed, top-down processes lead to better processing
f novel information, including the extraction of new patterns from the
nvironment. 
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