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Abstract

In this paper, for the problem of minimizing the makespan on two unrelated parallel
machines we compare the quality of preemptive and non-preemptive schedules.

It is known that there exists an optimal preemptive schedule with at most two preemp-
tions. We show that the power of preemption, i.e., the ratio of the makespan computed
for the best non-preemptive schedule to the makespan of the optimal preemptive sched-
ule is at most 3/2. We also show that the ratio of the makespan computed for the best
schedule with at most one preemption to the makespan of the optimal preemptive sched-
ule is at most 9/8. For both models, we present polynomial-time algorithms that find
schedules of the required quality. The established bounds match those previously known
for a less general problem with two uniform machines. We have found one point of dif-
ference between the uniform and unrelated machines: if an optimal preemptive schedule
contains exactly one preemption then the ratio of the makespan computed for the best
non-preemptive schedule to the makespan of the optimal preemptive schedule is at most
4/3 if the two machines are uniform and remains 3/2 if the machines are unrelated.

Keywords: Unrelated parallel machines; power of preemption; quality of a single pre-
emption

1 Introduction

In parallel machine scheduling, we are given the jobs of set N = {J1, J2, . . . , Jn} and m
parallel machines M1, M2, . . . ,Mm. If a job Jj ∈ N is processed on machine Mi alone, then
its processing time is known to be pij . In the scheduling literature, there is a distinction
between the following three types of parallel machines: (i) identical parallel machines, for
which the processing times are machine-independent, i.e., pij = pj ; (ii) uniform parallel
machines, which have different speeds, so that pij = pj/si, where si denotes the speed of
machine Mi; and (iii) unrelated parallel machines, for which the processing time of a job
depends on the machine assignment.

In a non-preemptive schedule, each job is assigned to a machine and is processed there
without interruption. In a preemptive schedule, the processing of a job on a machine can be
interrupted at any time and then resumed either on this or on any other machine, provided
that the job is not processed on two or more machines at a time, and the amount of processing
assigned to each machine guarantees that the job is fully completed.

In all problems considered in this paper the objective is to minimize themakespan, i.e., the
maximum completion time across all m machines. For a schedule S, the makespan is denoted
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by Cmax(S). For an instance of a scheduling problem on parallel machines, let S∗
(q) and S∗

p

denote an optimal schedule with at most q preemptions, and an optimal preemptive schedule
which uses an unlimited number of preemptions, respectively. We will refer to schedules with
an unlimited number of preemptions as simply preemptive. The case q = 0 corresponds to a
non-preemptive schedule, and an optimal non-preemptive schedule is denoted by S∗

(0).

For a scheduling problem to minimize the makespan Cmax on m parallel machines (identi-
cal, uniform or unrelated), we measure the quality of a schedule with at most q preemptions

by establishing a tight upper bound ρ
(q)
m on the ratio Cmax(S

∗
(q))/Cmax(S

∗
p) across all instances

of the problem at hand. The value of ρ
(q)
m determines what can be gained regarding the max-

imum completion time if instead of at most q preemptions any number of preemptions is

allowed. For q = 0 the ratio ρ
(0)
m is often called the power of preemption.

In this paper, we mainly focus on the problem with two unrelated parallel machines, i.e.,
m = 2. Section 2 provides an overview of known relevant results. In Section 3, we show

that ρ
(0)
2 = 3/2, i.e., for the problem on two unrelated machines the power of preemption

coincides with the value established for a less general problem on two uniform machines; see
(Woeginger, 2000), as well as (Jiang et al., 2014; Soper and Strusevich, 2014a,b). We also
show that for m ≥ 3 parallel machine the power of preemption on unrelated machines is
larger than that on uniformly related machines. In Section 4, we prove that for the problem

with two unrelated parallel machines the equality ρ
(1)
2 = 9/8 holds, i.e., an optimal schedule

with at most one preemption has a makespan that is at most 9/8 times worse than the

makespan in the optimal preemptive schedule S∗
p . Again, the value of ρ

(1)
2 is the same for the

less general problem on two uniform machines; see (Jiang et al., 2014; Soper and Strusevich,
2018, 2019). If an optimal preemptive schedule S∗

p contains one preempted job, for two

unrelated machines the power of preemption ρ
(0)
2 remains 3/2, however, as we demonstrate

in Section 5, it decreases to 4/3 if the machines are uniformly related. Section 6 contains
concluding remarks.

2 Preliminaries

For a scheduling problem on parallel machines, we compare the quality of an optimal schedule
with at most q preemptions S∗

(q) and a schedule with any number of preemptions S∗
p . In this

section, we briefly review the relevant results on determining value ρ
(q)
m , an upper bound on

the ratio Cmax(S
∗
(q))/Cmax(S

∗
p).

We start with discussing the complexity of the corresponding problems. Recall that
finding an optimal non-preemptive schedule on parallel machines is NP-hard even for the case
of two identical machines. If any number of preemptions is allowed, then all these problems
are polynomially solvable, even in the most general setting with unrelated machines. See a
focused survey by Chen (2004) on parallel machine scheduling with the makespan objective
for details and references. The number of preemptions in an optimal schedule S∗

p need
not exceed m − 1 in the case of identical machines, as proved by McNaughton (1959), and
2 (m− 1) in the case of uniform machines; see (Gonzalez and Sahni, 1978). For unrelated
machines, it has been shown in (Lawler and Labetoulle, 1978) that an optimal preemptive
schedule requires no more than O

(
m2

)
preemptions.

For m = 2, the number of preemptions in an optimal schedule S∗
p is at most one if the
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machines are identical and at most two, if the machines are either uniform or unrelated; see
(Gonzalez et al., 1990). For the latter settings, an optimal preemptive schedule can be found
in O (n) time.

If the makespan is minimized in the class of schedules with a restricted number of pre-
emptions, then for m = 2, the problem of finding an optimal schedule with at most one
preemption on uniform machines is polynomially solvable, while in the case of unrelated
machine it is NP-hard; see (Soper and Strusevich, 2019). For m ≥ 3, the problem of finding
an optimal schedule S∗

(q) with at most q ≤ m − 2 preemptions on m parallel machines is

NP-hard due to Shchepin and Vakhania (2008), even if the machines are identical.

In order to determine the exact value of ρ
(q)
m for a particular problem and to give the

concept some practical meaning, the following should be done:

(i) demonstrate that the inequality

Cmax(S
∗
(q))

Cmax

(
S∗
p

) ≤ ρ(q)m (1)

holds for all instances of the problem;

(ii) exhibit instances of the problem for which (1) holds as equality, i.e., show that the value

of ρ
(q)
m is tight; and

(iii) develop a polynomial-time algorithm that finds a heuristic schedule S(q) with at most
q preemptions such that

Cmax(S
∗
(q))

Cmax

(
S∗
p

) ≤
Cmax

(
S(q)

)
Cmax

(
S∗
p

) ≤ ρ(q)m . (2)

Most of the known results in this area address the situation of q = 0, i.e., are aimed
at comparing an optimal non-preemptive schedule with an optimal preemptive schedule in

order to determine the power of preemption ρ
(0)
m .

If the machines are identical parallel, then ρ
(0)
m = 2−2/ (m+ 1), as independently proved

in (Braun and Schmidt, 2003) and in (Lee and Strusevich, 2005). It is shown by Rustogi and

Strusevich (2013) that the value of ρ
(0)
m can be reduced for some instances that contain jobs

that are longer than the average machine load.

According to Woeginger (2000), for m uniform parallel machines ρ
(0)
m = 2− 1/m. Soper

and Strusevich (2014b) give the necessary and sufficient conditions under which the global
bound of 2− 1/m is tight. For two uniform machines, a parametric analysis of the power of

preemption ρ
(0)
2 with respect to the speed of the faster machine is independently performed

in (Jiang et al., 2014) and in (Soper and Strusevich, 2014a). For m = 3, a similar analysis is
contained in (Soper and Strusevich, 2014a), provided that the machine speeds take at most
two values.

Before we pass to discussing the power of preemption on unrelated machines, we briefly
review relevant results on approximation algorithms for the problem of minimizing the
makespan on m unrelated machines with no preemption allowed. Recall that for that prob-
lem a polynomial-time heuristic algorithm is called a ρ-approximation algorithm if it creates
a non-preemptive schedule SH such that Cmax

(
SH

)
≤ ρCmax(S

∗
(0)); here ρ is called the
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worst-case performance ratio. As shown in (Lawler and Labetoulle, 1978), finding an opti-
mal preemptive schedule S∗

p on m parallel unrelated machines can be done by the following
two-phase method: in the first phase, a linear programming (LP) problem is solved and its
solution defines the optimal makespan Cmax

(
S∗
p

)
and total durations of processing each job

on each machine; in the second phase, schedule S∗
p is found by solving an artificial open shop

scheduling problem. The LP problem to be solved in the first phase can be formulated as

minimize T

subject to

n∑
j=1

pijxij ≤ T, 1 ≤ i ≤ m;

m∑
i=1

pijxij ≤ T, 1 ≤ j ≤ n;

m∑
i=1

xij = 1 1 ≤ j ≤ n;

0 ≤ xij ≤ 1 1 ≤ i ≤ m, 1 ≤ j ≤ n.

(3)

Here, the minimum value of T corresponds to the optimal makespan Cmax

(
S∗
p

)
, while xij

denotes the portion of job Jj processed on machine Mi.

The link of the problem of finding S∗
p to linear programming forms the basis of most

approximation algorithms for finding a non-preemptive schedule. As shown in (Potts, 1985),
finding an optimal non-preemptive schedule S∗

(0) reduces to the following integer linear pro-
gramming problem with Boolean variables xij :

minimize T

subject to
n∑

j=1

pijxij ≤ T, 1 ≤ i ≤ m

m∑
i=1

xij = 1 1 ≤ j ≤ n,

xij ∈ {0, 1} 1 ≤ i ≤ m, 1 ≤ j ≤ n.

(4)

If problem (4) is solved and the optimal value T ∗ of the objective function and the
optimal values x∗ij of the decision variables are found, then there exists an optimal non-
preemptive S∗

(0) such that Cmax(S
∗
(0)) = T ∗ and job Jj is processed on machine Mi if and

only if x∗ij = 1. Potts (1985) introduces a relaxation LP problem by replacing the integrality
constraint xij ∈ {0, 1} by the inequality xij ≥ 0 for each decision variable. Based on a
solution to this relaxation problem, Potts (1985) presents a rounding procedure which leads to
a heuristic non-preemptive schedule SLPE such that Cmax

(
SLPE

)
/Cmax(S

∗
(0)) ≤ 2; however,

the running time of such an algorithm is not polynomial with respect to m. An improved
algorithm based on a rounding scheme applied to another relaxation LP problem is given
in (Lenstra et al., 1990), it is a 2-approximation algorithm that requires polynomial time.
In the same paper it is proved that for this problem the existence of an approximation
algorithm with a worst-case bound ρ < 3

2 would imply that P = NP. A rounding procedure
in (Shchepin and Vakhania, 2005) applied to the relaxation of (4) leads to a (2− 1/m)-
approximation algorithm.

In the case of m = 2 unrelated machines, the best known approximation algorithms for
finding a non-preemptive schedule guarantee a worst-case performance ratio ρ = 3/2; see a
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purpose-built algorithm in (Potts, 1985) and a general algorithm in (Shchepin and Vakhania,
2005) applied to m = 2.

None of the quoted results on approximation algorithms for finding a non-preemptive
schedule for the problem with unrelated machines can be directly used for determining the
power of preemption for that machine environment. The reason is that in all quoted papers
the used lower bounds on the optimal makespan Cmax(S

∗
(0)) for non-preemptive schedules are

not lower bounds on an optimal makespan Cmax

(
S∗
p

)
for preemptive schedules.

The first result that provides a bound on the power of preemption ρ
(0)
m on m unrelated

parallel machines is due to Lin and Vitter (1992). The authors take a solution to the LP
problem (3) and convert it to a solution that satisfies the constraints

n∑
j=1

pijxij ≤ 2Cmax(S
∗
p), 1 ≤ i ≤ m

m∑
i=1

xij = 1, 1 ≤ j ≤ n,

0 ≤ xij ≤ 1, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Then, using the rounding scheme by Lenstra et al. (1990) this solution can be converted
into a solution that satisfies the constraints in problem (4) with T = 4Cmax(S

∗
p). An alterna-

tive presentation of the same approach is contained in (Correa et al., 2012) and is based on
the rounding scheme by Shmoys and Tardos (1993) applicable to the generalized assignment

problem. This implies that ρ
(0)
m on m unrelated parallel machines is at most 4. Correa et

al. (2012) develop an iterative procedure which for any β ∈ [2, 4) generates an instance such

that Cmax(S
∗
(0)) ≥ βCmax

(
S∗
p

)
. Therefore, the bound of 4 on ρ

(0)
m cannot be improved for an

arbitrary m.

Only a few studies compare optimal schedules S∗
(q) with at most q preemptions to optimal

preemptive schedules S∗
p . For identical parallel machines, Braun and Schmidt (2003) prove

that ρ
(q)
m = (2m) / (m+ q + 1), where 0 ≤ q ≤ m − 1. Jiang et al. (2014) show that in the

case of two uniform machines ρ
(1)
2 = 9/8. For m uniform machines, Soper and Strusevich

(2019) prove that ρ
(1)
m = 2− 2/m. A parametric analysis of the quality of optimal schedules

with a single preemption is performed in (Jiang et al., 2014) for two uniform machines and
in (Soper and Strusevich, 2018) for three uniform machines.

Regarding objective functions other than the makespan, the power of preemption for the
problems of minimizing the weighted total completion time is determined in (Epstein and
Levin, 2016) for a single machine and in (Sitters, 2017) for m unrelated machines. For the
problem of minimizing the total completion time on m uniform parallel machines the power
of preemption is derived in (Epstein et al., 2017).

3 Power of Preemption

The power of preemption ρ
(0)
m = 4 on m unrelated machines holds for sufficiently large values

of m. Finding the exact values of the power of preemption for small values of m is of interest.
In this section, we prove that for the problem of minimizing the makespan on two unrelated
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M1 Jµ

M2 Jµ

(a)

M1 N1 Jλ Jµ

M2 Jµ Jλ N2

(b)

Figure 1: (a) schedule S∗
p with one preempted job Jµ, (b) schedule S∗

p with two preempted
jobs Jµ and Jλ

machines the power of preemption is at most 3/2, i.e.,

Cmax(S
∗
(0))

Cmax

(
S∗
p

) ≤ ρ
(0)
2 =

3

2
, (5)

and this bound is tight. We also show how to find a non-preemptive schedule SH such that

Cmax

(
SH

)
Cmax

(
S∗
p

) ≤ 3

2
. (6)

According to Gonzalez et al. (1990), in an optimal schedule either one job or two jobs
need be processed with preemption, see Figure 1. In Figure 1(b), the sets of jobs processed
without preemption on machines M1 and M2 are labeled as N1 and N2, respectively.

3.1 One Preemption in an Optimal Schedule

Assume that job Jµ is processed with preemption. Without loss of generality, assume that
p1µ ≤ p2µ; otherwise, the machines can be appropriately renamed. Then

Cmax

(
S∗
p

)
≥ p1µ. (7)

Let xiµ be the portion of job Jµ processed on machine Mi, i ∈ {1, 2}, where

x1µ + x2µ = 1. (8)

The total processing time of job Jµ on machine Mi is xiµpiµ, so that

Cmax

(
S∗
p

)
≥ x1µp1µ + x2µp2µ. (9)

Consider the following algorithm for transforming an optimal preemptive schedule S∗
p

into a schedule SH , in which job Jµ is processed without preemption.

Algorithm 1

6



Step 1. Find schedule S∗
p with job Jµ being a preempted job. Create schedule Sµ1 by

keeping all jobs as they are assigned to the machines in schedule S∗
p except job Jµ is

entirely processed on machine M1.

Step 2. Similarly, transform schedule S∗
p to a non-preemptive schedule Sµ2 by assigning job

Jµ to be processed on machine M2.

Step 3. Compute Cmax

(
Sµ1

)
and Cmax

(
Sµ2

)
. Output schedule SH as that of schedules

Sµ1 and Sµ2 which has the smaller makespan.

Since finding schedule S∗
p requires O (n) time, the running time of Algorithm 1 is linear

in n.

Lemma 1 Given an optimal preemptive schedule S∗
p in which job Jµ is processed with pre-

emption. Algorithm 1 finds schedule SH in which the number of preemptions is reduced by 1
compared to schedule S∗

p and for which the bound (6) holds.

Proof: It follows that

Cmax

(
Sµ1

)
= Cmax

(
S∗
p

)
+ x2µp1µ;

Cmax

(
Sµ2

)
= Cmax

(
S∗
p

)
+ x1µp2µ,

so that

Cmax

(
SH

)
= min

{
Cmax

(
Sµ1

)
, Cmax

(
Sµ2

)}
= Cmax

(
S∗
p

)
+min {x2µp1µ, x1µp2µ} .

Assume that the lemma does not hold, i.e., Cmax

(
SH

)
> 3

2Cmax

(
S∗
p

)
. Then

min {x2µp1µ, x1µp2µ} >
1

2
Cmax

(
S∗
p

)
,

which due to (8) and (9) implies that

x2µp1µ + x1µp2µ = (1− x1µ) p1µ + x1µp2µ > Cmax

(
S∗
p

)
≥ x1µp1µ + (1− x1µ) p2µ.

This yields
x1µ (p2µ − p1µ)− (1− x1µ) (p2µ − p1µ) > 0,

so that x1µ > 1
2 . But then

Cmax

(
SH

)
≤ Cmax

(
Sµ1

)
= Cmax

(
S∗
p

)
+ (1− x1µ) p1µ < Cmax

(
S∗
p

)
+

1

2
p1µ ≤ 3

2
Cmax

(
S∗
p

)
,

where the last inequality is due to (7).

Notice that Lemma 1 holds irrespective of the number of preemptions in schedule S∗
p .

Applying the lemma to an optimal schedule S∗
p , in which job Jµ is the only job that is

processed with preemption, we obtain the following statement.

Lemma 2 Given an optimal preemptive schedule S∗
p in which the only job processed with

preemption is job Jµ, Algorithm 1 finds a non-preemptive schedule SH for which the bound
(6) holds and that bound is tight.
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J1 J2 J3
M1 1 2 2
M2 2 1 2

Table 1: Tightness example for Lemma 2

Proof: The fact that (6) holds, immediately follows from Lemma 1. To see that the bound
(6) is tight, consider the instance of the problem on two unrelated machines with three jobs
and the processing times given in Table 1.

It is easy to verify that in an optimal preemptive schedule S∗
p in the time interval [0, 1]

machine M1 processes job J1 while machine M2 processes job J3; in the time interval [1, 2]
machine M1 completes processing of job J3, while machine M2 processes job J2. In this
schedule, Jµ = J3, x1µ = x2µ = 0.5 and Cmax

(
S∗
p

)
= 2. On the other hand, schedule SH

is an optimal non-preemptive schedule for this instance. In such a schedule machine M1

processes job J1, machine M2 processes job J2 and job J3 is either assigned to machine M1

(as in schedule Sµ1) or to machine M2 (as in schedule Sµ2). Since Cmax

(
SH

)
= 3, we see

that for this instance (6) holds as equality.

3.2 Two Preemptions in an Optimal Schedule

Consider an optimal schedule S∗
p with two preempted jobs, Jλ and Jµ, so that the equalities

(8) and
x1λ + x2λ = 1 (10)

hold. According to Gonzalez et al. (1990), we may assume that the jobs and the machines
are numbered in such a way that (9) holds as equality, i.e.,

Cmax

(
S∗
p

)
= x1µp1µ + x2µp2µ (11)

and additionally the inequalities

Cmax

(
S∗
p

)
≥ x1λp1λ + x2λp2λ; (12)

p1λ
p2λ

≤ p1µ
p2µ

≤ 1; (13)

x1λp1λ ≤ x2µp2µ; (14)

x2λp2λ ≤ x1µp1µ. (15)

hold. The schedule of such a structure is shown in Figure 1(b).

The algorithm below transforms an optimal preemptive schedule S∗
p by trying all options

to process both preempted jobs without interruption.
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Algorithm 2

Step 1. Having found schedule S∗
p with jobs Jλ and Jµ processed with preemption, create a

non-preemptive schedule Sλ1µ1 by keeping all jobs as they are assigned to the machines
in schedule S∗

p except jobs Jλ and Jµ are entirely processed on machine M1.

Step 2. Similarly, transform schedule S∗
p to a non-preemptive schedule Sλ2µ2 by assigning

both jobs Jλ and Jµ to be processed on machine M2.

Step 3. Transform schedule S∗
p to a non-preemptive schedule Sλ1µ2 by assigning job Jλ to

be processed on machine M1 and Jµ to be processed on machine M2.

Step 4. Transform schedule S∗
p to a non-preemptive schedule Sλ2µ1 by assigning job Jλ to

be processed on machine M2 and Jµ to be processed on machine M1.

Step 5. Compute the makespan of all four found schedules. Output schedule SH as that of
schedules Sλ1µ1, Sλ2µ2, Sλ1µ2 and S2µ1 which has the smaller makespan.

The running time of Algorithm 2 is O (n).

Lemma 3 For schedule SH found by Algorithm 2 the bound (6) holds, and that bound is
tight.

Proof: Throughout the proof, denote

C∗ = Cmax

(
S∗
p

)
. (16)

It follows from the actions taken in Steps 1-4 of Algorithm 2 that

Cmax

(
Sλ1µ1

)
= C∗ + x2µp1µ + x2λp1λ;

Cmax

(
Sλ2µ2

)
= C∗ + x1µp2µ + x1λp2λ;

Cmax

(
Sλ1µ2

)
= C∗ +max {x2λp1λ − x1µp1µ, x1µp2µ − x2λp2λ} ;

Cmax

(
Sλ2µ1

)
= C∗ +max {x2µp1µ − x1λp1λ, x1λp2λ − x2µp2µ} .

Since x1µp1µ ≥ x2λp2λ due to (15) and p2λ ≥ p1λ due to (13) it follows that x2λp1λ −
x1µp1µ ≤ 0, so that

Cmax

(
Sλ1µ2

)
= C∗ + x1µp2µ − x2λp2λ.

We split our further consideration into two parts, depending on the structure of schedule
Sλ2µ1.

Part 1: Assume that

max {x2µp1µ − x1λp1λ, x1λp2λ − x2µp2µ} = x2µp1µ − x1λp1λ.

Since x2µp1µ − x1λp1λ < x2µp1µ, it follows that Cmax

(
Sλ2µ1

)
< Cmax

(
Sλ1µ1

)
. Similarly,

since x1µp2µ − x2λp2λ < x1µp2µ, it follows Cmax

(
Sλ1µ2

)
< Cmax

(
Sλ2µ2

)
, so that

Cmax

(
SH

)
= min

{
Cmax

(
Sλ1µ2

)
, Cmax

(
Sλ2µ1

)}
= C∗ +min {x1µp2µ − x2λp2λ, x2µp1µ − x1λp1λ} .
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Recall that the proof of Lemma 1 applied to an arbitrary optimal preemptive schedule
guarantees that

min {x2µp1µ, x1µp2µ} ≤ 1

2
C∗,

which immediately yields that

min {x1µp2µ − x2λp2λ, x2µp1µ − x1λp1λ} ≤ min {x2µp1µ, x1µp2µ} ≤ 1

2
C∗,

and therefore (6) holds.

Part 2. In the remainder of this proof we assume that

max {x2µp1µ − x1λp1λ, x1λp2λ − x2µp2µ} = x1λp2λ − x2µp2µ.

Since x1λp2λ − x2µp2µ < x1λp2λ, it follows that Cmax

(
Sλ2µ1

)
< Cmax

(
Sλ2µ2

)
, so that

Cmax

(
SH

)
= min

{
Cmax

(
Sλ1µ1

)
, Cmax

(
Sλ1µ2

)
, Cmax

(
Sλ2µ1

)}
= C∗ +min {x2λp1λ + x2µp1µ, x1µp2µ − x2λp2λ, x1λp2λ − x2µp2µ} .

In order to prove the lemma, we need to show that the increment, i.e., the difference I =
Cmax

(
SH

)
−C∗, does not exceed 1

2C
∗. To simply the forthcoming algebraic transformations,

define

aµ = x2µp2µ, aλ = x2λp2λ; (17)

sµ =
p2µ
p1µ

, sλ =
p2λ
p1λ

. (18)

Notice that (13) implies
sλ ≥ sµ ≥ 1. (19)

Using (11), rewrite
x1µp2µ = sµ (x1µp1µ) = sµ (C

∗ − aµ) .

Using (12) we obtain x1λp2λ ≤ sλ (C
∗ − aλ) and due to (14) we deduce that x1λp2λ =

sλ (x1λp1λ) ≤ sλaµ.

With this new notation, the increment I can be bounded as

I ≤ min

{
aµ
sµ

+
aλ
sλ

, sµ (C
∗ − aµ)− aλ, sλ (C

∗ − aλ)− aµ, (sλ − 1) aµ

}
. (20)

Define

I1 = min

{
aµ
sµ

+
aλ
sλ

, sµ (C
∗ − aµ)− aλ, sλ (C

∗ − aλ)− aµ

}
; (21)

I2 = min {sµ (C∗ − aµ)− aλ, sλ (C
∗ − aλ)− aµ, (sλ − 1) aµ} , (22)

i.e., with respect to the four terms in the right-hand side of (20), I1 is the smallest of the
first three terms and I2 is the smallest of the last three terms. It is clear that

I ≤ min {I1, I2} .
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For I1, solve the system of simultaneous equations

aµ
sµ

+ aλ
sλ

= sµ (C
∗ − aµ)− aλ

aµ
sµ

+ aλ
sλ

= sλ (C
∗ − aλ)− aµ

to obtain

aλ =
s2µs

2
λ + s2λ − s2µsλ − sµsλ

s2µ + s2λ + s2µs
2
λ − sµsλ − sµ − sλ

C∗;

aµ =
s2µs

2
λ + s2µ − sµs

2
λ − sµsλ

s2µ + s2λ + s2µs
2
λ − sµsλ − sµ − sλ

C∗.

Substituting the found aλ and aµ into the right-hand side of (21), we deduce that I1 ≤
F1C

∗, where

F1 =
s2µsλ − s2µ + sµs

2
λ − s2λ

s2µs
2
λ + s2µ + s2λ − sµsλ − sµ − sλ

.

Similarly, for I2, solve the system of simultaneous equations

(sλ − 1) aµ = sµ (C
∗ − aµ)− aλ

(sλ − 1) aµ = sλ (C
∗ − aλ)− aµ

to obtain

aλ =
sλ − 1

sµ + sλ − 2
C∗, aµ =

sµ − 1

sµ + sλ − 2
C∗.

Substituting the found aλ and aµ into the right-hand side of (22), we deduce that I2 ≤
F2C

∗, where

F2 =
(sµ − 1) (sλ − 1)

sµ + sλ − 2
.

To complete the proof of (6), it suffices to demonstrate that

min {F1, F2} ≤ 1

2
. (23)

The proof of (23) is by case analysis. Introduce

α = sµsλ, β = sµ + sλ.

Notice that
β2 = (sµ + sλ)

2 = s2µ + s2λ + 2sµsλ ≥ 4sµsλ = 4α. (24)

Case 1: β ≤ 4.

Notice that (sµ − 1) (sλ − 1) = sµsλ − sλ − sµ + 1. Using (24), rewrite

F2 =
(sµ − 1) (sλ − 1)

sµ + sλ − 2
≤

1
4β

2 − β + 1

β − 2
=

1

4
β − 1

2
.

Since β ≤ 4, it follows that F2 ≤ 1
2 .

11



Case 2: β > 4.

We split our consideration into two subcases.

Case 2.1: α ≤ β.

Rewrite

F2 =
(sµ − 1) (sλ − 1)

sµ + sλ − 2
=

α− β + 1

β − 2
.

To prove that F2 ≤ 1
2 , we need to show

2 (α− β + 1) ≤ β − 2,

which is equivalent
3β ≥ 2α+ 4.

The latter inequality holds by the conditions of Case 2.1, since

2 (β − α) + (β − 4) > 0

Case 2.2: α ≥ β > 4.

Rewrite

F1 =
s2µsλ − s2µ + sµs

2
λ − s2λ

s2µs
2
λ + s2µ − sµsλ − sµ + s2λ − sλ

=
αβ −

(
β2 − 2α

)
α2 − 3α+ β2 − β

To show that
αβ −

(
β2 − 2α

)
α2 − 3α+ β2 − β

≤ 1

2
,

we prove the inequality

2αβ − 2
(
β2 − 2α

)
− α2 + 3α− β2 + β ≤ 0,

or, equivalently,
α2 − 2αβ − 7α+ 3β2 − β ≥ 0.

Since α2 + β2 − 2αβ ≥ 0, we have

α2 − 2αβ − 7α+ 3β2 − β =
(
α2 + β2 − 2αβ

)
+ 2β2 − 7α− β ≥ 2β2 − 7α− β.

Using (24) and the conditions of Case 2.2, we deduce that

2β2 − 7α− β ≥ 8α− 7α− α = 0,

as required.

Since the proved ratio Cmax(S
∗
(0))/Cmax

(
S∗
p

)
≤ Cmax

(
SH

)
/Cmax

(
S∗
p

)
≤ 3/2 coincides

with the power of preemption established for two uniform machines, below we present the
tightness example for the latter settings. Suppose that the speed of machine M1 is 2, while
the speed of machine M2 is 1. There are two jobs, J1 and J2 such that p1 = p2 = 3. It is clear
that in an optimal non-preemptive schedule S∗

(0) either one of these jobs is assigned to the

slow machine or both jobs are assigned to the fast machine, and in any case Cmax(S
∗
(0)) = 3.

On the other hand, in an optimal preemptive schedule S∗
p both jobs are processed with

12



preemption, so that in the time interval [0, 1] machine M1 processes part of job J1 and
machine M2 processes part of job J2, while in the time interval [1, 2] machine M1 processes
the remaining part of job J2 and machine M2 processes the remaining part of job J1. It
follows that Cmax

(
S∗
p

)
= 2, so that Cmax(S

∗
(0))/Cmax

(
S∗
p

)
= 3/2.

The results of this section can be summarized as the following statement.

Theorem 1 For the scheduling problem of minimizing the makespan on two unrelated par-

allel machines the power of preemption ρ
(0)
2 is equal to 3/2.

3.3 More Than Two Machines

Theorem 1 asserts that the power of preemption on two unrelated parallel machines is equal
to the power of preemption on two uniform machines. In this subsection we demonstrate
that for m ≥ 3 this phenomenon does not take place.

Lemma 4 There exists an instance of the scheduling problem of minimizing the makespan
on m ≥ 3 unrelated parallel machines such that

Cmax(S
∗
(0))

Cmax

(
S∗
p

) ≥ 1 +

√
m− 2√
m− 1

. (25)

Proof: We build the following instance of the problem on m ≥ 3 unrelated parallel
machines. There are 2 (m− 1) jobs, which can be seen as split into two groups, the A−jobs
and the B−jobs. The group of the A−jobs consists of jobs A1, A2, . . . , Am−1, while the
group of the B−jobs consists of jobs B1, B2, . . . Bm−1. For each job Aj , 1 ≤ j ≤ m − 1, its
processing time on machine Mm is equal to p time units and on machine Mj the processing
time is sp time units, where s > 1. The processing times on other machines for the A−jobs
are infinite. Each job Bj , 1 ≤ j ≤ m− 1, can be processed only on machine Mj for xp time
units; the value of x < 1 depends on s and will be defined below.

Let us start with making an optimal preemptive schedule of the A−jobs alone. For
each of these jobs, machine Mm can be seen as the faster machine of speed s > 1. Let xj ,
0 < xj < 1, be the portion of job Aj processed on machine Mm, so that the total processing
time of that job on Mm is xjp; the remaining portion of job Jj is processed on machine Mj

for (1− xj) sp time units. Since the values of processing times of the A−jobs are numerically
the same, it follows that in an optimal schedule the values xj are also the same, and we
denote that common value by x. A possible structure of an optimal schedule SA for the
processing of the A−jobs is as follows. Machine Mm processes job Aj in the time interval
[(j − 1)xp, jxp] , 1 ≤ j ≤ m − 1. On machine Mj , job Aj is processed in the time intervals
outside the interval [(j − 1)xp, jxp] , 1 ≤ j ≤ m− 1. The value of x is chosen in such a way
that it is guaranteed that all machines complete their jobs simultaneously. The completion
time on machine Mm is equal to (m− 1)xp and the completion time on machine Mj is equal
to xp+ (1− x) sp. The equality

(m− 1)xp = xp+ (1− x) sp

is achieved for
x =

s

m− 2 + s
, (26)
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so that Cmax (SA) =
m−1

m−2+ssp. We use the value of x in (26) to define the finite processing
time for the B−jobs.

To convert schedule SA into an optimal schedule for all jobs, notice that each job Bj ,
1 ≤ j ≤ m − 1, has to be processed on machine Mj for xp time units, and in schedule SA

there is an idle interval on each machine Mj of length exactly xp. Thus, the B−jobs can be
allocated to the corresponding intervals. We obtain an optimal preemptive schedule S∗

p with
Cmax

(
S∗
p

)
= Cmax (SA) .

Now we turn to finding an optimal non-preemptive schedule for the instance under con-
sideration. A possible structure of such a schedule is to assign all A−jobs to machine Mm

and job Bj , 1 ≤ j ≤ m − 1, to machine Mj . The makespan of such a schedule is equal to
(m− 1) p. An alternative structure of an optimal non-preemptive schedule assigns at least
one of the jobs Aj , 1 ≤ j ≤ m − 1, to be processed on machine Mj . Then, the makespan
cannot be smaller than sp+ xp, the completion time of the two jobs Aj and Bj on machine
Mj . Thus, we deduce that

Cmax(S
∗
(0)) = min {(m− 1) p, sp+ xp}

= min

{
m− 1, s+

s

m− 2 + s

}
p.

Compute the ratio

Cmax(S
∗
(0))

Cmax

(
S∗
p

) =
1

(m− 1) s
min {(m− 1) (m− 2 + s) , s+ s (m− 2 + s)}

= min

{
m− 2 + s

s
, 1 +

s

m− 1

}
.

The maximum in the last expression is achieved if the two terms are equal, i.e., if s =√
(m− 1) (m− 2). This implies that the ratio Cmax(S

∗
(0))/Cmax

(
S∗
p

)
cannot be smaller than

1 +
√
m−2√
m−1

, i.e., (25) holds.

Lemma 4 implies that for the problem with m ≥ 3 unrelated parallel machines the power

of preemption is at least 1+
√
m−2√
m−1

. For each m ≥ 3, this value is strictly larger than 2−1/m,

which is the power of preemption on m uniformly related parallel machines.

4 Quality of Schedules with a Single Preemption

In this section, we turn back to the problem on two unrelated machines and compare the
best schedule S∗

(1) with at most one preemption to an optimal preemptive schedule S∗
p . We

prove that
Cmax(S

∗
(1))

Cmax

(
S∗
p

) ≤ ρ
(1)
2 =

9

8
, (27)

and this bound is tight. We also show how to find a schedule SH
(1) with a single preemption

such that
CmaxCmax(S

H
(1))

Cmax

(
S∗
p

) ≤ 9

8
. (28)
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Let S∗
p be an optimal preemptive schedule in which two jobs Jλ and Jµ satisfy the condi-

tions outlined in Section 3.2, i.e., the equalities (8), (10) and (11), as well as the inequalities
(12)–(15); see Figure 1(b). For i ∈ {1, 2}, let pi (Ni) denote the total processing time of the
jobs of set Ni on machine Mi.

Below, we present an algorithm that moves either job Jλ or job Jµ to be entirely processed
on one of the machines, accompanied by an adjustment of the actual processing times of the
other preempted job (i.e., job Jµ or job Jλ, respectively).

Algorithm 3

Step 1. Having found schedule S∗
p with jobs Jλ and Jµ processed with preemption, create a

schedule Sλ1 by moving job Jλ to be entirely processed on machine M1. Increase the
actual processing time of job Jµ on machine M2 from x2µp2µ by x2λp1λ and decrease the
actual processing time of job Jµ on machine M1 from x1µp1µ by x2λ

p1λp1µ
p2µ

. In schedule

Sλ1 job Jµ is processed on machine M2 in the time interval [0, x2µp2µ + x2λp1λ] and on
machine M1 starting from time x2µp2µ + x2λp1λ.

Step 2. If the inequality
p1 (N1) + p1µ ≤ p2λ + p2 (N2) (29)

holds, then go to Step 3. Otherwise, transform schedule S∗
p into a schedule Sλ2 in which

job Jλ is processed on machine M2 without preemption, while job Jµ is preempted
in such a way that in schedule Sλ2 both machines complete simultaneously, i.e., the
portion x′1µ of job Jµ to be processed on machine M1 in schedule Sλ2 is given by

x′1µ = x1µ + x1λ
p1λ + p2λ
p1µ + p2µ

. (30)

Compute the makespan of the two found schedules. Output schedule SH
(1) as that of

schedules Sλ1 and Sλ2, which has the smaller makespan.

Step 3. If p2λ ≤ p1 (N1) + p1µ, then go to Step 4. Otherwise, transform schedule S∗
p to a

schedule S̃µ1 by moving job Jµ to be entirely processed on machine M1. Process job
Jλ on machine M2 in the time interval [0, p1 (N1) + p1µ] and on machine M1 starting
from time p1 (N1) + p1µ. If schedule S̃µ1 terminates on machine M1, output schedule
SH
(1) as that of schedules S

λ1 and S̃µ1, which has the smaller makespan; otherwise, go
to Step 4.

Step 4. Transform schedule S∗
p to a schedule Sµ1 in which job Jµ is processed on machine

M1 without preemption, while job Jλ is preempted in such a way that in schedule Sµ1

both machines complete simultaneously, i.e., the portion x′1λ of job Jλ to be processed
on machine M1 in schedule Sµ1 is given by

x′1λ = x1λ − x2µ
p1µ + p2µ
p1λ + p2λ

. (31)

Compute the makespan of the two found schedules. Output schedule SH
(1) as that of

schedules Sλ1 and Sµ1, which has the smaller makespan.

The running time of Algorithm 3 is O (n). First, we prove that all found schedules are
feasible under the corresponding conditions.
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M1 N1 Jλ Jµ

M2 Jµ N2

(a)

M1 N1 Jµ

M2 Jµ Jλ N2

(b)

Figure 2: (a) schedule Sλ1 found in Step 1; (b) schedule Sλ2 found in Step 2

Lemma 5 Schedules found by Algorithm 3 are feasible.

Proof: To verify that each of the four schedules created by Algorithm 3 is feasible, we must
demonstrate that on each machine a portion of the preempted job is a number between 0 and
1, and the sum of these portions is equal to 1. Besides, the two portions of the preempted
job must not overlap.

In the original schedule S∗
p the actual processing time x2µp2µ of job Jµ on machine M2 is

equal to p1 (N1) + x1λp1λ, so that

p1 (N1) = x2µp2µ − x1λp1λ. (32)

Similarly,
p2 (N2) = x1µp1µ − x2λp2λ. (33)

We start with schedule Sλ1 found in Step 1. Compared to schedule S∗
p , in schedule Sλ1

the total processing of job Jλ on machine M1 increases by x2λp1λ and decreases on machine
M2 by x2λp2λ. The portion of job Jµ processed on machine M1 decreases from x1µ by x2λ

p1λ
p2µ

,

and that on machine M2 increases from x2µ by x2λ
p1λ
p2µ

, so that the sum of the portions of

job Jµ is schedule Sλ1 remains equal to 1. It follows from (15) and (13) that

x2λ
p1λ
p2µ

= x2λ
p1λp2λ
p2µp2λ

≤ x1µ
p1λp1µ
p2µp2λ

≤ x1µ,

as required. The actual processing time of job Jµ processed on machine M2 increases by
x2λp1λ, i.e., becomes equal to p1 (N1) + p1λ, and the processing of job Jµ on machine M1

may start exactly when the machine finishes the processing of job Jλ and simultaneously job
Jµ ceases to be processed on machine M2. See Figure 2(a).

In Step 2, the condition p (N1) + p1µ > p2λ + p2 (N2) holds, which due to (32) and (33)
can be rewritten as x2µp2µ − x1λp1λ + p1µ > p2λ + x1µp1µ − x2λp2λ, which is equivalent to

x2µ (p1µ + p2µ) > x1λ (p1λ + p2λ) . (34)

For schedule Sλ2, the value x′1µ is chosen to guarantee that in that schedule both machines
complete simultaneously, i.e., that

p1 (N1) + x′1µp1µ =
(
1− x′1µ

)
p2µ + p2λ + p2 (N2) .
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Due to (32) and (33), this implies that

x′1µ =
p2λ + p2 (N2)− p1 (N1) + p2µ

p1µ + p2µ

=
p2λ + (x1µp1µ − x2λp2λ)− (x2µp2µ − x1λp1λ) + p2µ

p1µ + p2µ
,

which is equivalent to (30). To guarantee the feasibility of schedule Sλ2 we need to prove
that x′1µ < 1. Using (30), consider

x′1µ − 1 = −x2µ + x1λ
p1λ + p2λ
p1µ + p2µ

,

which is negative due to (34).

In schedule Sλ2 job Jµ ceases to be processed on machine M2 at time
(
1− x′1µ

)
p2µ =(

x2µ − x1λ
p1λ+p2λ
p1µ+p2µ

)
p2µ. To guarantee that there is no overlap in the processing of job Jµ,

we need to prove that this time is at most p1 (N1). It follows from the structure of schedule
S∗
p that x2µp2µ = p1 (N1) + x1λp1λ. The difference(

x2µ − x1λ
p1λ + p2λ
p1µ + p2µ

)
p2µ − p1 (N1) = x1λ

(
p1λ − p1λ + p2λ

p1µ + p2µ
p2µ

)
,

is non-positive since

p1λ (p1µ + p2µ)− p2µ (p1λ + p2λ) = p1λp1µ − p2λp2µ ≤ 0,

where the last inequality is due to (13). See Figure 2(b).

We now address schedule S̃µ1 found in Step 3. By the condition of this step, the inequality
p (N1) + p1µ < p2λ holds. By construction, the portion x′2λ of job Jλ processed on machine
M2 is equal to (p1 (N1) + p1µ) /p2λ, which makes this schedule feasible.

If schedule S̃µ1 terminates on machine M2 then its makespan can be reduced by transfer-
ring some of the processing of job Jλ from machine M2 to machine M1 until both machines
complete simultaneously. The resulting schedule is essentially schedule Sµ1 found in Step 4.
This explains why in further analysis we only need to consider schedule S̃µ1 that terminates
on machine M1. See Figure 3(a).

Finally, in Step 4, the condition (29) holds, which due to (32) and (33) is equivalent to

x2µ (p1µ + p2µ) ≤ x1λ (p1λ + p2λ) . (35)

For schedule Sµ1, the value x′1λ is chosen to guarantee that in that schedule both machines
complete simultaneously, i.e., that

p1 (N1) + p1µ + x′1λp1λ =
(
1− x′1λ

)
p2λ + p2 (N2) .

Due to (32) and (33), this implies that

x′1λ =
p2λ + p2 (N2)− p1 (N1)− p1µ

p1λ + p2λ

=
p2λ + (x1µp1µ − x2λp2λ)− (x2µp2µ − x1λp1λ)− p1µ

p1λ + p2λ
,
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M1 N1 Jµ Jλ

M2 Jλ N2

(a)

M1 N1 Jµ Jλ

M2 Jλ N2

(b)

Figure 3: (a) schedule S̃µ1 found in Step 3; (b) sschedule Sµ1 found in Step 4

which is equivalent to (31). The feasibility of schedule Sµ1 is guaranteed by the inequality
x′1λ > 0, which follows from (31) and (35).

We come to Step 4 either because the inequality p (N1) + p1µ ≥ p2λ holds or because
schedule S̃µ1 terminates on machine M2. In either case, the completion of the portion of
job Jλ on machine M2 occurs earlier than time p (N1) + p1µ, so that the processing of the
preempted job Jλ does not overlap. See Figure 3(b).

We now estimate the makespan of each schedule found by Algorithm 3.

Lemma 6 For schedule Sλ1 the equality

Cmax

(
Sλ1

)
= C∗ + x2λp1λ

(
1− p1µ

p2µ

)
(36)

holds, and for each schedule S ∈
{
Sλ2, Sµ1, S̃µ1

}
the inequality

Cmax (S) ≤ C∗ + x2µp1µ

(
1− p1λ

p2λ

)
(37)

holds, where C∗ is defined by (16).

Proof: For schedule Sλ1 found in Step 1 of Algorithm 3, compared to schedule S∗
p the total

processing time on machine M2 changes by x2λp1λ − x2λp2λ, which is non-positive due to
(13). Thus, the makespan of this schedule is determined by the completion time on machine

M1. The net change in total processing time on machine M1 is equal to x2λp1λ

(
1− p1µ

p2µ

)
,

so that (36) holds.

For schedules Sλ2 and Sµ1, the proof is based on checking the sign of the same value ∆,
introduced below.

Consider schedule Sλ2 found in Step 2 of Algorithm 3. Compared to schedule S∗
p , in

schedule Sλ2 the total processing time on machine M1 changes by x1λp1µ
p1λ+p2λ
p1µ+p2µ

− x1λp1λ.
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Under the conditions of Step 2 the inequality (34) holds, so that

x1λ

(
p1µ

p1λ + p2λ
p1µ + p2µ

− p1λ

)
≤ x2µ (p1µ + p2µ)

p1λ + p2λ

(
p1µ

p1λ + p2λ
p1µ + p2µ

− p1λ

)
= x2µp1µ

(
1− (p1µ + p2µ) p1λ

(p1λ + p2λ) p1µ

)
.

For schedule Sµ1 found in Step 4 of Algorithm 3, compared to schedule S∗
p , the total

processing time on machine M1 changes by x2µp1µ − x2µp1λ
p1µ+p2µ
p1λ+p2λ

.

In order to prove (37) for S ∈
{
Sλ2, Sµ1

}
, introduce the difference

∆ = x2µp1µ

(
1− (p1µ + p2µ) p1λ

(p1λ + p2λ) p1µ

)
− x2µp1µ

(
1− p1λ

p2λ

)
(38)

= x2µp1µ

(
p1λ
p2λ

− (p1µ + p2µ) p1λ
(p1λ + p2λ) p1µ

)
and show that it is non-positive. For this purpose, it is convenient to use notation (18), so
that

∆ = x2µp1µ

(
1

sλ
− 1 + sµ

1 + sλ

)
≤ 0,

since
1

sλ
− 1 + sµ

1 + sλ
= − sλsµ − 1

sλ (sλ + 1)

and sλ ≥ sµ ≥ 1 due to (13).

Finally, take schedule S̃µ1 found in Step 3 of Algorithm 3. Recall that we only need to
consider the situation that schedule S̃µ1 terminates on machine M1. By construction, the
portion x′2λ of job Jλ processed on machine M2 is equal to

x′2λ =
p1 (N1) + p1µ

p2λ
.

Thus, for schedule S̃µ1, compared to schedule S∗
p , the total processing time on machine

M1 changes by x2µp1µ − x1λp1λ + (1− x′2λ) p1λ. Transforming and applying (32), the overall
change is given by

x2µp1µ − x1λp1λ +
(
1− x′2λ

)
p1λ = x2µp1µ − x1λp1λ +

(
1− (p1 (N1) + p1µ)

p2λ

)
p1λ

= x2µp1µ +
p1λ
p2λ

(p2λ − (p1 (N1) + p1µ)− x1λp2λ)

= x2µp1µ +
p1λ
p2λ

(x2λp2λ − (x2µp2µ − x1λp1λ + p1µ))

= x2µp1µ +
p1λ
p2λ

(x2λp2λ − x2µp2µ + x1λp1λ − p1µ) .

In order to prove (37) for S = S̃µ1, introduce the difference

∆ = x2µp1µ +
p1λ
p2λ

(x2λp2λ − x2µp2µ + x1λp1λ − p1µ)− x2µp1µ

(
1− p1λ

p2λ

)
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and show that it is non-positive. Indeed,

∆ =
p1λ
p2λ

(x2λp2λ − x2µp2µ + x1λp1λ − p1µ + x2µp1µ)

=
p1λ
p2λ

(x2λp2λ − x2µp2µ + x1λp1λ − x1µp1µ) ≤ 0,

since x1λp1λ + x2λp2λ ≤ Cmax

(
S∗
p

)
= x1µp1µ + x2µp2µ due to (11) and (12); see Figure 1(b).

This proves the lemma.

Lemma 7 For schedule SH
(1) found by Algorithm 3 the bound (28) holds, and that bound is

tight.

Proof: Due to (36) and (37), we need to prove that

min

{
x2λp1λ

(
1− p1µ

p2µ

)
, x2µp1µ

(
1− p1λ

p2λ

)}
≤ 1

8
C∗,

where as above C∗ is defined by (16).

Using notation (18), rewrite

x2λp1λ

(
1− p1µ

p2µ

)
= x2λp1λ

(
1− 1

sµ

)
=

x2λp2λ
sλ

(
1− 1

sµ

)
;

x2µp1µ

(
1− p1λ

p2λ

)
= x2µp1µ

(
1− 1

sλ

)
=

x2µp2µ
sµ

(
1− 1

sλ

)
.

Further, using notation (17), define

I1 =
C∗ − aµ

sλ

(
1− 1

sµ

)
;

I2 =
aµ
sµ

(
1− 1

sλ

)
,

so that (15) and (11) imply

x2λp2λ
sλ

(
1− 1

sµ

)
≤ x1µp1µ

sλ

(
1− 1

sµ

)
=

C∗ − aµ
sλ

(
1− 1

sµ

)
= I1;

x2µ
p2µ
sµ

(
1− 1

sλ

)
=

aµ
sµ

(
1− 1

sλ

)
= I2.

Solve the equation

(C∗ − aµ) sµ

(
1− 1

sµ

)
= aµsλ

(
1− 1

sλ

)
to obtain

aµ =
sµ − 1

sλ + sµ − 2
C∗,

so that

min {I1, I2} ≤ (sλ − 1) (sµ − 1)

sλsµ (sλ + sµ − 2)
C∗.
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It can be verified that the maximum value of the function

f (x, y) =
(x− 1) (y − 1)

xy (x+ y − 2)

subject to the constraint x ≥ y ≥ 1 is equal to 1
8 , which is achieved for x = y = 2. Applying

this result with x = sλ and y = sµ we deduce that compared to the value C∗ = Cmax

(
S∗
p

)
the makespan of schedule SH does not increase by more than 1

8C
∗, so that (28) holds.

Since the proved ratio Cmax(S
∗
(1))/Cmax

(
S∗
p

)
≤ Cmax(S

H
(1))/Cmax

(
S∗
p

)
≤ 9/8 coincides

with the ratio established for two uniform machines, below we present the tightness example
for the latter setting. Suppose that the speed of machine M1 is 2, while the speed of machine
M2 is 1. There are two jobs, J1 and J2, such that p1 = p2 = 12. It is clear that if at
most one preemption is allowed then in the corresponding schedule S∗

(1) one of these jobs,
e.g., job J1, is fully processed on the fast machine M1. Thus, in schedule S∗

(1) in the time

interval [0, 6] machine M1 processes job J1 and machine M2 processes part of job J2, while
the remaining part of job J2 is completed on machine M1 in the time interval [6, 9], so that
Cmax(S

∗
(1)) = 9. On the other hand, in an optimal preemptive schedule S∗

p both jobs are

processed with preemption, so that in the time interval [0, 4] machine M1 processes part of
job J1 and machine M2 processes part of job J2, while in the time interval [4, 8] machine M1

processes the remaining part of job J2 and machine M2 processes the remaining part of job
J1. It follows that Cmax

(
S∗
p

)
= 8, so that Cmax(S

∗
(1))/Cmax

(
S∗
p

)
= 9/8.

The results of this section can be summarized in the following statement.

Theorem 2 For the scheduling problem of minimizing the makespan on two unrelated ma-

chines the upper bound ρ
(1)
2 on the ratio Cmax(S

∗
(1))/Cmax

(
S∗
p

)
is equal to 9/8.

5 Comparison with Two Uniform Machines

It can be observed that most of the results obtained in Sections 3 and 4 for the problem with
two unrelated machines coincide with those earlier known for the problem with two uniform
machines. Indeed, if an optimal preemptive schedule S∗

p contains two jobs processed with

preemption, then Theorem 1 asserts that ρ
(0)
2 = 3/2 for two unrelated machines, and the

same holds for two uniform machines as shown in (Woeginger, 2000). Besides, Theorem 2

asserts that ρ
(1)
2 = 9/8 for two unrelated machines, and the same holds for two uniform

machines; see (Jiang et al., 2014). All this is rather counter-intuitive, given that the system
with unrelated machines is much more general compared to that with uniform machines.
Besides, recall that in general for m parallel machines the values of power of preemption are

ρ
(0)
m = 2 − 1/m if the machines are uniform (see (Woeginger, 2000; Soper and Strusevich,

2014a)) and ρ
(0)
m = 4 if the machines are unrelated (see (Correa et al., 2012)), with a large

gap between these two values.

In our attempt to find a point of difference between the systems with two uniform and
two unrelated parallel machines, we turn to the instances for which an optimal preemptive
schedule contains exactly one job that is processed with preemption. If the two machines are

unrelated, Lemma 2 asserts that the power of preemption ρ
(0)
2 is equal to 3/2. The problem

with two uniform machines under the same assumption has not been earlier studied from the
power of preemption prospective. Below, we show that for the latter problem the power of

preemption ρ
(0)
2 is equal to 4/3.
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Recall that for two uniform machines, finding an optimal schedule with at most one
preemption can be done in polynomial time, as proved in (Soper and Strusevich, 2019),
however such a schedule does not have to be the global optimal schedule, and a schedule with
two preemptions may deliver a smaller makespan. In fact, we know from (Jiang et al., 2014)

that the makespan Cmax(S
∗
(1)) can be as large as ρ

(1)
2 Cmax

(
S∗
p

)
= 9

8Cmax

(
S∗
p

)
. From now on

in this section, we consider instances of the problem for which Cmax(S
∗
(1)) = Cmax

(
S∗
p

)
.

For two uniform parallel machines, the speed of machine M1 is s ≥ 1 and that of machine
M2 is 1. For each job Jj ∈ N = {J1, J2, · · · , Jn}, its processing time on the slow machine
is known to be equal to pj , while if it is processed entirely on the fast machine M1, then its
actual processing time is pj/s. Given a non-empty set of jobs Q ⊆ N , denote

p (Q) =
∑
Jj∈Q

pj ,

and for completeness, denote p (∅) = 0. Assume that there is exactly one preemption in
an optimal preemptive schedule, i.e., S∗

(1) = S∗
p , and Jµ is the only preempted job in that

schedule. Denote the optimal makespan by C∗, where C∗ = Cmax(S
∗
(1)) = Cmax

(
S∗
p

)
. It

follows from (Gonzalez and Sahni, 1978) and (Soper and Strusevich, 2014a) that

C∗ =
p (N)

s+ 1
(39)

and an optimal schedule S∗
(1) has the following structure. Both machines have no intermediate

idle time and are busy in the time interval [0, C∗]. Machine M1 processes the set of jobs
Nµ = {Jj ∈ N\ {Jµ} |pj ≥ pµ} in the time interval [0, p (Nµ) /s], followed by processing part
of job Jµ for xpµ/s time units, where x = x1µ as defined by (8). Machine M2 processes the
other part of job Jµ in the time interval [0, (1− x) pµ], followed by an arbitrary sequence of
the remaining jobs.

The algorithm for transforming schedule S∗
p into a non-preemptive schedule SH described

below is very similar to Algorithm 1.

Algorithm 4

Step 1. Having found schedule S∗
p with job Jµ being the preempted job, create schedule S1

by keeping all jobs as they are assigned to the machines in schedule S∗
p except job Jµ

is entirely processed on machine M1.

Step 2. Similarly, transform schedule S∗
p to a non-preemptive schedule S2 by assigning job

Jµ to be fully processed on machine M2.

Step 3. Create a non-preemptive schedule S3, in which all jobs except job Jµ are processed
on machine M1, while job Jµ alone is processed on machine M2.

Step 4. Compute the values of makespan for all three found schedules. Output schedule
SH as that of schedules S1, S2 and S3 which has the smallest makespan.

Lemma 8 For the problem on two uniform machines, let SH be a schedule found by Algo-
rithm 4 applied to schedule S∗

p with a single preempted job Jµ. Then the bound

Cmax

(
SH

)
Cmax

(
S∗
p

) ≤ 4

3
(40)
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M1 Jλ Jµ

M2 Jµ

Figure 4: Schedule S∗
p

holds and this bound is tight.

Proof: Let S1 and S2 be the two schedules created in Steps 1 and 2, respectively, of
Algorithm 1. Suppose that the lemma does not hold. In particular, assume that

min
{
Cmax

(
S1

)
, Cmax

(
S2

)}
>

4

3
C∗,

where C∗ is defined by (39). Since Cmax

(
S1

)
= C∗+(1− x) pµ/s and Cmax

(
S2

)
= C∗+xpµ,

it follows that

min {(1− x) pµ/s, xpµ} >
1

3
C∗.

Due to (39), this implies that

pµ = (1− x) pµ + xpµ >
(s+ 1)C∗

3
= p (N) /3.

We can now clarify the structure of schedule S∗
p . Since each non-preempted job processed

on machine M1 is at least as long as job Jµ, we deduce that exactly one non-preempted job,
say, job Jλ is processed on M1 and pλ ≥ pµ > p (N) /3. See Figure 4.

Consider schedule S3. If the makespan of that schedule is determined by the completion
time of machine M1, we derive

Cmax

(
S3

)
=

1

s
(p (N)− pµ) <

1

s

(
p (N)− 1

3
p (N)

)
=

2

3s
p (N) =

2 (s+ 1)C∗

3s
≤ 4C∗

3
.

Thus, in what follows we assume that Cmax

(
S3

)
= pµ. Then

min
{
Cmax

(
S1

)
, Cmax

(
S3

)}
= C∗ +min {(1− x) pµ/s, pµ − C∗} (41)

The structure of schedule S∗
p is such that

C∗ ≥ (1− x) pµ + xpµ/s,

so that

pµ ≤ C∗s

s+ x− sx
.

Substituting this inequality into (41), we obtain

min
{
Cmax

(
S1

)
, Cmax

(
S3

)}
≤ C∗ + C∗min

{
1− x

s+ x− sx
,
x (s− 1)

s+ x− sx

}
. (42)
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It can be checked that 1−x
s+x−sx is decreasing in x and x(s−1)

s+x−sx does not decrease in x for
s ≥ 1. Solving the equation yields

1− x

s+ x− sx
=

x (s− 1)

s+ x− sx

with respect to x we obtain x = 1/s. Substituting this into (42)

min
{
Cmax

(
S1

)
, Cmax

(
S3

)}
≤ C∗ + C∗ s− 1

s2 − s+ 1
.

In turn, for s ≥ 1 the expression s−1
s2−s+1

reaches its maximum of 1/3 at s = 2. This
implies that

min
{
Cmax

(
S1

)
, Cmax

(
S3

)}
≤ 4

3
C∗,

which proves the required bound (40).

To see that the bound (40) is tight, consider the following instance with two uniform
machines. The speed of machine M1 is 2, while the speed of machine M2 is 1. There are
three jobs, J1, J2 and J3, such that p1 = p2 = 4 and p3 = 1. In the optimal schedule
S∗
p one preemption of a longer job is needed and the other longer job, e.g., job J1, is fully

processed on the fast machine M1. Thus, in schedule S∗
(1) in the time interval [0, 2] machine

M1 processes job J1 and machine M2 processes part of job J2, while in the time interval [2, 3]
machine M1 processes the remaining part of job J2 and machine M2 processes job J3, so that
Cmax(S

∗
(1)) = 3. On the other hand, in schedule SH , which is also an optimal non-preemptive

schedule S∗
(0), either the shorter job J3 is processed on machine M2, while both longer jobs

are assigned to the fast machine M1 or the fast machine processes the short job and one
of the longer jobs, while the remaining longer job alone is processed on M2. In any case,
Cmax

(
SH

)
= Cmax(S

∗
(0)) = 4, so that Cmax(S

∗
(0))/Cmax

(
S∗
p

)
= 4/3.

6 Conclusion

In this paper, we show that the power of preemption on two unrelated machines is 3/2
irrespective of the the number of preemptions in an optimal preemptive schedule S∗

p , i.e., is
the same as on two uniform machines, provided that there are two preemptions in S∗

p . If,
however, for two uniform machines at most one preemption in S∗

p is needed, then the power of
preemption reduces to 4/3. This is the only difference that we have established between two
unrelated and two uniform machines, since the quality of a schedule with a single preemption
turns out to be the same for both machine environments, with the makespan being at most
9/8 times the makespan of schedule S∗

p .

Given that for systems with m parallel machines the values of the power of preemption
differ considerably (2−1/m for uniform machines against 4 for unrelated machines), the fact
that in the case m = 2 no difference is observed is counter-intuitive. We prove, however, that
this only holds for two machines, and for m ≥ 3 parallel machines the power of preemption
on unrelated machines is larger than that on uniformly related machines.

In the case of uniform machines the bound of 2− 1/m on the power of preemption holds
for each fixed m, including m = 2. For unrelated machines, the bound of 4 is only achieved
as a limit, with growing m, and it is not surprising that for m = 2 a much smaller value of
3/2 is proved. A similar phenomenon has been established in (Epstein et al., 2017), where
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for the problem of minimizing the sum of the completion times on m uniform machines the
limit value of the power of preemption is shown to be 1.39795, while for m = 2 it is 6/5.

Please also notice that the combination of Algorithms 1 and 2 described in this paper
can be taken as a linear-time 3/2-approximation algorithm for the problem of finding an
optimal non-preemptive schedule on two unrelated machines. Indeed, for a non-preemptive
schedule SH found by Algorithms 1 and 2 we prove that Cmax

(
SH

)
/Cmax

(
S∗
p

)
≤ 3/2.

It remains to be seen whether the bound of 3/2 is tight with respect to an optimal non-
preemptive schedule, i.e., whether there exists an instance of the problem such that for
schedule SH the equality Cmax

(
SH

)
= 3

2Cmax(S
∗
(0)) holds. On the other hand, it is not

impossible that Cmax

(
SH

)
/Cmax(S

∗
(0)) ≤ ρ for some ρ < 3/2. Previously known (3/2)-

approximation algorithms in (Potts, 1985) and in (Shchepin and Vakhania, 2005) use lower
bounds on CmaxCmax(S

∗
(0)) which are larger than Cmax

(
S∗
p

)
used in this paper.
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