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ABSTRACT
Image reconstruction from ray projections is a common technique
in medical imaging. In particular, the few-view scenario, in which
the number of projections is very limited, is important for cases
where the patient is vulnerable to potentially damaging radiation.
This paper considers swarm-based reconstruction where individ-
uals, or particles, swarm in image space in an attempt to lower
the reconstruction error. We compare several swarm algorithms
with standard algebraic reconstruction techniques and filtered back-
projection for five standard test phantoms viewed under reduced
projections. We find that although swarm algorithms do not pro-
duce solutions with lower reconstruction errors, they generally find
more accurate reconstructions; that is, swarm techniques furnish
reconstructions that are more similar to the original phantom. A
function profiling method suggests that the ability of the swarm to
optimise these high dimensional problems can be attributed to a
broad funnel leading to complex structure close to the optima. This
finding is further exploited by optimising the parameters of the
best performing swarm technique, and the results are compared
against three unconstrained and boxed local search methods. The
tomographic reconstruction-optimised swarm technique is shown
to be superior to prominent algebraic reconstructions and local
search algorithms.

CCS CONCEPTS
• Computing methodologies→ Continuous space search; • The-
ory of computation→ Bio-inspired optimization.
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1 INTRODUCTION
Tomographic Reconstruction (TR) is the inference of the internal
structure of an object from the projected images cast by penetrating
radiation [23]. TR plays an essential computational role in all med-
ical imaging procedures (X-Ray CT, PET, MRI, Nuclear Medicine
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and ultrasound [20]). It also has wide applications in industry and
science (data compression and data security [27], image process-
ing [42], electron microscopy [11], crystal structure [7], angiog-
raphy [12], nondestructive testing of homogeneous objects [22],
seismic tomography [38], astronomy [9]) and geometric, combina-
torial and recreational mathematics [6, 18].

The number of projections acquired in the imaging process is
usually insufficient for a unique reconstruction. The problem is
under-determined; furthermore, the random nature of the radia-
tion, the operating characteristics of the detectors and, in medical
applications, patient movement, mean that projection data is in-
complete and noisy. The development of fast and accurate recon-
struction algorithms that can identify structures from procedures
with reduced patient radiation dose (by weakening the incident
radiation and/or reducing acquisition time) is an important concern,
enabling procedures that were once prohibited, and accelerating
the throughput of patients. Diagnostic investigation would become
possible in cases where it might have been withheld. These include
imaging of young children, and where a patient would otherwise
be required (for the requirements of a particularly clear image) to
remain completely still, and to not even breathe for several minutes.

Various numerical reconstruction procedures have been devel-
oped. The Filtered Backprojection (FBP) algorithm is capable of fast
reconstruction in a single iteration but requires a large number of
projections [20]. Algebraic Reconstruction Techniques (ART) [27]
are iterative algorithms based on Kaczmarz’s method [42] for solv-
ing an underdetermined system of equations. ART demonstrably
reduces image noise and holds the potential for few-view recon-
structions in a medical context but is subject to overfitting and
evidence of their worth in large patient populations is lacking [19].
Exact reconstruction is possible if the data is transformed to a
sparse and therefore compressible representation. Compressed Sens-
ing (CS) exploits this principle and shows promise for few-view
reconstruction, but the technique is dependant on knowledge of
the sparse representation, and on replacing the non-convex optimi-
sation problem typically unsolvable by traditional methods, by a
solvable convex minimisation [10].

Solution techniques based on iterative statistical methods are
also popular. The idea is to maximise the likelihood of parameters
of an underlying statistical model (e.g. maximum likelihood expec-
tation maximisation algorithm or MLEM [15]). MLEM converges
slowly – an accelerated form known as ordered subset expectation
maximization (OSEM) [26] is faster – and images tend to become
noisy. Noise is a symptom of overfitting and is a common problem
with iterative techniques. Regularisation methods, such as maxi-
mum a posteriori (MAP) estimation, are often used to mitigates
noise. Deep learning (DL) has revolutionised visual and natural
language processing in recent years and there is a possibility that
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algorithms can be transferred and adapted for TR; however a radical
improvement over analytical methods for solving inverse problems
in imaging is so far missing [35, 46].

Conventional methods (e.g. FPB, ART, OSEM, CS and DL) have
the potential for improved imaging (clearer images and reconstruc-
tions from reduced projections) but this potential has yet to be
realised.

TR can be reformulated as a (typically) non-convex optimisation
task: find a solution that minimises the error between the recon-
structed image and the measured projections. Population-based,
metaheuristic algorithms are often employed in optimisation and es-
pecially in cases where exact methods fail. One such metaheuristic
is exemplified by particle swarm optimisation (PSO) [40]. Particles
are simple agents that inhabit the space of feasible solutions; they
have a memory of the best, as measured by the objective function,
previously visited position and are subject to forces that drive them
towards their personal best the best attained positions of social
neighbours. PSO, by virtue of its simplicity, malleability, and wide
applicability, has been the subject of much experimentation since
its inception in 1995. It has been applied to 26 different problem cat-
egories [40] and around 100 papers are listed in a recent report on
the application of computational swarm intelligence to real-world
problems [2].

The solution set of the typical reconstruction problem is not
unique and, although many reconstructions have small or zero
error, only a few might correspond to medically useful images. ART
and other least squares techniques will converge on a minimum
norm (the sum of the squares of each pixel value) solution. Solutions
with many small values will therefore dominate solutions with
high values and the reconstructed image may be diffuse and lack
structure. Swarm algorithms make no assumptions about the nature
of the solutions. They do not require any special condition such as
sparsity and are not driven towards a least squares solution.

There has been some investigation of heuristic TR algorithms.
Ouaddah [39] combined harmony and local search. Other work
(e.g. [13, 28, 29]) report on tabu search, simulated annealing and a
memetic reconstruction, respectively. Batenberg [6] considered an
evolutionary framework. Several authors report on swarm intelli-
gent TR, covering areas such as: binary reconstruction [36], geo-
physical reconstruction [43], electrical capacitance and impedance
tomography [25, 47] and surface reconstruction from 3D data [16].
Additionally PART, based on the movement of particles, was pro-
posed for binary reconstruction [4].

This paper reports on a comparative study of swarm optimised
TR, classic ART and FBP, for five standard benchmarks in the medi-
cal domain. We find that although the two population metaheuris-
tics trialled (swarm optimisers and differential evolution) generally
find solutions with higher reconstruction error than the best classi-
cal technique, they exhibit lower reproduction error i.e. the found
solutions are closer to the original image. The observation that meta-
heuristics are unencumbered by the need to find a least squares
solution might play a part in this finding; otherwise, a profiling
study suggests that the objective function has a single broad fun-
nel at large scales leading to complex multimodality close to the
global optimal. This observation is further investigated by tailoring
the swarm optimiser parameters to the TR context. The optimised
swarm technique outperforms a number of local search methods

and maintains its leading achievements against the best performing
algebraic reconstruction approaches.

It is shown the tomographic reconstruction-optimised swarm
technique demonstrates a lead in performance against the leading al-
gebraic reconstruction approaches and the local search algorithms.

2 TOMOGRAPHY AND ALGEBRAIC
RECONSTRUCTION

The imaging process proceeds by shining radiation on an object
and collecting emergent radiation with a bank of detectors. The
radiation source is swung around in a series of projection angles
and emergent levels are recorded for each projection. The task is to
infer interior structures (which absorb more or less radiation) from
the projected images. The physical situation is exactly modelled
by Radon transforms but transform inversions are infeasible. In-
stead, an approximate model (the ‘forward’ model) of the physical
measurement must be built in order to formalise the mathematical
reconstruction problem.

2.1 Problem statement
Incident beams are typically modelled by parallel rays. Each ray
is incident on the centre of each detector or projection bin. The
imaging process is approximated by a projection matrix A ∈ Rm×n

≥0
wherem is the total number of rays collected (equal to the number of
rays at each projection angle multiplied by the number of projection
angles) and n is the number of pixels in the reconstructed image.
If b ∈ Rm is a vector of detector values, the continuous/discrete
reconstruction problem can be stated as:

find x
(
∈ Rn
∈ {0, 1, . . . ,k − 1}n ,k > 1

such that Ax = b . (1)

The binary problem is k = 2 i.e. with x ∈ {0, 1}n .
Since the equation Ax = b is, in general, underdetermined, it

cannot be inverted. Instead an approximate solution y must be
obtained (e.g. by filtered back projection, or by algebraic recon-
struction). This trial solution is forward projected according to the
measurement model:

Ay = c

with an associated reconstruction error
e1(y) = | |b − c | |1

An iterative scheme will produce a sequence of candidate solu-
tions, y(k ),k = 1, 2, . . ., of non-increasing error.

A zero projection error might yield a reconstructed solution y
that is not identical to the original object x∗. This is due to un-
derdetermination. However, in cases where the reference image is
known, the proximity of y to x∗ offers a second measure of algo-
rithm performance:

e2 = | |y − x∗ | |1 (2)
A zero value of e1 solves the problemAy = b but does not guarantee
reconstruction fidelity. e2, a reproduction error, provides a check,
where a value of zero corresponds to a reconstructed image that is
the exact replica (modulo the approximation that constitutes the
forward model) of the original.



Swarm Led Tomographic Reconstruction GECCO ’22, July 9–13, 2022, Boston, MA, USA

2.2 Algebraic reconstruction algorithms
The classical back projection [24, 32] technique, although a rela-
tively quick and effective reconstruction procedure, suffers from
high frequency ‘blurring’ which is only partly ameliorated by fil-
ters (FBP). However, increasing computation power means that
algebraic reconstruction techniques (algebraic-RT or ART) are gain-
ing prominence. This is due to ART’s potential for greater accuracy,
albeit at increased time of execution.

The first ART was a rediscovery [21] of the Kaczmarz method
for solving linear equations [31]; a diagrammatic explanation of the
principle is provided in [33]. ART reconstructions suffer from salt
and pepper noise, an artefact partially due to successive updates to
components of x during an iteration changing the results of previ-
ously tuned values. This pathology is mitigated by the more slowly
converging simultaneous iterative reconstruction technique (SIRT),
where the updates are not applied immediately but are averaged and
applied at the end of an entire iteration. In a further development,
SART [5] improves upon ART and SIRT with the employment of a
more sophisticated forward model. Good quality reconstructions
are often obtained in a single iteration [33]. SART remains popu-
lar to this day and has been the subject of mathematical analysis
(e.g. [30]).

3 SWARM OPTIMISATION
The essence of an optimisation swarm for continuous problems is
a population of individuals or particles that move in a real-valued
D-dimensional search space X ⊂ RD . Particles respond to each
others position and value as determined by the objective function
f : X → R. The swarm moves through X, typically clustering
around promising areas before converging on a putative solution
to the problem: find argmin f (x).

The precise way that a particle alters its position in response
to its neighbours, and any internal structure that it might possess,
depends on the particular variety of swarm. For example, particles
might carry a memory of a previously visited location; they might
possess a velocity and they might interact with other particles in
a pre-defined network, or with a random selection of neighbours
chosen at each iteration.

The following outlines three swarm varieties: canonical parti-
cle swarm optimisation (PSO), a PSO-variant known as DFO and
differential evolution (DE). Although DE is generally considered
to be an evolutionary algorithm, it fits into the broad view of an
optimisation swarm as outlined above.

3.1 PSO
Particles i in a canonical PSO swarm [34? ? ] of N particles have
dynamical variables xi ,vi , representing position and velocity in the
search space X ⊂ RD , and an internal ‘memory’ or pbest (personal
best), pi , of the best position achieved so far in the run, as measured
by the objective function f .

Dynamical variables are updated according to the rule

vt+1i = wvti + cu1 ◦ (nt+1i − xti )
+ cu2 ◦ (pt+1i − xti )

xt+1i = xti +v
t+1
i (3)

where u1,2 ∼ U (0, 1) are uniform random variables in [0, 1]D
and ◦ is the Hadamard (entry-wise) product. ni is the pbest of
the best neighbour in i’s social network, the inertial weight, w ,
and acceleration coefficients c , are two arbitrary (but constrained)
positive real parameters chosen to balance convergence and explo-
ration and t labels iteration. In synchronous updating, iteration
t + 1 begins by updating all pbests:

pt+1i = argmin∗
�
f (xti ), f (pti )

�
where min∗ returns the first member of the list in the case of non-
uniqueness. The iteration is completed by updating all N positions
and velocities according to Eq. 3.

Two communication schemes are in common use. Particles in the
global-best PSO (GPSO) network have access to all memories: the
social network is maximally connected; on the other hand, particles
in a local-best PSO (LPSO) network can only access memories in a
restricted network. Networks do not include self. In the commonly
chosen ring LPSO, particles communicate with ‘right’ and ‘left’
neighbours. LPSO, by virtue of a slower information transfer that
inhibits convergence and favours early exploration, is generally
better at more complex multi-modal problems [8].

3.2 DE
Differential evolution exists in a wide variety of forms; we spec-
ify the DE/best/1 version which is considered competitive and
robust [14].

Each iteration begins with a determination of the current po-
sition, д of the best particle. Then, for each particle i , indices j
and k are selected such that i , j , k . A random component
r ∈ {1, 2 . . .D} is also selected.

Then for each component d of xi :

if u ∼ U (0, 1) < CR or d == r
yd = дd + F (xtjd − xtkd )

else
yd = xtid (4)

where y is a trial position and the parameters CR ∈ [0, 1] and
F ∈ [0, 2] are known as the ‘cross-over rate’ and the ‘differential
weight’.

Then, after each component of y has been set, i is conditionally
moved:

xt+1 = argmin∗
�
f (y), f (xt )�

3.3 DFO
DFO, ‘dispersive flies optimisation’ [1], is a slimmed-down PSO
variant that abolishes particle memory and velocity in favour of
updates based on instantaneous, rather than historical, position;
the algorithm’s exploration and exploitation behaviour is studied
in [3]. In addition, it incorporates component-wise particle jumps [?
]. The iteration starts by determining the best overall position дt+1,
if unique, and positions of all best ring neighbours, nt+1i of each
particle (except for the current swarm best particle, which is not
updated). An arbitrary choice of д is made if there is a tie for the
best position. Position component d of all particles i , (other than
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Phantom ART CGLS FBP SART SIRT DE DFO GPSO LPSO RS

Figure 1: Phantom size: 32 × 32, projections: 6

the swarm best) updates according to
if u ∼ U (0, 1) < ∆

xt+1id ∼ U (Xd )
else

xt+1id = n
t+1
id + ϕu1(дt+1d − xtid ) (5)

where ∆ is a preset jump probability and U (Xd ) is the uniform
distribution along axis d of the search space X , u1 ∼ U (0, 1) and
ϕ ∈ [0,√3] (the constraint on ϕ is derived from a convergence
analysis for stochastic difference equations [? ]). ϕ is invariably set
to 1 in published studies. The algorithm employs global and local
strategies and has three arbitrary parameters: N , ∆ and ϕ.

In a formal sense, the DFO algorithm, with its reliance on instan-
taneous position, abandonment of particle memory and retention
of a static communication network, stands between PSO and DE.
The comparison is only formal however, and does not imply inter-
mediate performance on any particular problem.

4 EXPERIMENTS AND RESULTS
The phantoms are depicted in Fig. 1, where phantoms 1 - 4 are
binary reconstruction problems and phantom 5, the Shepp-Logan
phantom, is a discrete problem with six pixel value levels [41]. Two
sizes, 32×32 and 64×64, were trialled and, in order to test few-view
conditions, the number of projections, α , was set to 6, 8, 16 and 32.
Phantom imaging was conducted by the ASTRA toolbox [45] using
parallel geometry with the number of rays set to 32 and 64 for the
the 32 × 32 and 64 × 64 phantoms respectively.

Five reference algorithms from the ASTRA toolbox were selected:
filtered backprojection (FBP), the algebraic algorithms ART, SIRT
and SART, and a gradient descent reconstruction procedure, CGLS.
The potential of swarm reconstruction was tested with three swarm
algorithms, PSO (in two varieties, GPSO and ring LPSO), DE and

DFO; finally, since the swarm algorithms rely on extensive sampling,
random search (RS) was also tested as a control.

The swarm algorithms and RS were run for 100,000 function
evaluations. ART, CGLS, FBP, SART and SIRT perform the recon-
struction in RD , where D = 32 × 32 or 64 × 64. Reconstructions
were scaled to X = [0, 255]D for the purpose of computing the
reproduction error, e2.

A swarm size of N = 100 was chosen for G/LPSO, DE and DFO.
Particles were initialised in X with the uniform distribution and
G/LPSO velocities were set to zero. Particles in all three swarms
were clamped to the search box: any particle attempting to leave X
was placed on the boundary.

The DFO jump probability was set to 0.001; G/LPSO was run
withw = 0.729844 and c = 1.49618 and the DE/best/1 parameters
F and CR were both set to 0.5.

All algorithms with randomisation were run 30 times on each of
the 40 problems (5 phantoms, 4 projection types (6, 8, 16, 32) and 2
sizes, 32 × 32 and 64 × 64).

4.1 Reconstruction results
Table 1 reports on Wilcoxon statistical significance tests on the
reconstruction error for algorithm pairs for the 40 problem in-
stances at a significance level of 0.05. The rows show the number
of instances in which the row algorithm performed better than the
column algorithm. For example, reading along the first row, ART
gave a significantly smaller reconstruction error, e1, than SART on
9 of the 40 trials.

Algebraic reconstruction algorithms ART, SART and SIRT and
gradient descent, CGLS, uniformly outperform DE, GPSO and LPSO
and are better than DFO in 32 trials. The result is not surprising;
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Table 1: Algorithms comparison based on e1. The numbers
indicate statistically significant wins for the algorithm in
the left hand column versus the algorithm in the top row.

e1 ART CGLS FBP SART SIRT DE DFO GPSO LPSO RS
ART NA 0 40 9 0 40 32 40 40 40
CGLS 40 NA 40 30 21 40 32 40 40 40
FBP 0 0 NA 0 0 16 9 38 13 40
SART 31 10 40 NA 0 40 32 40 40 40
SIRT 40 19 40 40 NA 40 32 40 40 40
DE 0 0 23 0 0 NA 0 40 4 40
DFO 6 6 30 6 6 40 NA 40 32 40
GPSO 0 0 2 0 0 0 0 NA 0 40
LPSO 0 0 27 0 0 28 8 40 NA 40
RS 0 0 0 0 0 0 0 0 0 NA

these toolbox algorithms have been specifically developed for re-
construction whereas the swarm algorithms are off-the-shelf multi-
purpose low-dimensional optimisers that have not been tuned to
the reconstruction task.

The performance of swarm algorithms LPSO and DE is compara-
ble to the classic filtered backprojection method; GPSO is notably
worse and DFO has a slight advantage.

All algorithms are better than randoms search which shows that
the performance of the swarm algorithms is not merely due to
repeated sampling.

Table 2 compares algorithm pairs when rated according to the
reproduction error, e2. DE, LPSO and DFO consistently find bet-
ter reproductions than any of the toolbox algorithms, and of the
swarm algorithms, DFO exhibits a better performance. GPSO infre-
quently finds a lower e2. DE and LPSO, although producing worse
reconstructions when judged by the projection error, e1, than the
toolbox algorithms, nevertheless produce images that are closer to
the original. However the visual comparison in Fig. 1 shows that
low reproduction error is not always a reliable measure on how a
clinician might interpret an image; the toolbox algorithms produce
more recognisable, albeit blurred, reconstructions of phantom 4
and the Shepp Logan phantom. DFO produce sharper images of
phantoms 1-3. The blurriness seen in the toolbox reconstructions
seems to have been traded for noise.

Table 3 presents a more detailed account of the e2 results. The
cells display the median reproduction error in the set of 40 trials,
for each phantom; lighter shading indicates lower e2. DFO pro-
duces good reproductions of phantoms 1-3, especially for higher
numbers of projections: indeed it achieves perfect reproduction in
seven cases. CGLS tends to have a lower median than the other
toolbox algorithms, specially with higher number of projections,
and SIRT is more consistent than SART. However, no toolbox algo-
rithm is capable of producing an exact reconstruction of the original
phantom.

Fig. 2 shows e1 convergence plots for sample runs. The plots
do not show evidence of stagnation, a characteristic morbidity of
swarm algorithms, and indicate that extended runs would have
reduced the errors still further.

Table 2: Algorithms comparison based on e2. The numbers
indicate statistically significant wins for the algorithm in
the left hand column versus the algorithm in the top row.

e2 ART CGLS FBP SART SIRT DE DFO GPSO LPSO RS
ART NA 31 37 29 28 5 3 38 3 40
CGLS 9 NA 22 15 13 7 3 25 6 37
FBP 3 18 NA 16 4 1 0 32 1 40
SART 11 25 24 NA 18 0 0 29 0 38
SIRT 12 27 36 22 NA 5 1 38 3 40
DE 34 31 39 40 35 NA 0 40 8 40
DFO 37 36 40 40 38 40 NA 40 32 40
GPSO 2 13 4 11 2 0 0 NA 0 40
LPSO 36 34 39 40 36 28 8 40 NA 40
RS 0 2 0 2 0 0 0 0 0 NA

4.2 Function profiles
A surprising feature of the experiments is the ability of the swarm
algorithms, as exemplified by the convergence plots of Fig. 2, to
make any progress given the high dimensionality and perceived
difficulty of the reconstruction problems.

It is worth noting that the swarm algorithms of these trials have
been developed for comparably low-dimensional problems (typi-
cally in 30 dimensions) whereas the reconstructions here, at 1024
and 4096 dimensions, are considered high in the global optimisation
community and are subject to special methods.

In order to test the ability of a general swarm optimiser i.e. one
that has not been enhanced for high dimensional problems, trial
runs of DFO on a blank phantom (in which all pixel values are zero)
and on the unimodal Sphere problem in 1024 dimensions were
performed. Fig. 5, a representative convergence plot, shows the
swarm does indeed make progress and does not suffer any periods
of stagnation. The shape of the plots differs from the phantom
convergence plots of Fig. 2 in which the initial fast convergence
is followed by a slowing down (the plots are convex rather than
concave), hinting that the problem is unimodal at large scales but
has a more complex multimodal structure on small scales.

The nature of the task was investigated further by measuring
function profiles along ‘adaptive’ walks. An adaptive walk is a
sequence of steps in X such that each step lowers or equals the
function value of its predecessor. We define an adaptive walk profile
of granularity λ as a plot of objective function values taken at 1

λ
points in a straight line between steps in an adaptive walk.

Fig. 3 shows adaptive walks profiles at iterations t = 200 to
t = 210. The adaptive walk is the trace of the swarm best position
at each iteration. The ‘anchor steps’ (actual values attained by the
swarm) are marked with black blobs. The continuous black line
follows e1 values at 1

λ = 100 intermediate points. In all five cases
we see that the profile never rises above the value at the end-points,
indicating that the function, as seen by the swarm, is unimodal at
this scale, and particles do no encounter ridges between optima
and the swarm is contained within a single funnel.

Fig. 4 shows profiling at later iterations. The objective functions
appears to lose their apparent unimodality close to the optima at
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Table 3: Reproduction error, e2, for each problem and each algorithm. Lighter shading indicates the proximity of the recon-
structions to the phantoms. The largest errors in phantoms of sizes 322 and 642 are 255 × 322 and 255 × 642 respectively.

ART CGLS FBP SART SIRT DE DFO GPSO LPSO RS
Phantom 1, size = 322, α = 6 51836 103862 82141 52578 52254 24360 8925 90896 17006 123172
α = 8 51730 53772 87373 52374 53452 18306 1825 88231 12444 122473
α = 16 38732 59710 55565 56237 42305 10800 0 87185 8898 123530
α = 32 37764 7104 35628 110013 27998 8646 0 87993 8540 122754
Phantom 1, size = 642, α = 6 215811 416802 426382 214874 246054 210940 196817 435764 154123 506638
α = 8 227777 352616 386348 225147 241197 193099 179152 432352 137348 507789
α = 16 163363 473576 263650 193959 179971 172757 161105 430594 117964 507951
α = 32 132912 130092 183064 452604 150775 163515 147693 430219 109999 507091
Phantom 2, size = 322, α = 6 75422 93088 96273 74995 75948 39667 26212 93150 28901 122240
α = 8 66259 66446 91778 70501 71291 35209 19449 92225 22997 122429
α = 16 53855 85828 67687 61974 52369 17269 0 90415 8816 122056
α = 32 36254 16990 45938 117980 30212 11701 0 87261 7921 122628
Phantom 2, size = 642, α = 6 306104 481477 397097 300757 308809 251333 231673 438343 190386 507088
α = 8 271607 413516 408564 275983 280526 237651 220855 436555 170015 506604
α = 16 231209 244594 319779 249123 241244 189399 179313 428432 120831 504912
α = 32 178477 179468 218892 379754 181168 171271 160561 430698 109442 504911
Phantom 3, size = 322, α = 6 53974 104471 75166 53029 61049 14213 0 84787 17259 122377
α = 8 69150 118941 87030 70117 65759 17187 23 88102 20912 121866
α = 16 43576 88594 57915 81110 40385 12000 0 86317 18689 122053
α = 32 33432 10015 36126 110555 31715 10536 0 85807 18903 121947
Phantom 3, size = 642, α = 6 239967 352404 397112 236259 243334 173616 150138 425212 156488 504370
α = 8 275341 477491 408459 271367 297473 181518 155322 423937 159573 504085
α = 16 208053 472483 315616 199170 219134 178099 144857 421260 160890 505120
α = 32 141146 142068 192379 474858 141821 175900 142731 424702 149612 504338
Phantom 4, size = 322, α = 6 106304 123937 106080 107887 106043 54862 48542 93915 52286 123660
α = 8 99110 101757 112841 97892 101792 58459 52578 94987 56592 122876
α = 16 78390 96935 93572 119100 90408 48886 32917 95115 44677 123858
α = 32 61533 18604 75447 148600 60032 40083 12384 94222 38095 123279
Phantom 4, size = 642, α = 6 359961 453232 341694 351839 369251 251265 225083 437839 244786 472486
α = 8 370563 482330 397720 378974 402474 261236 237621 443354 253149 471607
α = 16 327407 340777 352633 335292 378158 252098 219382 442305 244071 473273
α = 32 260784 241559 315892 471062 250803 242980 201774 440890 231698 473312
Phantom 5, size = 322, α = 6 81771 89546 84742 82790 80748 48691 43853 93344 52980 103306
α = 8 69001 80591 93809 69563 71061 46981 40419 92871 51388 103155
α = 16 45268 122465 66107 80417 46304 42407 31422 93687 45457 103397
α = 32 26132 1688 45887 87035 15953 38162 23964 93373 42364 103167
Phantom 5, size = 642, α = 6 289161 417457 325745 287476 292780 231047 200976 438982 229764 442217
α = 8 283867 279289 379831 287028 288081 229070 197188 434856 229850 442038
α = 16 225719 225655 292590 249716 224916 226062 186232 435355 221121 441738
α = 32 144916 159077 178347 465039 184713 222332 177855 436841 219545 441961

e1 = 0. The profile shows a complex structure of ridges where
intermediate points exceed the values at the end-points and the
profiles are very jagged. At this stage in the optimisation, the swarm
has to negotiate micro-basins that separate sub-optimal minima.

The emergent picture of e1 as a single broad funnel leading to a
highly modal surface close to the global optimum provides some
explanation of the relative success of any swarm algorithm to make
progress in this high dimensionality, and of superior performance
of LPSO over GPSO, given LPSO is known to have better multi-
modal characteristics [8]. DFO, which is uniformly better than
DE and GPSO (see Table 1) is also more successful than DE on
these reconstruction problems. Given the (formal) intermediate
nature of DFO between PSO and DE, it seems that the removal of
velocity and history, and the retention of a mixed (local and global)
communication network is a superior strategy.

4.3 Parameter fine-tuning
The parameters of the leading swarm method were optimised in
order to better gauge its performance in the context of the problems.

Phantom 1, with size 32×32 and α = 6, was used as a benchmark
for the sweep through parameter space. The three DFO parameters
were selected from the sets N = {2, 3, 5, 10, 20, 30, 40, 50, 60,
70, 80, 90, 100}, ϕ = {0.173, 0.346, 0.520, 0.693, 0.866, 1.039, 1.212,
1.386, 1.559, 1.732} and ∆ = {0.0, 0.00001, 0.00005, 0.0001, 0.0005,
0.001, 0.005, 0.01, 0.05, 0.1}. The search was first applied to find
the optimum N and ϕ setting. Each parameter combination was
run 10 times. The best values found were N = {2, 3} and ϕ =

{1.386, 1.559,√3}, with N = 2 having a small lead (i.e. performing
statistically significantly better in {118,117,117} cases for each ϕ
values out of the total of 130 algorithms, as apposed to N = 3, with
{117,111,113} cases). Subsequently, using N = 2, and ϕ = 1.386
the search for the optimum restart thresholds resulted in an equal
performance for ∆ = {0.0005, 0.001}.
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Figure 2: Reconstruction error, e1, during 1,000 iterations in sample runs for the phantoms.

Figure 3: Unimodal function profiles

Figure 4: The revelation of complex function profiles at later iterations

Figure 5: DFO error in 1000 iterations in a sample run for
a blank phantom (32 × 32) where all pixels are set to zero,
and the Sphere function, e =

ÍD
d=1 X

2
d , with X constrained to

[0, 255]D and D = 1024.

Grid-based search for G/LPSO with N ∈ {2, 3..., 100} and DE
with N ∈ {3, 4..., 100}, resulted in N = 100 in both cases which in-
dicates that small populations are not favoured by these algorithms.

To have a more precise picture of the optimal parameter values
for N ,ϕ and ∆, DFO was used as a hyper-heuristic. The experiment
was run 30 times for the 3 dimensional problem, with the population
size of 10 and the termination criterion set to 100 iterations (1000
function evaluations). In this experiment, the elitism mechanism
was relaxed to allow for the re-evaluation of the current best pa-
rameter set in each iteration, followed by a best individual update
if necessary. The median values of the parameters found in the
trials are then extracted. The optimum values found were N = 2,
ϕ = 1.7320508 ≈ √

3 and ∆ = 0.0011245 ≈ 0.001, in agreement with
the sweet spot in the grid search.

While the small value of optimal N might come as a surprise, it
confirms the function profiling which demonstrated the presence
of a single broad funnel leading to small scale complex structure
close to global optima, in effect rendering the task into a largely
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Table 4: Algorithms comparison based on e1 and e2. The num-
bers indicate statistically significant wins for the algorithm
in the left hand column versus the algorithm in the top row.

e1 SIRT DFO-TR MTS-LS1 L-BFGS-B SNMS ANMS
SIRT NA 31 40 40 40 40
DFO-TR 8 NA 37 40 40 40
MTS-LS1 0 1 NA 40 40 40
L-BFGS-B 0 0 0 NA 0 0
SNMS 0 0 0 21 NA 2
ANMS 0 0 0 23 8 NA

e2 SIRT DFO-TR MTS-LS1 L-BFGS-B SNMS ANMS
SIRT NA 1 1 40 40 40
DFO-TR 39 NA 38 40 40 40
MTS-LS1 39 2 NA 40 40 40
L-BFGS-B 0 0 0 NA 4 4
SNMS 0 0 0 2 NA 3
ANMS 0 0 0 3 6 NA

unimodal problem. It also indicates that although DFO is acting
as a ‘swarm-inspired local search’ and the collective presence of a
large communication network is unnecessary in this context.

4.4 Local search and algorithm comparison
To further explore this finding, the tomographic reconstruction-
optimised DFO (DFO-TR), with N = 2, ϕ =

√
3 and ∆ = 0.001, is

compared against three local search algorithms (Nelder-Mead [37],
L-BFGS-B [48], MTS-LS1 [44]) and the best performing toolbox
algorithm, SIRT. Nelder-Mead is unconstrained while L-BFGS-B
and MTS-LS1 are boxed in the feasible space. MTS-LS1 is especially
designed for large scale global optimisation, and the classic L-BFGS-
B uses an approximation of the gradient to improve the search.
MTS-LS1 is appropriated for separable problems, but is sensitive
to rotations. On the other hand, L-BFGS-B is less powerful but is
less sensitive to rotations. Nelder-Mead is trialled in two flavours,
the Standard Nelder-Mead Simplex (SNMS) [37] and the Adaptive
Nelder-Mead Simplex (ANMS) [17]. ANMS has been proposed to
deal with the inefficiency of SNMS in high dimensions.

All algorithms were run 30 times on each of the 40 problems,
with each trial running for 100,000 function evaluations.

Table 4 compares these algorithms based on the reconstruc-
tion (e1), and reproduction (e2) errors. L-BFGS-B and Nelder-Mead
algorithms show no promise in the context of these high dimen-
sional problems. SIRT is the best algorithm in terms of the re-
construction error as shown in Table 4-top, followed by DFO-TR,
and then MTS-LS1. However, in terms of the reproduction error
(see Table 4-bottom), DFO-TR is the leading method, followed by
MST-LS1 and then SIRT. The low reproduction error of DFO-TR,
in comparison to the other algorithms (toolbox and local search
techniques), places this algorithm in a promising spot for dealing
with reconstruction problems. More work is required to establish
if there are factors other than clamping, restart and local search
which contribute to the performance of the investigated methods.

Phantom SIRT DFO-TR MTS-LS1 L-BFGS-B SNMS ANMS

Figure 6: Phantom size: 32 × 32, projections: 6

5 CONCLUSION
This paper reports on swarm optimised tomographic reconstruction
of five standard phantoms in the few-view regime. Three represen-
tative swarm algorithms were tested and compared with algebraic
reconstruction algorithms and filtered backprojection, along with
two unconstrained and two boxed local search algorithms. We find
that DFO – an algorithm that formally interpolates between the
widely studied and applied differential evolution and particle swarm
optimisation techniques – is the most competitive swarm method.
The standard toolbox techniques provide lower reconstruction er-
ror and blurred final images, whereas swarm algorithms produce
lower reproduction error (sometimes even producing exact recon-
structions) and sharper images peppered with noise.

An adaptive walk function profiling technique suggests that
these reconstruction problems consist of a single broad funnel
leading to small scale complex structure close to global optima.
This large-scale unimodality would enable swarms to make rapid
progress towards the optima. Convergence plots confirm that the
swarms do not suffer from stagnation.

Following the profiling and evident large-scale unimodality, the
TR-optimisedDFO orDFO-TR is compared against a number of local
search methods. The results demonstrate the better performance of
this small-swarm algorithm against both the local search methods
and the best performing toolbox algorithm. More detailed studies
are required to establish the reasons behind the outcome which
could lie in the use of clamping, the restart mechanism, and the
overwhelming occupancy of the optima on the edges.

Furthermore, a hypbridisation of classical toolbox techniques
(with their low reconstruction error) and swarm optimisation (re-
turning low reproduction error) could produce a powerful algorithm
capable of fast reconstructions in the few view regime.
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