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Summary

� We used bomb-radiocarbon and raw minirhizotron lifetimes of fine roots (< 0.5 mm in

diameter) in the organic layer of Norway spruce (Picea abies) forests in southern Sweden to

test if different models are able to reconcile the apparently contradicting turnover time esti-

mates from both techniques.
� We present a framework based on survival functions that is able to jointly model bomb-

radiocarbon and minirhizotron data. At the same time we integrate prior knowledge about

biases of both techniques – the classification of dead roots in minirhizotrons and the use of

carbon reserves to grow new roots.
� Two-pool models, either in parallel or in serial setting, were able to reconcile the bomb-

radiocarbon and minirhizotron data. These models yielded a mean residence time of

3.80� 0.16 yr (mean� SD). On average 60� 2% of fine roots turned over within

0.75� 0.10 yr, while the rest was turning over within 8.4� 0.2 yr. Bomb-radiocarbon and

minirhizotron data alone give a biased estimate of fine-root turnover.
� The two-pool models allow a mechanistic interpretation for the coexistence of fast- and

slow-cycling roots – suberization and branching for the serial-two-pool model and branching

due to ectomycorrhizal fungi–root interactions for the parallel-two-poolmodel.

Introduction

The turnover of fine roots is a crucial part of the terrestrial carbon
cycle. In addition to litterfall from leaves, needles, twigs and
fruits, root litter constitutes a major addition of carbon and nutri-
ents to the soil organic matter pool. Contrary to aboveground lit-
terfall, the flux of root litter has eluded quantification, partly
because roots – the ‘hidden half’ of the terrestrial biosphere – are
more difficult to observe and study. In addition, different tech-
niques used to quantify fine-root turnover – ranging from 13C
labeling, tracing the 14C bomb peak, sequential soil coring and
ingrowth cores to root cameras (minirhizotrons) – have yielded
widely contradictory estimates of root turnover (Trumbore &
Gaudinski, 2003; Pritchard & Strand, 2008; Strand et al., 2008;
Lukac, 2012).

The largest differences in inferred root turnover times are
between isotopic techniques (here we use bomb-radiocarbon)
and direct observations of root growth and persistence (minirhi-
zotron methods) (Trumbore & Gaudinski, 2003; Guo et al.,
2008). For a given standing stock of fine roots in a forest stand,
the root litter input estimated from common minirhizotron turn-
over times (c. 2 yr, Strand et al. (2008); Hansson et al. (2013)) is
a priori 75% higher than the root litter input based on bomb-
radiocarbon derived turnover times (c. 8 yr; Gaudinski et al.,
2001; Gaul et al., 2009; Fr€oberg, 2012).

The Radix model (Gaudinski et al., 2009, 2010; Riley et al.,
2009) has been a recent attempt to model complete fine-root
dynamics with five different pools – a storage pool with carbon
reserves that can be used to grow new roots, two live-root pools
and two dead-root pools. Gaudinski et al. (2010) made use of
both bomb-radiocarbon and minirhizotron data to parameterize
the turnover times of the two parallel, independent live-root
pools. In their parameterization, however, Gaudinski et al.
(2010) solely used the median longevity from minirhizotrons
for the turnover time of the short-lived root pool. They then
estimated the turnover time of the long-lived root pool using
the 14C content of fine roots given the turnover time of the
short-lived root pool. However, the separate parameterization of
the short-lived and the long-lived root pool does not fully rec-
oncile minirhizotron observations with the 14C in fine roots
because this would relate the minirhizotron observations only
to the short-lived pool. Modelled fine-root dynamics, though,
should represent the whole spectrum of fine-root dynamics
observed with both techniques. Furthermore, the use of a single
metric (median longevity) to represent minirhizotron observa-
tions throws away the majority of the information content of
minirhizotron data. Finally, Strand et al. (2008) noted that
median longevities yields turnover time estimates that are sys-
tematically too fast. This, in turn, possibly yields too slow
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turnover times of the long-lived root pool for the parameteriza-
tion of the Radix model in Gaudinski et al. (2010).

We therefore want to make full use of the information content
of minirhizotron data, and aim to quantify root turnover with
minirhizotron and bomb-radiocarbon data as true joint con-
straints. To this end we developed a unified evaluation frame-
work (Ahrens & Reichstein, 2014) that makes it possible to
compare survival functions against both bomb-radiocarbon and
minirhizotron data. We assess the performance of several survival
functions that are commonly used to evaluate data from either
technique: the exponential, Weibull and log-normal model (Gaud-
inski et al., 2001; Pritchard & Strand, 2008; Strand et al., 2008;
Gaul et al., 2009; Fr€oberg, 2012). Furthermore we test two-pool
models, coupled either in parallel (equivalent to the live root-
pool structure of Radix) or in series (as in Ahrens & Reichstein,
2014).

In Ahrens & Reichstein (2014) we already pointed to the pos-
sibility of accounting for biases of the minirhizotron and the
bomb-radiocarbon technique. In this paper, we refine the unified
evaluation framework by including prior knowledge on possible
biases. First, one cannot rule out that carbon reserves are used for
the growth of fine roots. This constitutes a bias for the bomb-
radiocarbon technique because we cannot use the atmospheric
14C record as a direct proxy for the 14C content of newly grown
roots, but must employ an (unknown) storage residence time.
Thus, 14C fine-root turnover times that do not include storage
residence times yield estimates of root turnover that are too slow.

Second, it is hard to identify roots as dead or still alive in mini-
rhizotron studies. Hence, the time-to-disappearance of a root seg-
ment is sometimes used instead of the time-to-death as a measure
of fine-root longevity (Withington et al., 2006; Gaul et al.,
2009). This overestimates root longevity by the time it takes for a
root to be decomposed.

Our objectives in this study are: to quantify root turnover
with bomb-radiocarbon and minirhizotron data as joint con-
straints using different survival functions; to assess the perfor-
mance of these survival functions; and to address systematic
biases of bomb-radiocarbon and minirhizotron data in the joint
calibration framework.

Using Bayesian parameter estimation we calibrate the survival
functions from our joint calibration framework with published
14C contents in fine roots (Fr€oberg, 2012) and minirhizotron
data (Hansson et al., 2013) from the organic layer of Norway
spruce forests in southern Sweden.

Materials and Methods

Fine-root 14C data

Fr€oberg (2012) measured the radiocarbon content of fine roots
from archived O-horizons of middle-aged to mature stands dom-
inated by Norway spruce (Picea abies (L.) Karst.) in southern
Sweden. Well preserved roots (diameter 0–0.5 mm) were selected
to represent predominately live fine roots (Fr€oberg, 2012). We
used the 14C (% Modern) contents reported by Fr€oberg (2012)
of fine roots from 1964, 1972, 1985 and 1998 and their

analytical uncertainties as observational constraints for a compari-
son against the tested survival functions (Table 2).

Minirhizotron data

Hansson et al. (2013) studied fine-root turnover with minirhizo-
trons in eight different forest stands in southern Sweden. Here,
we use fine-root minirhizotron data with the same diameter as
for the 14C data (0–0.5 mm) of the three mature Norway spruce
stands in the T€onnersj€oheden Experimental Forest. We use data
from 14 tubes, five of which are solely located in the O-horizons,
while nine others also include the upper 10 cm of the mineral
soil. One of these nine tubes was from understorey spruce in a
pine stand. Starting 1 yr after tube installation, roots were moni-
tored throughout four growing seasons (2007–2010) and 14
photo sessions. Roots were monitored from growth to disappear-
ance, so that root longevity is possibly overestimated by the
timespan a dead root needs to be decomposed. Hansson et al.
(2013) assume that this systematic bias is in the range of 1–4
months.

Analysis of minirhizotron data with survival functions

Ideally, minirhizotron tubes allow monitoring of fine-root seg-
ments from their formation to death. Unfortunately, it is difficult
to actually classify fine roots as dead or alive, so fine-root seg-
ments are monitored from their first appearance until their disap-
pearance (Table 1, Case C0). Four different cases can be
distinguished (Table 1).

In the most common case, C1, the lifetime data are interval-
censored, where both the appearance and the disappearance of a
root segment occur in the time period between two photo ses-
sions. Consequently, we can define a minimum (smin) and maxi-
mum lifetime (smax) for these root segments (Table 1, C1).

All other cases can be classified as right-censored because we
know that the true lifetime, sL, of a root segment is longer than
a certain minimum lifetime, smin. If a root segment did not dis-
appear until the last photo session, we can define two possible
minimum lifetimes, smin,1 and smin,2 (schematic drawing in
Table 1, C2). Similarly, if a root segment has already been pres-
ent before the first photo session, but died before the last photo
session, we also can define two possible minimum lifetimes,
smin,1 and smin,2 (schematic drawing in Table 1, C3). Finally, if a
root segment has been present throughout the study period
(from first to last photo session), we get an absolute minimum
lifetime, smin (right-censoring, sensu strictu; Kleinbaum & Klein,
2005).

Approaches to derive fine-root turnover estimates include non-
parametric and parametric approaches. Common to both
approaches is the definition of so-called survival functions which
– in the case of roots – describe the fraction of roots that survive
until age s. The nonparametric Kaplan–Meier survival function
is basically a cumulative frequency function of the observed fine-
root lifetimes. The Kaplan–Meier approach has been used in
numerous studies to estimate median longevities of fine-root seg-
ments, although Pritchard & Strand (2008) rightly argue that
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median longevity underestimates mean longevity and thereby the
fine-root turnover time.

Parametric survival functions should be preferred over non-
parametric ones, because the mean longevity and, hence, the fine-
root turnover time are well defined. Parametric survival func-
tions, S(s), are commonly derived from cumulative distribution
functions F(s):

SðsÞ ¼ 1� F ðsÞ

Throughout the study we used five different survival functions
(Table 2). Exponential survival functions have been commonly
used to determine fine-root turnover from the 14C in fine roots
(Gaudinski et al., 2001; Gaul et al., 2009; Fr€oberg, 2012), while
Weibull and log-normal survival functions have been used to
determine mean longevity from minirhizotron data (Strand et al.,
2008; Gaul et al., 2009; Hansson et al., 2013). Additionally, we
tested two two-pool models – one in a serial setting as in Ahrens
& Reichstein (2014), and one in a parallel setting which is equiv-
alent to the pool structure of live fine roots of the Radix model
(Riley et al., 2009). The survival functions corresponding to the
serial-two-pool and parallel-two-pool model are also given in
Table 2.

The formulation of the likelihood for cases C1 and C4
(Table 1) can be directly taken from textbooks on survival analy-
sis (Kleinbaum & Klein, 2005). For cases C2 and C3 we also
applied the likelihood function for the right-censored case C4,
but assumed that the overall likelihood is the mean of the indi-
vidual likelihoods of both possible minimum lifetimes, smin,1 and
smin,2 (Table 1). This definition accounts for the probability of a
shorter minimum lifetime smin,1 in comparison to the probability
of longer minimum lifetime smin,2. This formal definition of like-
lihood functions is able to deal with apparently shortened root
lifetimes due to transparent root material (Tierney & Fahey,
2001) or due to the disappearance of root segments because of
causes other than death (Hansson et al., 2013). The likelihood
functions only rely on the minimum observed time that root seg-
ments are actually present (Table 1). Table 1 also gives an over-
view about the frequency of cases C1 to C4 at the
T€onnersj€oheden Experimental Forest.

The parameters of the different survival functions can be sum-
marized with metrics like mean residence time, sr, or mean age,
sa (Ahrens & Reichstein, 2014). For the quantification of root
turnover, mean residence time is the most important metric and
is used interchangeably with notions like mean longevity, mean
lifespan or mean lifetime (Strand et al., 2008; Gaul et al., 2009;

Table 1 Likelihood functions (L) for minirhizotron observations are depending on the timing of image collection

Schematics of hypothetical lifetimes of root
segments in minirhizotrons

Lifetime (sL) Likelihood (L) Case n

Appearance Disappearance

time
sL f (sL) C0 0

time
smin < sL < smax S(smin) – S(smax) C1 1435

? ? time
sL > smin,1 or sL > smin,2 ½ðSðsmin;1Þ þ Sðsmin;2ÞÞ C2 1088

? ? time
sL > smin,1 or sL > smin,2 ½ðSðsmin;1Þ þ Sðsmin;2ÞÞ C3 54

time? ? ? ?
sL > smin S(smin) C4 42

The schematics show how well the fine-root lifetime (sL) can be constrained for typical cases. n is the number of respective cases for the Norway spruce
minirhizotron data (0–0.5mm) in Hansson et al. (2013).
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Riley et al., 2009; Kikuzawa & Lechowicz, 2011). In steady state,
the mean residence time can be calculated as

sr ¼
Z 1

0

SðsÞ ds Eqn 1

(Manzoni et al., 2012).
Throughout this study we assume that the root system is in

steady state; therefore, the root turnover time, s0, is equal to the
mean residence time, sr (Rodhe, 1992). The root turnover time,
s0, is defined as the ratio of the root biomass over the root litter
input. Consequently, one can calculate the root litter input to the
soil organic carbon pool from root biomass measurements and
estimates of sr.

Although the mean age of roots, sa, cannot be used to con-
strain any component of the belowground carbon cycle, we also
report the mean age of the root population. Mean ages were cal-
culated as described in Ahrens & Reichstein (2014).

Convolution of the atmospheric bomb-radiocarbon curve
with survival functions

Due to aboveground testing of thermonuclear weapons during
the 1950s and 1960s the tropospheric 14C content nearly dou-
bled. After the Partial Test Ban Treaty in 1963, the atmospheric
14C content declined quasi-exponentially due to the uptake of
14C in the vegetation and oceans, but also due to fossil fuel emis-
sions which practically contain no 14C. The atmospheric bomb-
radiocarbon record has proven to be a powerful tracer to shed
light on carbon dynamics on annual to decadal timescales (Trum-
bore & Gaudinski, 2003; Trumbore, 2009). In ecological studies
where bomb-radiocarbon is used as a tracer, 14C contents are
commonly reported in percent Modern, pM, or 14C (% Modern).

A 14C (% Modern) value over 100 is typically indicative of the
presence of bomb-radiocarbon and processes on yearly to decadal
timescales, while a 14C (% Modern) value below 100 may indi-
cate carbon cycling on centennial or millennial timescales.

We showed that the same survival functions (Table 2) can be
used to analyse both fine-root 14C using the atmospheric radio-
carbon curve as a tracer, and minirhizotron lifetime data (Ahrens
& Reichstein, 2014). We formulated a generic time-shift model
for the 14C (% Modern) content of fine-roots, Root14C(t), based
on a framework proposed by Manzoni et al. (2009):

Root 14Cðt Þ ¼
Z 1

0

1

s0
� Atm14Cðt � sÞ � SðsÞ � e�k�sds Eqn 2

(s0, turnover time, Atm14C(t) the atmospheric 14C (% Modern)
value in year t; S(s), survival function describing the fraction of
roots surviving at least to age s (cf. Niinemets & Lukjanova
(2003), Manzoni et al. (2009, 2012)); e�k�s, radioactive decay of
14C). When the root population is in steady state, the turnover
time s0 is equal to the mean residence time sr.

Eqn 2 essentially describes Root14C(t) in a certain year t as the
sum of 14C inputs via root production from previous years s
weighted by the fraction of fine roots S(s) that live for at least s
years. The atmospheric 14C (% Modern) values, Atm14C, can be
used as a proxy for the 14C content of new roots. Consequently,
the term 1/s0�Atm14C(t � s) describes the 14C input via root pro-
duction under the assumption that root biomass is in steady state.

Accounting for methodological biases

If neither of the methods had a systematic bias, we could directly
compare Root14C(t) and the corresponding S(s) with the mea-
sured fine-root 14C and time-to-disappearance data, respectively.

Table 2 Overview of tested survival functions; s denotes the age of a root, #h is the number of parameters of a survival function

Survival function Equation Model structure #h

Exponentiala SðsÞ ¼ e�ks 1
Weibullb SðsÞ ¼ e�ðscÞb 2

Log-normalc SðsÞ ¼ 0:5 erf
logeðsÞ � l

r
ffiffiffi
2

p
� �� �

2

Serial-two-poold SðsÞ ¼ e�ðkYþk0Þs½ðkYð1� hÞ � k0Þek0 �s þ h � kYekY �s�
kY � k0

3

Parallel-two-poole SðsÞ ¼ ae�k1s þ ð1� aÞe�k2s 3

aThe only parameter for the exponential survival function is the turnover rate k.
bTheWeibull survival function can be described by the scale parameter c and the shape parameter b.
cThe log-normalmodel can be described by the location parameter l and the shape parameter r. erf(x) denotes the Gaussian error function.
dIn the serial-two-poolmodel new roots belong at first to a fast-cycling root pool, RY. These roots are turning over with rate kY. A fraction h of the turnover
from the fast-cycling pool RY is transferred to the slow-cycling pool R0 which is turning over with rate k0.This survival function is based on the derivation by
Manzoni et al. (2009).
eIn the parallel-two-poolmodel roots either belong to the fast-cycling pool R1 or the slow-cycling pool R2. The pools are turning over with the respective
rates k1 and k2. a describes the fraction of roots belonging to pool R1. This survival function is based on the derivation by Manzoni et al. (2009).
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If, however, we cannot rule out that the above-mentioned sys-
tematic biases of the two methods are relevant, we need to modify
the described framework.

In Eqn 2 we have to replace the atmospheric Atm14C(t � s)
curve with a curve that actually represents the 14C input to the
root system and accounts for the possibility that stored carbon
has been used to build new roots. This could be achieved by cal-
culating a 14C curve under the assumption that carbon to grow
new roots (NewGrowth14C(t)) is on average x years old. This can,
for example, be modelled by a survival function that follows an
exponential function with a storage turnover time, TS:

NewGrowth14Cðt Þ ¼
Z 1

0

1

TS
� Atm14Cðt � sÞ � e� s

TS � e�k�sds

Eqn 3

The 14C in fine roots is then calculated as (compare to Eqn 2):

Root 14Cðt Þ ¼
Z 1

0

1

s0
�NewGrowth14Cðt � sÞ � SðsÞ � e�k�sds

Eqn 4

Minirhizotron data are biased because they often represent
time-to-disappearance instead of time-to-death. This means that
one should additionally account for the time-to-decomposition:

time-to-disappearance ¼ time-to-deathþ time-to-decomposition

sdis ¼ sþ sdec Eqn 5

This corresponds to a transfer from a live-root pool to a dead-
root pool. In the survival function framework we have to convo-
lute the survival function S(s) that accounts for the death of roots
with an exponential function with a dead root turnover time, TD:

Stime-to-disappearanceðsdisÞ ¼
Z 1

0

Sðsdis � sdecÞ � 1

TD
� e

�sdec
TD dsdec

Eqn 6

This gives a survival curve Stime-to-disappearance(sdis) which describes
the fraction of roots that are present (live or dead) at least for a
time sdis. The term 1=TD � e�sdec=TD in Eqn 6 is the decomposi-
tion function for dead roots which weights the relative contribu-
tion of fine-roots S(s) that have lived for a time s = sdis� sdec to
fine-roots that have not disappeared until time sdis. This curve
should be directly compared with the minirhizotron data. In the
calibration we use prior knowledge for the two parameters, TS

and TD, describing the systematic biases of both techniques (see
next section).

Parameter estimation with minirhizotron and bomb-
radiocarbon data

We optimized the parameters h of the different survival func-
tions, S(s), (Table 2) and the two additional bias parameters, TS

and TD, by maximizing the logarithm of the posterior of the joint

evaluation framework with the DiffeRential Evolution Adaptive
Metropolis algorithm (Guillaume & Andrews, 2012). The pos-
terior distribution of parameters expresses the uncertainty of the
parameters after accounting for the prior knowledge we have
about the parameters, and the likelihood of reproducing the
minirhizotron and fine-root 14C data with the model using these
parameters. Because we aim to reconcile minirhizotron fine-root
lifetimes and the 14C content of fine roots, we define a joint like-
lihood function for both techniques. For mathematical conve-
nience we use the logarithm of the joint likelihood, which is the
sum of the log-likelihood of the minirhizotron data, ‘MiniðhÞ,
and the log-likelihood of the fine-root 14C data, ‘14C ðhÞ.

The log-likelihood for the minirhizotron data can be formu-
lated as:

‘MiniðhÞ ¼
Xcase
i¼1

ni � log LiðhjDMini;iÞ
� �

Eqn 7

(Li, likelihood function for one of the cases i (cases C1-C4,
Table 1); n, respective number of roots with the same time-to-
disappearance DMini,i)

The log-likelihood for the fine-root 14C data can be formu-
lated as:

‘14C ðhÞ ¼
Xmeas:yrs:

t¼1964

�
� 0:5

�
D14C ðt Þ �M ðt ; hÞ

rðt Þ
�2

� 0:5 logð2pÞ � logðrðt ÞÞ
� Eqn 8

(D14C(t), fine-root
14C data; M(t,h), model results of a certain

survival function for the proposed set of parameters; t, points in
time when fine-root 14C measurements are available; r(t), respec-
tive measurement uncertainty).

We only defined priors for the two bias parameters, TD and
TS. Based on considerations by Hansson et al. (2013), we chose a
log-normal prior for TD with its mode at 2 months and its 90th
percentile at 7 months (Fig. 1a). We chose the 0.4 yr of mean
storage time found by Gaudinski et al. (2009) as the mode for a
log-normal prior for TS. The 90th percentile for this log-normal
prior was set to 2 yr (Fig. 1b). Both log-normal priors were

(a) (b)

Fig. 1 Priors for the bias parameters TD (a) and TS (b). TD describes the
time it takes for a fine-root segment to disappear from a minirhizotron
photo after its death. TS accounts for the time carbon has potentially spent
in storage pools after its photosynthetic fixation before it it used to grow
new roots.
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truncated – at 1 yr for TD and at 5 yr for TS – to avoid the possi-
bility that the observations would solely be explained by the two
bias parameters.

Results

Performance of different survival functions in explaining
bomb-radiocarbon and minirhizotron observations of fine
roots

The two two-pool models (Table 2) were best able to capture both
the minirhizotron time-to-disappearance data and the bomb-
radiocarbon in fine-roots (Table 3). Although the two-pool mod-
els have the largest number of parameters (three + two bias
parameters), they have by far the best likelihoods of all survival
functions relative to the number of parameters as indicated by
the Bayesian information criterion (BIC; Kass & Raftery, 1995;
Table 3). The BIC would favour survival functions with a lower
complexity (fewer parameters) if they achieve a similar maximum
likelihood. The serial-two-pool survival function and the parallel-
two-pool survival function perform equally well in terms of the
BIC (Table 3).

The differences in BIC (ΔBIC in Table 3) are considerable
between the two-pool survival functions and the log-normal,
Weibull and exponential survival functions. The exponential
(one-pool ) survival function performs particularly poorly and is
neither able to capture the dynamics of long-lived roots in
minirhizotrons (Table 3, blue dashed line vs orange step func-
tion) nor the time-series of fine-root 14C (Table 3). Both the
Weibull and log-normal survival functions perform much better
than the exponential survival function. The Weibull survival
function is better able to capture fine-root 14C compared to the
log-normal survival function, while the log-normal survival func-
tion is better at capturing the minirhizotron time-to-disappear-
ance data (Table 3, blue dashed line vs orange step function).
However, the serial-two-pool and the parallel-two-pool survival
function outperform the Weibull and log-normal survival func-
tion both in explaining the minirhizotron data and the 14C of
fine-roots.

Minirhizotron bias – TD The bad performance of the
exponential survival function is also reflected in the posterior dis-
tribution of the bias parameter for minirhizotron observations,
the dead root turnover time, TD. The posterior distribution is the
combination of the prior knowledge we had about this parameter
and the information contained in the data to further constrain
this parameter. The posterior distribution of TD (Fig. 2, blue
line) for the exponential survival function is hitting the edge of
the truncated log-normal distribution that describes our prior
knowledge about TD (Fig. 2, grey area). This indicates that our
optimization algorithm strives for longer dead root turnover
times in order to be able to explain the quite long-lived roots
observed with the minirhizotrons (Table 3, orange step func-
tion).

For the other survival functions we do not see any edge hitting
for TD, although the posterior mean of TD is located in the 90th

percentile of the prior distribution for the two-pool and Weibull
survival functions (Fig. 2). The posterior uncertainty of TD is best
constrained compared to our prior knowledge for the log-normal
survival function with a dead root turnover time of
0.23� 0.04 yr (posterior mean� SD). For the two-pool survival
functions we obtain the same posterior TD of 0.60� 0.08 yr
(mean� SD).

Bomb-radiocarbon bias – TS Similar to the findings for the
minirhizotron bias parameter, TD, we also observe edge-hitting
of the storage turnover time, TS, for the exponential survival func-
tion. For the exponential model the posterior distribution of TS

(Fig. 2, blue line), which accounts for the use of stored carbon to
grow new roots, is concentrated at the upper edge of the trun-
cated log-normal prior knowledge (Fig. 2, grey area). This again
indicates that the exponential model is not remotely able to fit the
minirhizotron and bomb-radiocarbon data jointly without attrib-
uting too much of the observed variation to the bias parameters.

The posterior distribution of the log-normal model again fol-
lows most closely our prior knowledge, while the posterior means
of TS of the two-pool models and the Weibull survival functions
are located in the 10th percentile of the prior distribution
(Fig. 2). The uncertainty of TS is best constrained compared to
our prior knowledge (Fig. 2) for the two-pool survival functions
with a storage turnover time of 0.08� 0.04 yr (posterior
mean� SD).

Mean residence times and mean ages

The mean residence time estimate, sr, for the exponential survival
function is seriously biased because the model error is consider-
able. The model error of the exponential model can be illustrated
by its inability to reproduce the short and long lifetimes observed
in the minirhizotrons (Table 3, column 1) and by its inability to
fit all 14C measurements of fine roots reasonably well (Table 3,
column 2). The sr estimates for the other survival functions can
be reliably interpreted because the model error does not domi-
nate in these cases. sr ranges from 3.53� 0.16 yr for the Weibull
survival function to 3.80� 0.16 yr for the two two-pool survival
functions (Table 3).

Apart from the mean residence times, the individual parame-
ters that describe the shape of the survival curves can give interest-
ing insights on the timescales that fine roots are turning over. For
the one-parameter exponential survival function the inverse of the
decomposition rate k already constitutes the mean residence time:
1/k = sr = T (Fig. 2).

Also the parameters of the two-pool survival functions can be
readily interpreted. In the parallel-two-pool model 60� 2% of
fine roots belong to a fast-cycling pool with a turnover time T1 of
0.75� 0.10 yr (mean� SD), while the remainder belongs to a
slow-cycling pool with a turnover time T1 of 8.4� 0.2 yr
(mean� SD) (Fig. 2). The parameters of the log-normal and
Weibull model elude such a straightforward interpretation,
because the shape and scale parameters cannot directly be trans-
lated into how many roots are turning over on a certain time-
scale.
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The turnover times of the serial-two-pool survival function
are in accord with the turnover times of the parallel-two-pool
model – the turnover time of the fast-cycling root pool, TY,
is also 0.75� 0.10 yr (mean� SD), and the turnover time of
the slow-cycling pool is also 8.4� 0.2 yr (mean� SD).
36� 2%
(mean� SD) of the roots that turn over in the fast-cycling
pool, RY, (Table 2) are entering the slow-cycling pool, R0, via
the transfer coefficient h (Table 2, Fig. 2).

This shows that the serial-two-pool model and the parallel-
two-pool model are generally able to reproduce the same shape of
survival curve with the same turnover times of the respective fast-
and slow-cycling pools (TFast, TSlow). The relationship between
the parameters h and a is given by h = (1�a) (TFast�TSlow)/TSlow

(derived from equations for S(s) in Table 2).
Although the mean age, sa, of a root population is not a really

useful quantity for constraining belowground carbon cycling, the
distance of sa to the mean residence time, sr, at least gives a quick

Table 3 Modelled and observed time-to-disappearance of Norway spruce fine roots in minirhizotrons; modelled and observed 14C in Norway spruce fine
roots; performance of different survival functions as indicated by the difference of Bayesian information criterions (ΔBIC) between the respective survival
function and the survival functions with the best performance (serial-two-pool and parallel-two-pool ). sr is the mean residence time (mean� SD), sa is the
mean age of the root population
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indication of how the survival probability of a root changes with
increasing age s (Table 3). For the exponential survival function
the mean age is equal to the mean residence time (Table 3). This
means that the probability for a root to die does not change with
increasing root age s. For all the other survival functions the
mean age sa is longer than the mean residence time sr (Table 3).
This indicates that most fine roots will die relatively soon after
they grew, while a minority of roots survives for a relatively long
time. The log-normal survival function shows the longest mean
age of 9.3� 0.4 yr of fine roots (mean� SD), while the two-pool
models show the shortest mean age of 7.5� 0.2 yr (mean� SD).
The Weibull model has a mean age of 7.9� 0.3 yr (mean� SD).
Apart from the exponential model, the distance between sa and sr
is shortest for the two-pool survival functions, indicating that the
probability of a root dying does not decrease as strongly with
increasing age as it does for the Weibull and log-normal survival
functions.

Discussion

Mechanistic interpretation of the two-poolmodels

We showed that we are able to obtain the same shape of the sur-
vival curve for the serial-two-pool model and the parallel-two-pool
model using the same turnover times for the respective fast- and
slow-cycling pools. Although the two-pool survival functions are

obviously equivalent, these two models are open to different
potential mechanistic interpretations.

Serial-two-pool model After growth, all roots at first belong to a
relatively fast-cycling pool where the majority of roots die after a
relatively short period, while the remainder of fine roots are
becoming suberized and are thereby able to increase their survival
probability. Evidence from Pregitzer et al. (2002) for Picea glauca
(we studied Picea abies) also suggests that in the < 0.5 mm size
class at least the first three orders of roots are present. Branching
of roots can generally be associated with enhanced transport, but
also with the development of protective features such as suberin
deposits or lignified cells (Eissenstat & Yanai, 1997; Hishi,
2007). Hence, branching is a process that should be taken into
consideration when interpreting the transfer from the fast-cycling
pool RY to the slow-cycling pool R0.

Parallel-two-pool model In this survival function structural dif-
ferences between fine roots existing already at their establishment
would predetermine their longevity. Similar to the serial-two-pool
model, branching could play a major role in explaining the coex-
istence of a fast- and slow-cycling pool. However, the interpreta-
tion for the parallel-two-pool model has to be different because
the two pools should describe roots whose function and structure
would be predetermined at root establishment. The structural
differences could stem from the interaction between root growth

Fig. 2 Comparison of parameter probability
distributions for different survival functions.
The maximum density of the marginal
posterior distribution (blue line) is an
indicator for how well a parameter is
constrained by the data. For the storage
turnover time, TS, and the dead root turnover
time, TD, the marginal posterior distribution
(blue line) shows how much information is
contained in the data compared to prior
knowledge about these two parameters
(grey area). Serial-two-pool: TY, turnover
time of the young root pool RY; h, transfer
coefficient from young to old root pool; T0,
turnover time of the old root pool R0.
Parallel-two-pool: T1, turnover time of root
pool R1; T2, turnover time of root pool R2; a,
fraction roots belonging to R1. l, location
parameter and r, shape parameter of the
log-normal survival function. c, scale
parameter and b, shape parameter of the
Weibull survival function. T, turnover time of
the exponentialmodel.
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and ectomycorrhizal fungi which leads to a typical lateral root
branching pattern with short lateral ectomycorrhizal roots and
long supportive roots. This type of branching is commonly called
heterorhizy (Brundrett et al., 1996). Taylor et al. (2000) found
that in a spruce forest in SW Sweden more than 99% of root tips
are colonized by ectomycorrhiza. While the ectomycorrhizal
infection of the slow-growing short lateral roots may prevent the
deposition of suberin in cortical cells (Hishi, 2007), the longer
roots may undergo more rapid secondary growth (Brundrett
et al., 1996), which is accompanied by suberization. Hence, the
interactions of ectomycorrhizal fungi and plants could be inter-
preted as a predetermination of new roots to develop into short
ectomycorrhizal roots (short-lived, T1) or long suberized roots
(long-lived, T2).

Overall, the attribution of processes to either the serial-
two-pool or the parallel-two-pool model is a rather philosophical
exercise, which essentially reduces to a dichotomous decision
between root development that could also depend on changing
conditions in the micro-environment of the root (serial-two-
pool ), and the predetermination of root function at establishment
regardless of changing micro-environmental conditions (parallel-
two-pool ). Nevertheless, given that both two-pool models are able
to produce the same shape of the survival curve, our results do
not support favouring just one of the two possible approaches.

Constraints on systematic biases

Overall, the estimates of the bias parameters for the bomb-
radiocarbon and the minirhizotron technique did not converge
across the different survival functions. As already mentioned, the
exponential survival function could not reconcile both techniques,
but both bias parameters, the dead root turnover time TD and
the storage turnover time TS, were hitting the edge of the trun-
cated log-normal prior distributions. Hence, the bias parameters
would explain the major part of the apparent irreconcilability of
both datasets for the exponential model.

The posterior distribution of the bias parameters, TD and TS,
(Fig. 2, blue line) closely follows the prior knowledge (Fig. 2, grey
area) for the log-normal survival function, which may indicate that
its particular shape is actually helpful for explaining fine-root
dynamics. For the log-normal survival function the risk of a root
dying increases at first for rather short root ages s, but declines after
a certain age s. For the other survival functions the risk of a root
dying is either independent of its age (exponential model) or
monotonically decreases with longer ages s. The bias parameters,
TD and TS, only influence the model output of the corresponding
datastreams, as indicated by the weak correlations (r2 between
0.008 and 0.09) between the posteriors ofTD andTS (see Support-
ing Information Fig. S1 for correlation matrices of the parame-
ters).

Although we have identified the storage turnover time and the
dead-root turnover time as the most important biases of the 14C
and the minirhizotron technique, one cannot rule out that addi-
tional biases also influence the posterior estimates of our parame-
ters. Adams & Eissenstat (2014) found evidence not only that
stored carbon might be used for the growth of new roots, but also

that recent photosynthate is incorporated into structural root tis-
sue after root formation. This process would lead to a shorter
storage turnover time TS in our modelling framework. For the
Weibull and both two-pool models, the fact that the posterior esti-
mate of TS is located in the 10th percentile of the prior knowl-
edge (Fig. 2), could also be explained by a tradeoff between the
use of stored carbon to grow new roots and the continuous incor-
poration of recent photosynthate into roots (Adams & Eissenstat,
2014).

Similarly, Fr€oberg (2012) selected the archived roots to repre-
sent predominately live roots, but he could not rule out the possi-
bility that recently dead roots might have been included. This
possible bias would lead to a longer estimate of TS; this, however,
does not seem to be relevant here, given that the posterior estimate
of TS is not located at the upper end of the prior knowledge
(Fig. 2). This possible bias is also different from the dead-root turn-
over time that we proposed to account for the time-to-decomposi-
tion in minirhizotrons, because we would still sample a mixture of
live and dead roots for the 14C analysis, while in minirhizotrons
root segments aremost likely deadwhen they disappear.

Trade-off to single calibrations with minirhizotron or bomb-
radiocarbon data

Trumbore & Gaudinski (2003) stated that both techniques –
minirhizotrons and bomb-radiocarbon – would ‘gather informa-
tion about different ends of the root lifetime continuum’. The
validity of this statement relies on sampling and evaluation details
of the two different techniques. The statement that minirhizo-
trons sample only at the younger end of the lifetime continuum
is largely dependent on the length of the study period. Obviously,
one strives to capture also the tails of the fine-root lifetimes moni-
tored with minirhizotrons (Table 3), which is decisive for the
extrapolation of root lifetimes outside the observed (also cen-
sored) lifetimes. The commonly reported median longevity esti-
mates from Kaplan–Meier point estimates from minirhizotrons
depend even more strongly on the length of the study period than
in parametric estimates of mean longevity. Nevertheless, in para-
metric approaches, which are used to determine mean longevi-
ties/mean residence times (Table 2), the length of the study
period also determines how much information is contained in
the minirhizotron data, not only for the fast-cycling but also for
the slow-cycling pool.

Up to now, the evaluation of minirhizotron data has been
inadequate for the nature of the data for two reasons. First, fitting
parametric survival functions to Kaplan–Meier point estimates
(Strand et al., 2008; Gaul et al., 2009; Hansson et al., 2013)
throws away a lot of information; in a least-squares fitting
approach, longer survival times receive less weight because of the
smaller numbers (fraction of roots surviving). Second, the infor-
mation about censoring in the Kaplan–Meier survival curve is
lost to a large degree when a parametric survival curve is fitted to
the point estimates. In particular, the Kaplan–Meier approach is
unable to account for the complex cases of censoring occurring in
minirhizotron studies (Table 1, cases C2 and C3). In this study
we employed a formal likelihood approach also for the
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minirhizotron data, which ensures a proper accounting for the
different cases of censoring and a proper weighting also for long-
living roots.

The information content of fine-root 14C alone does not
constrain the total fine-root turnover (fast- and slow-cycling
roots) because survival functions with more than one parameter
generally have enough flexibility to fit the same 14C content in
fine roots almost equally well with quite different mean
residence times sr. However, the 14C content of fine roots
determines the mean age of fine-root sa to a large extent
(Table 3; Ahrens & Reichstein, 2014), which is dominated by
the slow-cycling pool. Overall, we conclude that minirhizotron
data are the ideal complement to the 14C measurements in fine
roots, especially for studies without archived fine-root 14C
samples or a shorter minirhizotron sampling period: With
minirhizotron data we are able to constrain the survival curve
for short longevities s, while the 14C of fine roots alone would
allow too much flexibility for short s. Survival functions fitted
to fine-root 14C data alone had quite different mean residence
times sr (1.9–7.1 yr; Ahrens & Reichstein, 2014), while the
mean ages sa were quite similar (7.1–8.7 yr; Ahrens &
Reichstein, 2014).

The mean residence times found in this study with the joint
calibration to 14C in fine roots and minirhizotron data (Table 3)
showed that the joint calibration not only leads to a convergence
of mean ages, but also to a convergence of mean residence times
estimates (3.53–3.81 yr) between the different survival functions.
Here, the exception is the exponential survival function which is
generally unable to explain both datasets with its constant sur-
vival probability.

Implications, future research directions

Generally, one should probably take a step back and ask oneself
‘Why are we interested in estimating fine-root turnover times?’
The most general answer is ‘We want to quantify the input of
root litter to the soil organic carbon pool’.

This also means that the mean residence time per se is not of
primary interest, but the root litter input which is defined as root
biomass/sr under the assumption that root biomass is in equilib-
rium. We argue for an overall more integrative approach for
determining the root litter input to soils. Richardson et al. (2010)
showed in a model-data fusion exercise with joint constraints
(NEE, soil respiration, aboveground litterfall) that they were not
able to constrain the turnover rate of fine roots. This indicates
that the integration of minirhizotron data or fine-root 14C into
calibration exercises with whole ecosystem models might be bene-
ficial to constrain the central parameter that determines the car-
bon input into the soil organic carbon pool.

Contrary to statistical survival functions (e.g. log-normal and
Weibull ), modelling the root turnover with two-pool models has
the advantage of fitting seamlessly into ecosystem models. The
survival functions for two-pool models essentially correspond to a
system of ordinary differential equations. One would model the
decrease of the fraction of roots still being alive without further
new root growth. This curve can be used for comparison with the

raw minirhizotron time-to-disappearance data. This would make
it possible to use minirhizotron data along with the 14C content
of fine roots for calibrating parameters of ecosystem models in
multiple constraint approaches. In addition, accounting for sys-
tematic biases of the minirhizotron and the bomb-radiocarbon
technique, is more easily achieved in a traditional pool setting,
while the convolution of two functions is quite uncommon for
ecosystem models.

Overall, our results show that fine roots of trees are indeed
cycling on quite different timescales. A one-pool, exponential
model assumes a constant mortality risk for fine roots regardless
of their age; it is impossible to reconcile minirhizotron and
bomb-radiocarbon data using this assumption. Other survival
functions, however, that exhibit a decreasing mortality risk with
increasing age are able to reconcile the apparently contradictory
datastreams. Two-pool survival functions, nonetheless, perform
better than survival functions derived from statistical cumulative
distribution functions, such as the Weibull and log-normal sur-
vival function. Moreover, the two-pool models can be better inte-
grated into ecosystem models and are more open to a
mechanistic interpretation. Therefore, the two-pool survival func-
tions are best suited to represent fine-root turnover in models
and to reconcile bomb-radiocarbon and minirhizotron data. The
combination of both datasets is essential to reasonably constrain
the proportion of short- to long-lived fine roots.

Our and other studies (Tierney & Fahey, 2002; Matamala
et al., 2003; Trumbore et al., 2006; Gaudinski et al., 2010) have
shown that fine roots in rather well-drained forest ecosystems do
not belong to just one homogenous pool. Whether fine roots in
nonforested ecosystems also show this decreasing mortality risk
with increasing age is questionable. Solly et al. (2013) found that
fine-root 14C in grasslands was generally much closer to the
atmospheric 14C curve than fine-root 14C in forests, so the issue
of reconciling minirhizotron observations with 14C observations
is probably less pressing for fine roots in grasslands. Nevertheless,
Solly et al. (2013) found that the presence of perennial species in
grasslands yields longer apparent 14C fine-root turnover times.
Also fine roots of grasslands could be modelled with our pro-
posed framework, although the storage turnover time bias will be
of minor importance for this ecosystem type. The use of the
radiocarbon technique could be useful to study fine roots in
grasslands with considerable amounts of perennial species,
although using the minirhizotron technique might suffice. In
poorly drained or even wetland soils the decomposition of dead
roots might be impeded considerably (Iversen et al., 2012).
Therefore, it would be important to account for this substantial
bias that would affect observations of fine-root turnover with
minirhizotrons and bomb-radiocarbon.
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