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Abstract  51 

This review focuses on  modelling methodologies of the gastrointestinal tract during digestion 52 

that have adopted a system view approach, and more particularly on physiologically-based 53 

compartmental models of food digestion and of the host-diet-microbiota interactions. This type 54 

of modelling appears very promising to integrate the complex stream of mechanisms that have 55 

to be considered, and to retrieve a full picture of the digestion process from mouth to colon. We 56 

may expect these approaches to become more and more accurate in the future, and serve as a 57 

useful means to gather the available knowledge, interpret postprandial in vivo data, and make 58 

relevant predictions. This paper intends to provide a scientific and historical background in this 59 

field of research, before discussing the future challenges and potential benefits of the 60 

establishment of such a model to study and predict food digestion and absorption in humans. 61 

Keywords: modelling, gastrointestinal tract, digestion, transit, absorption, microbiota  62 
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1. Introduction  63 

Investigating the effect of food composition and structure on its behavior in the human 64 

gastrointestinal (GI) tract is relevant for food developers and nutritionists in order to measure 65 

and optimize nutrient availability. Although final assessments needed to make health, nutritional 66 

and functional claims must always involve human studies, these are very expensive, time 67 

consuming and constrained by medical and ethical assessment of their acceptance. As 68 

alternatives to human and animal studies, in vitro experiments, which include both static and 69 

dynamic digestion models, have become very popular in recent years. The international 70 

INFOGEST network has been particularly active in this field, notably regarding the harmonization 71 

and the validation of in vitro digestion protocols (Brodkorb et al. 2019; Minekus et al. 2014; Mulet-72 

Cabero et al. 2020) and on the correlation of associated results with in vivo data (Bohn et al. 2018; 73 

Dupont et al. 2019; Egger et al. 2016). Although in vitro studies have demonstrated success in 74 

evaluating the effects of food properties on digestion, they miss certain properties related to the 75 

way the body dynamically controls the digestion process. To expand our understanding of the 76 

relations between foods, or diets, with the overall function of the human GI tract and post 77 

absorptive processes, computer modelling of the digestion process appears a very promising 78 

means.  79 

The present review focuses on mathematical models of the GI tract that have adopted a system-80 

based approach, and more particularly on physiologically-based compartmental modelling. These 81 

methods have been applied in the veterinarian area related to animal feed sciences (Bannink et 82 

al. 2006; Bastianelli et al. 1996; Rivest et al. 2000; Strathe et al. 2008; Usry et al. 1991), and are 83 

widely used in pharmaceutics nowadays for the development of orally administered 84 

pharmaceuticals (Chetty et al. 2018; Yu 1999; Zhuang & Lu 2016). Following these works, 85 

compartmental models related to food digestion and/or postprandial metabolism have also been 86 

proposed. This review aims at providing a state of the art on these researches, before discussing 87 

future challenges associated with the modelling of food digestion and its metabolic repercussions 88 

in humans. 89 

In section 2, this review highlights the compartmental organization of current pharmacokinetic 90 

models and their contribution to pharmaceutical development. Section 3 describes features that 91 

have been added to this compartmental approach for the modelling of food digestion and 92 
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absorption. Compared to the existing pharmacokinetic models, much more attention is needed 93 

to introduce the complexity of food materials consisting of a multiscale structure containing many 94 

components. Section 4 discusses the overall progress made in food digestion compartmental 95 

modelling, and gives an opinion on what future developments are needed.     96 

2. Modelling the digestive tract  97 

Computer simulation and mathematical modelling are common techniques that have proven 98 

their worth in many disciplines. Generally speaking, a mathematical model aims to describe 99 

aspects of a real-life phenomenon by using fundamental assumptions to purposefully remove 100 

unnecessary details. Consequently, a mathematical model is merely an analogy or caricature of 101 

the phenomenon and as such wrong. However, models might still accurately depict the system 102 

behaviors, and hence be very useful.  103 

In the current discussion, we focus on dynamic (as opposed to static) models in which time-104 

dependent changes are accounted for and which are typically characterized by systems of 105 

differential equations.  Another key categorization of mathematical models is on a scale from 106 

empirical to mechanistic.  Purely empirical models make no assumptions about the mechanisms 107 

controlling the system behavior, but focus solely on replicating the data. As such, they commonly 108 

fail when used for predictions outside of the range of data.  Examples in pharmacokinetics include 109 

models with sum-of-inverse-Gaussian functions to describe drug absorption profiles (Csajka et al. 110 

2005) or Bayesian p-splines to estimate pharmacokinetic parameters (Jullion et al. 2009).  By 111 

contrast, a purely mechanistic model incorporates physiologically-based assumptions about the 112 

mechanisms controlling the system. For example, each compartment would have some specific 113 

physiological identification, as would the parameters associated with each compartment. 114 

Mechanistic models are predominantly applied to data to investigate whether the model mirrors 115 

the trends observed experimentally. Model parameters are estimated with caution to preserve 116 

the scientific soundness of the model. One advantage of a mechanistic over an empirical model 117 

is its ability to extrapolate beyond the data with which it was built. In pharmacokinetics, many 118 

models are semi-mechanistic, often having physiologically relevant compartments but with at 119 

least some of the parameters determined empirically.  120 
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The research on compartmental modelling has led to a number of commercial packages for 121 

pharmacological modelling of the delivery of orally administrated drugs as reviewed by others 122 

(Chetty et al. 2018; Li et al. 2018; Pentafragka et al. 2019). The difficulty in these PBPK models is 123 

that evaluation of model parameters is usually empirical rather than based on the underlying 124 

mechanisms (Aarons 2005). Nonetheless, such mathematical methodologies have been 125 

successfully developed in the pharmaceutical industry to the point where they are now often 126 

used in advance of clinical trials to help optimize the trial design for a given objective (Danhof et 127 

al. 2008; van der Graaf & Benson 2011). 128 

Similar developments have been proposed to model food digestion and absorption in the 129 

alimentary tract with two main approaches: continuum and compartmental models. Continuum 130 

models take the tubular organization of the gastrointestinal tract as a starting point and 131 

mathematically describe the functional variation, transit, digestion and absorption by propulsive 132 

contractions as a function of the location (Labarthe et al. 2019; Moxon et al. 2016, 2017; 133 

Taghipoor et al. 2012, 2014). These models can consider simultaneously different aspects of 134 

digestion, such as the transit of the food along the intestine, enzymatic degradation of foods, and 135 

nutrients absorption. However, these models involve systems of partial differential equations 136 

structured in space, which increase in complexity for each digestive feature added, requiring 137 

efficient numeric solvers. The remainder of this review is restricted to compartmental modelling, 138 

as most generally used in pharmacokinetic modelling (Li et al. 2018; Pentafragka et al. 2019). In 139 

these models, the GI tract is represented by a series of compartments with different 140 

functionalities and digestive conditions (pH, enzyme concentrations, etc.), with typically: the 141 

mouth, stomach, small intestine, and large intestine. They sometimes include more gradual 142 

variations, as for instance the duodenum, jejunum, and ileum for the small intestine.  143 

 144 

3. Food digestion models  145 

3.1. What phenomena should be modelled?  146 

Although compartmental models have found wide applications in pharmacokinetics, they are not 147 

directly suited for application in food digestion research. They usually assume specific generalized 148 

conditions, in either the fasted or fed states, but lack a suitable description of the meal properties. 149 
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Therefore, a step to advance towards application for food digestion studies is to include the 150 

effects of food composition (size, caloric density, buffering effects …) and structure (liquid or solid, 151 

inner substructures…) on the modelled mechanisms. These mechanisms are outlined in Table 1, 152 

and have recently led to a public shared reference library focusing on related in silico models (In 153 

silico working-group of INFOGEST 2019). Examples of how these phenomena are becoming 154 

integrated into mathematical food digestion models will be given in the next sections. Beyond 155 

these general considerations, an appropriate level of detail is needed to simulate the fate of 156 

nutrients from the foods to peripheral blood. As schematically represented in Figure 1 for starch 157 

digestion (omitting proteins and lipids to keep the figure simple), we believe that at least the 158 

lumen and the gut wall should be distinguished, and that the original substrates and end products 159 

of the enzymatic reactions should be considered. A further possible step, not considered in Table 160 

1 and Figure 1, would consist of integrating the physiology that controls the gastrointestinal 161 

conditions of digestion (e.g. feedback mechanisms). This currently relatively unexplored aspect 162 

will be discussed in section 4.2. 163 

 164 

3.2. Integration of the food composition in nutrients  165 

A number of compartmental models have been developed in relation to food digestion in 166 

humans, or feed digestion in animals. Examples range from models addressing the flow and mass 167 

transfer of digesta along the gastrointestinal tract (Moxon et al. 2016; Rivest et al. 2000; 168 

Taghipoor et al. 2012; Usry et al. 1991) up to the metabolic fate of absorbed nutrients in the host 169 

(Fouillet et al. 2009; Mc Auley & Mooney 2015). However, these models do not distinguish the 170 

different food components, since they usually focus on one kind of nutrient only. In order to 171 

simulate the digestion of complex foods or meals, the first necessary step is thus to integrate their 172 

nutritional composition.  173 

The first attempts to integrate all the main constituents of food products in a compartmental 174 

model of digestion arose from animal feed science. A very good example thereof is the modelling 175 

of digestion and absorption in pigs by Bastianelli et al. (1996), which was extended and refined by 176 

Strathe et al. (2008). In the version proposed by Strathe et al. (2008), a total of 38 coupled 177 

compartments are considered, consisting of a line-up of  4 main GI segments (stomach, proximal 178 

and distal small intestine, as well as the large intestine) subdivided into the major biochemical 179 
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compounds (including endogenous and dietary proteins, amino acids, starch and sugars, dietary 180 

lipids and fatty acids, degradable and undegradable dietary fiber). In this model, gastric emptying 181 

and intestinal transit are represented by mass action, and the rates of enzymatic degradation and 182 

absorption of nutrients are described by saturation kinetics. Model parameterization was 183 

performed based on a literature collection on the digestive physiology of pigs. Its stability was 184 

evaluated by sensitivity analysis (see section 3.5), and the quality of its predictions was assessed 185 

by comparisons with published results. Overall, the model appeared quite robust to variations of 186 

the studied parameters, and fairly predicted the digestibility of the main food components, lipid 187 

excepted, as well as the absorption profile of the studied nutrients (glucose, amino acids, and 188 

volatile fatty acids).  189 

To the best of our knowledge, no similar model (i.e. with all nutrients) has been published yet for 190 

food or meal digestion and absorption in humans, though we are aware of at least one ongoing 191 

development (van Aken 2020) that will be exemplified in section 4.4. Human physiologically-192 

based compartment models that include GI tract compartments have been, nonetheless, 193 

proposed to predict the metabolic fate of each of the main nutrients independently: proteins, 194 

lipids, and carbohydrates, for instance in Fouillet et al. (2009), Jelic et al. (2009), and Rozendaal 195 

et al. (2018). Although these models do not primarily focus on the mechanisms that transform 196 

food into absorbable nutrients, they are important extensions of the previously described 197 

approaches. A better representation of the functioning of the GI tract during digestion, using 198 

compartmentalization suitable to all kinds of nutrients, would thus directly serve postprandial 199 

metabolic models, by integration with other physiological compartments, such as splanchnic and 200 

peripheral organs. As an example, a total of 13 anatomical compartments, 9 of which representing 201 

non-GI tract compartments, were used by Fouillet et al. (2009) to simulate the dynamics of meal 202 

nitrogen absorption, splanchnic uptake, and metabolism, with subsequent peripheral transfer 203 

and deposition. Because the number of compartments and associated parameters increases 204 

remarkably in such models, error compensations are likely to occur and remain undetected. 205 

Beyond computational issues, this is another important reason why building and validating, a 206 

whole-body and all-nutrients physiologically-based model remains a difficult challenge.  207 

 208 
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3.3. Integration of food structure effects  209 

The amount and the dynamics of nutrient uptake after a meal are also largely governed by food 210 

structure effects (Bornhorst et al. 2016; Dupont et al. 2018). Meals differing only by their 211 

processing conditions can even affect intestinal mucosa parameters and the microbiota 212 

composition in the colon (Beaumont et al. 2017; Oberli et al. 2018). These findings result from 213 

the influence of food structure on key mechanisms taking place in the upper parts of the GI tract: 214 

food comminution, food mixing with digestive fluids, gastric emptying kinetics, etc. For instance, 215 

it is well known that the gastric emptying kinetics of liquid meals follow an exponential behavior, 216 

whereas a lag phase is classically observed with solid meals. To properly simulate the breakdown 217 

of solid foods and their mixing with digestive fluids, computational solid mechanics and 218 

hydrodynamics modelling of oral and gastric processing may appear the best option (Ferrua & 219 

Singh 2010, 2015; Harrison et al. 2014, 2018). However, current oral and gastric computational 220 

models do not account yet for secretions and enzymatic reaction(s) and have only focused on the 221 

gastric behavior of liquids, with no or few discrete solid particles. These are moreover 222 

computationally expensive and are not easily compatible with system modelling approaches. This 223 

is why other means are classically used to try reproducing food structural effects in 224 

compartmental models.  225 

The most commonly employed strategy is to simulate the gastric emptying kinetics with empirical 226 

equations. The oldest one, which is still among the most commonly employed, is the Elashoff 227 

equation (Elashoff et al. 1982), which assumes that the fraction of meal in the stomach follows a 228 

power exponential decay. As recently reviewed by Muttakin et al. (2019), other equations have 229 

been proposed for the evolution of gastric volume (Siegel et al. 1988), or by introducing 230 

exponential pre-factors to enable representing a delayed sigmoidal behavior (Kong & Singh 2009), 231 

as generally observed with solid foods. 232 

Another strategy consists in assuming several gastric sub-compartments (Dalla Man et al. 2006; 233 

Le Feunteun et al. 2014; Sicard et al. 2018; van Bentum & Nelson 2011) to incorporate non-ideal 234 

mixing. For instance, two gastric sub-compartments were used by Le Feunteun et al. (2014) to 235 

simulate protein digestion of differently structured dairy protein matrices in mini-pigs: one to 236 

represent the matter that is retained within the stomach (large particles, matter too far from the 237 

pylorus, etc.), and another to represent the matter that is well mixed with the secretions and is 238 
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ready to be emptied. Such a strategy enables representing heterogeneous gastric content with a 239 

delayed emptying for solid foods, meanwhile avoiding simulating unreasonable gastric volume or 240 

secretions.  241 

However, none of these above options is perfect. New developments thus remain to be proposed 242 

to relate more directly food structural properties with their behavior in the upper parts of the GI 243 

tract, and in particular with their kinetics of gastric emptying and of enzymatic degradation. 244 

Nonetheless, the growing interest of food scientists for the fate of food during digestion is 245 

currently leading to an increasing body of physical models on the behavior of foods in the dynamic 246 

conditions of the GI tract. Examples include models of the buffering capacity of foods in the 247 

stomach (Luo et al. 2018; Mennah-Govela; Mennah-Govela et al. 2019), the swelling of protein 248 

gels (van der Sman et al. 2020), the softening of carbohydrate foods (Drechsler & Bornhorst 2018), 249 

the mechanical breakdown of solid foods (Drechsler & Ferrua 2016), or the mass transfer and 250 

absorption in the intestine (Moxon et al. 2016; Taghipoor et al. 2012, 2014). A reaction-diffusion 251 

model of the gastric digestion of meat proteins, which takes into account enzyme and proton 252 

diffusion into bolus particles with consideration of buffering effects, has even been proposed 253 

recently by Sicard et al. (2018). Given that mechanistic digestion models which aim at integrating 254 

the physical properties of foods remain in their early stages, and that this research area has 255 

become very active, it is expected that important progress will soon be made on the modelling of 256 

food structure effects on digestion.  257 

 258 

3.4. Integration of the microbiota  259 

The lower part of the digestive system hosts the intestinal microbiota. This complex microbial 260 

community not only processes non-digestible dietary residues by anaerobic digestion reactions 261 

in the colon (Korpela 2018), but also maintains a complex dialogue with the host and plays a very 262 

important protective role against pathogenic microorganisms (Guarner & Malagelada 2003).   263 

Some large-scale (whole digestive system or body) digestion models integrating the ecological 264 

and metabolic dynamics of microbes have been developed, in order to provide a detailed 265 

representation of host-diet-microbe interplays.  These models are mainly based on two reductive 266 

representations of the intestinal microbiota. The first one focuses on functional traits of 267 



11 
 

microorganisms and models the microbiota by a small number of functional populations, 268 

assuming high functional redundancy in the ecosystem. The second focuses on a few dominant 269 

species, whose metabolism is modelled in detail. 270 

A prototypal example of the first category is the model of fiber digestion in the large intestine 271 

developed by Muñoz-Tamayo et al. (2010). The colon is divided into compartments corresponding 272 

to physiological regions, in which a simplified biochemical reactions network models fiber 273 

degradation and short chain fatty acid (SCFA) production. The local microbiota is structured into 274 

functional populations that catalyze these reactions. The model includes transport, diffusion, and 275 

absorption between compartments or between the colon and the host. Its parameters were 276 

drawn from the literature and from in vitro culture experiments. This work aimed to synthesize 277 

available knowledge in a single model and to qualitatively reproduce simple nutritional scenarios 278 

such as variation of the dietary fiber level and its influence on SCFA production and colon transit. 279 

Based on the same concept of functional microbial populations, several other models were 280 

proposed, for the proximal colon in humans (Motelica-Wagenaar et al. 2014), for an in vitro model 281 

rumen focused on pH, hydrogen metabolism, and hexose and amino acids utilization (Muñoz-282 

Tamayo et al. 2016), as well as continuous, spatially explicit models coupling microbial 283 

metabolism, fiber digestion and fluid dynamics in the colon (Cremer et al. 2017; Labarthe et al. 284 

2019). Another example is demonstrated by Kettle and co-workers (Kettle et al. 2015, 2018). They 285 

developed an integrated model for the 10 major bacterial functional groups in the human colon. 286 

The growth kinetics and major metabolism of these groups were modelled taking into account 287 

their individual traits in term of substrate specificity, metabolic pathways, and pH effects.  The 288 

model accounts for individual differences in terms of microbiota composition and consists of a 289 

large system of differential equations on microbial growth, substrates and metabolites 290 

concentrations. Recently, a multicompartment modelling tool was developed in R, called 291 

“microPop” (Kettle et al. 2018), to simulate microbiota kinetics in different compartments of the 292 

human colon.  293 

Models in the second category result from the rapid and successful development of constraint-294 

based genome-scale metabolic models (GEMs) of microorganisms (Kim et al. 2017; Thiele & 295 

Palsson 2010). In these models, the internal metabolic flux partition of each cell is assumed to be 296 

at quasi-steady-state and must be computed as soon as the external conditions and uptake rates 297 
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change. There are several methods to do this, one of the most popular being flux balance analysis 298 

(Orth et al. 2010) for which highly efficient tools such as the MATLAB Toolbox COBRA (Heirendt 299 

et al. 2019) can be used. GEMs based microbiota models are recent, an example being the model 300 

proposed by Heinken et al. (2013), including 15 prevalent genomes and the host epithelial cells. 301 

The model computes the metabolic partition between the different cells given input fluxes of 302 

nutrients and can be coupled with compartment models.  303 

Advances in culture-free sequencing techniques in the past 20 years, such as 16SrDNA amplicon 304 

sequencing or Whole Genome Shotgun (WGS) allows accessing the taxonomic and functional 305 

profiling of large intestine microbiota for human (Li et al. 2014), pig (Xiao et al. 2016) or mouse 306 

(Xiao et al. 2015). For both types of models mentioned above, recent efforts have been proposed 307 

to integrate the enormous taxonomic and functional diversity in the digestive microbiota, 308 

together with the wide variety of indigested dietary fibers (Korpela 2018). A first attempt to link 309 

functional population with WGS metagenomics can be found in Raguideau et al. (2016), and a 310 

complete MATLAB toolbox to build and simulate GEM models of host and microbiota based on 311 

16S data has recently been released by Baldini et al. (2019). 312 

 313 

3.5. Mathematical tools for predictive modelling 314 

Predictive compartmental models are characterized by their ability to cope with uncertainties 315 

related to environmental variability (e.g. structure and preparation of drugs or food), inter-316 

individual variability (e.g. age, weight, sex or physical condition of the subject) and finally with the 317 

more or less accurate knowledge and representation of the phenomena involved in the digestion 318 

and absorption of nutrients. Indeed, the ultimate goal of predictive modelling is to provide 319 

prediction intervals in which quantities of interest are located when simulating an uptake 320 

scenario, with an associated probability and a modulation by the characteristics of foods and 321 

individuals. Models for food digestion and absorption are often large-sized, complex models with 322 

limited observations, especially in vivo. Moreover, the available information is heterogeneous, in 323 

that they may be obtained by very different measurement techniques and come from different 324 

experiments or subjects. This is why building predictive models is a major issue in the field and 325 

calls for the use of sophisticated mathematical tools. For instance, parameter estimation, in which 326 

descriptors of the statistical distribution of the model parameter are estimated, such as the mean, 327 
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variance, and covariance, is a crucial step. Many generic or specialized software or programs are 328 

available, implementing methods ranging from nonlinear least-squares regression to Bayesian 329 

estimation (Balsa-Canto et al. 2016; Haario et al. 2006; Raue et al. 2015). Other aspects, such as 330 

interindividual variability, also have to be accounted for when dealing with population studies. 331 

This can be done through mixed effect models (Lavielle 2014), which can incorporate covariates. 332 

In establishing a comprehensive food digestion model, we may also insist on the usefulness of 333 

conducting Sensitivity Analysis (SA), which is a highly relevant tool for models where several 334 

phenomena may interact in a complex way to produce an overall behavior. SA enables 335 

highlighting parameters whose variation has a significant influence on the model responses. 336 

Hence, parameters distinguished as significant can be estimated experimentally and/or clinically, 337 

while the rest can be taken from the literature or approximated. SA may also lead to the total 338 

elimination of some model parameters considered insignificant (Manca 2018).  339 

Methods employed for SA can be either local or global. Local methods estimate the effect of small 340 

parameter variations on a model response and are primarily used in steady-state models. Global 341 

sensitivity analysis (GSA) (Saltelli et al. 2008; Sudret 2008), by contrast, is able to examine the 342 

entire parameter space, manage nonlinearities well and provide a complete ranking of 343 

parameters by “significance”. GSA  is a numerical exploration approach based on statistical 344 

theory, that aims to understand the influence of parameters on selected model outputs, for which 345 

several software tools are available; see for instance Iooss et al. (2019) and Saturnino et al. (2019). 346 

For example, an application of SA can be found in Labarthe et al. (2019), where GSA was 347 

performed with a model of the spatial repartition of the bacterial population in the human colon, 348 

and helped in understanding the influence and relative strength of different factors including 349 

peristalsis, fiber intake and mucus viscosity on the total bacterial abundance along the colon.  350 

In GSA, the parameter space is sampled in an appropriate way and the corresponding model 351 

outputs are subsequently analyzed with various methods, the most popular of which are the 352 

calculation of Sobol indices and Partial Rank Correlation Coefficients (PRCC) (see Iooss & Lemaître 353 

(2015) for a complete review). For complex models, low-cost computational screening methods 354 

can be used to eliminate insignificant variables prior to employing GSA for the remaining 355 

parameters, such as the screening method of Morris (1991).  356 

 357 
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4. Future challenges 358 

4.1. Towards a more complete model of food transit and absorption  359 

As depicted in section 3, mathematical models related to various aspects of the GI tract have been 360 

proposed from different scientific fields (pharmaceutics, nutrition, animal sciences, food sciences, 361 

microbiology). A number of pieces are thus available to start building a system model of the 362 

functioning of the human GI tract during digestion. Its skeleton could be inspired from the works 363 

already undertaken in pharmaceutics and animal sciences, before integrating the most relevant 364 

and promising modelling efforts.  365 

For instance, the model proposed by Strathe et al. (2008) for pigs already accounts for all the main 366 

nutrients of a meal, with consideration of their transit, their hydrolysis, their absorption kinetics, 367 

as well as for nutrient degradation and some aspects of the microbial metabolism in the large 368 

intestine. We may, therefore, assume that a comparable model organization, with some 369 

adaptations related to human physiology, could constitute a fair starting point before refining and 370 

completing the model structure and its underlying hypotheses. It has also been shown that gastric 371 

emptying kinetics can be fairly predicted by assuming a nutrient feedback mechanism in the 372 

proximal small intestine (Hunt & Stubbs 1975; Moxon et al. 2017), leading to a mean rate of caloric 373 

emptying of about 2.5 kcal/min in humans (Hunt et al. 1985). This strategy, therefore, seems 374 

much more elegant than empirical equations or mass action laws to predict gastric emptying, as 375 

recently proposed in a standardized semi-dynamic protocol for in vitro digestion (Mulet-Cabero 376 

et al. 2020). However, to the best of the authors’ knowledge, this modelling strategy has not been 377 

applied yet in published compartmental models of food digestion and absorption. Recent 378 

developments in the modelling of enzymatic hydrolysis are also providing new means to take into 379 

account some key properties of the main nutrients, with non-empirical relations between the 380 

model parameters and the food properties. These mostly rely on the consideration that different 381 

rates of hydrolysis can be assumed for different subclasses of the considered nutrient (i.e. more 382 

or less resistant and/or accessible fractions). Examples have been proposed for lipids (Giang et al. 383 

2016), proteins (Barros & Xavier Malcata 2004; Kondjoyan et al. 2015) and starch (Edwards et al. 384 

2014; Li et al. 2019; Meraz et al. 2019), with promising results. These approaches therefore seem 385 

very interesting to integrate the food scientist knowledge, which rapidly increases with the spread 386 

of in vitro digestion studies in this community. A relevant model of food digestion in the upper 387 
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parts of the GI tract would also enable better predictions of the unabsorbed meal fraction, and 388 

hence be valuable for the modelling of the colon microbiota functioning. 389 

The present review also highlights lacks of knowledge and modelling tools. In particular, new 390 

developments would be very welcome to relate more directly the oral and gastric behavior of 391 

solid food with their known or measured properties. We may nonetheless be confident that the 392 

growing interest of food scientists and modelers for this research area will rapidly bear fruit, 393 

without forgetting that empirical relations can be of use while awaiting more mechanistic 394 

representations. A great number of pieces are thus already available to start building a framework 395 

to test and improve our understanding of food digestion in humans.  396 

In fact, we may even highlight here the ongoing development of a multicompartment model of 397 

digestion in humans by one of the authors (van Aken 2020), which considers all nutrients, most 398 

of the phenomena listed in Table 1, and even some physiological feedbacks (see section 4.2). As 399 

an illustrative example of the capabilities of such a model, Figure 2 compares its predictions with 400 

the human data obtained by Eelderink et al. (2012) on blood glucose and insulin excursions after 401 

a bread meal and a pasta meal. As observed experimentally, the model could reproduce a slightly 402 

lower glycaemic peak and a much reduced insulinemic peak for the pasta meal compared to the 403 

bread meal. In the model, the differences between the two meals were predominantly caused by 404 

the difference in food structures. Compared to pasta (closed gel-like structure), the model 405 

assumes that bread (open sponge-like structure with more accessible starch) requires a longer 406 

time of oral processing and more saliva to obtain a swallowable bolus, and is associated to faster 407 

starch hydrolysis and slower gastric emptying kinetics. It is not the purpose of the present review 408 

to describe the model structure nor to discuss the suitability of these modelling assumptions. 409 

Figure 2 is rather intended to provide an illustration of what can be achieved with a 410 

physiologically-based compartmental model of food digestion: put hypotheses to the test, 411 

simulate different scenarios, etc. It also provides a concrete illustration that the establishment of 412 

a comprehensive model of the functioning of the GI tract during human digestion can become a 413 

reality in the near future.  414 

 415 
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4.2. Towards the integration of feedback mechanisms  416 

The conditions effective in the alimentary system are highly influenced by the presence of food  417 

in order to acutely adjust the physiological “settings” for optimal performance (van Aken 2010). 418 

Although physiological studies have delivered the detailed biological pathways for many of these 419 

regulatory mechanisms, mathematical modelling of these processes in relation to food digestion 420 

has remained rare. In the fed state, a large range of stimuli, including stomach and intestinal 421 

distension, luminal pressure, the presence of particles, acidity, osmotic value, and nutrient 422 

degradation products are detected by receptor cells all along the alimentary tract. These activate 423 

physiological responses through neural signals, sometimes directly, and sometimes indirectly 424 

through the nervus vagus, activated by secreting specific gut hormones, such as cholecystokinin 425 

(CCK), gastric inhibitory polypeptide (GIP), glucagon like peptide-1 (GLP-1), peptide tyrosine 426 

tyrosine (PYY), gastrin, motilin and secretin (van Aken 2010).  427 

Saliva secretion is stimulated by chewing, the parasympathic pathway, and various food stimuli 428 

(Ekström et al. 2012; Froehlich et al. 1987; Gavião & Bilt 2004; Pandey et al. 2019). The secretion 429 

of gastric acid is stimulated by stomach distension, the presence of peptides in the stomach, the 430 

buffering capacity of the food (Konturek et al. 1974), but is inhibited by a too low pH in the antrum 431 

(Wheeler 1974) and in the duodenum (Konturek & Johnson 1971) via the release of secretin and 432 

neural signals. Gastric acid secretion is also partly controlled by Ghrelin, the “hunger hormone”, 433 

of which the blood levels increase due to the cephalic expectation of food (Arosio et al. 2004). 434 

Food material entering the small intestine is then detected by specific receptors that stimulate 435 

the secretion of pancreatic fluid and bile (Chandra & Lidlle 2015; Chey & Chang 2001). These 436 

secretions are also mediated to large extent by CCK (Chey & Chang 2001; Liddle et al. 1985; 437 

Thimister et al. 1996), which is released by endocrine I-cells in the gut wall, neurons of the enteric 438 

nervous system and of the brain (Johnson 2014) in response to digestible proteins, peptides and 439 

certain amino-acids (Buffa et al. 1976; Johnson 2014), as well as fatty acids (Sidhu et al. 2000). 440 

Many other adjustments are related to the transition between fasted and fed states. The 441 

alimentary system even adjusts to returning dietary patterns by slowly modulating parameters 442 

such as receptor sensitivity and transporter presence in the gut (Baggio et al. 2004; Tong & 443 

D’Alessio 2014). 444 
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Attempts to model some of these control mechanisms have been proposed in the literature, for 445 

instance by Joseph et al. (2003) for the regulation of gastric acid secretion, by Shiang & Kandeel 446 

(2010) and Jelic et al. (2009) for the insulin regulatory system for blood plasma glucose and non-447 

esterified fatty acids, respectively. As previously evocated, models of the physiological regulation 448 

of gastric emptying have also been proposed by Hunt & Stubbs (1975) and Moxon et al. (2017). It 449 

is noteworthy that these models can remain rather simple mathematically despite the high 450 

complexity of the biological mechanisms involved. For instance, the in vivo regulation of gastric 451 

emptying is mediated by many receptors (Minami & McCallum 1984), neural signals, and the 452 

release of intestinal hormones such as CCK, GLP-1, and Ghrelin (Marathe et al. 2013; Minami & 453 

McCallum 1984). Notwithstanding, Moxon et al. (2017) showed that the gastric emptying 454 

patterns observed between low and high nutrient liquid meals could be accurately predicted by 455 

assuming an initial emptying rate followed by a maximal caloric flux into the duodenum. However, 456 

models of regulatory mechanisms remain scarce and can also be quite complex mathematically, 457 

as in Joseph et al. (2003). Much more work is therefore needed to hierarchize the importance of 458 

control mechanisms, to determine those which should be considered to reproduce the trends 459 

observed in vivo, and if and how they may be reproduced with simple modelling assumptions.  460 

 461 

4.3. Mathematical and computational challenges  462 

Preceding sections highlight promising first steps in establishing a mathematical modelling 463 

framework for food digestion and absorption, built on compartmental approaches that have been 464 

so successful in pharmacokinetics. These initial models typically focus on single nutrients, food 465 

structure, or microbiota, with a few more comprehensive models in animal feed science. 466 

However, to the authors’ knowledge, no sustained attempt has been made to link these models 467 

together into a whole-body all-nutrients model for human digestion and absorption incorporating 468 

food structure information and microbiota; this is some indication of the mathematical challenges 469 

this task poses.  470 

Table 1 gives insight into those challenges, with a list of 6 physiological compartments and 31 471 

phenomena which the authors think should be modelled. Each of these phenomena adds its own 472 

set of equations and parameters to the modelling framework, leading to a multi-parameter 473 

complex model. As noted at the end of section 3.2, incorporating the modelling of postprandial 474 
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metabolic responses to the absorption of just one nutrient can already lead to the explosion of 475 

physiological compartments and model parameters. For each nutrient and at various sections of 476 

the alimentary canal, there would be a diverse range of phenomena to model, and one, therefore, 477 

sees that any model of digestion and absorption in humans would be complex.  478 

This complexity generates several mathematical challenges, beginning with ensuring that 479 

appropriate equations are used to model the different phenomena. The task of translating 480 

information about digestion processes into appropriate equations where such equations do not 481 

yet exist, requires excellent communication and collaboration between a variety of expert groups. 482 

Another mathematical challenge is the appropriate and physiologically sound determination of 483 

parameter values. Where experimental or otherwise reliable values are not readily available, 484 

more empirical techniques may have to be employed to set parameters, possibly leading to model 485 

inaccuracies. For example, in coupled differential equations with many parameter values to 486 

determine simultaneously, a common danger would be finding a solution that is not the 487 

physiologically relevant optimum. Thus the key challenge regarding parameters is how to 488 

determine physiologically correct values for those which cannot be determined easily and reliably 489 

experimentally or otherwise.  490 

Moreover, a computational challenge related to the complexity of human food digestion and 491 

absorption model would be its likely computational expensiveness and inefficiency. If existing 492 

software tools are linked to enact such a model, they would independently perform sometimes 493 

similar tasks without sharing efficiencies with other linked tools, and ultimately the efficiency of 494 

the whole process would be determined by the least efficient tool. It would moreover be difficult 495 

to manage different software tools working together in a properly inter-connected manner. It is 496 

therefore likely that such a model should be developed from scratch to alleviate some of the 497 

computational complexity and efficiency issues. However, the time required to build and test such 498 

a model into a reasonable state for an application would likely be significant.  499 

In this review, we have assumed that compartment models would be the framework for future 500 

human digestion and absorption model. Although the authors strongly believe this, there is the 501 

possibility that this may prove a major mathematical and computational challenge, and that one 502 

may need to rely partially on other mathematical modelling paradigms, such as fluid dynamic 503 

models which are not as easily linked to compartment models. 504 
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 505 

4.4. Prospects on the benefits of a more complete physiologically-based food 506 

digestion model  507 

The building of a physiologically based model of the GI tract during digestion would first require 508 

to gather and carefully organize the available knowledge. This crucial step represents at the same 509 

time a challenge (though surmountable) and a real opportunity for researchers from various 510 

scientific origins (mathematics, nutrition, microbiology, human medical science, food and feed 511 

sciences, pharmacology) to share their knowledge and collaborate. For a widespread knowledge 512 

collection and use, this task would preferably be associated with the establishment of a dedicated 513 

multidisciplinary network, and lead to a shared modelling platform that could serve as a basis for 514 

incremental improvement of the model structure and underlying hypotheses. This would 515 

undoubtedly enable identifying lacks, or grey boxes, of knowledge, hence possibly guiding the 516 

experimental research. This could even offer a common ground to bridge the gaps between food 517 

science and medical, pharmaceutical, human microbiota sciences. Insight from food digestion 518 

studies can give a better and quantitative insight in the unabsorbed meal fraction reaching the 519 

colon (Beaumont et al. 2017), in how food properties might modulate risk factors of metabolic 520 

diseases (e.g. diabetes type 2) and metabolic syndrome, or in the way pharmaceuticals can be 521 

optimally delivered orally in conjunction with food intake (Koziolek et al. 2019). In return, the vast 522 

knowledge base of the medical field will deliver valuable insight into the development of healthier 523 

foods. 524 

A more common hope with the establishment of a physiologically-based model of digestion is 525 

that it could allow accurate in silico predictions on various aspects (Le Feunteun et al. 2020), 526 

probably starting with the effects of food/meal composition and structure on: transit and 527 

disintegration kinetics, postprandial plasmatic concentrations in nutrients, the arrival of 528 

unabsorbed nutrients and fibers available for the intestinal microbiota. Such a model could also 529 

be used to predict the effect of variations such as inter-individual variability, time-of-day, and pre-530 

meal effects, and to support the development of personalized nutrition, targeting different 531 

groups of the population. It could even become a central element in all models where the 532 

processes taking place in the GI tract play a key role, as for instance for nutritional (e.g. satiety), 533 

metabolic (e.g. the fate of nutrients in the host), or colon microbiota (e.g. biodiversity) related 534 
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considerations. In the long term, in silico predictions could even justify the need for in vivo 535 

investigations by fast evaluation of expected outcomes, or alternatively offer a substitute to some 536 

animal and human studies (van Milgen & Lescoat 2008).  537 

The authors are convinced of the great possibility and benefits of developing a mathematical 538 

framework for performing in silico human food digestion and absorption experiments. 539 

Notwithstanding all the facing challenges, the number of building blocks already existing, the 540 

youth of this research field, and the successes observed in the pharmaceutical area clearly 541 

support the idea that attempts will be proposed in the future. It is difficult to know how accurate 542 

in silico predictions can become in the food digestion area, but our general impression is that this 543 

research field is mature enough to start building a human physiologically-based food digestion 544 

model, should it be only to provide a practical means to bring research communities interested 545 

in the functioning of the GI closer. 546 

 547 
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Table 1. Overview of the phenomena and the important food properties that should be 788 

considered when developing a multicompartment model of food digestion and absorption.  789 

Physiological 
Compartment 

Main phenomena to be modelled Important food properties 

Oral  Mechanical breakdown 

 Saliva incorporation (amylase, water, mucus) 

 Enz. hydrolysis of starch  

 Mechanical and rheological properties 

 Structure (mostly macro) 

 Composition (dry content, pH, nutrients) 

Gastric  Gastric secretion (enzymes, HCl, mucus)  

 pH drop 

 Enz. hydrolysis of starch, protein and lipid   

 Mechanical breakdown  

 Mixing and sieving 

 Phase separation (sedimentation, creaming) 

 Controlled flow into duodenum 

 Mechanical and rheological properties 

 Structure (all scales: particle size and 
density, emulsion stability, 
microstructures, state of nutrients…) 

 Composition 

 Buffering capacity 

 Intermolecular interactions  

Duodenum  Multiple secretions (pancreatic enzymes, bile, 
bicarbonate, water, mucus)  

 pH increase  

 Enz. hydrolysis of starch, protein and lipid   

 Absorption of water and nutrients  

 Mixing  

 Residence time 

 Structure (all scales) 

 Composition 

 Buffering capacity 

 Intermolecular interactions 
 

Jejunum  Intestinal secretion (water, bicarbonate, 
mucus)  

 Enz. hydrolysis of starch, protein and lipid   

 Absorption of water and nutrients 

 Mixing  

 Residence time 

 Structure (all scales) 

 Composition 

 Intermolecular interactions 

Ileum  Intestinal secretion (water, bicarbonate, 
mucus) 

 Enz. hydrolysis of starch, protein and lipid   

 Absorption of water, nutrients and bile salts 

 Mixing  

 Residence time 

 Structure (all scales) 

 Composition 

 Intermolecular interactions 

Ascending, 
Transverse 

and 
Descending 

Colon 

 Intestinal secretion (water, bicarbonate, 
mucus)  

 Microbial growth and metabolism and the 
way it is affected by material entering the 
colon 

 Absorption of water and microbial 
metabolites such as short chain fatty acids 

 Mixing  

 Residence time 

 Composition (fibre, polyphenols, 
polyols…) 

 Interaction of components with the 
microbiota 
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 790 

Figure 1. Schematic representation of starch digestion and important processes to be included in 791 

a multicompartment model (omitting proteins and lipids to keep the figure simple). Dashed 792 

arrows: transformations, dotted arrows: transport from lumen to brush border through mucus 793 

layer; St: starch; Fi: fibre; FA short chain fatty acids; G: glucose; M: end products of amylolytic 794 

reactions (maltose, maltotriose and α-limit dextrins); Mm: microbial mass; S: various sugars. 795 
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 796 

Figure 2. Example of digestion modelling by a program in development by one of the author (van 797 

Aken 2020): Experimental (A, C) and simulated (B, D) blood glucose and insulin excursions 798 

following a bread meal (plain line) and a pasta meal (dotted line). Experimental results have been 799 

extracted from study performed by Eelderink et al. (2012), who investigated a bread meal and a 800 

pasta meal both consisting of 50 g available carbohydrates, 9 g fat, 6 g protein and 250 mL tap 801 

water.  802 

 803 


