
1

DECENT: Decentralized and Efficient Key
Management to Secure Communication in Dense

and Dynamic Environments
Marcus de Ree, Member, IEEE, Georgios Mantas, Member, IEEE,

Jonathan Rodriguez, Senior Member, IEEE, and Ifiok E. Otung

Abstract—Intelligent Transportation Systems (ITS), one aspect
of the Smart City paradigm, aim to improve the efficiency, con-
venience, and safety of travelers. The integration of (vehicular)
communication technologies allows communication between the
on-board communication units (OBUs) of vehicles, roadside units
(RSUs), and vulnerable road users (VRUs), and contribute to the
efficacy of ITS applications. However, these additional sources of
information must be reliable and accurate. Security primitives
such as confidentiality, integrity, and authenticity are required,
but only achievable when supported with a suitable cryptographic
key management scheme. This paper presents the design of a
decentralized and efficient key management scheme, abbreviated
as the DECENT scheme. This scheme provides secure multi-
hop communication in dense and dynamic network environments
while functioning in a self-organized manner. Through threshold
secret sharing techniques, network nodes act as a distributed
trusted third party (TTP) such that a threshold number of nodes
can collaborate to execute key management functions. These
functions include decentralized node admission and key updat-
ing. Novelties include (i) the unique self-healing characteristic,
meaning that DECENT is capable of independently recovering
from network compromise, and (ii) guidelines for choosing an
appropriate security threshold in any deployment scenario which
maximizes the level of security while simultaneously guaranteeing
that decentralized key management services can be provided.

Index Terms—Ad Hoc Networks, Decentralized Systems, Key
Management, Multi-hop Communication, Security.

I. INTRODUCTION

SMART Cities are integrating advanced information and
communication technologies (ICT) to improve the lives

of its residents. Intelligent Transportation Systems (ITS) are
one aspect of the Smart City paradigm, aiming to improve the
efficiency, convenience, and safety of travelers (e.g., drivers,
cyclists, pedestrians). Traditional systems gather data through
sensors, cameras, and radar to monitor traffic conditions and
provide travelers with information through visual signals.
Nowadays, vehicles equipped with on-board communication

Marcus de Ree and Jonathan Rodriguez are with the Instituto de
Telecomunicações, 3810-193 Aveiro, Portugal, and also with the Faculty of
Computing, Engineering and Science, University of South Wales, Pontypridd
CF37 1DL, U.K. (e-mail: mderee@av.it.pt; jonathan@av.it.pt).

Georgios Mantas is with the Instituto de Telecomunicações, 3810-193
Aveiro, Portugal, and also with the Faculty of Engineering and Science,
University of Greenwich, Chatham Maritime ME4 4TB, U.K. (e-mail: gi-
mantas@av.it.pt).

Ifiok E. Otung is with the Faculty of Computing, Engineering and Sci-
ence, University of South Wales, Pontypridd CF37 1DL, U.K. (e-mail:
ifiok.otung@southwales.ac.uk).

units (OBUs) can utilize vehicular communication technolo-
gies which enable vehicle-to-vehicle (V2V) as well as vehicle-
to-infrastructure (V2I) communication. These intelligent ma-
chines, able to process and share information, are therefore
capable of enhancing the efficacy of ITS applications [1].

The utilization of vehicular communication technologies
for ITS applications in Smart Cities faces both security and
privacy challenges, hindering its practical implementation [2],
[3]. The information exchanged between vehicles (i.e., OBUs),
roadside units (RSUs), and vulnerable road users (VRUs)
has to follow security primitives, such as data confidentiality,
integrity, and authentication [4]. However, the integration of
these security primitives relies on secure secret keys [5].

This paper describes a novel and decentralized key man-
agement scheme that can support cryptographic schemes (e.g.,
encryption and authentication schemes) to achieve the afore-
mentioned security primitives. The deployment of the key
management scheme is not limited to ITS applications or
vehicular ad hoc networks; the key management serves other
dense and dynamic network environments, such as mobile ad
hoc networks, dynamic sensor networks [6], mobile small cells
[7], or a combination of these, equally well.

A. Contributions
This paper describes a key management scheme that enables

secure multi-hop communication and is flexible in terms of
deployment scenarios. The key management scheme has been
designed to function well in networks that are (i) deployed in
an ad-hoc manner, (ii) independent of network infrastructure,
(iii) dynamic in nature, (iv) scalable in terms of the number
of participating nodes, and (v) capable of maintaining security
long-term. The main contributions are as follows:
• The detailed description of our novel key management

scheme, capable of supporting cryptographic schemes
(e.g., encryption and authentication schemes) to secure
multi-hop communication in dense and dynamic network
environments. Details are given in Section IV.

• The key management scheme achieves the unique self-
healing characteristic (i.e., capable of independently re-
covering from network compromise) due to our protocol
design choices. Details are given in Section IV-F.

• The reclassification of trust levels for distributed trusted
third party (TTP)-based schemes. Namely, the trust levels
are directly related to the malicious capabilities of a TTP
in case of compromise. Details are given in Section V-C.

2

• A comprehensive security and communication overhead
comparison between our and related key management
schemes. Details are given in Sections VI and VII.

• Improved guidelines for choosing security thresholds
which maximizes the security and simultaneously guar-
antees the proper operation of the key management.
Guidelines are provided for diverse deployment scenarios.
Details are given in Section VIII.

B. Paper Outline

This paper is outlined as follows. The related works are
covered in Section II. The preliminaries are covered in Section
III. Our key management scheme is covered in Section IV. The
security analysis of our key management scheme is covered
in Section V. The security and overhead comparison between
our and related schemes are covered in Sections VI and
VII. Guidelines for practical implementations are covered in
Section VIII. Future work is covered in Section IX. Finally,
our conclusions are covered in Section X.

II. RELATED WORK

The recent survey [8] explored a wide range of decentralized
key management solutions (i.e., a collective of decentralized
key management schemes that follow a similar approach) and
evaluated these against requirements such as security, over-
head, scalability, and sustainability. Their findings showed that
the fully distributed TTP (FD-TTP)-based key management
solution, illustrated in Figure 1, is favored to secure dense
and dynamic network environments.

Fig. 1. Illustration of a network containing 13 server nodes and 3 key
management service-requesting nodes. Requester nodes require the assistance
of at least (the threshold) 3 server nodes for the key management service to
be successful.

The general idea behind the FD-TTP-based key manage-
ment solution is to distribute the trust from a single centralized
TTP to each network node such that a collective of network
nodes can provide key management services. Technically
speaking, a master private key that is usually held by the
centralized TTP, used to provide a key management service
(e.g., issue and sign a public key certificate or provide a node
with its private key), is divided into shares using threshold
secret sharing (TSS) techniques [9] and distributed among the
network nodes. These (secret) shares enable network nodes to
provide partial key management services such that a threshold

number of these convert into the key management service as
if this was directly provided by the centralized TTP. Each
network node can therefore be considered to be a member of
the FD-TTP. In this setting, network nodes are therefore no
longer required to trust a centralized TTP to behave honestly,
but instead trust that a collective of network nodes is not
colluding. From a security standpoint, it is beneficial, in
general, to distribute security tasks as much as possible and
remove the reliance on a centralized TTP since this entity
may be the target of malicious attacks which may disable or
even compromise the entire system [10]. The key management
services, illustrated in Figure 1, include:

1) providing a requesting node with its share of the master
key (effectively joining the FD-TTP), and

2) issuing or updating the keying material of a network
node (e.g., a signed public key certificate or an identity-
based private key) that enables secure communication
with other network nodes.

A. Conventional FD-TTP-based Key Management

The first FD-TTP-based key management scheme was pro-
posed by Luo et al. [11], [12] and was based on the traditional
public key infrastructure (PKI). Therefore, the FD-TTP took
the role of a certification authority (CA) that issues signed
certificates to network nodes. Their key management scheme
incorporated the extensions of verifiable secret sharing (VSS)
[13] and proactive secret sharing (PSS) [14], [15] to prevent
malicious adversaries from disabling or compromising the
system (see Section III-B). More novel schemes, proposed
by Deng et al. [16] and da Silva et al. [17] were based on
traditional identity-based public key cryptography (ID-PKC)
and the schemes by Zhang et al. [18], Li et al. [19], Lai et al.
[20], Gharib et al. [21] and de Ree et al. [22] were based on
certificateless public key cryptography (CL-PKC). Therefore,
the FD-TTP took the role of a private key generator (PKG)
and a key generation center (KGC), respectively, to provide
network nodes with their (partial) private key.

Each of these conventional FD-TTP-based key management
schemes therefore rely on the distributed shares as a tool to
provide network nodes with their respective keying materials.
Therefore, they suffer from a more complicated key man-
agement design since it requires separate establishment and
updating protocols for a node’s share as well as its keying
material. Consequently, these additional protocols contribute
to a higher computational and communication overhead.

B. Alternative FD-TTP-based Key Management

An alternative construction of a FD-TTP-based key manage-
ment scheme was proposed by Saxena et al. [23] by basing
their design on threshold-tolerant ID-PKC [24]. Threshold-
tolerant ID-PKC can be considered a translation of Feldman’s
VSS scheme [13]. Namely, VSS allows nodes to validate the
correctness of their secret share by checking the equivalence
between (i) the public share computed from its secret share,
and (ii) the public share computed from publicly available
witness values (also known as commitment values). Actually,
a node can use the public witness values to compute any node’s

3

public share. Saxena [24] proposed to have the secret shares
act directly as private keys, turning the corresponding public
shares into the public keys. The witness values and a node’s
identity remain publicly available information. This allows
any node to non-interactively compute the public key of any
other node without having to rely on the distribution of public
keys, similar to traditional ID-PKC. The main difference with
traditional ID-PKC is that the master private key only remains
secret as long as no adversary is able to collect a threshold
number of secret shares (i.e., private keys).

The equivalence between a node’s secret share and its
private key means that protocols for the establishment and
update of secret shares and keying material are also equivalent.
This leads to a much more simplistic key management design
and a significant reduction in terms of computational overhead,
communication overhead, and energy consumption. Unfor-
tunately, Saxena’s FD-TTP-based key management scheme
[23] was only designed for short-lived networks, lacking the
PSS extension to achieve long-term security. An adversary
that manages to compromise a threshold number of devices,
extract their secret shares and reconstruct the master private
key would be able to eavesdrop on private communications
and launch identity impersonation attacks, without any fear of
being detected.

III. PRELIMINARIES

A. Computational Assumptions

In this paper, we assume computational security based on
the discrete logarithm (DL) and computational Diffie-Hellman
(CDH) problems in the standard setting: p and q are large
primes such that q|p − 1 and g denotes a generator of cyclic
subgroup G ⊂ Z∗p of order q. For convenience, we denote
DL(k) as any set of triples (p, q, g) which satisfy the above
constraints and where q is a k-bit prime that is sufficiently
large to fend off known attacks on the discrete logarithm.
• DL Assumption: For every probabilistic polynomial time

algorithm I and every triple (p, q, g) ∈ DL(k) with
element x ∈ Z∗q chosen at random, the probability
Pr[I(p, q, g, gx) = x] is negligible.

• CDH Assumption: For every probabilistic polynomial
time algorithm I and every triple (p, q, g) ∈ DL(k) with
elements x, y ∈ Z∗q chosen at random, the probability
Pr[I(p, q, g, gx, gy) = gxy] is negligible.

B. Adversarial Model

Due to the distribution of trust and the associated shares
of a master secret, our key management scheme must con-
sider attacks related to the misuse of these shares. We cover
two types of attacks and an inherent characteristic of public
key cryptographic infrastructures that impact the security of
distributed TTP-based schemes.
• Disruptive Adversary: A disruptive adversary [22] is a

malicious server that provides a false key management
service. This false key management service can be the
provisioning of a false subshare during (i) the admission
of new nodes or (ii) the updating of every node’s share.

Providing a false subshare would lead to the creation of
an incorrect share. This would cause honest servers to
unknowingly provide false key management services in
the future, crippling the key management.

• Mobile Adversary: A mobile adversary [25] is a malicious
node that dynamically moves through the network and
compromises network nodes, one at a time, with the
goal to extract and collect a threshold number of shares.
If the mobile adversary is successful, it is capable of
reconstructing the master secret and impersonate the
distributed TTP to launch further malicious attacks. The
severity of these attacks depends on the capabilities of
the master secret (i.e., the trust level of the distributed
TTP).

• Trust Level of the Distributed TTP: Girault [26] defined
three trust levels as an indication of the malicious capa-
bilities of a compromised TTP:

1) The TTP knows (or can easily compute) a node’s
private key and therefore, launch identity imperson-
ation attacks without being detected.

2) The TTP does not know (and cannot easily com-
pute) a node’s private key but is still able to
launch identity impersonation attacks without being
detected.

3) The TTP does not know (and cannot easily com-
pute) a node’s private key nor is it able to launch
identity impersonation attacks without being de-
tected.

This trust level can be considered as a additional layer
of defense. In case a mobile adversary is successful, we
wish to limit its malicious capabilities.

C. Threshold Cryptography

Secret sharing takes a piece of secret data and divides
this into a multitude of shares that are distributed among
a group of nodes. This secret data can be reconstructed
by combining a number of shares. In our key management
design, we use Shamir’s TSS [9] as well as Feldman’s VSS
extension [13] and Jarecki et al.’s PSS extension [14], [15].
The incorporation of TSS specifies that any threshold number
of shares are capable of reconstructing the master secret. The
incorporation of VSS allows nodes to verify the correctness
of obtained data, therefore countering disruptive adversaries.
The incorporation of PSS restricts a mobile adversary in their
pursuit of reconstructing the secret data. These schemes rely
on polynomial interpolation and are therefore theoretically
secure (i.e., fewer than a threshold number of shares does not
reveal any information about the secret data). The associated
protocols are as follows:
• Setup: A trusted dealer (TD) chooses large primes p and
q such that q|p − 1 and selects a generator g of cyclic
subgroup G ∈ Z∗p of order q. The TD selects a threshold
t and a random polynomial f(x) =

∑t−1
i=0 ai ·xi ∈ Z∗q [x]

where f(0) = s and s represents the secret data.
• Witness Generation: The TD computes the set of witness

values Wi ≡ gai (mod p) for i ∈ [0, t−1] and publishes
these in some public domain.

4

• Share Distribution: The TD computes the share si =
f(idi) for node Ni with identity idi and transmits this
securely.

• Share Verification: Any node Ni with identity idi can
verify that its share si is correct by checking the following
formula: gsi ≡

∏t−1
j=0Wj

(idi
j) (mod p).

• Secret Reconstruction: Any group of t nodes can recon-
struct the polynomial f and determine secret data s using
Lagrange interpolation: f(x) =

∑t
i=1 si · λi (mod q)

where λi(x) =
∏t
j=1,j 6=i

x−idj
idi−idj (mod q).

• Share Updating: To update the shares of all the n nodes
in the network, a cluster of t nodes are chosen. Each
node Ni(1 ≤ i ≤ t) selects a random update polynomial
δi(x) of degree t − 1 where δi(0) = 0. Then, each
node Ni computes and distributes a subshare δi(idj) for
every Nj(1 ≤ j ≤ n). When node Nj obtained all
t subshares, it can compute its new share s̄i ≡ si +∑t
i=1 δi(idj) (mod q). The new shares correspond to the

updated polynomial f̄(x) ≡ f(x) +
∑t
i=1 δi(x) (mod q)

with the secret data s still intact since f̄(0) = f(0) = s.

IV. THE DECENT SCHEME

This section presents the design of our DECENT (DECen-
tralized and Efficient key managemeNT) scheme in detail. It
follows the alternative construction of a FD-TTP-based key
management scheme, similar to that of Saxena [23], to min-
imize the complexity and overheads. Furthermore, we extend
their work with a share updating protocol to increase the level
of security and gain the unique self-healing characteristic to
achieve long-term security.

A. Assumptions

For our key management scheme, we assume the existence
of a TTP (e.g., a network administrator) to bootstrap an
initial set of nodes. We assume that each node carries a
unique identity that is unchanged during its lifetime and non-
transferable. Every node has the same transmission range
and is capable of sending unicast, multicast or broadcast
messages. We define a unicast message as a message which
is cryptographically secured (e.g., by means of encryption)
by the sender and only one receiver has the corresponding
cryptographic keying material to extract the information from
the message. We define a broadcast message as a message that
is at least partially sent in plaintext such that every network
node within transmission range of the sender receives and can
extract the plaintext information from this message. Broadcast
messages are invulnerable to malicious message modification
attacks when both the sender and receiver are within each
other’s transmission range. Finally, we assume that each of
the protocols which involves communication between multiple
nodes remain within each other’s transmission range during the
execution of the protocol.

B. Overview

The DECENT scheme consists of the following protocols.

• Network bootstrapping: This protocol utilizes a TTP to
bootstrap an initial set of nodes by providing each of
them with a share of a pre-defined master secret. This
master secret is defined as a bivariate polynomial; thus,
we utilize a modified version of Shamir’s TSS scheme
[9] and Feldman’s VSS scheme [13]. The use of secret
sharing allows the distribution of trust and the establish-
ment of the decentralized TTP (i.e., the FD-TTP), capable
of providing key management services in a decentralized
manner during network operation. This share also directly
defines a node’s public-private key pair.

• Node admission: The FD-TTP, collectively in possession
of at least a threshold number of shares of the master
secret, is capable of admitting new nodes to the network
by providing them with subshares of the master secret.
The new node effectively joins the network and becomes
a member of the FD-TTP once it obtained a threshold
number of subshares, allowing the joining node to com-
pute its unique share of the master secret and define its
public-private key pair.

• Pairwise key establishment: Each pair of network nodes
can estimate their pairwise key, and therefore establish
a secure communication channel in a non-interactive
manner, limiting the communication overhead of our key
management scheme.

• Share updating: This protocol is a modification of Jarecki
et al.’s PSS scheme [14], [15]. This protocol is triggered
periodically and updates both the master secret as well
as every node’s share of the master secret. This protocol
can be interpreted as a self-organized network reboot
which restores a potential network compromise caused
by a mobile adversary [25].

C. Network Bootstrapping

The network bootstrapping protocol, covered in detail in
Protocol 1, starts with the TTP defining and publishing public
network parameters. These will inform participating network
nodes how to perform the mathematical operations (step 1).
This is followed by the generation of a symmetric bivariate
polynomial which defines the master secret (step 2), the public
witness values (step 3), and every node’s share of the master
secret (i.e., a univariate polynomial) (step 4). We assume that
the TTP has access to a secure side channel (e.g., infrared,
wire) to provide each node with the public witness values
and their polynomial share. Upon retrieval, the nodes use
the witnesses to verify that their polynomial share is correct
(step 5). To clarify, the witnesses are directly distributed to
the nodes instead of publishing these in a secure and public
space because the witnesses will be periodically updated by
the nodes themselves and would be unable to overwrite the
values of the initial witnesses. Every node with a correct
polynomial share essentially joins the distributed TTP as a
member and is capable of providing partial key management
services to others. These partial key management services
cover the provisioning of subshares to a joining node or
participation during the share updating protocol. Finally, the
nodes use their polynomial share to define their public-private

5

Network Bootstrapping Protocol

1. First, the TTP generates primes p and q such that q|p−
1, selects generator g of cyclic subgroup G ⊂ Z∗p with
order q, selects threshold t, and publishes these in a
secure, public space.

2. The TTP generates a random symmetric bivariate poly-
nomial f(x, y) of degree t− 1 with secret coefficients
αij = αji ∈ Z∗q :

f(x, y) =

t−1∑
i=0

t−1∑
j=0

αijx
iyj ∈ Z∗q [x, y]. (1)

The secret coefficients are defined as the master secret
and denoted as symmetric matrix A = [αij].

3. The TTP computes the witness values Wij correspond-
ing to secret coefficients αij ∈ A:

Wij ≡ gαij (mod p) for i, j ∈ [0, t− 1]. (2)

The witness values are denoted as symmetric matrix
W = [Wij].

4. The TTP computes each node’s polynomial share as
sk(x) = f(x, idk), where idk represents the iden-
tity of node Nk. Then, the TTP securely transmits
{sk(x),W} to node Nk.

5. Each node Nk verifies that the coefficients βi ∈ sk(x)
for i ∈ [0, t− 1] correspond to the witness values:

gβi
?≡
t−1∏
j=0

Wij
(idk

j) (mod p). (3)

6. Finally, each node Nk defines its private key SKk and
its corresponding public key PKk:

SKk = sk(0), (4)

PKk ≡ gSKk (mod p). (5)

Network bootstrapping is complete once at least t nodes
are initialized.

Protocol 1. The network bootstrapping protocol defines the network param-
eters and establishes a distributed TTP through secret sharing techniques.

key pair (step 6). With the initialization of at least a threshold
number of nodes, the TTP is no longer required and leaves
the network indefinitely.

D. Node Admission

With the establishment of the distributed TTP, it is possible
for new nodes to join the network. A node that wishes to join
may need to move around and broadcast multiple requests
to reach enough members (i.e., servers) of the distributed
TTP and be provided with enough subshares. The details
are covered in Protocol 2. The node starts by generating a
temporary public-private key pair and then requests to join
the network by broadcasting its identity and its temporary
public key (step 1). Any server within transmission range can
compute a subshare and respond to the joining node by pro-
viding it with its subshare as well as the public witnesses. The

Node Admission Protocol

1. First, node Nl computes its temporary public key PKl

from a random temporary private key SKl ∈ Z∗q :

PKl ≡ gSKl (mod p). (6)

The node Nl broadcasts {idl, PKl, σSKl
(idl, PKl)},

where σ(·) represents a signature. The broadcast is
received by nearby server nodes, denoted as Nk ∈ Ω.

2. Each server Nk ∈ Ω verifies the sigature and, upon
verification, computes the subshare sk→l:

sk→l = sk(idl) ≡
t−1∑
i=0

βiidl
i (mod q). (7)

The server Nk then broadcasts {idk,W,EPKl
(sk→l),

σSKk
(idk,W,EPKl

(sk→l))}, where E(·) represents a
ciphertext.

3. The node Nl computes the public key PKk from
identity idk and witness values W :

PKk ≡
t−1∏
i=0

Wi0
(idk

i) (mod p), (8)

such that node Nl can verify the signature. Upon ver-
ification, node Nl decrypts the ciphertext and verifies
its extracted subshare sk→l:

gsk→l
?≡
t−1∏
i=0

t−1∏
j=0

Wij
(idl

i·idkj) (mod p). (9)

4. Once node Nl obtained t subshares (potentially by
broadcasting multiple requests over time), it uses Gaus-
sian elimination [30] to compute the coefficients βi for
i ∈ [0, t− 1] of its polynomial share sl(x).

id1
0 · · · id1

t−1 s1→l
...

. . .
...

...
idt

0 · · · idtt−1 st→l

→

β0

It×t
...

βt−1

(10)

5. Finally, node Nl defines its private key SKl and
its corresponding public key PKl as described in
equations (4) and (5), respectively.

Protocol 2. The node admission protocol allows new nodes to join the network
and become a new member of the distributed TTP.

witnesses are broadcasted in plaintext such that other nearby
servers can verify that it has not provided false witnesses (step
2). The node can use these witnesses to verify whether the
provided subshares are correct (step 3). Once the node received
a threshold number of correct partial shares, it computes its
polynomial share (step 4) and defines its public-private key
pair (step 5).

E. Pairwise Key Establishment

The use of bivariate polynomials in our scheme allows
network nodes to establish a secure communication channel in
a non-interactive manner. The details are covered in Protocol

6

Pairwise Key Establishment Protocol

1. Suppose that network nodes Nk and Nl wish to
securely communicate. They compute keys Kk,l and
Kl,k, respectively, through polynomial evaluation:

Kk,l = sk(idl) = f(idl, idk) (11)

Kl,k = sl(idk) = f(idk, idl) (12)

The keys Kk,l and Kl,k are equal due to the symmetric
property f(x, y) = f(y, x).

For secure communication, it is good practice to employ
key separation. The resulting encryption & decryption key
Kenc
k,l and signing & signature verification key Kmac

k,l can
be used to perform authenticated encryption.

Protocol 3. The pairwise key establishment protocol allows network nodes
to determine their shared symmetric key.

3. Each network node can evaluate their polynomial share to
estimate their pairwise symmetric key (step 1). The computed
key is symmetric since the master polynomial has the symmet-
ric property that f(x, y) = f(y, x). This pairwise symmetric
key allows multi-hop (i.e., end-to-end) secure communication
since a message encrypted at the transmitting end can only be
decrypted at the receiving end by the node that the pairwise
key is shared with [27]. To prevent any security vulnerabilities,
we advise the use of key separation [28] through an appro-
priate key derivation function (KDF) to establish two unique
symmetric keys of appropriate bit-length. These keys can then
be used to perform authenticated encryption.

Our pairwise key establishment is similar to that of Saxena
[23], [29]. However, Saxena claims that this pairwise key
establishment provides unconditional security, i.e., not based
on any complexity assumption. We can prove that, unlike
Saxena’s claim, the pairwise key establishment is secure under
the DL assumption. Utilizing the public witness values, any
node would be able to compute the following:

gKk,l ≡
t−1∏
i=0

t−1∏
j=0

Wij
(idl

i·idkj) (mod p). (13)

The secrecy of the shared pairwise key between any two
network nodes is therefore not unconditionally secure, but
secure under the DL assumption. The shared pairwise keys
would only provide unconditional security if the scheme did
not disclose the public witnesses.

F. Share Updating

The share updating protocol, covered in detail in Protocol
4, is executed on a periodic basis by a threshold number
of server nodes within each other’s transmission range. This
requirement places an upper bound on the height of the
threshold for a particular network (see section VIII). Each
server in this cluster generates a random symmetric bivariate
update polynomial which defines its update secret (step 1),
its update witnesses (step 2), and update polynomial shares
(step 3). Each pair of server nodes securely exchanges update
polynomial shares and broadcasts its update witnesses. The

Share Updating Protocol

1. First, each node in a cluster of network nodes, denoted
Nk ∈ Ω where |Ω| = t, generates a random symmetric
bivariate update polynomial fk(x, y) of degree t − 1
with random coefficients αij = αji ∈ Z∗q :

fk(x, y) =

t−1∑
i=0

t−1∑
j=0

αijx
iyj ∈ Z∗q [x, y]. (14)

The random coefficients generated by node Nk are
defined as its update secret and denoted as symmetric
matrix Ak = [αij].

2. Each node Nk ∈ Ω computes their update witnesses
W k
ij corresponding to random coefficients αij ∈ Ak:

W k
ij ≡ gαij (mod p) for i, j ∈ [0, t− 1]. (15)

The update witnesses of node Nk are denoted as
symmetric matrix Wk = [W k

ij].
3. Each node Nk ∈ Ω computes for every node Nl ∈ Ω

(including itself), an update polynomial share:
sk→l(x) = fk(x, idl). (16)

The node Nk then broadcasts {Wk} and unicasts
{sk→l} to each node Nl ∈ Ω using authenticated
encryption.

4. Each node Nk ∈ Ω verifies that the coefficients βi ∈
sl→k(x) for i ∈ [0, t − 1] correspond to the update
witnesses W l

ij :

gβi
?≡
t−1∏
j=0

W l
ij

(idk
j)

(mod p). (17)

5. Finally, each node Nk ∈ Ω computes its updated
polynomial share s̄k(x) and the symmetric matrix W̄
of updated witness values W̄ij for i, j ∈ [0, t− 1]:

s̄k(x) ≡ sk(x) +
∑
Nl∈Ω

sl→k(x) (mod q), (18)

W̄ = [W̄ij ≡Wij ·
∏
Nl∈Ω

W l
ij (mod p)]. (19)

Network nodes that are not part of Ω will have an outdated
polynomial share at the end of this protocol. These nodes
would have to execute the node admission protocol (i.e.,
Protocol 2) to obtain their updated polynomial share.

Protocol 4. The technical details of the share updating protocol.

update witnesses are broadcasted in plaintext to prevent a
malicious server from cheating (e.g., by providing different
servers with update polynomial shares created from different
update secrets). Every server node then verifies the received
update polynomial shares (step 4). Once the server nodes
received all the update polynomial shares, they combine these
to obtain their updated polynomial share and the updated set
of witnesses (step 5). After the successful execution of the
share updating protocol, the network nodes with an updated
polynomial share can broadcast a notification that other nearby
network nodes can request them to have their polynomial share

7

updated by executing the node (re)admission protocol.
In contrast to the closely related key management schemes

with a share updating protocol [11], [12], [19], [22], our
protocol is unique in the fact that it allows the periodic
updating of all the coefficients of the update polynomial1.
Meaning that the compromise of the master secret would be
negated after the execution of our share updating protocol.
We call this unique characteristic self-healing, and DECENT
is the first FD-TTP-based key management scheme to benefit
from this property. Therefore, the incorporation of this share
updating protocol provides significant security benefits.

V. SECURITY ANALYSIS

In this section, we evaluate the level of resiliency that
our DECENT scheme achieves against disruptive adversaries
(V-A) and mobile adversaries (V-B). Furthermore, we explore
the security guarantees of DECENT in case of network com-
promise based on the achieved trust level (V-C).

A. Security Evaluation against Disruptive Adversaries

In the following two theorems, we prove that our DECENT
scheme is resilient against disruptive adversaries that attempt
to provide a false key management service.

Theorem 1. Any individual joining node Nl can detect which
server(s) Nk ∈ Ω provided a malicious key management
service during the execution of the node admission protocol,
i.e., the joining node Nl can verify that provided subshare
sk→l from server Nk is correct.

Proof. We prove this theorem by showing that the public
witness values Wij ∈ W can be utilized to pre-compute
the public equivalent of subshare sk→l that joining node Nl
should received from server Nk ∈ Ω. We prove that the key
management service from server Nk ∈ Ω has been trustworthy
if and only if server Nk ∈ Ω honestly evaluated its polynomial
share sk(x) in computing the subshare sk→l through the
following series of mathematical equivalences:
t−1∏
i=0

t−1∏
j=0

Wij
(idl

i·idkj) ≡
t−1∏
i=0

t−1∏
j=0

g(αij ·idli·idkj) (mod p) (20)

≡ g(
∑t−1

i=0

∑t−1
j=0 αij ·idli·idkj) (mod p)

(21)

≡ gf(idl,idk) (mod p) (22)

≡ gsk(idl) (mod p) (23)
≡ gsk→l (mod p) (24)

Theorem 2. Any individual server node Nl can detect which
server(s) Nk ∈ Ω provided a malicious key management

1The related schemes, all following the conventional FD-TTP-based key
management structure, chose not to update the leading coefficient (i.e.,
the master private key) since this updates the master key pair and causes
every node’s keying material to become outdated. These schemes therefore
prevented every node from having to update its keying material following the
share updating protocol. Thus, they had to make a trade-off between overhead
and achieving self-healing.

service during the execution of the share updating protocol,
i.e., the server node Nl can verify that provided update
polynomial share sk→l(x) from server Nk is correct.

Proof. We prove this theorem by showing that the update
secret Ak, corresponding to the broadcasted witnesses Wk,
of server Nk were used in the generation of the update poly-
nomial share sk→l(x). First, we rewrite the update polynomial
share sk→l(x) as follows:

sk→l(x) ≡ fk(x, idl) (mod q) (25)

≡
t−1∑
i=0

t−1∑
j=0

αij · xi · idlj (mod q) (26)

≡
t−1∑
i=0

(

t−1∑
j=0

αij · idlj) · xi (mod q) (27)

≡
t−1∑
i=0

βi · xi (mod q) (28)

In the above series of mathematical equivalences, we found the
following relationship between the coefficients of the obtained
update polynomial share βi ∈ sk→l(x) and the update secret
Ak:

βi ≡
t−1∑
j=0

αij · idlj (mod q) for i ∈ [0, t− 1] (29)

The server node Nl can use the witnesses Wk to verify that
the coefficients βi ∈ sk→l(x) are created from the update
secret Ak, thereby verifying that the update polynomial share
sk→l(x) has been generated honestly.

gβi ≡ g
∑t−1

j=0 αij ·idlj (mod p) (30)

≡
t−1∏
j=0

(gαij)idl
j

(mod p) (31)

≡
t−1∏
j=0

W k
ij

idl
j

(mod p) (32)

B. Security Evaluation against Mobile Adversaries

In the following theorem, we prove that our DECENT
scheme is resilient against mobile adversaries under the as-
sumption that share updating phases are executed prior to
any mobile adversary compromising and extracting a threshold
number of polynomial shares. We prove that a mobile adver-
sary is unable to uncover the master secret A = [αij].

Theorem 3. An adversary who knows fewer than the thresh-
old number of polynomial shares, collected in between the
execution of two consecutive share updating protocols, cannot
determine the master secret A = [αij].

Proof. We prove this theorem by contradiction. We denote that
the adversary gathered m < t polynomial shares in between

8

the execution of two consecutive share updating protocols. We
denote the polynomial share of a network node Nk as follows:

sk(x) ≡
t−1∑
i=0

β
(k)
i · xi (mod q) where β(k)

i ≡
t−1∑
j=0

αij · idkj

(33)
For any fixed value of i (i.e., selecting the ith coefficient of
each collected polynomial share), the mobile adversary obtains
the following system of linear equations:

β
(1)
i = αi0 + αi1 · id1 + αi2 · id1

2 + · · ·+ αi|t−1 · id1
t−1

β
(2)
i = αi0 + αi1 · id2 + αi2 · id2

2 + · · ·+ αi|t−1 · id2
t−1

...

β
(m)
i = αi0 + αi1 · idm + αi2 · idm2 + · · ·+ αi|t−1 · idmt−1

Based on the fundamental theorem of linear algebra [30], it
is not possible to solve a system of m linearly independent
equations with t unknowns where m < t. Therefore, the
adversary is unable to determine any element of the master
secret A = [αij] with fewer than t polynomial shares.

C. Security Evaluation regarding DECENT’s Trust Level

Recall that conventional FD-TTP-based key management
schemes establish a distributed TTP (e.g., a distributed CA,
PKG, or KGC) of which its members use their shares of a
master private key to perform a key management service (e.g.,
creating a signature for a public key certificate or compute a
node’s identity-based (partial) private key). The honesty of
the key management service can be verified with the master
public key. To limit overheads associated with key updating,
those schemes chose to keep the master public-private key
pair intact throughout the entire network lifetime. This can
have severe consequences in practical scenarios where an
adversary managed to uncover the master private key. In
contrast, our DECENT scheme does not require the virtual
reconstruction of a master private key to perform some kind of
key management service, meaning that our scheme can update
all the coefficients of the master secret polynomial without it
impacting key management overheads.

The ability to periodically renew the entire master secret
provides significant benefits in terms of security. This periodic
renewal of the master secret effectively reboots the network on
a periodic basis without any intervention from an outside TTP.
Consider the scenario in which a mobile adversary success-
fully reconstructed the master secret: this allows the adversary
to successfully impersonate a malicious FD-TTP. In DECENT,
a mobile adversary will only be able to impersonate the FD-
TTP until the master secret is updated. This limits the window
of opportunity for malicious attacks and significantly reduces
the payoff for launching such attacks. By incorporating this
window of opportunity, or the amount of compromising effort
required by an attacker, we can redefine the trust levels of
FD-TTP-based key management schemes as follows:
• The TTP knows (or can easily compute) a node’s private

key and launch identity impersonation attacks for an
indefinite amount of time (i.e., Girault’s trust level 1).

TABLE I
THE PROPOSED RECLASSIFICATION OF TRUST LEVELS FOR DISTRIBUTED

TTP-BASED KEY MANAGEMENT SCHEMES.

Malicious capabilities
of a compromised dis-
tributed TTP

Indefinite
compromised

schemes

Limited-time
compromised

schemes

Complete
compromise1

Deng et al. [16]
DECENTda Silva et al. [17]

Saxena et al. [23]

Partial compromise2
Zhang et al. [18] Luo et al. [11], [12]

Li et al. [19] Lai et al. [20]
Gharib et al. [21] de Ree et al. [22]

1: Complete compromise allows the malicious TTP to compute
a node’s private key, compromising all communications.
2: Partial compromise limits the abilities of the malicious TTP
to identity impersonation attacks.

• The TTP knows (or can easily compute) a node’s pri-
vate key and launch identity impersonation attacks for a
limited amount of time (i.e., DECENT’s trust level).

• The TTP does not know (and cannot easily compute)
a node’s private key but is still able to launch identity
impersonation attacks for an indefinite amount of time
(i.e., Girault’s trust level 2).

• The TTP does not know (and cannot easily compute)
a node’s private key, but is still able to launch identity
impersonation attacks for a limited amount of time (i.e.,
Girault’s trust level 3).

Based on these definitions, we argue that the trust level of
our DECENT scheme is higher than trust level 1 and worse
than trust level 3, but not necessarily better nor worse than trust
level 2. Therefore, we propose to reclassify the trust levels
of distributed TTP-based schemes on the definitions above
instead of Girault’s original trust hierarchy [26], previously
covered in the adversarial model (see Section III-B). Table I
summarizes the achieved trust level of our DECENT scheme
and related FD-TTP-based key management schemes based on
our reclassification.

VI. SECURITY COMPARISON

In this section, we discuss the security strength of the related
FD-TTP-based key management schemes and compare it to
the security strength of our proposed DECENT scheme. We
define the security strength as the extent of security features
that are integrated into the protocols of each FD-TTP-based
key management scheme. Table II summarizes our findings.

A. Resiliency against Disruptive Adversaries

Recall that we defined a disruptive adversary as a mali-
cious server that provides a false key management service
to a requesting node. The requester node may request server
nodes for key management services to establish its share
of the master secret (i.e., share establishment protocol) or
its public-private key pair (i.e., key establishment protocol).
The requester node may also request server nodes for key
management services to update its share of the master secret

9

TABLE II
COMPARISON OF SECURITY FEATURES THAT ARE INTEGRATED INTO THE

PROTOCOLS OF FD-TTP-BASED KEY MANAGEMENT SCHEMES.

FD-TTP-based
Key Management
Scheme

Resistance against ...
Trust
Level

Self-
HealingDisruptive

Adversary
Mobile

Adversary
DECENT 4/4 3 1-3 3

de Ree et al. [22] 5/6 3 3 7

Luo et al. [11], [12] 3/6 3 3 7

Li et al. [19] 2/6 3 2 7

Saxena et al. [23] 2/2 7 1 7

Lai et al. [20] 0/4 7 3 7

Zhang et al. [18] 0/4 7 2 7

Gharib et al. [21] 0/4 7 2 7

Deng et al. [16] 0/4 7 1 7

da Silva et al. [17] 0/6 7 1 7

(i.e., share updating protocol) or its public-private key pair
(i.e., key updating protocol). To provide resiliency against a
disruptive adversary, requester nodes must be able to verify
the honesty of a provided key management service.
• Combined Key Management Service Verifiability: The

protocol allows a requester node to verify the correctness
of the combination of a threshold number of partial key
management services.

• Partial Key Management Service Verifiability: The pro-
tocol allows a requester node to verify the correctness
of a key management service provided by an individual
server node. Partial key management service verifiability
induces the verifiability of the combined key manage-
ment service. This level of verifiability also allows the
identification of the disruptive adversaries.

Our DECENT scheme consists of two key management
service protocols, the node admission and share updating
protocol. Section V-A showed that the node admission protocol
allows partial (and hence also combined) key management
service verifiability (2 out of 2) and also that the share
updating protocol allows partial (and hence also combined)
key management service verifiability (2 out of 2). Therefore,
we denote DECENT’s resiliency against disruptive adversaries
as 4 out of 4 in Table II. The resiliency against disruptive ad-
versaries of related FD-TTP-based key management schemes
were evaluated in a similar manner.

Luo et al. [11], [12] incorporated verifiability into its three
distinct key management service protocols. However, nodes
are only capable of verifying the combined key management
service [31]. Li et al. [19] only incorporated verifiability into
one of three considered key management service protocols.
This protocol does achieve partial key management service
verifiability. De Ree et al. [22] incorporated verifiability into
its three key management service protocols but lacks partial
key management service verifiability in its share establishment
protocol. Saxena et al. [23] incorporated verifiability into its
one key management service protocol and achieves partial
key management service verifiability. The FD-TTP-based key
management schemes [16]–[18], [20], [21] did not incorporate
verifiability into any of its key management service protocols.

B. Resiliency against Mobile Adversaries

Recall that we defined a mobile adversary as a malicious
node that compromises network nodes, extract their secret
shares, with the goal to reconstruct the master secret key. A
share updating protocol provides resiliency against a mobile
adversary since secret shares from different updating phases
are incompatible in the reconstruction of the master secret key.
Therefore, resiliency against mobile adversaries is achieved by
DECENT, Luo et al. [11], [12], Li et al. [19] and de Ree et
al. [22] while not achieved by [16]–[18], [20], [21], [23].

C. Trust Level

The trust level of a FD-TTP suggests the amount of trust
that network nodes must have in this entity and is based on
its malicious capabilities in the case of compromise. These
capabilities of a FD-TTP are determined by the underlying
public key cryptographic infrastructure. The scheme from Luo
et al. [11], [12] is based on traditional PKI and thus reaches
trust level 3 [26]. The schemes from Zhang et al. [18], Li et
al. [19], Lai et al. [20], Gharib et al. [21] and de Ree et al.
[22] are based on CL-PKC. Depending on the key generation
technique, the FD-TTP reaches either trust level 2 or 3 [32].
Namely, if the key generation technique allows a node to
create only one valid key pair, as in [20], [22], the detection
of multiple valid key pairs would indicate malicious behavior
from the FD-TTP and thus reaches trust level 3. If the key
generation technique allows a node to create multiple valid
key pairs, as in [18], [19], [21], there is no way to detect any
malicious behavior from the FD-TTP and thus only reaches
trust level 2. The schemes from Deng et al. [16], da Silva
et al. [17] and Saxena et al. [23] are based on ID-PKC and
thus only reach trust level 1 since a compromised FD-TTP
would be capable of computing every node’s private key and
launch attacks for an indefinite amount of time [26]. Even
though DECENT is also based on ID-PKC, our trust level
reclassification indicates that DECENT reaches a trust level
between 1 and 3 since a compromised FD-TTP can only
launch attacks for a limited amount of time (see Section V-C).

D. Self-Healing

We define self-healing as a property of a key management
scheme that is capable of independently recovering from
network compromise. We consider a network as compromised
when a malicious entity uncovers the master secret key (e.g.,
when a mobile adversary is successful). The DECENT scheme
achieves self-healing by periodically updating the master se-
cret key through the execution of the share updating protocol.
None of the related key management schemes consider the
potential compromise of the master secret key. Instead, [11],
[12], [19], [22] assume that a mobile adversary is unable to
compromise sufficient shares in between two consecutive share
updating phases whereas [16]–[18], [20], [21], [23] do not
consider the possibility of network compromise entirely.

This self-healing property achieved by DECENT is also
beneficial in comparison to other limited-time compromised
schemes [11], [12], [20], [22] (see Table I) since they require a
TTP to execute a potentially expensive manual network reboot.

10

TABLE III
COMPARISON OF THE COMMUNICATION OVERHEAD (I.E., THE NUMBER OF MESSAGE EXCHANGES REQUIRED TO COMPLETE EACH PROTOCOL) PER

PROTOCOL OF FD-TTP-BASED KEY MANAGEMENT SCHEMES.

FD-TTP-based
Key Management
Scheme

Initial Share
Establishm.

Protocol

Initial Key
Establishm.

Protocol

Distr. Share
Establishm.

Protocol

Distr. Key
Establishm.

Protocol

Share
Updating
Protocol

Key
Updating
Protocol

Secure Ch.
Establishm.

Protocol

Key
Revocation

Protocol
Luo et al. [11], [12] t+ 1 t 2t+ 2 t+ 1 3nt+ 4n+ t nt 2d (m− 1)2t2 + t

Deng et al. [16] t2 t2 t+ 1 n+ t+ 1 − − 0 −
da Silva et al. [17] t2 t2 t+ 1 t+ 1 − n+ t 0 nt+n+t2−2t−1
Zhang et al. [18] t t t+ 1 t+ 1 − − 2d −
Li et al. [19] t2 t2 t+ 1 t+ 1 dnt+ dn− dt − 2d −
Lai et al. [20] t2 2t2 t+ 1 2t+ 2 − 0 2d 0

Gharib et al. [21] t+ 1 t t+ 1 5t+ 1 − 0 2d 0

de Ree et al. [22] t 3t 2t+ 2 t+ 3 2nt+3n−t2−2t 0 2d 0

Saxena et al. [23] t t+ 1 − 0 −
DECENT t t+ 1 nt+ 2n− t 0 −

n: number of network nodes, t: security threshold, d: average distance in hops between two network nodes, m: number of hops to flood a local area

VII. OVERHEAD COMPARISON

In this overhead comparison, we focus our attention to
the communication overhead of the alternative FD-TTP-based
key management schemes. For a comprehensive evaluation of
the communication overhead of conventional FD-TTP-based
key management schemes [11], [12], [16]–[22], we refer the
reader to [22]. A unicast, multicast and broadcast message are
considered to contribute one message to the communication
overhead since these are single transmissions even though
the number of receivers vary. The communication overheads,
summarized per protocol per scheme in Table III, are clearly
lower for alternative FD-TTP-based key management schemes.

A. Initial Share & Key Establishment Protocols
For these protocols, the communication overhead is defined

as the least number of transmissions required to initialize t
nodes. Due to the correspondence between a node’s secret
share and its public-private key pair, these protocols are com-
bined into one network bootstrapping protocol. The overhead
is in part determined by assumptions on the TTP. DECENT
and [23] assume that a centralized TTP can bootstrap the net-
work, causing an overhead of t. Decentralized bootstrapping
would cause an overhead of at least t2.

B. Distributed Share & Key Establishment Protocols
For these protocols, the communication overhead is defined

as the least number of transmissions required to provide one
joining node with its secret share and its public-private key
pair, respectively. Due to the correspondence between a node’s
secret share and its public-private key pair, these protocols are
combined into one node admission protocol. DECENT and
[23] can assume that the broadcast request from a joining node
reaches at least t servers which, in turn, reply with a unicast
transmission, causing an overhead of t+ 1.

C. Share & Key Updating Protocols
For these protocols, the communication overhead is defined

as the least number of transmissions required for every net-
work node to update its secret share and its public-private key

pair, respectively. Due to the correspondence between a node’s
secret share and its public-private key pair, these protocols are
combined into one share updating protocol. In DECENT, t
servers transmit one broadcast and t − 1 unicast messages
to update the master secret, one broadcast is transmitted per
node to inform its nearby nodes that it can assist in updating
their secret shares, and n − t nodes transmit one broadcast
and receive t unicast messages to be readmitted. This causes
a total overhead of nt+ 2n− t.

D. Secure Channel Establishment Protocol

For the secure channel establishment protocol, the commu-
nication overhead is defined as the least number of transmis-
sions required for two arbitrary nodes to establish a secure
channel. DECENT and [23] allow non-interactive secure chan-
nel establishment and thus have an overhead of 0.

VIII. PRACTICAL GUIDELINES FOR DEPLOYMENT

The deployment of the DECENT scheme requires the
selection of appropriate network parameters. In this section,
we provide guidelines for the selection of appropriate security
thresholds for a variety of deployment scenarios.

A. Restrictions Imposed by Protocols

Each key management service protocol requires a certain
network topology to be correctly executed. We identified the
following three levels of requirements that a key management
service protocol can impose on the network topology.

1) The protocol allows a requester node to make multiple
requests over time to reach t server nodes.

2) The protocol requires that a requester node is within
transmission range of at least t server nodes.

3) The protocol requires a cluster of t server nodes that are
all within each other’s transmission range.

The DECENT scheme has two key management service
protocols, the node admission protocol and the share updating
protocol. In the node admission protocol, a requester node is

11

TABLE IV
THE IMPLEMENTATION DETAILS FOR DETERMINING THE IMPROVED

SECURITY THRESHOLD GUIDELINES.

Implementation details
Simulation platform Python 3.8.5
Node distribution Random
Node densities (nodes/km2) {100, 200, 500, 1000, 2000, 4000}
Transmission ranges (m) {10, 25, 50, 100, 150, 250, 400}
Network estimation Maximum clique

TABLE V
GUIDELINES FOR SELECTING AN APPROPRIATE SECURITY THRESHOLD

FOR A VARIETY OF DEPLOYMENT SCENARIOS.

Thresholds achieving 95% key management service availability
Node Density Transmission Range (meters)
(nodes/km2) 10 25 50 100 150 250 400

100 1 2 3 4 6 11 20

200 2 3 4 6 10 19 36

500 2 4 6 12 19 39 80

1, 000 3 5 9 19 32 67 148

2, 000 4 7 13 31 55 123 281

4, 000 5 10 21 53 98 231 537

allowed to roam the network and periodically request nearby
server nodes for subshares to establish its own public-private
key pair (i.e., requirement level 1). However, the share updat-
ing protocol requires a cluster of t server nodes to be within
each other’s transmission range to prevent any malicious server
from disabling the key management (i.e., requirement level 3).

A guideline for the selection of appropriate security thresh-
olds was previously given in [22]. However, their guidelines
were based on whether a requester node is within transmission
range of at least t server nodes (i.e., requirement level 2).
Therefore, they accept security thresholds which are unable to
execute the share updating protocol. Furthermore, they only
considered a transmission range of 150 meters.

B. Simulation Results
We used Python to simulate networks and estimated their

maximum clique to determine the maximum threshold t which
satisfies network topology requirement level 3. Implementation
details are shown in Table IV; the full implementation is
available at [33]. The simulation results, i.e., the upper bounds
on the security thresholds for which there is a 95% probability
that a cluster of t nodes exists, are shown in Table V.

The implementation results are graphed in Figure 2. The
graph uses a log-scale on the y-axis to represent all the data
in a readable manner. Furthermore, we included the security
threshold guidelines previously provided by [22]. It can be
observed that the suggested security thresholds by [22] are
about twice as high compared to our results and could have
caused the inability of executing the share updating protocol,
leading to a malfunctioning key management scheme.

C. Discussion
It is important to consider the effect that the security

threshold has on overheads. For a maximum security threshold,

Fig. 2. Guidelines for selecting the security threshold t for a deployment
scenario with a particular node density and transmission range (T.R.).

key management service protocols can impose a significant
communication overhead due to the necessary message ex-
changes, computational overhead due to combining the large
number of partial key management services, and memory
storage overhead from storing the k-bit long polynomial share
coefficients. It may therefore be beneficial to reduce the
security threshold (e.g., by half) and increase (e.g., double)
the frequency of executing the share updating protocol.

IX. FUTURE WORK

As a future work, we intend to extend or modify the design
of our DECENT scheme in the following ways: (i) include a
node accusation and revocation mechanism that ensures that
malicious nodes are removed and prevented from rejoining
the network, (ii) include a decentralized method for network
bootstrapping, (iii) modify the protocol design to be based on
discrete logarithms in the elliptic curve group to reduce the
key sizes and improve performance, and (iv) implement and
measure the performance of our DECENT scheme.

X. CONCLUSION

In this paper, we proposed the design of our novel de-
centralized key management scheme entitled DECENT that
is suitable for a wide range of deployment scenarios. This
key management scheme deviates from the conventional struc-
ture of FD-TTP-based key management by having a direct
correspondence between a node’s secret share and its public-
private key pair. The establishment or update of a node’s secret
share is therefore equivalent to the establishment or update of
that node’s public-private key pair. This means that the share
establishment protocol is equivalent to the key establishment
protocol and the share updating protocol is equivalent to the
key updating protocol. These equivalences have the following
benefits: (i) it simplifies the key management design, (ii) it
significantly reduces overheads, and (iii) it allows our key
management to benefit from the self-healing property by
allowing the master secret to be periodically updated. With
self-healing, we mean that a potential network compromise is
restored through the execution of the share updating protocol
(i.e., a self-organized network reboot). We have shown that

12

DECENT is very competitive in terms of security and low
in terms of overheads compared to closely related schemes.
Finally, our simulation results provide network administrators
with insight into the selection of appropriate security thresh-
olds for practical deployments.

REFERENCES

[1] A. Laouiti, A. Qayyum, M. Naufal, and M. Saad, “Vehicular Ad-Hoc
Networks for Smart Cities,” Springer, 2016.

[2] V. Sucasas, G. Mantas, F. B. Saghezchi, A. Radwan, and J. Rodriguez,
“An Autonomous Privacy-Preserving Authentication Scheme for Intelli-
gent Transportation Systems,” Comput. Secur., vol. 60, pp. 193-205, 2016.

[3] B. Ji et al., “Secrecy Performance Analysis of UAV Assisted Relay
Transmission for Cognitive Network with Energy Harvesting,” IEEE
Trans. Veh. Technol., vol. 69, no. 7, pp. 7404-7415, 2020.

[4] W. Duan et al., “Emerging Technologies for 5G-IoV Networks: Applica-
tions, Trends and Opportunities,” IEEE Netw., vol. 34, no. 5, pp. 283-289,
2020.

[5] A. Munir, and F. Koushanfar, “Design and Analysis of Secure and
Dependable Automotive CPS: A Steer-By-Wire Case Study,” IEEE Trans.
Dependable Secure Comput., vol. 17, no. 4, 2020.

[6] S. Goudarzi, N. Kama, M. H. Anisi, S. Zeadally, and S. Mumtaz,
“Data Collection Using Unmanned Aerial Vehicles for Internet of Things
Platforms,” Comput. Electr. Eng., vol. 75, pp. 1-15, 2019.

[7] J. Rodriguez et al., “Secure Virtual Mobile Small Cells: A Stepping Stone
Towards 6G,” IEEE Commun. Standards Mag., vol. 5, no. 2, 2021.

[8] M. de Ree et al., “Key Management for Beyond 5G Mobile Small Cells:
A Survey,” IEEE Access, vol. 7, pp. 59200-59236, 2019.

[9] A. Shamir, “How to Share a Secret,” Commun. ACM, vol. 22, no. 11, pp.
612-613, 1979.

[10] J. Li et al., “Decentralized On-Demand Energy Supply for Blockchain
in Internet of Things: A Microgrid Approach,” IEEE Trans. Comput. Soc.
Syst., vol. 6, no. 6, pp. 1395-1406, 2019.

[11] H. Luo and S. Lu, “Ubiquitous and Robust Authentication Services for
Ad Hoc Wireless Networks,” Univ. California, Los Angeles, CA, USA,
Tech. Rep. UCLA-CSD-TR-200030, 2000.

[12] H. Luo, J. Kong, P. Zerfos, S. Lu, and L. Zhang, “URSA: Ubiquitous
and Robust Access Control for Mobile Ad Hoc Networks,” IEEE/ACM
Trans. Netw., vol. 12, no. 6, pp. 1049-1063, 2004.

[13] P. Feldman, “A Practical Scheme for Non-Interactive Verifiable Secret
Sharing,” Proc. 28th Annu. Symp. Found. Comput. Sci. (SFCS), Los
Angeles, CA, USA, pp. 427-437, 1987.

[14] S. Jarecki, “Proactive Secret Sharing Public Key Cryptosystems,” M.S.
thesis, Dept. Elect. Eng. Comput. Sci., Massachusetts Inst. Technol.,
Cambridge, MA, USA, 1995.

[15] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive Secret
Sharing OR: How to Cope with Perpetual Leakage,” Proc. CRYPTO,
Santa Barbara, CA, USA, pp. 339-352, 1995.

[16] H. Deng and D. P. Agrawal, “TIDS: Threshold and Identity-based
Security Scheme for Wireless Ad Hoc Networks,” Ad Hoc Netw., vol.
2, no. 3, pp. 291-307, 2004.

[17] E. da Silva and L. C. P. Albini, “Towards a Fully Self-Organized
Identity-Based Key Management System for MANETs,” Proc. 9th IEEE
Int. Conf. Wireless and Mobile Computing, Networking and Communica-
tions (WiMob), Lyon, France, pp. 717-723, 2013.

[18] Z. Zhang, W. Susilo, and R. Raad, “Mobile Ad-Hoc Network Key
Management with Certificateless Cryptography,” Proc. 2nd Int. Conf.
Signal Process. Commun. Syst. (ICSPCS), Gold Coast, QLD, Australia,
pp. 1-10, 2008.

[19] F. Li, M. Shirase, and T. Takagi, “Key Management using Certificateless
Public Key Cryptography in Ad Hoc Networks,” Proc. 5th IFIP Int. Conf.
Network and Parallel Computing (NPC), Shanghai, China, pp. 116-126,
2008.

[20] J. Lai, W. Kou, and K. Chen, “Self-Generated-Certificate Public Key
Encryption without Pairing and its Application,” Inf. Sci., vol. 181, no.
11, pp. 2422-2435, 2011.

[21] M. Gharib, Z. Moradlou, M. A. Doostari, and A. Movaghar, “Fully
Distributed ECC-based Key Management for Mobile Ad Hoc Networks,”
Comput. Networks, vol. 113, pp. 269-283, 2017.

[22] M. de Ree, G. Mantas, J. Rodriguez, I. E. Otung, and C. Verikoukis,
“DISTANT: Distributed Trusted Authority-based Key Management for
Beyond 5G Wireless Mobile Small Cells,” Comput. Commun., vol. 176,
pp. 218-233, 2021.

[23] N. Saxena, G. Tsudik, and J. H. Yi, “Efficient Node Admission and
Certificateless Secure Communication in Short-Lived MANETs,” IEEE
Trans. Parallel Distrib. Syst., vol. 20, no. 2, pp. 158-170, 2009.

[24] N. Saxena, “Public Key Cryptography Sans Certificates in Ad Hoc
Networks,” Proc. 4th Int. Conf. Applied Cryptography and Network
Security (ACNS), Singapore, Singapore, pp. 375-389, 2006.

[25] R. Ostrovsky and M. Yung, “How to Withstand Mobile Virus Attacks,”
Proc. 10th ACM Symp. Princ. Distribu. Comput. (PODC), Montreal, QC,
Canada, pp. 51-59, 1991.

[26] M. Girault, “Self-Certified Public Keys,” Proc. EUROCRYPT, Brighton,
U.K., pp. 490-497, 1991.

[27] R. Blom, “An Optimal Class of Symmetric Key Generation Systems,”
Proc. EUROCRYPT, Paris, France, pp. 335-338, 1984.

[28] A. J. Menezes, P. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography, 5th ed., Boca Raton, FL, USA: CRC Press, 2001.

[29] N. Saxena, G. Tsudik, and J. H. Yi, “Efficient Node Admission for Short-
lived Mobile Ad Hoc Networks,” Proc. 13th IEEE Int. Conf. Network
Protocols (ICNP), Boston, MA, USA, pp. 269-278, 2005.

[30] D. Poole, Linear Algebra: A Modern Introduction, 2nd ed., Canada:
Thomson Brooks/Cole, 2006.

[31] M. Narasimha, G. Tsudik, and J. H. Yi, “On the Utility of Distributed
Cryptography in P2P and MANETs: the Case of Membership Control,”
Proc. 11th IEEE Int. Conf. Network Protocols (ICNP), Atlanta, GA, USA,
pp. 336-345, 2003.

[32] S. S. Al-Riyami, and K. G. Paterson, “Certificateless Public Key
Cryptography,” Proc. ASIACRYPT, Taipei, Taiwan, pp. 452-473, 2003.

[33] M. de Ree, DECENT Simulation, GitHub, 2022. [Online]. Available:
https://github.com/mderee/Public-Scripts/blob/main/DECENT-sim.

Marcus de Ree (Member, IEEE) received his M.Sc.
degree in applied mathematics, focused in the mathe-
matical theory of communication systems, from San
Diego State University, USA, in 2017, and Ph.D.
degree in electronic engineering from the University
of South Wales, UK, in 2021. He is a postdoc-
toral researcher in secure wireless communication
at the Instituto de Telecomunicações, Aveiro, Por-
tugal, contributing to the NATO-funded PHYSEC
project as technical manager and the EU-funded
Moore4Medical project.

Georgios Mantas (Member, IEEE) received his
M.Sc. degree in information networking from
Carnegie Mellon University, USA, in 2008, and
Ph.D. degree in electrical and computer engineering
from the University of Patras, Greece, in 2012.
In 2014, he became a postdoctoral researcher at
the Instituto de Telecomunicações, Aveiro, Portugal,
where he has been involved in research projects,
such as ECSEL-SemI40, CATRENE-MobiTrust and
FP7-SEC-SALUS. Since 2020, he has been a senior
lecturer with the University of Greenwich, UK.

Jonathan Rodriguez (Senior Member, IEEE) re-
ceived his M.Sc. degree in electronic and electrical
engineering and Ph.D. degree in mobile communi-
cations from the University of Surrey, UK, in 1998
and 2004, respectively. He is a senior researcher at
the Instituto de Telecomunicações, Aveiro, Portugal,
and a full professor at the University of South Wales,
UK. His professional affilliations include Chartered
Engineer, IET Fellow, HEA Senior Fellow, and
Associated Editor of IET Communications.

Ifiok E. Otung received his M.Sc. degree in elec-
trical engineering from the University of Ife, Nige-
ria, and Ph.D. degree in satellite communications
from the University of Surrey, UK, in 1995. He
is a chartered engineer and professor of satellite
communications with the University of South Wales
(USW). He founded the M.Sc. program in mobile
and satellite communications, has supervised around
150 postgraduate projects, is an associate editor of
IET Journal of Engineering and co-editor of IET
Advances in Communications Satellite Systems.

