
January 23, 2022 0:13 WSPC/INSTRUCTION FILE ws-ijb

International Journal of Biomathematics
c⃝ World Scientific Publishing Company

GLOBAL STABILITY OF AN AGE-STRUCTURED MODEL OF

SMOKING AND ITS TREATMENT

YUAN-SHUN TAN

Department of Mathematics
Chongqing Jiaotong University
Chongqing, 400074, P. R.China

ystan625@163.com

XIAO-XUE LI

Department of Mathematics

Chongqing Jiaotong University
Chongqing,400074, P. R.China

xiaoxuelicq@163.com

JING YANG

Department of Mathematics
Chongqing Jiaotong University
Chongqing,400074, P. R.China

CHEKE R.A.

Natural Resources Institute
University of Greenwich at Medway
Central Avenue,Chatham Maritime

Chatham,Kent,ME4 4TB,UK

r.a.cheke@greenwich.ac.uk

Received (Day Mth. Year)
Revised (Day Mth. Year)

Abstract. Smoking is a serious global public health problem. Its serious consequences

arose from smoking and the ability to quit it are closely related to age. Personal deter-
mination and education level usually play important roles in quitting smoking. In order
to capture such characteristics, we developed a novel age-structured smoking dynam-
ical model. By defining the smoking generation number R0, the local stability, global

stability of the boundary equilibrium and endemic equilibrium are obtained using Lya-
punov functions. The uniform persistence, as well as the well-posedness and asymptotic
smoothness of the solutions are also studied. Sensitivity analyses show that the lower
the age of onset of smoking and the higher the determination to stop, the greater the

likelihood of quitting smoking and numerical studies support the theoretical results.
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1. Introduction

Every year a huge number of people die from diseases caused by smoking, such

as heart disease, cancers and chronic bronchitis. Smoking has been regarded as a

serious global public health problem, which can be spread by social contact [7].

Therefore, in order to prevent the spread of smoking, we first need to explore the

transmission mechanisms of smoking. Mathematical modeling is a very useful tool,

it can not only provide a natural description of real problems, but can also reveal

the relationships between variables.

Many scholars have tried to use mathematical models to study relationship-

s between smokers. Castillo-Garsow, Sharomi and Gumel et al. proposed a series

of deterministic giving up smoking dynamical models [4,19]. They divided the to-

tal population into four groups (potential smokers, smokers of temporarily quit,

smokers of permanently quit, and chain smokers) and studied the local and global

stability of smoking-free equilibrium. Zhang et al. proposed a stochastic smoking

model to study the effects of environmental fluctuations on the dynamics of smoking

[29,12] and showed that the system is ergodic when a noise parameters value was

low. Verma et al. studied the effects of media campaigns, educational programs and

an individual’s determination to cease smoking [22,27] and pointed out that these

factors have impacts on quitting smoking . Singh et al. constructed a fractional

smoking model and the threshold conditions for the existence and uniqueness of its

solution were provided [20]. Generally, the diseases caused by smoking became more

serious with increasing age of the smokers and the number of smokers depends on

the age of smoking initiation [8]. However, these studies have not taken the age of

chain smokers into account. Thus, it is of theoretical and practical significance to

study age-structured smoking dynamical systems [24,10].

Age-structured dynamical systems have been widely investigated in epidemics

[5,2], virus dynamics [14,9,23], population dynamics [15,3] and so on. But there are

few papers using age-structured models to study the dynamics of smoking. Zeb et al.

considered the age of potential smokers and formulated an age-structured smoking

model [28], in which they studied the properties of the solution and derived condi-

tions for the stability of the smoking free equilibrium. Rahmana et al. constructed

a novel smoking model concerning the age of chain smokers [18], mainly modelling

ages from a light smoking class to s chain smoker class, threshold conditions for the

local and global stability of the boundary and endemic equilibria were also studied.

However, in most cases either age was not included in the pivotal threshold con-

dition (i.e., the smoking generation number) or treatments (for example, individ-

ual’s determination [22,27]) were excluded [28,18]. Therefore, we proposed a novel

age-structured smoking model concerning the age effect and the effects of individu-

al’s determination, mainly focusing on two questions: (1) What is the relationship

between age, transmission rate, smoking quitting rate and the smoking generation

number? (2) How to evaluate the effectiveness of the important parameters affecting

quitting smoking?
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The rest of the paper is organized as follows. In section 2, a novel age-structured

smoking model is presented. In section 3, useful definitions and lemmas are intro-

duced and the properties of solutions of the proposed system are studied. In section

4, conditions for local and global stability are derived for the smoking free equilib-

rium and endemic equilibrium. In section 5, numerical simulations are described,

followed by discussion and concluding remarks.

2. Mathematical Model

We assume that the total number of population N is constant at all time t and then

divide N into four classes: Potential smokers P (t), smokers of who are temporary

quitters Qt(t), smokers who are permanent quitters Qp(t), and chain smokers S(t, a)

at time t with age a, and have the following model.

dP (t)

dt
= λ−

∫ ∞

0

β(a)P (t)S(t, a)da+

∫ ∞

0

(1− ϵ1)α(a)S(t, a)da− uP (t),

∂S(t, a)

∂t
+

∂S(t, a)

∂a
= −α(a)S(t, a)− uS(t, a),

dQt(t)

dt
=

∫ ∞

0

ϵ1(1− ϵ2)α(a)S(t, a)da− uQt(t),

dQp(t)

dt
=

∫ ∞

0

ϵ1ϵ2α(a)S(t, a)da− uQp(t),

(2.1)

with boundary condition

S(t, 0) =

∫ ∞

0

β(a)P (t)S(t, a)da, t ≥ 0, (2.2)

and the initial conditions P (0) = P0 > 0, S(0, a) = S0(a) ≥ 0, Qt(0) = Q0
t >

0, Qp(0) = Q0
p > 0 for a ≥ 0, while S0(a) belongs to L1

+(0,∞) and satisfies∫∞
0

S0(a)da ≤ ∞ (L1
+(0,∞) is defined as the space of all essentially bounded and

positive functions that are Lebesgue integrable). λ represents the constant recruit-

ment rate of the population, β(a) is the transmission rate at age a. α(a) is the rate

that smokers are quitting smoking at age a. ϵ1 is the measure of determination.

So (1 − ϵ1)α(a)S(t, a) is the fraction of quitters who again become chain smokers

because of low determination, while the fraction ϵ1α(a)S(t, a) stays in the quitter

classes. u is the death rate. ϵ2 is the efficacy of interventions including education or

treatment.

Notice that the first two equations of system (2.1) do not contain the variables

Qt and Qp. Thereby, to study the dynamics of a giving up smoking model we can

ignore the variables Qt and Qp and only need to focus on the following subsystem
dP (t)

dt
= λ−

∫ ∞

0

β(a)P (t)S(t, a)da+

∫ ∞

0

(1− ϵ1)α(a)S(t, a)da− uP (t),

∂S(t, a)

∂t
+

∂S(t, a)

∂a
= −α(a)S(t, a)− uS(t, a),

(2.3)
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with boundary condition

S(t, 0) =

∫ ∞

0

β(a)P (t)S(t, a)da, t ≥ 0, (2.4)

and the initial conditions P (0) = P0 > 0, S(0, a) = S0(a) ≥ 0 for a ≥ 0.

Assumption 1. For the functions β(a) and α(a) we assume:

(I) β(a), α(a) ∈ L1
+(0,∞) have upper bounds β̂, α̂, respectively;

(II) β(a), α(a) are Lipschitz continuous with Lipschitzians Lβ and Lα, respectively;

(III) β(a), α(a) ≥ c0 for c0 ∈ (0, c̄] with a ≥ 0.

For simplicity, the following notation is very useful in the rest of the paper:

K0(a) = e−
∫ a
0
(u+α(s))ds, B(t) =

∫∞
0

β(a)S(t, a)da, S(t, 0) = P (t)B(t),

K1 =
∫∞
0

α(a)K0(a)da,K2 =
∫∞
0

β(a)K0(a)da.
(2.5)

K0(a) is the probability of a chain smoker remaining smoking at age a, β(a)K0(a)

is the product of the age-specific remaining probability of a chain smoker and the

transmission rate at which the potential smokers become chain smokers by associ-

ation with a chain smoker of age a. Thus, K2 is the total number of new smokers

produced by a chain smoker over his or her lifespan.

Integrating the second equation of (2.3) along the characteristic line t − a =

const., then

S(t, a) =

P (t− a)B(t− a)K0(a), 0 ≤ a < t,

S0(a− t) K0(a)
K0(a−t) , a ≥ t ≥ 0.

(2.6)

In order to study the dynamics of system (2.3), we need to define the function space

X. Let

X = R+ × L1
+(0,∞),

which is endowed with the norm

∥(x1, x2)∥X =| x1 | +
∫ ∞

0

| x2(a) | da.

The initial conditions of system (2.3) in the space X can be denoted by

x0 = (P0, S(t, ·)) ∈ X. (2.7)

For system (2.3), define a continuous semi flow as ζ : R+ ×X → X, where

ζ(t, x0) = ζt(x0) = (P (t), S(t, ·)), t ≥ 0 and x0 ∈ X. (2.8)

Then we have the following norm for ζt(x0), i.e.,

∥ζt(x0)∥X = ∥(P (t), S(t, ·)∥ =| P (t) | +
∫ ∞

0

| S(t, a) | da.
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3. Main properties of solutions for system (2.3)

3.1. Well-posedness

By using the methods proposed by Webb [24] and Iannelli [10], it can be shown that

model (2.3) exists with the unique and non-negative solution with positive initial

conditions. Denote Ω as the state space, i.e.,

Ω =

{
(P (t), S(t, ·) ∈ X|P (t) +

∫ ∞

0

S(t, a)da ≤ λ

u

}
.

We can obtain the following proposition for ζ and Ω.

Proposition 1. For all t ≥ 0 and x0 ∈ Ω, we obtain ζ(t, x0) ∈ Ω. Moreover, Ω

attracts all points in X and ζ is point dissipative.

Proof. From (2.8) we have

d

dt
∥ζt(x0)∥X =

d

dt
P (t) +

d

dt

∫ ∞

0

S(t, a)da.

It follows from (2.6) and the fact that K0(0) = 1 that we obtain

d

dt

∫ ∞

0

S(t, a)da =
d

dt

∫ t

0

P (t− a)B(t− a)K0(a)da

+
d

dt

∫ ∞

t

S0(a− t)
K0(a)

K0(a− t)
da,

= P (t)B(t)−
∫∞
0

(u+ α(a))S(t, a)da.

Thus,

d

dt

(
P (t) +

∫ ∞

0

S(t, a)da

)
= λ−

∫∞
0

β(a)P (t)S(t, a)da

+
∫∞
0

(1− ϵ1)α(a)S(t, a)da− uP (t)

+P (t)B(t)−
∫∞
0

(u+ α(a))S(t, a)da

≤ λ+
∫∞
0

α(a)S(t, a)da− uP (t)

−
∫∞
0

(u+ α(a))S(t, a)da

= λ− u
(
P (t) +

∫∞
0

S(t, a)da
)
.

(3.1)

It follows from the variation of the formula that

∥ζt(x0)∥ ≤ λ
u − e−ut

(
λ
u − ∥x0∥X

)
, t ≥ 0,

which implies that for any t ≥ 0 and x0 ∈ Ω ,we have ζ(t, x0) ∈ Ω, and so the set

Ω is positive invariant.

When t → ∞, then

limt→∞ ∥ζt(x0)∥X ≤ λ
u , x0 ∈ X,

which means that ζ is point dissipative and Ω attracts all points in X. This com-

pletes the proof.

Remark 1. For some constant h that satisfies the condition h ≥ λ/u, it follows

from Assumption 1 and Proposition 1 that if for any x0 ∈ X and ∥x0∥X ≤ h then

P (t) and S(t) are bounded above by h and bounded below by zero.
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3.2. Asymptotic smoothness

We introduce the following two lemmas to show the asymptotic smoothness of the

semiflow {ζ(t, ·)}t≥0 [21].

Lemma 1. The semiflow ζ : R+ ×X → X is asymptotically smooth if there exist

the two maps ζ1, ζ2 : R+×X → X such that ζ(t, x) = ζ1(t, x)+ζ2(t, x), and for any

bounded closed set A ⊂ X (A is forward invariant of ζ) the following conditions

hold: (1) limt→+∞ diamζ2(t,A) = 0; (2) there is a tA ≥ 0 and each t ≥ tA will lead

to ζ1(t,A) which has compact closure.

Because X is an infinite dimensional space and L1
+(0,+∞) ⊂ X, to guarantee

the precompactness we need the follow results.

Lemma 2. Denote A1 as a bounded subset of L1
+(0,+∞). The sufficient and nec-

essary conditions for A1 having a compact closure are as follows:

(i) supf∈A1

∫ +∞
0

|f(s)|ds < +∞;

(ii) supt→+∞
∫ +∞
t

|f(s)|ds = 0 uniformly in f ∈ A1;

(iii) supt→0+
∫ +∞
0

|f(s+ t)− f(s)|ds = 0 uniformly in f ∈ A1;

(iv) supt→0+
∫ t

0
|f(s)|ds = 0 uniformly in f ∈ A1.

By using the above lemmas, we can show that the semiflow ζ(t, x) is asymptot-

ically smooth. First of all, we give the definitions of ζ1 and ζ2. Let

S1(t, a) =

{
S(t, a), 0 ≤ a < t;

0, a ≥ t ≥ 0;
(3.2)

and

S2(t, a) =

{
0, 0 ≤ a < t;

S(t, a), a ≥ t ≥ 0.
(3.3)

Then ζ1 and ζ2 can be defined as ζ1(t, x0) = (P (t), S1(t, ·)) and ζ2(t, x0) =

(0, S2(t, ·)), respectively. It is clear that the semiflow ζ(t, x0) = ζ1(t, x0) + ζ2(t, x0).

Theorem 1. The semiflow ζ defined by (2.8) for system (2.3) is asymptotically

smooth.

Proof. It follows from Remark 1 that for each x0 ∈ A (here A ⊂ X) yields ∥x0∥X ≤
h. Concerning (2.6) and (3.3),

∥ζ2(t, x0)∥X =

∫ +∞

t

|S2(t, a)|da =

∫ +∞

t

∣∣∣∣S0(a− t)
K0(a)

K0(a− t)

∣∣∣∣ da
=

∫ +∞

t

∣∣∣∣S0(τ)
K0(t+ τ)

K0(τ)

∣∣∣∣ dτ =

∫ +∞

t

∣∣∣S0(τ)e
−

∫ t+τ
τ

(u+α(s))ds
∣∣∣ dτ

≤ e−(u+c0)t

∫ +∞

t

|S0(τ)| dτ ≤ e−(u+c0)t∥x0∥X ≤ e−(u+c0)th.

(3.4)

So limt→+∞ diamζ2(t,A) = 0.

Now, we need to show that ζ1(t,A) exists with compact closure for any t ≥ 0.

In the light of Remark 1, P (t) lies in the compact set [0, h] for t ≥ 0. Moreover, it is

necessary to prove that S1(t, a) remains in a precompact subset of L+
1 (0,+∞) which
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is independent of x0. From (2.6) and (3.2), it is clear that S1(t, a) is non-negative

and

S1(t, a) =

{
P (t− a)B(t− a)K0(a), 0 ≤ a < t;

0, a ≥ t ≥ 0.
(3.5)

Considering Assumption 1 and Remark 1, we have

S1(t, a) ≤ he−(u+c0)aB(t− a) ≤ he−(u+c0)aβ̂∥x0∥ ≤ h2β̂e−(u+c0)a. (3.6)

Thus, we conclude that (i), (ii) and (iv) of Lemma 2 hold true. Next, we only need

to show that the condition (iii) of Lemma 2 holds. Assume that τ ∈ (0, t),∫ +∞

0

|S1(t, a+ τ)− S1(s, a)|da

=

∫ t−τ

0

|P (t− a− τ)B(t− a− τ)K0(a+ τ)− P (t− a)B(t− a)K0(a)|da

+

∫ t

t−τ

|0− P (t− a)B(t− a)K0(a)|da

=

∫ t−τ

0

|P (t− a− τ)B(t− a− τ)||K0(a+ τ)−K0(a)|da

+

∫ t−τ

0

|K0(a)||P (t− a− τ)B(t− a− τ)− P (t− a)B(t− a)|da

+

∫ t

t−τ

|P (t− a)B(t− a)K0(a)|da

≤ h2β̂

∫ t−τ

0

|K0(a+ τ)−K0(a)|da+ h2β̂τ

+

∫ t−τ

0

|K0(a)||P (t− a− τ)B(t− a− τ)− P (t− a)B(t− a)|da

.
= h2β̂

∫ t−τ

0

|K0(a+ τ)−K0(a)|da+ h2β̂τ +Υ.

Note that K0(a) is non-increasing with respect to a and 0 ≤ K0(a) ≤ e−(u+c0)a ≤ 1,

so∫ t−τ

0

|K0(a+ τ)−K0(a)|da =

∫ t−τ

0

K0(a)da−
∫ t−τ

0

K0(a+ τ)da

=

∫ t−τ

0

K0(a)da−
∫ t

τ

K0(a)da

=

∫ t−τ

0

K0(a)da−
∫ t−τ

τ

K0(a)da−
∫ t

t−τ

K0(a)da

≤
∫ τ

0

K0(a)da−
∫ t

t−τ

K0(a)da ≤ τ.

In the light of (3.1), we have∣∣∣∣dB(t)

dt

∣∣∣∣ ≤ β̂λ,

∣∣∣∣dP (t)

dt

∣∣∣∣ ≤ λ+ uh+ β̂h2 + (1− ϵ1)α̂h.



January 23, 2022 0:13 WSPC/INSTRUCTION FILE ws-ijb

8 Y.-S. Tan,X.-X. Li,J. Yang

Then

|P (t− a− τ)B(t− a− τ)− P (t− a)B(t− a)|
≤ |P (t− a− τ)||B(t− a− τ)−B(t− a)|+ |B(t− a)||P (t− a− τ)− P (t− a)|
≤
{
hβ̂λ+ hβ̂(λ+ uh+ β̂h2 + (1− ϵ1)α̂h)

}
τ.

Furthermore,

Υ ≤ τ
{
hβ̂λ+ hβ̂(λ+ uh+ β̂h2 + (1− ϵ1)α̂h)

}∫ t−τ

0

e−(u+c0)ada

≤ τ
u+c0

{
hβ̂λ+ hβ̂(λ+ uh+ β̂h2 + (1− ϵ1)α̂h)

}
.

Hence, ∫ +∞

0

|S1(t, a+ τ)− S1(s, a)|da

≤ τ
{
2h2β̂ + 1

u+c0

[
hβ̂λ+ hβ̂(λ+ uh+ β̂h2 + (1− ϵ1)α̂h)

]}
.

The above inequality converges uniformly to 0 as τ → 0. It means condition (iii)

of Lemma 2 holds, and all conditions of Lemma 2 are satisfied. This indicates that

ζ1(t,A) has compact closure for any tA ≥ 0. Therefore, the semiflow ζ defined by

(2.8) for system (2.3) is asymptotically smooth. This completes the proof.

Concerning Proposition 1 and Theorem 1, the following result holds [16,6].

Theorem 2. The semiflow ζ defined by (2.8) for system (2.3) has a global attractor

in X and it attracts any bounded subset of X.

4. Equilibria and stability

4.1. Existence and local stability of the equilibria

Denote E∗(P ∗, S∗) as the equilibria of system (2.3), and E∗ satisfies the following

equations:

λ−
∫ ∞

0

β(a)P ∗S∗(a)da+

∫ ∞

0

(1− ϵ1)α(a)S
∗(a)da− uP ∗ = 0,

dS∗(a)

da
+ (u+ α(a))S∗(a) = 0,

S∗(0) = P ∗
∫ ∞

0

β(a)S∗(a)da = P ∗B∗.

(4.1)

It is clear that there always exists a smoking free equilibrium E0(P0, 0), where

P0 = λ/u. Solving the second equation of (4.1) yields

S∗(a) = S∗(0)e−
∫ a
0
(u+α(s))da = P ∗B∗K0(a), (4.2)

then

β(a)S∗(a) = P ∗B∗β(a)K0(a),

i.e.,

B∗ = P ∗B∗K2,



January 23, 2022 0:13 WSPC/INSTRUCTION FILE ws-ijb

Global Stability of An Age-structured Model of Smoking and Its Treatment 9

where K2 is defined by (2.5). Thus, P ∗ = 1/K2. Considering the first equation of

(4.1) and making use of (4.2), we have

λ− P ∗B∗ + P ∗(1− ϵ1)B
∗K1 − uP ∗ = 0, (4.3)

where K1 is defined by (2.5), solving equation (4.3) with respect to B∗,

B∗ =
λ− uP ∗

P ∗ − P ∗(1− ϵ1)K1
.

Substituting the expressions of P ∗ and B∗ into (4.2) we get

S∗(a) =
(λK2 − u)K0(a)

K2 − (1− ϵ1)K1K2
. (4.4)

Notice that K1 is less than 1, so S∗(a) > 0 if and only if λK2 − u > 0, or R0 > 1,

where

R0 =
λK2

u
.

System (2.3) exists with a positive endemic equilibrium E∗(P ∗, S∗) provided that

R0 > 1.

Theorem 3. System (2.3) always exists with a smoking free equilibrium E0. If

R0 > 1, then there is a positive endemic equilibrium E∗ for system (2.3).

Theorem 3 provided the conditions for the existence of the equilibria, in the

following we investigate the local stability of these equilibria.

Theorem 4. The equilibrium E0 of system (2.3) is locally stable if R0 < 1.

Proof. To show the local stability of the equilibrium E0, we need to consider the

linearized model of system (2.3) at E0. To this end, let y1(t) = P (t) − P0 and

y2(t, a) = S(t, a), then substituting these into system (2.3) , we get the correspond-

ing linearized system at E0:

dy1(t)

dt
= −uy1(t)− P0

∫ ∞

0

β(a)y2(t, a)da+

∫ ∞

0

(1− ϵ1)α(a)y2(t, a)da,

dy2(t, a)

dt
+

dy2(t, a)

da
= −(u+ α(a))y2(t, a),

y2(t, 0) = P0

∫ ∞

0

β(a)y2(t, a)da.

(4.5)

Let y1(t) = ỹ1e
θt and y2(t, a) = ỹ2(a)e

θt, from (4.5) we get

θỹ1 = −uỹ1 − P0

∫ ∞

0

β(a)ỹ2(a)da+

∫ ∞

0

(1− ϵ1)α(a)ỹ2(a)da,

θỹ2(a) +
dỹ2(a)

da
= −(u+ α(a))ỹ2(a),

ỹ2(0) = P0

∫ ∞

0

β(a)ỹ2(a)da.

(4.6)

Integrating the second equation of (4.6) from 0 to a yields

ỹ2(a) = ỹ2(0)e
−

∫ a
0
(u+α(s)+θ)ds. (4.7)
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Putting (4.7) into the third equation of (4.6),

L(θ) .
=

λ

u

∫ ∞

0

β(a)e−
∫ a
0
(u+α(s)+θ)dsda− 1 = 0. (4.8)

Obviously,

L(0) = R0 − 1, lim
θ→+∞

L(θ) = 0, lim
θ→−∞

L(θ) = ∞,
d

dθ
L(θ) < 0.

Hence, if R0 > 1, then L(θ) has a unique positive real root θ∗, i.e., R0 > 1 implies

that E0 is unstable. If R0 < 1, then θ∗ < 0, i.e., E0 is locally stable. Otherwise,

denote θ = a1 + ib1 as any complex root of L(θ) with real part a1 ≥ 0. However,

|L(a1 + ib1)| =
λ

u

∫ ∞

0

β(a)e−
∫ a
0
(u+α(s))dsda− 1 = R0 − 1 < 0.

It indicates that if R0 < 1, all roots of L(θ) exist with negative real parts, then E0

is locally stable. This completes the proof.

Theorem 5. The equilibrium E∗ of system (2.3) is locally stable if R0 > 1.

Proof. Let y1(t) = P (t) − P ∗ and y2(t, a) = S(t, a) − S∗, then we obtain the

linearized system at E0 of system (2.3):

dy1(t)

dt
= −uy1(t)− P ∗

∫ ∞

0

β(a)y2(t, a)da−
∫ ∞

0

β(a)S∗y1(t)da

+

∫ ∞

0

(1− ϵ1)α(a)y2(t, a)da,

dy2(t, a)

dt
+

dy2(t, a)

da
= −(u+ α(a))y2(t, a),

y2(t, 0) = P0

∫ ∞

0

β(a)y2(t, a)da+

∫ ∞

0

β(a)S∗y1(t)da.

(4.9)

Then taking the exponential solutions y1(t) = ỹ1e
θt and y2(t, a) = ỹ2(a)e

θt into

account and putting these into system (4.9)

θỹ1 = −uỹ1 −
∫ ∞

0

β(a)ỹ1S
∗da−

∫ ∞

0

β(a)P ∗ỹ2(a)da

+

∫ ∞

0

(1− ϵ1)α(a)ỹ2(a)da,

θỹ2(a) +
dỹ2(a)

da
= −(u+ α(a))ỹ2(a),

ỹ2(0) =

∫ ∞

0

β(a)ỹ1S
∗da+

∫ ∞

0

β(a)P ∗ỹ2(a)da.

(4.10)

Solving the second equation of (4.10) yields

ỹ2(a) = ỹ2(0)e
−

∫ a
0
(u+α(s)+θ)ds. (4.11)

Combining (4.11) with the third equation of (4.10),

ỹ2(0) =

∫ ∞

0

β(a)ỹ1S
∗da+

∫ ∞

0

β(a)P ∗ỹ2(0)e
−

∫ a
0
(u+α(s)+θ)dsda. (4.12)



January 23, 2022 0:13 WSPC/INSTRUCTION FILE ws-ijb

Global Stability of An Age-structured Model of Smoking and Its Treatment 11

From the first equation of (4.10) we have

ỹ1 =

−
∫ ∞

0

β(a)P ∗ỹ2(a)da+

∫ ∞

0

(1− ϵ1)α(a)ỹ2(a)da

θ + u+
∫∞
0

β(a)ỹ1S∗da
. (4.13)

Substituting (4.13) into (4.12) and after simplification we get

L1(θ)
.
=

B∗ ∫∞
0

(1− ϵ1)α(a)e
−

∫ a
0
(u+θ+α(a))dsda

θ + u+B∗

+
(θ + u)

∫∞
0

β(a)P ∗e−
∫ a
0
(u+θ+α(a))dsda

θ + u+B∗ = 1.

If R0 > 1, then E∗ is locally stable. Otherwise, denote θ = a2 + ib2 as any complex

root of L1(θ) with real part a2 ≥ 0. However,

|L(a2 + ib2)| ≤
B∗(1− ϵ1)

∫∞
0

α(a)K0(a)da+ uP ∗ ∫∞
0

β(a)K0(a)da

u+B∗

=
B∗(1− ϵ1)K1 + uP ∗K2

u+B∗

≤ B∗(1− ϵ1) + u

u+B∗ ≤ 1,

which is a contradiction. It implies that if R0 > 1, all roots of L1(θ) = 1 exist with

negative real parts, then E∗ is locally stable. This completes the proof.

4.2. Uniform persistence

This subsection deals with the uniform persistence of system (2.3) when R0 > 1.

Define

M0 =

{
(P (t), S(t, a))T ∈ X |

∫ ∞

0

S(t, a)da > 0

}
,

let ∂M0 = X\M0 and X = M0 ∪ ∂M0.

Proposition 2. Under the semiflow ζ(t, ·), the sets M0 and ∂M0 are both positively

invariant.

Theorem 6. The equilibrium E0 of system (2.3) is globally asymptotically stable

for the semiflow {ζ(t, ·)}t≥0 restricted to ∂M0.

Proof. Notice that P (t) ≤ λ/u as t → ∞. Hence, S(t, a) ≤ S̃(t, a) where S̃(t, a)

satisfies 
dS̃(t, a)

dt
+

dS̃(t, a)

da
= −(u+ α(a))S̃(t, a),

S̃(t, 0) =

∫ ∞

0

β(a)P (t)S̃(t, a)da, S̃(0, a) = S0(a).

It follows from (3.2), (3.3), (3.4) and (3.6) that we get limt→+∞ S̃(t, a) = 0,

which means limt→+∞ S(t, a) = 0. Furthermore, the first equation of (2.3) leads
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to limt→+∞ P (t) = P0. Therefore, limt→+∞(P (t), S(t, a)) = (P0, 0), i.e., the equi-

librium E0 of system (2.3) is globally asymptotically stable for the semiflow ζ(t, ·)
restricted to ∂M0. This completes the proof.

Theorem 7. If R0 > 1, then the semiflow {ζ(t, ·)}t≥0 is uniformly persistent with

regard to the decomposition (M0, ∂M0), and there is a compact subset A0 ⊂ M0

for {ζ(t, ·)}t≥0 in X.

Proof. Notice that E0 is globally asymptotically stable in ∂M0, let

Ws(E0) =
{
x ∈ X| lim

t→∞
ζ(t, x) = E0

}
,

then we only need to ensure thatWs(E0)∩M0 = ∅. Otherwise, there exists a x̃ ∈ M0

such that x̃ ∈ Ws(E0). Thus, there is a list of {x̃n} ∈ M0 and it satisfies ∥ζ(t, x̃n)−
E0∥X < n (t ≥ 0). Note that Qt(t) = 0 at E0, let ζ(t, x̃n) = (Pn(t), Sn(t, ·), Qn

t (t)).

For t ≥ 0 we have

P0 −
1

n
< Pn(t) < P0 +

1

n
, 0 ≤ Qn

t (t) ≤
1

n
.

Equation (2.6) leads to S(t, a) ≥ P (t− a)B(t− a)K0(a). Concerning these inequal-

ities and the third equation of system (2.1 ) yields Qn
t (t) ≥ Qn(t), where


dQn(t)

dt
=

∫ ∞

0

ϵ1(1− ϵ2)α(τ)

(
P0 −

1

n

)
B(t− τ)K0(τ)dτ − uQn(t),

Qn(0) = Qn
t (0),

If R0 > 1, the large n > 0 implies that(
P0 −

1

n

)∫ ∞

0

ϵ1(1− ϵ2)α(τ)B(t− τ)K0(τ)dτ

≥
(
P0 −

1

n

)∫ ∞

0

uQn(t)α(τ)K2(τ)dτ ≥ uQn(t).

It follows from [1] that Qn
t (t) is unbounded, and then Qn

t (t) is unbounded. It implies

that ζ(t, x̃n) is unbounded, which contradicts the boundedness of Qn
t (t). Therefore,

Ws(E0) ∩ M0 = ∅ holds, so we conclude that semiflow {ζ(t, ·)}t≥0 is uniformly

persistent. Furthermore, from [16] we can find a compact subset A0 ⊂ M0 for

{ζ(t, ·)}t≥0 in X, which is a global attractor. This completes the proof.

4.3. Global stability of the equilibria

This part mainly deals with the global stability of system (2.3), for which we first

introduce a very useful function [9].

Proposition 3. For the Volterra function M(x) = x − 1 − lnx, it is clear that

M(x) ≥ 0 if x > 0 and M(1) = 0 is a global minimum.

Theorem 8. If R0 < 1, then the equilibrium E0 of system (2.3) is globally asymp-

totically stable.
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Proof. Define a positive function L1(a) as

L1(a) =

∫ ∞

a

P0β(τ)e
−

∫ τ
a
(u+α(s))dsdτ,

then it is clear that L1(a) > 0(a ≥ 0) and

L1(0) = P0

∫ ∞

0

β(τ)e−
∫ τ
0
(u+α(s))dsdτ = P0K2 = R0.

Further, taking the derivative of L1(a) with respect to a yields

dL1(a)

da
= L1(a)(u+ α(a))− e

∫ a
0
(u+α(s))dsP0β(a)e

−
∫ a
0
(u+α(s))ds

= L1(a)(u+ α(a))− P0β(a).
(4.14)

Considering any solution (P (t), S(t, a)) of system (2.3), we define the Lyapunov

function V (t) as follows:

V (t) = P0M

(
P (t)

P0

)
+

∫ ∞

0

L1(a)S(t, a)da
.
= V1(t) + V2(t).

We calculate the derivative of V1(t) along with the solutions of system (2.3),

dV1(t)

dt
=

(
1− P0

P (t)

)
(λ−

∫ ∞

0

β(a)P (t)S(t, a)da

+

∫ ∞

0

(1− ϵ1)α(a)S(t, a)da− uP (t))

= uP0

(
2− P0

P (t)
− P (t)

P0

)
−
∫ ∞

0

β(a)P (t)S(t, a)da

+

∫ ∞

0

(1− ϵ1)α(a)S(t, a)da+

∫ ∞

0

β(a)P0S(t, a)da

− P0

P (t)

∫ ∞

0

(1− ϵ1)α(a)S(t, a)da.

(4.15)

Concerning (4.14) and the derivative of V2(t) along the solutions of system (2.3)

yields

dV2(t)

dt
= −

∫ ∞

0

L1(a)
∂

∂a
S(t, a)da−

∫ ∞

0

L1(a)(u+ α(a))S(t, a)da

= −L1(a)S(t, a)|a=∞
a=0 +

∫ ∞

0

S(t, a)
dL1(a)

da
da

−
∫ ∞

0

L1(a)(u+ α(a))S(t, a)da

= L1(0)S(t, 0) +

∫ ∞

0

S(t, a) (L1(a)(u+ α(a))− P0β(a)) da

−
∫∞
0

L1(a)(u+ α(a))S(t, a)da

= L1(0)S(t, 0)−
∫ ∞

0

S(t, a)P0β(a)da.

(4.16)
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Hence,

dV (t)

dt
= uP0

(
2− P0

P (t)
− P (t)

P0

)
+ L1(0)S(t, 0)−

∫ ∞

0

β(a)P (t)S(t, a)da

+

∫ ∞

0

(1− ϵ1)α(a)S(t, a)da− P0

P (t)

∫ ∞

0

(1− ϵ1)α(a)S(t, a)da

= uP0

(
2− P0

P (t)
− P (t)

P0

)
+ (R0 − 1)S(t, 0)

+
P (t)− P0

P (t)

∫ ∞

0

(1− ϵ1)α(a)S(t, a)da.

(4.17)

From Proposition 1, P (t) ≤ λ/u = P0 holds. Thereby, if R0 < 1, then dV (t)/dt ≤ 0.

dV (t)/dt = 0 holds only for P (t) = P0 and S(t, a) = 0, i.e., the equality holds

only at the equilibrium E0. Therefore, {E0} ∈ Ω is the largest invariant subset of

{(P (t), S(t, a))|dV (t)/dt = 0}, it follows from the Lyapunov-LaSalle theorem for

semiflows that the equilibrium E0 is globally asymptotically stable if R0 < 1. This

completes the proof.

Theorem 9. If R0 > 1 and ϵ1 = 1, then the equilibrium E∗ of system (2.3) is

globally asymptotically stable.

Proof. Introduce a function L2(a) such that L2(a) > 0(a ≥ 0), where

L2(a) =

∫ ∞

a

P ∗β(τ)e−
∫ τ
a
(u+α(s))dsdτ,

with

L2(0) =

∫ ∞

0

P ∗β(τ)e−
∫ τ
0
(u+α(s))dsdτ = P ∗K2.

The derivative of L2(a) with respect to a yields

dL2(a)

da
= L2(a)(u+ α(a))− e

∫ a
0
(u+α(s))dsP ∗β(a)e−

∫ a
0
(u+α(s))ds

= L2(a)(u+ α(a))− P ∗β(a).
(4.18)

Defining the Lyapunov function U(t) as follows

U(t) = P ∗M

(
P (t)

P ∗

)
+

∫ ∞

0

L2(a)S
∗(a)M

(
S(t, a)

S∗(a)

)
da

.
= U1(t) + U2(t).

In the light of system (2.3), the derivative of U1(t) yields

dU1(t)

dt
=

(
1− P ∗

P (t)

)(
λ− uP (t)−

∫ ∞

0

β(a)P (t)S(t, a)da

)
= uP ∗

(
2− P ∗

P (t)
− P (t)

P ∗

)
+

∫ ∞

0

β(a)P ∗S∗(a)

(
1− P (t)S(t, a)

P ∗S∗(a)
− P ∗

P (t)
+

S(t, a)

S∗(a)

)
da.

(4.19)
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To get the expression of dU2(t)/dt, we first need to calculate the derivative of

M (S(t, a)/S∗(a)) with respect to a, i.e.,

∂

∂a
M

(
S(t, a)

S∗(a)

)
=

∂

∂a

(
S(t, a)

S∗(a)
− 1− ln

(
S(t, a)

S∗(a)

))
=

∂

∂a

(
S(t, a)

S∗(a)

)
− S∗(a)

S(t, a)

∂

∂a

(
S(t, a)

S∗(a)

)
=

(
1− S∗(a)

S(t, a)

)( ∂S(t,a)
∂a S∗(a)− S(t, a)∂S

∗(a)
∂a

(S∗(a))2

)
=

(
1− S∗(a)

S(t, a)

)(
1

S∗(a)

∂S(t, a)

∂a
+

S(t, a)

S∗(a)
(u+ α(a))

)
=

(
1

S∗(a)
− 1

S(t, a)

)
∂S(t, a)

∂t

= − ∂
∂tM

(
S(t,a)
S∗(a)

)
.

(4.20)

It follows from (4.20) that

dU2(t)

dt
=

∫ ∞

0

L2(a)S
∗(a)

∂

∂t
M

(
S(t, a)

S∗(a)

)
da

= −
∫ ∞

0

L2(a)S
∗(a)

∂

∂a
M

(
S(t, a)

S∗(a)

)
da

= −L2(a)S
∗(a)M

(
S(t, a)

S∗(a)

)
|a=∞
a=0 +

+
∫∞
0

M
(

S(t,a)
S∗(a)

)
∂
∂a (L2(a)S

∗(a))da

= L2(0)S
∗(0)M

(
S(t, 0)

S∗(0)

)
−
∫ ∞

0

P ∗S∗(a)β(a)M

(
S(t, a)

S∗(a)

)
da

=
∫∞
0

P ∗S∗(a)β(a)
(
M
(

P (t)B(t)
P∗B∗

)
−M

(
S(t,a)
S∗(a)

))
da.

(4.21)

From (4.19) and (4.21),

dU(t)

dt
= uP ∗

(
2− P ∗

P (t)
− P (t)

P ∗

)
+
∫∞
0

β(a)P ∗S∗(a)
(
M
(

P (t)B(t)
P∗B∗

)
−M

(
S(t,a)
S∗(a)

))
da

+

∫ ∞

0

β(a)P ∗S∗(a)

(
1− P (t)S(t, a)

P ∗S∗(a)
− P ∗

P (t)
+

S(t, a)

S∗(a)

)
da

= uP ∗
(
2− P ∗

P (t)
− P (t)

P ∗

)
−
∫ ∞

0

β(a)P ∗S∗(a)M

(
P ∗

P (t)

)
da ≤ 0.

(4.22)

Moveover, dU(t)/dt = 0 if and only if P (t) = P ∗ and S(t, a) = S∗(a), i.e.,

dU(t)/dt = 0 holds only at the equilibrium E∗. Therefore, the largest invariant

subset of {(P (t), S(t, a))|dU(t)/dt = 0} is {E∗} ∈ Ω, according to the Lyapunov-

LaSalle theorem for semiflows, the equilibrium E∗ is globally asymptotically stable

if R0 > 1. This completes the proof.

From Theorem 9, the equilibrium E∗ of system (2.3) is globally asymptotically

stable provided that R0 > 1 and ϵ1 = 1. However, we cannot determine whether it

is also true when ϵ1 ∈ [0, 1). To this end, we will discuss the results when ϵ1 ̸= 1 by

means of numerical investigations in the next section.
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5. Numerical investigations and discussion

In order to carry out numerical analysis to support the theoretical results, we as-

sume that the age-dependent transmission rate β(a) and the age-dependent smoking

quitting rate α(a) have the following expressions,

β(a) = β1

(
1 + sin

(a− 10)π

20

)
, α(a) = 0.01

(
1 + sin

(a− 10)π

20

)
.

Firstly, it is very important to show how parameter values affect the final states

of the chain smokers. Since R0 is a threshold which determines the stability of

the equilibria and contains all important parameters of model (2.3), we carry out

sensitivity analysis to address the effects of parameters on the threshold R0. If we

fix all parameter values as shown in Fig. 1, it is found that R0 is increasing when λ

increases, but R0 decreases once the age a increases. In view of Theorems 4 and 8,

this indicates that increasing the lower smoking age a and decreasing the constant

recruitment rate λ will make the smoking free equilibrium E0 stable (Fig.1(a)). In

Fig.1(b) and Fig.1(c), it is clear that R0 is decreasing when u and β1 increase,

R0 is increasing when u and β1 increase. Thus, increasing the death rate u and

transmission rate β1 and at the same time decreasing the age a will stabilize E0.

Meanwhile, because

S∗(a) =
(λK2 − u)K0(a)

K2 − (1− ϵ1)K1K2
,

so a stronger determination ϵ1 will decrease the final state of S∗(a), i.e., a larger

determination ϵ1 will lead to a high quitting rate for chain smokers. Thus, feasible

ways to give up smoking include: strengthening the determination to quit smoking,

decreasing the constant recruitment rate and increasing the age, increasing both

the death rate and transmission rate and decreasing the age.

In Fig.2, with the parameter values fixed as shown in Fig.1(a) with a = 20, it is

observed that R0 < 1 holds when λ = 0.05. In fact, by simple calculation we have

R0 ≈ 0.955 < 1. It follows from Theorem 4 and Theorem 8 that the smoking free

equilibrium E0 is globally asymptotically stable. Because R0 is a monotone increas-

ing function with respect to λ, when λ is increased, the value of R0 will increase

and be greater than 1. For example, fixing λ = 0.05 indicates R0 ≈ 9.865 > 1, the

results of Theorem 5 and Theorem 9 imply that the smoking endemic equilibrium

E∗ is globally asymptotically stable (Fig.3).

In Theorem 9, we proved that the equilibrium E∗ of system (2.3) is globally

asymptotically stable when R0 > 1 and ϵ1 = 1. But we cannot determine whether

it is also true when ϵ1 ∈ [0, 1). To this end, fix λ = 0.2 and ϵ1 = 0.2 such that

R0 ≈ 3.946 > 1, it is observed that the solutions of system (2.3) with different initial

values tend to the equilibrium E∗ when t is large enough (Fig.4 (a)). In this case,

we also find that the equilibrium E∗ of system (2.3) is also globally asymptotically

stable at different smoking ages (Fig.4 (b)), the final states of the chain smokers

S(t, a) decreases when the age increases. The main reasons may be that as the
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smoking age increases, the chain smokers may be affected by many interventions

including media reports on the dangers of smoking, education, their determination,

expostulations from their families, and so on (as can be seen in equation (4.2)) .

6. Conclusions

It has been known that smoking has caused a series of public health problems [7],

and many scholars have tried to construct different types of mathematical models to

explore the internal transmission mechanisms of smoking [4,29,22,20,8,18]. In this

study, we proposed a more generalized age-structured smoking dynamical model

with interventions to evaluate the effectiveness of the important parameters on

giving up smoking.

We first studied the main properties of the solutions including well-posedness

and asymptotic smoothness, by defining the semiflow of system (2.3) and showing

that it is globally attractive. Then we derived the explicit expression of the smok-

ing generation number R0 which determines the global stability of the boundary

equilibrium E0 and the endemic equilibrium E∗. If R0 < 1, then the smoking free

equilibrium E0 is globally asymptotically stable, if R0 > 1, then the endemic e-

quilibrium E∗ is globally asymptotically stable. Biologically, numerical simulation

not only verified the theoretical results but also suggested feasible ways to give

up smoking such as strengthening the determination to quit smoking, decreasing

the constant recruitment rate and increasing the age, increasing both the death

rate and transmission rate and decreasing the age. On the one hand, we discussed

the relationship among the age, the transmission rate, the smoking quitting rate

and the smoking generation number. On the other hand, the effectiveness of the

key parameters for quitting smoking were evaluated. Therefore, we have solved two

problems raised in the introduction.

Compared to the previous studies [28,18], highlights of this paper included (1)

consideration of a more generalized age-structured smoking model with treatments;

(2) an age parameter was included in the threshold condition R0, which indicat-

ed that the age effect has a substantial effect on the stability of the system; (3)

discussion of the effects of the treatment parameters and biological significance.

There are still many problems worthy of further study. For example, it is believed

that there is a relationship between media reports and smoking cessation [22], but

how to consider the role of media reports in the proposed model is challenging.

Media reports may raise individuals’ awareness of quitting smoking [13], and closely

related to the final states of the chain smokers [17,11]. Another very challenging

question is whether we could investigate media impact by employing a piecewise

smooth function to model the individuals’ awareness depending on the number of

chain smokers [25,26].
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Figure Legends
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Fig. 1. Sensitivities of the threshold condition R0 with respect to key parameters, we set u = 0.0736,

α(a) = 0.01
(
1 + sin

(a−10)π
20

)
(0 ≤ a ≤ 20) and β(a) = β1

(
1 + sin

(a−10)π
20

)
(0 ≤ a ≤ 20). (a)

β1 = 0.1 ; (b) β1 = 0.1 and λ = 0.5; (c) λ = 0.1.
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Fig. 2. Time series of potential smokers P (t) and chain smokers S(t, a) with different ini-
tial conditions. The parameters were fixed as: λ = 0.05, u = 0.0736, a = 20, ϵ1 = 0.3,

α(a) = 0.01
(
1 + sin

(a−10)π
20

)
(0 ≤ a ≤ 20) and β(a) = 0.1

(
1 + sin

(a−10)π
20

)
(0 ≤ a ≤ 20).
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Fig. 3. Time series of potential smokers P (t) and chain smokers S(t, a) with different ini-

tial conditions. The parameters were fixed as: λ = 0.5, u = 0.0736, a = 20, ϵ1 = 0.3,

α(a) = 0.01
(
1 + sin

(a−10)π
20

)
(0 ≤ a ≤ 20) and β(a) = 0.1

(
1 + sin

(a−10)π
20

)
(0 ≤ a ≤ 20).
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Fig. 4. Time series of S(t, a) showing the global stability of E∗. (a) for ϵ1 ∈ [0, 1) with dif-

ferent initial conditions; (b) at different fixed ages a. The parameters were fixed as: λ = 0.2,

u = 0.0736, a = 20, ϵ1 = 0.2, α(a) = 0.01
(
1 + sin

(a−10)π
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)
(0 ≤ a ≤ 20) and β(a) =

0.1
(
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(a−10)π
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)
(0 ≤ a ≤ 20).


