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are driven by the interaction of two state variables. We find that while linear VARs

quantitatively underestimate the strength of the interaction mechanism, they successfully

identify the qualitative presence of a cycle mechanism in most cases (55%-100%). Our

results further suggest that linear VARs are surprisingly successful at estimating cycle

frequencies of nonlinear processes.

JEL Codes: C15, C32, E32

Keywords: vector autoregression, limit cycles, endogenous cycles, business and financial

cycles, cycle frequency

∗We thank the editor Jonathan Temple, an anonymous referee, Roberto Dieci, Giorgos Galanis, Alexander
Guschanski, Achilleas Mantes, Christian Proaño, Ron Smith, Engelbert Stockhammer, Frank Westerhoff, and
Rafael Wildauer for helpful comments. All errors are the authors’.
†Economics Department, Leeds University Business School, Maurice Keyworth Building, Woodhouse, Leeds

LS2 9JT. E-Mail: k.kohler@leeds.ac.uk.
‡Institute for Political Economy, Governance, Finance and Accountability, University of Greenwich, Old

Royal Naval College, Park Row, Greenwich, London SE10 9LS. E-Mail: r.g.calvertjump@greenwich.ac.uk.



1 Introduction

Since the rise to popularity of real business cycle theory in the 1980s, and then New Keynesian

DSGE models in the 1990s, macroeconomics has been dominated by the use of linearised dif-

ference equations to model business cycles. Edward C. Prescott (1986, p.10) famously argued

that,

‘some systems of low-order linear stochastic difference equations with a nonoscilla-

tory deterministic part, and therefore no cycle, display key business cycle features

[...] I thus do not refer to business cycles, but rather to business cycle phenomena,

which are nothing more nor less than a certain set of statistical properties of a

certain set of important aggregate time series.’

Recently, however, the idea of endogenous cycles has re-emerged in macroeconomic theory.

Azariadis (2018) and Gaĺı (2018), for example, call for new models with complex eigenvalues

and endogenous propagation mechanisms to account for periodic fluctuations in output. An

important stimulus has been empirical research on financial cycles that finds dominant frequen-

cies of 13 to 16 years in aggregate financial variables such as private credit and house prices

(Aikman et al. 2015, Borio 2014, Rünstler and Vlekke 2017, Stockhammer et al. 2019, Strohsal

et al. 2019). Borio (2014, p.186) argues that these financial boom-bust episodes should be seen

‘as the result of endogenous forces that perpetuate (irregular) cycles’, rather than the result of

random shocks propagated by linear mechanisms.

The re-emergence of endogenous cycles in macroeconomic theory is typified by the recent

contribution of Beaudry et al. (2020). They show that various U.S. macroeconomic indicators,

such as hours worked per person and the unemployment rate, exhibit a pronounced cycle of

around 10 years in length. They build a stochastic New Keynesian model with strategic com-

plementarities in consumption, in which nonlinearities generate a limit cycle that matches the

periodicities found in the data. Endogenous fluctuations are also a major theme in heteroge-

neous agents models of asset price dynamics (e.g. Brock and Hommes 1997, Chiarella 1992,

Dieci and He 2018). Similarly, the literature on behavioural New Keynesian models investi-

gates endogenous cycle mechanisms based on strategic interaction (Branch and McGough 2010,

Calvert Jump and Levine 2019).

Despite the re-emergence of endogenous cycles in macroeconomic theory and the existence

of various types of nonlinear time series models, linear vector autoregressive (VAR) models

still dominate macroeconometrics. Among other reasons, this is because they provide flexible

approximations to a variety of time series processes. In particular, linear ARMA processes can

be thought of as approximations to the Wold decomposition of regular stationary processes
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(Francq and Zaköıan 1998), and ARMA models can be found which approximate the spectra

of any stationary process, nonlinear or otherwise (Brockwell and Davis 2006, pp.130-133).

However, while VAR models can be thought of as approximations to a variety of time series

processes, their estimated coefficients will rarely correspond to the structural parameters of a

nonlinear data-generating process (DGP). This is a simple implication of omitted variable (or

omitted nonlinearity) bias. For example, Beaudry et al. (2017) use a Monte Carlo simulation to

show that univariate linear autoregressive models fail to identify local instability when estimated

on data generated by a nonlinear limit cycle process, despite the linear model providing (in

principle) a good approximation to second moments. Specifically, Beaudry et al. (2017) find that

the moduli of locally unstable processes, as defined by their linearisation, are underestimated

by linear time series models.

While we know that linear time series models underestimate the moduli of limit cycle pro-

cesses, the extent to which they accurately estimate the endogenous cycle mechanisms and cycle

lengths of nonlinear limit cycle processes is unknown. In this paper, we provide an assessment of

the quantitative relevance of this type of omitted nonlinearity bias in an applied, small sample

context. Using a series of Monte Carlo studies, we explore what the linear projection of a vector

process {Xt} on its own history – i.e., a VAR model – can tell us about the linear part – i.e., the

Jacobian matrix – of canonical nonlinear business cycle models. Specifically, we study whether

linear VAR models are a reliable method of identifying the cyclical interaction mechanisms

posited by a broad class of endogenous business cycle models. By interaction mechanism, we

mean a causal mechanism in which two state variables interact such that the first variable is

increasing in the lags of the second variable, while the second variable is decreasing in the lags

of the first. In the first-order, bivariate models we focus on, such an interaction mechanism is

a critical condition for complex eigenvalues, and thus genuine oscillations (Stockhammer et al.

2019). Such a set-up can be found in Minskyan financial cycle models (e.g. Asada 2001), New

Keynesian financial accelerator models (e.g. Kiyotaki and Moore 1997), or models of housing

cycles (Dieci and Westerhoff 2012, 2016). Given the parsimony and flexibility of linear VAR

models, alongside the re-emergence of limit cycle models in macroeconomic theory, it is of

great practical use to know how well linear VARs identify such interaction mechanisms in the

presence of nonlinearities.1

Our Monte Carlo studies consist of a sequence of linear VAR models estimated on artificial

data generated from five nonlinear business cycle models. Using these data, we summarise the

1Focussing on the interaction mechanism is especially relevant when researchers are not primarily interested
in the functional form of the DGP but rather in the interaction mechanism itself. For example, recent studies
of financial cycles (Borio 2014, Juselius and Drehmann 2020, Rünstler and Vlekke 2017, Stockhammer et al.
2019, Strohsal et al. 2019) focus on interactions between financial variables and the real economy, but do not
present strong theoretical reasons to pin down a specific functional form for these interactions.
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information contained in the Jacobian of nonlinear business cycle models in two ways. First, we

compare the eigenvalues of estimated linear VAR models to the eigenvalues of the underlying

nonlinear DGP. And second, we ask if linear VAR models can detect the interaction mechanisms

that generate the eigenvalues of the DGP.

Our first contribution is to confirm and extend the finding of Beaudry et al. (2017) to the

multivariate case, that linear autoregressive models generally fail to identify the presence of

local instability when estimated on data generated from nonlinear limit cycle models. Our

second contribution is to document what is, to the best of our knowledge, a novel finding:

linear VARs successfully identify the qualitative presence of a cyclical interaction mechanism

in the majority of cases. When the DGP is a first-order system with white-noise errors, a

linear VAR(1) accomplishes cycle detection rates of 100%. In more realistic settings with

serially correlated shock processes and lag choice based on algorithms, cycle detection rates

range between 55% and almost 100%. We also find that linear VARs generate relatively few

false positives: they incorrectly identify cycle mechanisms in a benchmark nonlinear model

in less than 1% of cases. Our final contribution is to document that VARs are surprisingly

successful at estimating cycle frequencies of nonlinear processes. Although local instability and

the magnitude of the interaction mechanism tend to be underestimated, the downward bias in

the estimated length of the limit cycle is typically smaller. Thus, as in Fernández-Villaverde

and Rubio-Ramı́rez (2005), we find that models with omitted nonlinearities can still provide

accurate point estimates for certain parameters of nonlinear DGPs – in this case, even when

the nonlinearities produce limit cycles.

Our paper is related to a number of different research programmes in applied macroeco-

nomics. First and foremost, it is related to the extant literature on nonlinear cycle models

(Beaudry et al. 2020, Bischi et al. 2001, Branch and McGough 2010, Brock and Hommes 1997,

Dieci and Westerhoff 2012, Dieci and He 2018, Calvert Jump and Levine 2019, Wegener et al.

2009), as well as empirical work on business and financial cycles with linear estimation tech-

niques (Stockhammer et al. 2019, Strohsal et al. 2019). Stockhammer et al. (2019) investigate

finance-driven business cycles and find evidence consistent with the presence of cyclical interac-

tion mechanisms between GDP and short-term real interest rates as well as corporate debt in

several advanced economies. Similarly, Strohsal et al. (2019) study the bivariate interaction of

financial and real cycles in the frequency domain using cross-spectra between GDP and financial

variables, such as credit and house prices. Both Stockhammer et al. (2019) and Strohsal et al.

(2019) rely on linear VARs to investigate financial-real interactions and disregard the potential

issue of nonlinearity.

Second, it is related to the literature on nonlinear time series models, such as threshold

or smooth transition (vector) autoregressive models (Kilian and Lütkepohl 2017, Teräsvirta
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et al. 2010, Teräsvirta 2018), which add flexible nonlinearities to workhorse linear models.

Most closely related is the study by Beaudry et al. (2017) that finds that the moduli of locally

unstable processes are underestimated by linear models. Finally, our paper is also related to the

literature on linear versus nonlinear estimation in DSGE models. In a seminal study, Fernández-

Villaverde and Rubio-Ramı́rez (2005) use a Monte Carlo study to compare the estimation

properties of linear versus nonlinear approximations to data generated from a DSGE. They

conclude that, despite nonlinear approximations providing a considerably better fit to their

simulated data, models with omitted nonlinearities can still provide accurate point estimates

for certain parameters of nonlinear DGPs and should not be abandoned. However, they did

not consider DGPs that produce limit cycles, which is the focus of our paper.

The paper is structured as follows. Section 2 discusses cycle mechanisms in linear VAR

models and how bias can arise from omitted nonlinearities alongside the more familiar Hurwicz

and serial correlation biases. Section 3 introduces a linear benchmark as well as the five nonlin-

ear business cycle models that will be considered as DGPs in our Monte Carlo studies. Section

4 describes the Monte Carlo design. Section 5 presents the main results and various robustness

tests. Section 6 concludes.

2 Estimating 2D cycle mechanisms with linear VARs

Cycle mechanisms in VAR models

Following the approach proposed in Stockhammer et al. (2019), consider a first-order bivariate

linear VAR model,[
yt

ft

]
=

[
a1 a2

b1 b2

][
yt−1

ft−1

]
+

[
uyt

uft

]
, (1)

in which yt and ft denote two arbitrary macroeconomic variables – for example, a measure of

real activity and debt as in Kiyotaki and Moore (1997), flow and stock variables as in Beaudry

et al. (2020), or house prices and the housing stock as in Dieci and Westerhoff (2012, 2016) –

and uyt and uft are error terms. As is well known, the presence of a pair of complex conjugate

eigenvalues of the coefficient matrix in (1) generates oscillatory dynamics. A necessary condition

for complex eigenvalues in this simple model is,

a2b1 < 0, (2)
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i.e., the off-diagonal elements have opposite sign. To see this, recall that the eigenvalues of

the coefficient matrix in (1) are the roots of the characteristic equation λ2 − λTr + Det = 0,

where Tr = a1 + b2 and Det = a1b2 − a2b1 are the trace and determinant of the coefficient

matrix, respectively. A necessary and sufficient condition for the roots to be complex is a

negative discriminant Tr2 − 4Det. Simplifying Tr2 − 4Det = (a1 + b2)2 − 4(a1b2 − a2b1) to

(a1 − b2)2 + 4(a2b1) demonstrates that Tr2 − 4Det can only be negative if a2b1 < 0.

As argued in Stockhammer et al. (2019), this provides a straightforward intuition that is

useful for structuring theories of endogenous business cycles: oscillations in (1) stem from

an interaction mechanism between yt and ft in which an increase in one variable induces an

increase in the second variable, which in turn drags down the first. In a theory of finance-driven

business cycles, for example, an increase in output encourages firms to take on more debt, but

the resulting debt burden might provoke a retrenchment of investment and economic activity,

resulting in oscillatory dynamics in output and debt. Importantly, although the condition in

(2) is only a necessary one, it is nonetheless of critical interest from a theoretical perspective, as

it embodies the main driving force of endogenous cycles. In the limit, if a2 = b1 = 0, the only

causal linkage between yt and ft would be via the error terms. For this reason, we summarise

the information contained in our VAR models by the interaction mechanism in (2).

In addition, given the recent interest in the length of business and financial cycles (Borio

2014, Rünstler and Vlekke 2017, Stockhammer et al. 2019, Strohsal et al. 2019), we also analyse

the eigenvalues λ of the coefficient matrix, from which we obtain the implied cycle length,

L =
2π

ω
=

2π

arccos

(
re(λ)

|λ|

) =
2π

arctan

(
im(λ)

re(λ)

) , (3)

where ω is the frequency, |λ| =
√
re2 + im2 is the modulus, and re and im are the real and

imaginary part of a complex eigenvalue.

Sources of estimation bias

Suppose first that the two-dimensional DGP is linear. Two familiar sources of bias may arise

in a VAR in this case (Hamilton 1994, chap.8).2 If the error terms are serially uncorrelated,

the OLS estimator of the coefficients would suffer from the standard Hurwicz bias in which

correlation between error terms and lagged dependent variables exists in a finite sample. This

bias disappears asymptotically. If the error terms are serially correlated, the estimator becomes

inconsistent, i.e., the bias does not appear asymptotically.

2This paper focuses on stationary processes. See Abadir et al. (1999), Doornik et al. (2003), and Hamilton
(1994, chap.18) for sources of bias in non-stationary VARs.
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Suppose next that the DGP is nonlinear and the Jacobian matrix evaluated at the equilib-

rium is given by

J =

[
ã1 ã2

b̃1 b̃2

]
. (4)

A linear VAR model estimated on data generated from this model will be consistent for its

linear projection, but the VAR coefficient matrix in (1) will not, in the general case, coincide

with the Jacobian in (4). To fix intuition on this third source of bias, consider a simple nonlinear

AR(1) model for some variable xt, in which E[xt|xt−1] = g(xt−1). Suppose for example that,

xt = α + βxt−1 + δf(xt−1) + εt, (5)

in which f(xt−1) is the nonlinear part of the conditional expectation function, and f ′(xt−1) = 0

when evaluated at the relevant steady state. If instead a linear AR(1) model,

xt = a+ bxt−1 + ηt, (6)

is estimated, then the functional form misspecification takes the form of omitted variable bias,

which is described by the standard formula,

bias = E[b]− β = δ
Cov[xt−1, f(xt−1)]

Var[xt−1]
. (7)

Looked at in this way, the effect of omitted nonlinearities depends on the covariance between

the lagged dependent variable and the omitted nonlinear part of the DGP.

Omitting a (relevant) nonlinearity from the VAR model in (1) means that error terms uyt

and uft are correlated with the lagged dependent variables yt−1 and ft−1. This correlation does

not go to zero as the sample size increases. As a result, we cannot expect OLS estimators of

a1, a2, b1 and b2 in (1) to be consistent for ã1, ã2, b̃1 and b̃2 in (4). While the main interest of

this paper lies in assessing this omitted nonlinearity bias, all three sources of biases might be

present in linear VAR models estimated on data generated by nonlinear processes. Therefore,

our Monte Carlo design will evaluate their relative importance.

3 Endogenous business cycle models

We conduct our analysis using data generated from five separate models. To provide a bench-

mark environment in which we expect linear VARs to behave well, we first consider the classic
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linear business cycle model due to Samuelson (1939). We then use the recent nonlinear business

cycle model in Beaudry et al. (2020) as our central test of the ability of linear VARs to estimate

cycle mechanisms. Lastly, four further nonlinear limit cycle models and a nonlinear model that

does not generate limit cycles are examined to ensure robustness.

A linear benchmark model

Consider first the classic linear business cycle model due to Samuelson (1939), henceforth SM39.

The structure of this model is straightforward and is outlined formally in Online Appendix A. In

SM39, interactions between the Keynesian multiplier effect on consumption and the accelerator

effect on investment give rise to business cycles. An increase in investment boosts consumption

via the multiplier, which in turn, given the lag structure of the model, drags down investment.

The upper panel of Figure 1 plots damped oscillations in a deterministic version of SM39, while

the lower two panels present simulated dynamics from a stochastic version of the model with

white noise and serially correlated disturbances, respectively. By comparing the top panel with

the bottom two panels, it can be seen that fluctuations eventually fade away in the deterministic

model, but are sustained by the addition of exogenous shocks.

A nonlinear benchmark model

Now consider the recent model in Beaudry et al. (2020), who propose a nonlinear endogenous

business cycle model in which fluctuations are shock-independent. Local instability is intro-

duced through a demand complementarity: the expansionary effects of an increase in spending

by some agents improves credit availability in the aggregate, allowing more agents to increase

their spending. As the system moves away from its steady state, demand complementarities

become weaker. Far away from the locally unstable steady state, the system thus becomes

locally stable again. Beaudry et al. (2020) introduce this mechanism into a New Keynesian

business cycle model with intertemporally optimising forward-looking agents. They show that

limit cycles can emerge even in an environment with rational agents.

We use the simplified reduced-form system proposed in Beaudry et al. (2016, 2020), hence-

forth BGP20, as the baseline nonlinear business cycle model for our Monte Carlo experiments.

The model is summarised by,

It = α0 − α1Xt + α2It−1 + F (It); F (0) = 0, (8)

Xt = (1− δ)Xt−1 + It−1, α1, α2, δ, F
′(It) ∈ (0, 1) (9)

where Xt denotes a capital or durable consumption good and It denotes investment in that
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Figure 1: Simulation of SM39
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Notes: Simulation of the system Ct = 0.4Ct−1 + 0.4It−1, It = −1.2Ct−1 + 0.8It−1. Upper panel: deterministic
version. Middle panel: stochastic version with white noise errors εt ∼ N(0, 1). Lower panel: stochastic version
with serially correlated error terms ut = 0.8ut−1 + εt.

good. Investment depends negatively on the stock of accumulated assets and positively on

feedback effects. The term F (It) captures positive demand externalities.

Beaudry et al. (2016) show that as F ′(I∗) increases from zero to one, a limit cycle around

a unique equilibrium emerges via a Neimark-Sacker bifurcation. This limit cycle is stable if

F ′′′(I∗) is sufficiently negative. These restrictions on the properties of F (It) imply a sigmoid-

shaped function, and Beaudry et al. (2016) suggest the logistic function F (I) = 1
1+e−I

as a

candidate. Using this functional form, and eliminating the contemporaneous Xt in (8), yields,

It = α0 − α1(1− δ)Xt−1 + (α2 − α1)It−1 +
α3

1 + e−It
, α3 > 0 (10)

Xt = (1− δ)Xt−1 + It−1, (11)

with α0 = −α3/2 so that F (0) = 0. The steady state (I∗, X∗) is derived in Online Appendix

B. The Jacobian evaluated at this steady state is given by,

JBGP20(I∗, X∗) =

(α2 − α1)(1 + e−I
∗
)2

(1 + e−I∗)2 − α3e−I
∗ −

α1(1− δ)(1 + e−I
∗
)2

(1 + e−I∗)2 − α3e−I
∗

1 1− δ

 . (12)
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Figure 2: Simulation of BGP20
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deterministic version. Middle panel: stochastic version with white noise errors εt ∼ N(0, 1). Lower panel:
stochastic version with serially correlated error terms ut = 0.8ut−1 + εt.

The coefficients on the off-diagonal of (12) exhibit opposite signs as long as α3 is sufficiently

small, so that the critical condition for a cycle mechanism (2) is satisfied. The limit cycle in

this model is driven by an interaction mechanism between expenditures and the stock of assets,

where strong feedback effects of spending near the steady state create local instability, which

is contained by a weakening of these feedback effects for extreme values of spending. Figure

2 illustrates these cyclical dynamics for a deterministic and stochastic version of the model,

respectively.

To assess the robustness of the simulation results to different limit cycle models, we consider

four further endogenous business cycle models that differ in their functional forms – see Online

Appendix A for a detailed discussion of these models. Tables 1-2 provide an overview of the

DGPs, their main properties and the parameterisations used in the simulations.3 Figure 3

illustrates the dynamics of these business cycle models for the deterministic and stochastic

cases. All systems display periodic endogenous fluctuations with different cycle frequencies,

3With the exception of BGP20, all parameterisations are taken from the respective studies and meet the
conditions for endogenous cycle dynamics. In BGP20 no parameterisation is provided. We chose a parameteri-
sation that satisfies the conditions for a Neimark-Sacker bifurcation discussed in Beaudry et al. (2016). Figure 2
confirms the presence of a stable limit cycle for this parameterisation.



Table 1 Overview of simulated DGPs, part 1

Samuelson (1939)
(SM39)

Beaudry et al. (2016, 2020)
(BGP20)

Bischi et al. (2001)
(BDRS01)

Type Keynesian multiplier-accelerator New Keynesian w/ demand
complementarities

Kaldorian multiplier-accelerator

Interaction mechanism Consumption (C)–investment (I) Expenditure (I)–asset stock (X) Output (Y )–capital stock (K)
Dynamics Damped oscillations Limit cycle Limit cycle
Type of nonlinearity None Sigmoid function: logistic Sigmoid function: arctangent
Reduced form Ct = c(Ct−1 + It−1 +G);

It = β[c(Ct−1 + It−1 +G)− Ct−1]
It = α0 − α1(1− δ)Xt−1 + (α2 −
α1)It−1 +

α3
1+e−It

;

Xt = (1− δ)Xt−1 + It−1

Yt = Yt−1 + α[σµ + γ(σµ/δ −Kt−1) +
arctan(Yt−1 − µ)− σYt−1];
Kt = (1− δ)Kt−1 + σµ + γ(σµ/δ −
Kt−1) + arctan(Yt−1 − µ)

Parameterisation c = 0.4
β = 2
G = 0

α0 = −1
α1 = 0.4
α2 = 0.9
α3 = 2
δ = 0.4

α = 1.2
γ = 0.6
δ = 0.2
µ = 10
σ = 0.4

Jacobian (at steady state)

[
0.4 0.4
−1.2 0.8

] [
1 −0.48
1 0.6

] [
1.72 −0.72

1 0.2

]
Cycle condition a2b1 = −0.48 a2b1 = −0.48 a2b1 = −0.72
Eigenvalue (λ),
modulus (|λ|),
cycle length (L)

λ = 0.6± 0.663i,
|λ| = 0.894,
L = 7.52

λ = 0.8± 0.663i,
|λ| = 1.039,
L = 9.08

λ = 0.96± 0.377i,
|λ| = 1.032,
L = 16.8

Notes: See Online Appendix A for a detailed discussion of models. L = 2π
ω

= 2π

arccos

(
re(λ)

|λ|

) .

Table 2 Overview of simulated DGPs, part 2

Neubert and Kot (1992)
(NK92)

Wegener et al. (2009)
(WWZ09)

Dieci and Westerhoff (2012)
(DW12)

Type Predator-prey dynamics Metzlerian inventory cycles with
heterogeneous expectations

Asset price speculation in housing
market

Interaction mechanism Predator (y) and prey (x) population Inventories (S)–expected sales (U) Housing stock (z)–house prices (p)
Dynamics Limit cycle Limit cycle Limit cycle
Type of nonlinearity Second-order polynomial Rational function Rational function
Reduced form yt = cxt−1yt−1;

xt = (r + 1)xt−1 − rx2t−1 − cxt−1yt−1

see Online Appendix A zt = ept−1 + dzt−1;
pt =

(1−c−e)pt−1+
fpt−1−ghp3t−1

1+hp2
t−1

−dzt−1

Parameterisation c = 2.1
r = 3.1

b = 0.75
c = 0.3
d = 1
f = 0.1
k = 0.1
C̄ = 30
Ī = 10

c = 0.05
d = 0.98
e = 0.5
f = 0.08
g = 1
h = 1

Jacobian (at steady state)

[
1 1.624
−1 −0.476

] [
0.848 −0.253
0.975 0.975

] [
0.98 0.5
−0.98 1.25

]
Cycle condition a2b1 = −1.624 a2b1 = −0.246 a2b1 = −0.49
Eigenvalue (λ),
modulus (|λ|),
cycle length (L)

λ = 0.262± 1.039i,
|λ| = 1.071,
L = 4.75

λ = 0.911± 0.492i,
|λ| = 1.036,
L = 12.7

λ = 1.115± 0.687i,
|λ| = 1.310,
L = 11.4

Notes: See Online Appendix A for a detailed discussion of models. L = 2π
ω

= 2π

arccos

(
re(λ)

|λ|

) .

10



Figure 3: Simulated DGPs, deterministic (left) and stochastic (right)
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which are rendered less regular and more persistent by additive serially correlated noise.
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4 Monte Carlo design

For the Monte Carlo experiments we use stochastic versions of the DGPs reported in Tables 1-2.

We first consider the case where shock processes are serially uncorrelated and the corresponding

lag order p of the VAR is correctly specified (p = 1). Second, in a more common scenario, shock

processes follow an AR(1) process as assumed in Beaudry et al. (2020) and other benchmark

macroeconomic models (e.g. Smets and Wouters 2003) (see Online Appendix C for a discussion

of how we evaluate the interaction mechanism in this case). As a result, the appropriate lag

order of the VAR(p) has to be chosen based on diagnostic checks or information criteria as

in Stockhammer et al. (2019). We use an AR(1) process of the form ut = ρut−1 + εt, where

εt ∼ N(0, 1) and ρ = 0.8. To determine the lag order, we start with a minimum lag length

of 2. If there is serial correlation in the residuals, the lag length is successively increased. A

maximum number of lags is specified and estimates are excluded from further consideration if

their residuals still exhibit serial correlation. We check the robustness of this approach below

by using instead the Akaike information criterion (AIC) for lag selection.

Note that in the case of the VAR(p), the eigenvalues can no longer be directly mapped

to the Jacobian matrix of the deterministic component of the system. To determine a unique

cycle length from the VAR(p) models with up to p complex eigenvalues, we average over those

estimated cycle lengths that lie within conventional business and financial cycle frequencies of

3 to 20 periods (see Beneš and Vàvra 2005 for a similar approach).

The Monte Carlo design is given by the following algorithm:

1. Draw samples of size T from the DGP.

2. Estimate a linear VAR(p) on the sample. In the scenario with serially uncorrelated error

terms, set p = 1 and proceed with step 6. In the scenario with AR(1) shocks, set p = 2

and proceed with step 3.

3. Run a Lagrange Multiplier test for serial correlation in the errors.

4. If the null hypothesis of no serial correlation is rejected at the 10% level, re-estimate the

VAR with a further lag added.

5. Repeat steps 3 and 4 until either there is no more serial correlation or a maximum of 4

lags is reached.

6. Save the estimated coefficients and relevant information criteria.

7. Repeat the above steps N = 1, 000 times.

12



We emulate a realistic small sample scenario for applied time series analyses with annual

macroeconomic data (baseline: T = 50). A maximum of four lags is imposed as most researchers

working with annual data will be reluctant to consider more than four lags. A VAR(4) that still

exhibits serial correlation may raise concerns of model misspecification. We therefore exclude

estimated VAR(4) models for which serial correlation does not vanish.

As noted in section 2, we are interested in the interaction mechanism summarised by (2),

the eigenvalues of the estimated model, and the corresponding dominant cycle length. For those

n estimated models that pass the serial correlation test, we store the estimated coefficients on

the off-diagonal of coefficient matrix on the first lag – i.e. a2 and b1 in (1). Testing condition

(2), i.e. a2b1 < 0, requires a one-sided statistical test on a nonlinear combination of estimators.

We calculate the standard error with the delta method (see Oehlert 1992) and run a one-sided

t-test on condition (2) imposing a significance level of 10%. Estimated test statistics that

pass this test are deemed statistically significant, which we denote by (a2b1 < 0)∗. For the

estimated eigenvalues, we plot sampling distributions on Argand diagrams and compare these

to the true eigenvalues of the underlying limit cycle process to assess how frequently estimated

VARs suggest local instability and what they can tell us about the underlying limit cycle.

To assess the relative importance of omitted nonlinearity bias compared to bias stemming

from lagged dependent variables and serial correlation, we explore the asymptotic properties of

the estimators of interest for different cases that allow us to disentangle these sources of bias.

Finally, we also conduct Jarque-Bera normality tests on the residuals of the VAR to assess

whether non-normality can be taken as a sign of underlying limit cycle processes.4

5 Simulation results

Main results

Table 3 summarises the results from the VAR(1) with AR(0) shock processes and the VAR(p)

with AR(1) shocks for the baseline models SM39 and BGP20 (sample size T = 50). For the

linear model SM39, all estimated coefficients and eigenvalues exhibit less than 2% bias. The

normalised root mean squared error (NRMSE) of the cycle mechanism a2b1 is equal to unity.

In each draw, the critical condition (2) for a cycle mechanism is satisfied and statistically

significant in 96% of draws in the VAR(p). Indeed, the linear first-order model SM39 with

AR(1) error terms is formally equivalent to a VAR(2) with white noise errors. We thus expect

the estimated VAR(p) to asymptotically identify the off-diagonal coefficients of SM39 correctly.

To shed light on the different sources of bias in the linear case, Figure 4 plots the bias for

4 We test the null hypothesis of normality using a 10% significance level.
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Table 3 Results for SM39 and BGP20, VAR(1) with AR(0) shocks and VAR(p)
with AR(1) shocks, averages

SM39 BGP20

VAR(1) VAR(p) VAR(1) VAR(p)

ˆa2b1 -0.48 -0.49 -0.34 -0.30

bias ( ˆa2b1) -0.20% -1.77% 28.9% 37.4%

NRMSE ( ˆa2b1) 1.00 1.00 2.66 1.39

( ˆa2b1 < 0) 100% 99.9% 100% 96.1%

( ˆa2b1 < 0)∗ 100% 96.2% 99.9% 73.5%

ˆ|λ|dom 0.89 0.90 0.87 0.86

bias ( ˆ|λ|dom) -1.04% 0.21% -16.5% -16.8%
r̂e 0.59 0.65
bias (r̂e) -1.78% -19.4%
ˆim 0.66 0.58

bias ( ˆim) -0.66% -12.8%

L̂ 7.50 7.72* 8.66 9.13*

bias (L̂) -0.33% 2.63% -4.62% 0.58%

Nonnorm (% of n) 7.9% 6.93% 5.2% 6.91%
Lags 1 2.27 1 2.26
Serial corr(% of N) 10.5% 8.8%
n 1000 895 1000 912

Notes: Total number of runs N = 1, 000; n: number of VARs that did not suffer from serial correlation; sample size T = 50; ˆa2b1:

estimated cycle condition; bias: % deviation from absolute true value; NRMSE: Root mean squared error normalised by standard

deviation; ( ˆa2b1 < 0): relative frequency (in n) with which the cycle condition was satisfied; ( ˆa2b1 < 0)∗: relative frequency (in

n) with which the condition was statistically significant at the 10% level; |λ|dom: dominant modulus; re: real part of eigenvalue;

im: imaginary part of eigenvalue, L: cycle length. Nonnorm: relative frequency (in n) with which estimated VARs exhibited

non-normal residuals. Serial corr : relative frequency (in N) with which estimated VARs exhibited serially correlated residuals after

the inclusion of 4 lags; *: average over L̂j ∈ (3, 20), where j = 1, .., p.
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different sample sizes. The left panel presents results from a VAR(1) with serially uncorrelated

errors, whereas the right panel depicts the case of a VAR(1) with AR(1) errors (i.e. without lag

adjustment to remove serial correlation). With serially uncorrelated errors, the autoregressive

coefficient a1 exhibits the well-known Hurwicz bias that is rapidly decreasing in the sample

size. Notably, the estimated cycle mechanism a2b1 appears to be rather unaffected by this bias.

Similarly, the real and imaginary parts of the complex eigenvalue as well as the modulus are

strongly affected by the Hurwicz bias for small sample sizes, but the implied cycle length much

less so. With serially correlated errors, the estimators become inconsistent with asymptotic

biases in the estimators for the cycle condition and cycle length of around 45% (but a much

stronger bias in the autoregressive parameter). Online Appendix E reports results from a

VAR(p) confirming that lag adjustment is effective in rendering the estimator for the cycle

condition consistent in the presence of AR(1) shocks. For sample sizes of T > 250, the bias

becomes practically irrelevant (less than 1%).

We can now contrast these results with the nonlinear model BGP20, where the estimated

coefficients are additionally biased as a result of the unmodelled nonlinearity. We first note that

in Table 3 the estimated real part of the eigenvalue and the modulus are underestimated in size.

The VAR therefore fails to identify the presence of local instability in BGP20 (the estimated

modulus is below unity) – in line with the findings for a univariate process in Beaudry et al.

(2017). The main interest of this paper, however, lies in the presence of complex eigenvalues

that stem from interaction mechanisms inherent to endogenous cycle models. We note that the

strength of the interaction mechanism is underestimated, with ˆa2b1 = −0.34 being around 29%

smaller in absolute terms than the true value a2b1 = −0.48. This bias becomes larger in the

VAR(p).

Despite this underestimation of the strength of the interaction mechanism, the critical con-

dition for a cycle mechanism is qualitatively satisfied and statistically significant in most cases

with cycle detection rates of 99.9% (VAR(1)) and 73.5% (VAR(p)). We further note that the

real and imaginary part of the complex eigenvalue are both underestimated, but the downward

bias in the imaginary part is smaller (-12.8%) compared to the downward bias in the real part

(-19.4%). Interestingly, the implied cycle length exhibits a much smaller bias than the indi-

vidual parts of the complex conjugate (-4.6%). Figure 5 plots the sampling distribution of the

estimated complex eigenvalues for BGP20 (VAR(1)).5 It can be seen that while both real and

imaginary part are underestimated, the angle ω = arctan(im(λ)/re(λ)) of the estimated eigen-

value in polar coordinates is relatively close to its true value. While a higher real part raises

the cycle length, a higher imaginary part decreases it. The downward biases in both parts thus

partly offset each other, which explains the comparatively small bias in the estimated cycle

5Online Appendix F provides further details on the sampling distribution of estimators for BGP20.

15



Figure 4: Asymptotic bias in VAR(1) for SM39, AR(0) and AR(1) errors

AR(0) errors AR(1) errors

Notes: Lines represent the bias (in %) in estimated statistics from Monte Carlo simulations with N = 1, 000
runs for increasing sample sizes T = 30, ..., 4000. Shaded areas denote one standard deviation around the lines.

length. Finally, it is worth noting that the VARs do not appear to suffer from a significantly

higher occurrence of serial correlation or non-normal errors compared to the linear benchmark.

To assess the relative importance of omitted nonlinearity bias, Figure 6 explores the asymp-

totic properties of the VAR(1) for BGP20. In the case without serial correlation (left panel),

the Hurwicz bias decreases rapidly and for sample sizes of T > 100, the remaining bias can

effectively be exclusively attributed to the omitted nonlinearity. The biases in the cycle mech-

anism and cycle length approach constant values of around 30% and -4%, respectively, that

are driven by the nonlinearity. In the case with serially correlated errors (right panel), the

asymptotic biases in the cycle condition and length are substantially larger (by around 37%-pts

and 65%-pts, respectively), as they are driven by both the omitted nonlinearity and unmodelled

serial correlation.
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Figure 5: Argand diagram, BGP20, VAR(1) with AR(0) shocks
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Notes: The grey shaded areas summarise the sampling distribution of the eigenvalues (limited to the positive
quadrant of the Argand diagram) of a VAR(1) estimated on 10,000 runs of BGP20. The black point • marks
the mode of the sampling distribution. The true eigenvalue of the linear part of BGP20 is λ+ = 0.8 + 0.66i (as
in Table 1) and the dashed line connects that point with the origin.

This exercise suggests that the bias due to unmodelled nonlinearity dominates the Hurwicz

bias from the inclusion of lagged dependent variables, which becomes practically irrelevant for

medium sample sizes. However, bias due to unmodelled serial correlation is substantial and

quantitatively similar to the bias from unmodelled nonlinearities. The use of higher-order lags

substantially reduces serial correlation bias, as expected.6

Overall, these results suggest that the linear VAR performs very well in identifying the

critical condition for a cycle mechanism in the nonlinear baseline models. While it tends

to underestimate the true magnitude of the interaction mechanism, it allows for an accurate

qualitative identification of the presence of a cycle mechanism and a reasonable gauge of the

cycle length.

6Online Appendix G further explores the robustness to different parameterisations of BGP20. The results
are very similar.
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Figure 6: Asymptotic bias in VAR(1) for BGP20, AR(0) and AR(1) errors

AR(0) errors AR(1) errors

Notes: Lines represent the bias (in %) in estimated statistics from Monte Carlo simulations with N = 1, 000
runs for increasing sample sizes T = 30, ..., 4000. Shaded areas denote one standard deviation around the lines.

Robustness tests

This section presents a number of robustness tests and extensions to our main results.

Other DGPs

First, to assess robustness to different forms of nonlinearity, Table 4 displays results from four

further nonlinear limit cycle models summarised in Tables 1-2. We observe that for all nonlinear

DGPs the VAR underestimates the true value of the cycle mechanism (a2b1) in absolute terms.

However, the cycle condition is still correctly identified in the majority of samples. The VARs

estimated on NK92 and DW12 exhibit very high cycle detection rates of almost 100% and 99%,

respectively. For WWZ09 and BDRS01, the cycle mechanism is correctly identified in 80% and
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55% of cases, respectively.

Table 4 Results of other DGPs, VAR(1) with AR(0) shocks and VAR(p) with
AR(1) shocks, averages

BDRS01 NK92 WWZ09 DW12

VAR(1) VAR(p) VAR(1) VAR(p) VAR(1) VAR(p) VAR(1) VAR(p)

ˆa2b1 -0.30 -0.13 -1.44 -0.91 -0.20 -0.18 -0.50 -0.48

bias ( ˆa2b1) 58.3% 82.5% 11.6% 44.2% 17.2% 27.2% -2.37% 2.95%

NRMSE ( ˆa2b1) 5.66 5.57 7.00 3.33 1.37 1.17 1.00 1.00

( ˆa2b1 < 0) 100% 89.7% 100% 100% 100% 97.5% 100% 100%

( ˆa2b1 < 0)∗ 100% 55.3% 100% 100% 99.7% 79.7% 100% 98.9%

ˆ|λ|dom 0.71 0.83 0.96 0.99 0.87 0.90 0.46 0.82

bias ( ˆ|λ|dom) -31.4% -19.3% -10% -7.68% -16.4% -13.5% -65.2% -37.4%
r̂e 0.60 0.23 0.74 0.35
bias (r̂e) -31.4% -12.4% -18.5% -68.7%
ˆim 0.36 0.94 0.44 0.23

bias ( ˆim) -4.75% -9.86% -10.1% -66.7%

L̂ 12.4 11.3* 4.72 5.62* 11.9 11.9* 9.76 10.3*

bias (L̂) -26% -32.8% -0.49% 18.4% -6.53% -6.19% -14.3% -9.32%

Nonnorm (% of n) 5.9% 6.46% 26.4% 15.5% 6.1% 7.33% 5.4% 6.14%
Lags 1 2.29 1 3.27 1 2.28 1 2.32
Serial corr(% of N) 8.7% 63.3% 11.3% 10.4%
n 1000 913 1000 367 1000 887 1000 896

Notes: Total number of runs N = 1, 000; n: number of VARs that did not suffer from serial correlation; sample size T = 50; ˆa2b1:

estimated cycle condition; bias: % deviation from absolute true value; NRMSE: Root mean squared error normalised by standard

deviation; ( ˆa2b1 < 0): relative frequency (in n) with which the cycle condition was satisfied; ( ˆa2b1 < 0)∗: relative frequency (in

n) with which the condition was statistically significant at the 10% level; |λ|dom: dominant modulus; re: real part of eigenvalue;

im: imaginary part of eigenvalue, L: cycle length. Nonnorm: relative frequency (in n) with which estimated VARs exhibited

non-normal residuals. Serial corr : relative frequency (in N) with which estimated VARs exhibited serially correlated residuals after

the inclusion of 4 lags; *: average over L̂j ∈ (3, 20), where j = 1, .., p.

While NK92 exhibits the highest cycle detection rate among the nonlinear models, the VAR

underestimates its cycle mechanism in absolute terms by about 44%. However, as the interac-

tion mechanism in this model is comparatively strong, the cycle condition is still qualitatively

satisfied in each sample draw. For DW12, which also exhibits a high detection rate, the VAR

estimate of the cycle condition is much less biased compared to NK92 (less than 3%). The

better performance compared to the other nonlinear models is likely due to the fact that for

DW12 the off-diagonal elements of the Jacobian are linear. In comparison, BGP20, WWZ09,

and BDRS01 exhibit nonlinear off-diagonal elements and a moderate strength of the interaction

mechanism at the steady state. Here the VAR still performs well overall, but worse compared

to the models with stronger interaction mechanisms (NK92) or linear off-diagonal elements

(DW12).

Figure 7 examines the effect of variations in the sample size (T ∈ {50, 100, 150, 200}). For all

nonlinear models except DW12, the estimator converges to a fixed value that is different from
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Figure 7: Box plots for ˆa2b1 for different sample sizes, other DGPs, AR(1) shocks
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Notes: Boxes represent the first and third quartile, circles mark the mean, and whiskers represent 2 standard
deviations around the mean. Diamonds mark the true values.

the true value. For DW12, the estimator appears to converge to the true value, presumably

because it is the only model that is linear in the off-diagonal coefficients. Overall, the linear VAR

performs reasonably well in identifying the cycle condition (2), but with differences depending

on the underlying DGP.

The estimated real parts of the eigenvalue and moduli are again underestimated in size

across all nonlinear DGPs. Our study thus confirms and extends to the multivariate case the

finding from Beaudry et al. (2017) for a broader class of nonlinearities. Going beyond Beaudry

et al. (2017), our robustness tests show that the bias in the estimated cycle length is generally

lower compared to the bias in the estimated modulus in the VAR(1). In the VAR(p), the bias

in the estimated cycle length is less than 10% for WWZ09 and DW12, but between 18% and

33% (in absolute terms) for NK92 and BDRS01. We explore below to what extent these results

are related to our cycle length selection rule.

Two further observations can be made. First, NK92 is the only model in which serial
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correlation occurs significantly more often (63%) compared to the linear baseline. We conjecture

that this is due to the high cycle frequency of the deterministic component of the DGP (L = 4.8).

The VARs estimated on the other nonlinear models do not suffer from an elevated occurrence

of serial correlation, suggesting that serial correlation is not a useful sign for underlying limit

cycle processes. Second, only NK92 exhibits a somewhat increased frequency of non-normality.

Thus, non-normality does not seem to be a reliable indicator of limit cycles either.

Overall, this confirms the main result that the linear VAR underestimates the magnitude of

cycle mechanisms but successfully uncovers their existence. It also estimates the cycle length

quite accurately, especially in the VAR(1). How well the VAR performs appears to depend on

two factors. First, if the nonlinearity only affects the main diagonal but not the off-diagonal

elements, the likelihood that the cycle mechanism is identified is higher. Second, if the cyclical

interaction mechanism of a nonlinear model is quantitatively strong, it will have a higher chance

of being detected by a linear VAR.

Sensitivity to false positives

Next, we investigate the sensitivity of the linear VAR to false positives in the detection of cycle

mechanisms. To this end, we consider the nonlinear model proposed in Brock and Hommes

(1997), henceforth BH97, that generates fluctuations but does not contain a cycle mechanism of

the kind discussed in section 2. Instead, the model gives rise to aperiodic chaotic fluctuations

resulting from saddle instability. A formal discussion of the model can be found in Online

Appendix A and simulation results are reported in Online Appendix H.

The estimated cycle condition is close to its true value of zero. It is statistically significant

in less than 1% of cases. Despite the omitted nonlinearity, the estimator appears to converge

to the true value for increasing sample sizes, which is likely due to the off-diagonal elements

being equal to zero at the steady state. We also note a substantially elevated number of models

that exhibit non-normal errors (72% in the case of the VAR(1)) as well as serial correlation

(16%). This suggests that serial correlation and non-normality are more reliable indicators of

nonlinearity when the DGPs produces chaotic fluctuations as opposed to periodic limit cycles.

Overall, this exercise suggests that the linear VAR is quite robust to false positives.

Alternative approaches to obtain the cycle length

We further compare our baseline results to an alternative approach to obtain a unique cycle

length when there is more than one complex eigenvalue. In the baseline approach, an average

cycle length is calculated over a range of conventional cycle frequencies (3 to 20 periods). An

alternative approach is to use the cycle length implied by the dominant eigenvalue only. Online
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Appendix E documents the asymptotic properties of the two approaches for the linear model

SM39 and the nonlinear model BGP20.

The results suggest that there are trade-offs. The baseline approach exhibits a comparatively

small bias for small sample sizes (less than 5% for T < 200). However, averaging over a

conventional range appears to render the estimator asymptotically biased. By contrast, the

alternative approach based on the dominant eigenvalue performs better for larger sample sizes.

In the linear case, it asymptotically converges to the true value. In the nonlinear case, a negative

asymptotic bias remains, but this is smaller compared to the baseline approach (-4.7% compared

to -8.4%). However, the alternative approach performs poorly for small sample sizes, where

the bias is large. In sum, there is no clearly preferable approach for selecting a cycle length

when there are multiple complex eigenvalues. In practice, researchers might want to draw on

additional knowledge to select the cycle length they suspect to be driven by the deterministic

component of the DGP.

Alternative lag selection rules

Finally, we check the robustness of our results to the lag selection algorithm (see Online Ap-

pendix I). The results remain very similar when using the AIC instead of serial correlation

tests to determine the lag length. Notably, the results are highly robust despite the fact that

19%-68% of estimated VARs exhibit serial correlation when using this lag selection method.

6 Conclusion

Recent macroeconomic research has revived the notion of endogenous business and financial

cycles (Beaudry et al. 2020, Borio 2014, Stockhammer et al. 2019). This paper investigated what

commonly used linear vector-autoregressions would tell us about the interaction mechanisms

that drive nonlinear limit cycles. We conducted Monte Carlo simulations in which linear VARs

were estimated on data from five nonlinear business cycle models. Our findings suggest that

despite a tendency to underestimate the moduli of complex eigenvalues and the magnitude of

cycle mechanisms, linear VARs identify the presence of cycle mechanisms quite well, with cycle

detection rates between 55% and almost 100%. The detection rate tends to be higher (i) when

the nonlinearity only affects the autoregressive component of the model but not the interaction

mechanism itself and (ii) the larger is the quantitative magnitude of the interaction mechanism.

Linear VARs also appear to have low false positive error rates of less than 1% in the numerical

experiment conducted in this paper. Lastly, there is only a comparatively small downward bias

in estimated cycle lengths, suggesting that linear VARs successfully pick up the frequencies

generated by nonlinear cycle processes.
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These findings have important practical implications for research on business cycles and

financial cycles with linear VARs, which is increasingly interested in cycle frequencies and

interactions between real and financial variables (Juselius and Drehmann 2020, Stockhammer

et al. 2019, Strohsal et al. 2019). In the absence of clear-cut theoretical assumptions about

the specific functional form of potentially nonlinear data-generating processes, linear VARs

continue to be the default choice in this line of research. Our results lend support to this

research in showing that linear VARs are capable of identifying the existence of cycle interaction

mechanisms and can provide a reasonable approximation of cycle frequencies, even if these may

stem from nonlinear processes. More generally, our results suggest that if key macroeconomic

time series are indeed driven by nonlinear limit cycle processes as suggested in Beaudry et al.

(2017, 2020), these oscillations are likely to show up as damped oscillations in linear VARs with

conventional macroeconomic indicators.

Our findings also point to a number of limitations of the linear approach. First, while

qualitatively strong at identifying cycle mechanisms, the linear VAR may not detect them

when the interaction mechanism is quantitatively small. Second, our findings demonstrate that

the linear VAR fails to identify local instability inherent in limit cycle models of endogenous

business cycles. This confirms previous studies with univariate processes (Beaudry et al. 2017)

and extends this result to the multivariate case, as well as a broader class of functional forms.

For the applied researcher, this means that the estimated moduli from linear VARs do not

contain useful information about possible instabilities of the underlying process. Provided

there are theoretical priors about the nature of the underlying nonlinearity, nonlinear time

series models may be a useful option (see Kilian and Lütkepohl 2017, Teräsvirta et al. 2010,

Teräsvirta 2018). For example, smooth transition models might adequately approximate the

sigmoid nonlinearities found in most macroeconomic limit cycle models. A multivariate time

series model with an adequately flexible nonlinear part might be able to identify simultaneously

interaction mechanisms and instabilities; we leave this natural extension to future work.

Overall, linear VARs are a parsimonious method for the qualitative identification of endoge-

nous cycle mechanisms and may stimulate further investigation into potential instabilities and

nonlinearities in the underlying process. For researchers that are primarily interested in testing

for the critical condition for a cycle mechanism or estimating cycle lengths, the linear VAR is

therefore a convenient tool, despite the limitations already noted. For researchers that are pri-

marily interested in identifying and estimating impulse response functions to structural shocks,

eigenvalues of the reduced-form VAR are often plotted in Argand diagrams as a simple ‘eyeball’

test for dynamic stability, and then ignored. Our results suggest that the eigenvalues of the

reduced-form VAR contain useful information about cycle frequencies and cyclical mechanisms

that could complement impulse response functions when informing model choice and selection.
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A careful consideration of the cyclical properties of estimated linear VAR models can therefore

be a useful step in applied macroeconomics research.
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ONLINE APPENDIX

A Endogenous business cycle models

A.1 Samuelson (1939) [SM39]

The structural model in Samuelson (1939) is given by:

Yt = G+ Ct + It (A.1)

It = β(Ct − Ct−1) (A.2)

Ct = cYt−1, (A.3)

where Yt: output; G: exogenous government expenditures; Ct: consumption; It: investment;

β: accelerator effect of changes in consumption on investment; c: marginal propensity to

consume. Shifting A.1 one period back and substitution into A.3, and substitution of A.3 in

A.2 yields the reduced form:

Ct = c(Ct−1 + It−1 +G); c ∈ (0, 1) (A.4)

It = β[c(Ct−1 + It−1 +G)− Ct−1]; β > 0, (A.5)

with Jacobian matrix:

JSM39(C, I) =

[
c c

β(c− 1) βc

]
. (A.6)

Since c < 1, we have cβ(c− 1) < 0, so that condition (2) for a cycle mechanism is satisfied:

investment boosts consumption, which in turn drags down investment dynamics.

A.2 Bischi, Dieci, Rodano, and Saltari (2001) [BDRS01]

Bischi et al. (2001) propose a discrete time version of the Kaldor (1940) model. Unlike Samuel-

son (1939), Kaldor (1940) assumed an unstable goods market and introduced nonlinear saving

and investment functions that prevent explosive oscillations. He assumed that the capital stock

exerts a negative effect on investment due to a decreasing marginal efficiency of capital. Bischi

et al. (2001) specify the sigmoid shaped investment function described in Kaldor (1940) as an

arctangent-function.7

7The consumption function is linear as nonlinearity is not required to obtain limit cycles in the Kaldor
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The structural model given by:

Yt = Yt−1 + α[It−1(Yt−1, Kt−1)− St−1(Yt−1, Kt−1)] (A.7)

Kt = Kt−1 + It−1(Yt−1, Kt−1), (A.8)

where Kt: capital stock; St: saving, and all other variables as defined previously. Bischi

et al. (2001) use the following saving and investment functions:

St = σYt (A.9)

It = σµ+ γ(
σµ

δ
−Kt) + arctan(Yt−1 − µ) (A.10)

with α, µ, δ, γ > 0;σ ∈ (0, 1); where α: speed of adjustment of output to excess de-

mand/supply; σ: propensity to save; δ: depreciation rate; µ: normal level of income (so that

σµ/δ: normal level of capital stock). With σ(1 + γ/δ) ≥ 1, there is a unique steady state

(Y ∗, K∗) = (µ, µσ
δ
).

Substitution of A.9 and A.10 into A.7 and A.8 yields the reduced form:

Yt = Yt−1 + α[σµ+ γ(σµ/δ −Kt−1) + arctan(Yt−1 − µ)− σYt−1]; (A.11)

Kt = (1− δ)Kt−1 + σµ+ γ(σµ/δ −Kt−1) + arctan(Yt−1 − µ), (A.12)

with Jacobian matrix:

JBDRS01(Y ∗, K∗) =

[
1 + α

1+(Y ∗−µ)2 − ασ −αγ
1

1+(Y ∗−µ)2 1− δ − γ

]
. (A.13)

It can be seen that the coefficients on the off-diagonal always exhibit opposite signs (inde-

pendently of the steady state value Y ∗). Higher output pushes up capital accumulation, whereas

capital drags down output dynamics. The inherent nonlinearity creates local instability near

the steady state but renders the system stable away from the steady state.

A.3 Neubert and Kot (1992) [NK92]

Population dynamics driven by the interaction between a predator hunting on a prey are a

key subject of mathematical biology that inspired economic dynamics (e.g. Goodwin 1967,

Kiyotaki and Moore 1997). Neubert and Kot (1992) provide a discrete time model that captures

model.
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population dynamics with non-overlapping generations:

Nt = Nt−1 + rNt−1(1 +
Nt−1

K
− eNt−1Pt−1) (A.14)

Pt = bNt−1Pt−1 + (1− d), (A.15)

where Nt and Pt: population densities of prey and predator population, respectively; K:

carrying capacity of prey; e, b, d: foraging efficiency, birth rate, and death rate of the predator.

A rescaling of variables using xt = Nt/K, yt = ePt/bK, and c = bK, yields:

yt = cxt−1yt−1 r > 0, c > 1 (A.16)

xt = (r + 1)xt−1 − rx2
t−1 − cxt−1yt−1. (A.17)

A key feature of predator-prey models is the presence of three steady states: one at the

origin which corresponds to the extinction of both species, one at (0, 1) where the predator is

extinct and the prey survives at its carrying capacity (here normalised to unity), and a positive

one at (y∗, x∗) where both species coexist. The third steady state is given by
(
r(c−1)
c2

, 1
c

)
. The

Jacobian matrix is:

JNK92(y∗, x∗) =

[
cx∗ cy∗

−cx∗ (r + 1)− 2rx∗ − cy∗

]
. (A.18)

For the third steady state, the interaction mechanism between the two species is captured

by the opposite signs on the off-diagonal. In contrast to Goodwin (1967), where the coefficients

on the main diagonal are zero (so that the only possible outcome is a centre), the discrete time

predator-prey model allows for a richer set of dynamics. Neubert and Kot (1992) show that as

c exceeds a critical value, a Neimark-Sacker bifurcation takes place giving rise to a stable limit

cycle.

A.4 Wegener, Westerhoff and Zaklan (2009) [WWZ09]

Wegener et al. (2009) propose a nonlinear extension of Metzler (1941)’s linear inventory cycle

model by introducing heterogeneous expectations. Firms can choose between two different

strategies to predict future sales: an extrapolative predictor that extrapolates past trends

in consumption and a regressive predictor that assumes consumption will return towards its

equilibrium value. Firms tend to switch to a regressive rule when consumption is far away from

the steady state, while extrapolative rules become more attractive for values of consumption

near the steady state. The introduction of heterogeneous expectation formation and strategy
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switching allows for a richer set of dynamics compared to Metzler (1941). The structural form

of the model is given by:

Yt = Ī + St + Ut (A.19)

St = kUt − [kUt−1 − (bYt−1 − Ut−1)] (A.20)

Ut = wt[bYt−1 + c(Yt−1 − C̄)] + (1− wt)(bYt−1 + f [C̄ − bYt−1] (A.21)

wt =
1

1 + d(C̄ − bYt−1)2
, (A.22)

with b ∈ (0, 1), f ∈ [0, 1], c ≥ 1, k > 0 and Yt: output; Ī: exogenous investment expenditures;

St: production of consumption goods for stocks; Ut: expected sale of consumption goods; k:

ratio of desired inventory stocks to expected sales; b: marginal propensity to consume; wt:

weight of extrapolative expectation formation in aggregate expected sales; c: speed of deviation

from equilibrium consumption assumed by extrapolative expectation rule; C̄: equilibrium level

consumption;8 f : adjustment speed towards equilibrium assumed by regressive expectation

rule; d: popularity of regressive expectations. Substitution of A.19 into A.20 and A.21, and

rearranging yields:

St = bSt−1 + kUt + (b− k − 1)Ut−1 + bĪ (A.23)

Ut = [wtb(1 + c) + (1− wt)b(1− f)](St−1 + Ut−1 + Ī) (A.24)

+ [(1− w − t)f − cwt]C̄.

Elimination of the contemporaneous Ut yields a 3D representation:

St ={k[wtb(1 + c) + (1− wt)b(1− f)] + b}(St−1 + Ī)+

{k[wtb(1 + c) + (1− wt)b(1− f)] + b− k − 1}Ut−1+ (A.25)

k[(1− wt)f − cwt]C̄

Ut =[wtb(1 + c) + (1− wt)b(1− f)](St−1 + Ut−1 + Ī)

+ [(1− wt)f − cwt]C̄ (A.26)

wt =
1

1 + d[C̄ − b(Ī + St−1 + Ut−1)]2
. (A.27)

A.27 can be used to eliminate wt from A.25 and A.26, yielding a 2D representation. For

the parameterisation considered in this paper (see Table 2), condition (2) is satisfied such that

8Note that in the steady state (S∗, U∗, w∗), C̄ = S∗ + U∗.
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an increase in expected sales slows down the accumulation of inventories, while an increase in

inventory stocks boosts expected sales. As the parameters b, c, and k exceed critical values,

the unique equilibrium loses its local stability and a supercritical limit cycle emerges.

A.5 Dieci and Westerhoff (2012) [DW12]

Dieci and Westerhoff (2012) study a model with strategy switching in speculative housing

markets. House prices are driven by excess demand, while the price-elastic supply is determined

by construction and depreciation of the housing stock. The demand for houses has a real and

a speculative component. The real component is determined by current prices, whereas the

speculative component is governed by expected future prices. As in Wegener et al. (2009),

agents can choose between an extrapolative and a regressive forecasting rule. When prices

are close to the steady state, the extrapolative rule becomes more attractive, but when prices

deviate strongly from their fundamental values, more and more agents switch to the regressive

rule. The structural form is given by:

Pt = Pt−1 + a(Dt−1 − St−1) (A.28)

St = dSt−1 + ePt (A.29)

Dt = DR
t +DS

t (A.30)

DR
t = b− cPt (A.31)

DE
t = f(Pt − P̄ ) (A.32)

DMR
t = g(P̄ − Pt) (A.33)

DS
t = wtD

E
t + (1− wt)DMR

t (A.34)

wt =
1

1 + h(Pt − P̄ )2
, (A.35)

where Pt: house price; a: sensitivity of houses prices to excess demand; Dt: total demand

for houses; St: housing supply; (1 − d): depreciation rate of houses; e: sensitivity of housing

construction to house prices; DR
t : real demand for houses; DS

t : total speculative demand for

houses; b: autonomous real demand for houses; c: sensitivity of real housing demand to house

prices; DE
t : extrapolative component of speculative demand; f : sensitivity of extrapolative

demand to deviations of house prices from their steady state value; P̄ : fundamental house

price; DMR
t : regressive component of speculative demand; g: sensitivity of regressive demand to

deviations of house prices from their steady state value, h: popularity of regressive expectations.

Introducing the auxiliary variable Zt = St−1, substitution of A.30-A.34 into A.28-A.29, and

writing the variables in terms of deviation from their steady state (zt = Zt − Z̄, pt = Pt − P̄ )

32



yields:

zt = ept−1 + dzt−1, e > 0, d ∈ (0, 1) (A.36)

pt = (1− c− e)pt−1 +
fpt−1 − ghp3

t−1

1 + hp2
t−1

− dzt−1, c > 0. (A.37)

If f ≤ c+ e/(1−d), there is a unique steady given by (z∗, p∗) = (0, 0). The Jacobian matrix

is:

JDW12(z∗, p∗) =

[
d e

−d 1− c− e+ f−hp∗2(f+hgp∗2+3g)
(1+hp∗2)2

]
. (A.38)

An increase in house prices leads to an increase in housing supply, which in turn feeds

negatively back into house prices, so that condition (2) holds. As the extrapolative demand for

houses becomes more price-sensitive (reflected in an increase in f), the steady state becomes

locally unstable and a Neimark-Sacker bifurcation leads to a stable limit cycle.

A.6 BH97

Brock and Hommes (1997) pioneered a model of price formation in markets where supply de-

pends on heterogeneous price expectations. Agents can switch between two different forecasting

rules depending on their relative profitability: (i) a costly rational expectations predictor that

correctly predicts the equilibrium price and (ii) a costless naive predictor that assumes future

prices are equal to their present value. The structural form is given by:

Dt = n1t−1S1t + n2t−1S2t−1 (A.39)

Dt = A−Bpt (A.40)

S1t = bpt+1 (A.41)

S2t = bpt (A.42)

n1t =
exp(β(π1t − C))

exp(β(π1t − C)) + exp(βπ2t)
(A.43)

n2t = 1− n1t (A.44)

π1t =
b

2
p2
t+1 − C (A.45)

π2t =
b

2
pt(2pt+1 − pt) (A.46)

mt = n1t − n2t, (A.47)
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where Dt: demand; St: supply; S1t, S2t: supply of producers that follow a rational expec-

tations and a naive expectations rule, respectively; n1t, n2t: share of producers that follow a

rational expectations and a naive expectations rule, respectively; A: autonomous demand; B:

sensitivity of demand with respect to price; pt: price; b: sensitivity of supply with respect to

(expected) price; π1t, π2t: realised profits of producers that follow a rational expectations and a

naive expectations rule, respectively; β: speed with which producers switch between predictors;

C: information cost of the rational expectations predictor; mt: difference between the fraction

of agents that uses the rational expectations predictor.

Defining pt in terms of deviations from its steady state by settingA = 0 and then substituting

A.40-A.47 into the equilibrium condition A.39 and solving for pt yields A.48. Substitution of

A.43-A.46 into A.47 and elimination of the contemporaneous value for pt through substitution

yields A.49:9

pt =
−b(1−mt−1)

2B + b(1 +mt−1)
pt−1 b, B > 0 (A.48)

mt = tanh

{
β

2

[
b

2

(
b(1−mt−1)

2B + b(1 +mt−1)
+ 1

)2

p2
t−1 − C

]}
β, C > 0, (A.49)

The model has a unique fixed point at (p∗,m∗) = (0, tanh(−βC/2)). At this steady state,

the Jacobian matrix is given by:

JBH97(p∗ = 0,m∗) =

[
−b(1−m∗)

2B+b(1+m∗)
0

0 0

]
. (A.50)

As the parameter β exceeds a critical value, a strange attractor emerges that gives rise to

irregular fluctuations.

9Using the fact that tanh(x) = ex−e−x
ex+e−x .

34



B Derivation of steady state of BGP20

Imposing It = It−1 = I∗ and Xt = Xt−1 = X∗ in (10)-(11) yields:

I∗ = α0 − α1(1− δ)X∗ + (α2 − α1)I∗ +
α3

1 + e−I∗
, α3 > 0 (B.1)

X∗ = (1− δ)X∗ + I∗. (B.2)

Solving B.2 for X∗ and substitution into B.1 yields:

I∗(1 +
α1

δ
− α2) = α0 +

α3

1 + e−I∗
(B.3)

X∗ =
I∗

δ
. (B.4)

For α0 = −α3/2, we have F (0) = α0 + α3

1+e−0 = 0, so that the steady state is given by

I∗ = X∗ = 0.
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C Assessing the interaction mechanism when the lag

length is greater than 1

The VAR(1) in (1) is consistent for both the linear projection and condition (2), and estimates

of the eigenvalues of the linear projection can be obtained from the estimated coefficient matrix.

In practice, however, estimated VAR(1) models will often suffer from serially correlated errors

of the form:[
uyt

uft

]
=

p∑
i=1

Ai

[
uyt−i

uft−i

]
+

[
εyt

εft

]
. (C.1)

In our Monte Carlo simulation, we emulate this practical problem through the use of AR(1)

shock processes. As discussed in Stockhammer et al. (2019), the VAR(1) in (1) in conjunction

with the serially correlated error terms (C.1) can be rewritten as an unrestricted VAR(p). The

structural parameters driving any cycles are then assumed to be the parameters in (1) – i.e.

the coefficient matrix on the first lag. A consequence is that the estimated eigenvalues of the

VAR(p) are nonlinear functions of the coefficients in the companion matrix of the VAR(p) and

therefore no longer correspond directly to the eigenvalues of the VAR(1). If we assume that Ai

is diagonal then a2 and b1 in (1) are the only coefficients that are still identified, and thus the

critical condition for the existence of a cycle mechanism in (2) can be evaluated.
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D Asymptotic bias in VAR(p)

Figure A1: Asymptotic bias in VAR(p) with AR(1) errors

SM39 BGP20

Notes: Lines represent the bias (in %) in estimated statistics from Monte Carlo simulations with N = 1, 000
runs for increasing sample sizes T = 30, ..., 10000. Lrange: average cycle length over the range (3, 20); Ldom:
cycle length associated with dominant eigenvalue. Bias of Ldom is displayed on the right-hand side axis.
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E Distribution of statistics, BGP20

Figure A2: Histograms, BGP20, VAR(1) with AR(0) shocks

Notes: Number of Monte Carlo runs: N = 1000. Vertical lines mark the true value.
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F Different parameterisations for BGP20

Figure A3: Different parameterisations of α1, BGP20, AR(0) and AR(1) shocks

Notes: Boxes represent the first and third quartile, circles mark the mean, and whiskers represent 2 standard
deviations around the mean. Diamonds mark the true value. α11 = 0.375, α12 = 0.4 (baseline), α13 = 0.425,
α14 = 0.45, α15 = 0.475. Sample size: T = 50.

The model exhibits limit cycle dynamics for all parameterisations used in Figure A3, but

the strength of the interaction mechanism increases successively. It can be seen that the true

magnitude of the interaction effect is underestimated, but the bias remains constant across

parameterisations. The presence of serially correlated shock processes (right panel) renders the

estimator less precise. A higher magnitude of the interaction effect increases the cycle detection

rate.
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G Sensitivity to false positives

Figure A4: Simulation of BH97, deterministic and stochastic

-1

0

1

mt

-1

0

1

pt

50 60 70 80 90 100
t

-1

0

1

mt

-4

-2

0

2

pt

50 60 70 80 90 100
t

pt

mt

Notes: Simulation of pt =
−b(1−mt−1)

2B+b(1+mt−1)
pt−1, mt = tanh

{
β
2

[
b
2

(
b(1−mt−1)

2B+b(1+mt−1)
+ 1

)2
p2
t−1 − C

]}
with b = 1.35, B = 0.5,

C = 1, and β = 5. Upper panel: deterministic version. Lower panel: stochastic version with serially correlated error terms

ut = 0.8ut−1 + εt with εt ∼ N(0, 1).
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Table A1 Results of BH97, VAR(1) with AR(0) shocks and VAR(p) with AR(1)
shocks, averages

VAR (1) VAR(p)

ˆα2β1 -0.0064 -0.0047

NRMSE ˆa2b1 1.03 1.02

( ˆα2β1 < 0) (% of n) 64.7% 58.7%

( ˆα2β1 < 0)∗ (% of n) 0.6% 0.95%

λ̂dom 0.49 0.79

bias (λ̂dom) -81.2% -70.1%

Nonnorm (% of n) 72.1% 39%
Lags 1 2.66
Serial corr(% of N) 16%
n 1000 840

Notes: Based on pt = −b(1−mt−1)
2B+b(1+mt−1)

pt−1, mt = tanh

{
β
2

[
b
2

(
b(1−mt−1)

2B+b(1+mt−1)
+ 1
)2
p2t−1 − C

]}
with b = 1.35,

B = 0.5, C = 1, and β = 5. Jacobian matrix: a11 = −2.634, a12 = a21 = a22 = 0. Total number of runs
N = 1, 000; n: number of VARs that did not suffer from serial correlation; sample size T = 50; ˆa2b1: estimated
cycle condition; bias: % deviation from absolute true value; NRMSE: Root mean squared error normalised
by standard deviation; ( ˆa2b1 < 0): relative frequency (in n) with which the cycle condition was satisfied;

( ˆa2b1 < 0)∗: relative frequency (in n) with which the condition was statistically significant at the 10% level;
|λ|dom: dominant modulus; re: real part of eigenvalue; im: imaginary part of eigenvalue, L: cycle length.
Nonnorm: relative frequency (in n) with which estimated VARs exhibited non-normal residuals. Serial corr :
relative frequency (in N) with which estimated VARs exhibited serially correlated residuals after the inclusion
of 4 lags.
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Figure A5: Box plot for ˆa2b1, BH97, different sample sizes, VAR(p) with AR(1)
shocks

Notes: Boxes represent the first and third quartile, circles mark the mean, and whiskers represent 2 standard

deviations around the mean. Diamonds mark the true value.
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H Lag selection based on AIC

Table A2 Results for all DGPs, VAR(p) with AR(1) shocks, lag selection based on
AIC, averages

SM39 BGP20 BDRS01 NK92 WWZ09 DW12 BH97

ˆa2b1 -0.48 -0.31 -0.13 -0.94 -0.19 -0.48 -0.0071

bias ( ˆa2b1) 0.16% 36% 82% 42% 23% 1.4%

NRMSE( ˆa2b1) 1 1.39 5.58 3.28 1.14 1 1.02

( ˆa2b1 < 0) 100% 97% 90% 100% 97% 100% 55%

( ˆa2b1 < 0)∗ 95% 78% 56% 100% 83% 98% 2%
ˆ|λ|dom 0.89 0.86 0.84 0.99 0.89 0.82 0.8

bias ( ˆ|λ|dom) -0.15% -16.8% -19% -7.73% -13.7% -37.2% -69.7%
Nonnorm (% of N) 5.8% 6.7% 5.3% 15% 6.4% 6.3% 36%
Lags 2.25 2.21 2.24 3.52 2.29 2.25 2.72
Serial corr (% of N) 20% 20% 20% 68% 19% 19% 30%

Notes: Total number of runs N = 1, 000; sample size T = 50; ˆa2b1: estimated cycle condition; bias: % deviation
from absolute true value; NRMSE: Root mean squared error normalised by standard deviation; ( ˆa2b1 < 0):

relative frequency (in n) with which the cycle condition was satisfied; ( ˆa2b1 < 0)∗: relative frequency (in n)
with which the condition was statistically significant at the 10% level; |λ|dom: dominant modulus; Nonnorm:
relative frequency (in n) with which estimated VARs exhibited non-normal residuals. Serial corr : relative
frequency (in N) with which estimated VARs exhibited serially correlated residuals after the inclusion of 4 lags.
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