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Abstract. Deep learning-based approaches are now state of the art in 

numerous tasks, including video compression, and are having a revolutionary 

influence in video processing. Recently, learned video compression methods 

exhibit a fast development trend with promising results. In this paper, taking 

advantage of the powerful non-linear representation ability of neural networks, 

we replace each standard component of video compression with a neural network. 

We propose a spatial-temporal video compression network (STVC) using the 

spatial-temporal priors with an attention module (STPA). On the one hand, joint 

spatial-temporal priors are used for generating latent representations and 

reconstructing compressed outputs because efficient temporal and spatial 

information representation plays a crucial role in video coding. On the other hand, 

we also added an efficient and effective Attention module such that the model 

pays more effort on restoring the artifact-rich areas. Moreover, we formalize the 

rate-distortion optimization into a single loss function, in which the network 

learns to leverage the Spatial-temporal redundancy presented in the frames and 

decreases the bit rate while maintaining visual quality in the decoded frames. The 

experiment results show that our approach delivers the state-of-the-art learning 

video compression performance in terms of MS-SSIM and PSNR.  

Keywords: Video Compression, Deep Learning, Auto-Encoder, Rate-Distortion 

Optimization, Attention Mechanism.  

1  Introduction  

     There have been high demands on video compression over recent years, with the 

efficient transmission of top resolution and high-quality video data over the bandwidth-

limited Internet. Especially during the COVID pandemic, the increasing data traffic was 

used for online classes, virtual meetings, Netflix, YouTube, online gaming, etc. As a 

result, there's a growing demand for more practical video compression schemes to speed 

up the method of exchanging visual media over the bandwidth-limited Internet. By 
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utilizing redundancies within the data to produce a more miniature representation, 

compression methods are employed to handle the expanding sizes of stored media.  

Deep Learning (DL) is revolutionizing image and video processing, and DL-based 

techniques are state-of-the-art in several related problems such as classification, 

detection, or compression [1], [2].  

In the past few decades, several video compression algorithms have been 

standardized, e.g., MPEG [3], H.264 [4], and H.265 [5]. These standards are hand-

made, and the components in the compression framework cannot be optimized together. 

Motivated by the success of the deep neural networks (DNN) in improving image 

compression rate-distortion performance [6], [7] various DNN based video 

compression architectures [8], [9] have been developed. In these learned video 

compression methods, the whole network is optimized in an end-to-end manner. The 

DL-based image compression relies on the ability of DNN to extract meaningful 

representations of two-dimensional data because the latent space of an image 

represented by the network must contain information about the most important features 

and structures in the image. The convolutional auto-encoder is particularly suitable for 

image processing because it can take advantage of the spatial redundancy in the image.  

It is still a difficult task to figure out how to generate and compress motion 

information that is optimized for video compression. To decrease the spatial-temporal 

redundancy in video sequences, video compression algorithms mainly rely on optical 

flow information. Furthermore, developing a DL-based video compression system that 

minimizes the rate-distortion-based objective for both residual and motion information 

is also another challenge. Recently, image compression algorithms [10], [11] based on 

machine learning methods have shown great superiority in coding efficiency for spatial 

redundancy removal compared with conventional codecs. These models get benefit 

from non-linear transforms, DNN based conditional entropy model, and a joint rate-

distortion optimization (RDO) under an end-to-end learning strategy. Learned video 

compression can be extended from the image compression approach by further 

exploiting the temporal redundancy or correlation. Besides, the artifacts in frames also 

harm the performance of video-oriented tasks (e.g., video summarization [12], action 

recognition, and localization [13]). Accordingly, artifact reduction in frames, which 

aims to reduce the artifacts and recover missed details from the frame and pay more 

attention to complex regions to improve coding performance, becomes a hot topic in 

the multimedia field [14].  

Therefore, this paper proposes a spatial-temporal video compression network 

(STVC) using the spatial-temporal priors with an attention module (STPA). As shown 

in Fig. 1, the proposed STVC approach uses convolutional networks for representing 

inputs, reconstructing compressed outputs. Specifically, the proposed STPA network 

contains an attention network in both the encoder and decoder. Given a sequence of 

inputs {𝑥1, 𝑥2 … …. 𝑥𝑡}, the encoder of STPA generates the latent representations {𝑦1, 

𝑦2 … …. 𝑦𝑡}, and the decoder also reconstructs the compressed outputs {𝑥 1, 𝑥 2 … …. 𝑥 𝑡} 

from {𝑦1, 𝑦2 … …. 𝑦𝑡}. Besides, we also add an attention module into STPA network 

architecture. Attention modules can make learned models pay more attention to 

complex regions to improve our coding performance. The attention mechanism is also 

embedded to generate a more compact representation for both latent features and 
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hyperpriors. Our attention model is applied at different layers (not only for quantized 

features at the bottleneck), to adapt intelligently through the end-to-end learning 

framework.  

Our main aim is to improve the flaws of the traditional video compression methods 

by replacing each traditional aspect with its minimalistic neural network equivalent. 

The following is a summary of the contributions:  

1. We propose a spatial-temporal video compression network (STVC) that jointly 

learns motion compression, motion estimation, and residual compression. It 

optimizes all the components simultaneously under the scrutiny of a single loss 

feature.  

2. We propose the spatial-temporal priors with an attention module (STPA). To 

compress the corresponding motion and residual to consider existing spatial and 

temporal data and compress them in a quantized latent representation using 

autoencoders, multi-scale connections, and convolutions. We also apply the 

attention module together with the autoencoder to reduce the artifacts and 

recover missing details from the frame and pay more attention to complex 

regions.  

Our experiments validate that compressing the motion information using our 

approach can significantly improve the compression performance. Our framework 

outperforms the DVC [8], H.264 [4], and H.265 [5] when measured by MS-SSIM and 

PSNR. In the following, Section 2 presents the related works. The proposed STVC and 

STPA are introduced in Section 3. Then, the experiments in Section 4 validate the 

performance of the proposed STVC approach to the existing learned video compression 

approaches. Finally, concluding remarks and future works are described in Section 5.  

2  Related Work  

In this section, we discuss several deep learning methods related to the image and 

video compressions that are highly relevant to our work.  

  

2.1  Learned Image Compression   

     DNN-based image compression methods are generally based on automatic encoders. 

For the first time [15], it is proposed to use a recurrent encoder to progressively encode 

image compression. In recent years, convolutional autoencoders have been studied 

extensively, including non-linear transformations (e.g., generalized division 

normalization) [7], differentiable quantization (e.g., soft-to-hard quantization, and 

uniform noise approximation), hyper-prior [10] probability models to estimate entropy 

in end-to-end DNN image compression frameworks. Recently, the context-adaptive 

[16] and coarse to fine hyper-prior [10] entropy models have been designed to further 

improve the distortion rate performance and exceed the traditional image codec. Rate-

Distortion Optimization [17] is applied to minimize the Lagrangian cost 𝑅 + 𝜆𝐷 in end-

to-end training. Here, 𝑅 is the entropy rate, and 𝐷 is the distortion measured by mean 

square error (MSE) or multi-scale structural similarity (MS-SSIM).   
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2.2  Learned Video Compression  

Deep learning is also getting more and more attention in video compression. To 

improve the coding efficiency of manual standards (e.g., H.264 and H.265), many 

methods have been proposed [6], [18] to replace components in H.264 with DNN. 

Among them, [19] used DNN in motion compensation score interpolation, [20] 

proposed a DNN model for frame predictions. In addition, [21], [22] use DNN to 

enhance the H.265 loop filter. However, these methods can only improve the 

performance of a specific component of the video compression framework, but they fail 

to optimize the video frames together. Inspired by the success of learning image 

compressions, some learning-based video compression methods are proposed in [2], 

[25]. However, [20] and [1] still use some manual strategies, such as block matching 

for motion estimation and compensation, so the entire compressed frame cannot be 

optimized in an overall manner. Recently, several end-to-end DNN frames have been 

proposed for video compression [24], [25]. Specifically, [8] proposed a deep video 

compression (DVC) method, which uses optical flow for the motion estimation and uses 

two auto-encoders to compress motion and residual separately. DVC outperformed on 

H.264 mainly at high bit rates, but the coding efficiency dropped unexpectedly at low 

bit rates as reported. Our model proposes a Spatial-temporal compression method for 

videos, and it outperforms from low to high bitrates as compared to H.264.  

2.3  Attention mechanism  

In general, attention can be thought of as a guideline for allocating available 

processing resources to the most informative aspects. To rescale the feature maps, it's 

frequently paired with a gating function (e.g., sigmoid). With a trunk-and-mask 

attention mechanism, [26] presented a residual attention network for image 

classification. The attention module is also used by [27] in video compression to 

improve performance. Overall, the goal of these efforts is to direct the network's 

attention to the regions of interest. However, there has been an investigation into using 

the attention mechanism to learn the spatial correlation of different sampling densities 

to increase video compression efficiency. 
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Fig. 1. The framework of our STVC approach. The modules with red colour are proposed STPA 

network shown in Fig. 2. We use hyperprior, which is illustrated in Fig. 2, is applied on the latent 

representations 𝑦𝑡
𝑚 and 𝑦𝑡

𝑟 to reduce the spatial redundancy. 

  

3  THE PROPOSED STVC APPROACH  

3.1  Framework  

Fig. 1 shows the main components of the framework and the relationships among 

them. The framework is inspired by traditional video codecs H.264 and H.265. A video 

can be thought of as a collection of frames 𝑓1, 𝑓2, ......𝑓𝑡−1, 𝑓𝑡. So, we define the current 

video sequences and compressed frames as {𝑓𝑡}𝑡=1
𝑇  and {𝑓𝑡}𝑡=1

𝑇
, respectively. To reduce 

the redundancy in frames, motion estimation is required. We apply the optical flow 

network [28] to estimate the temporal motion between the current frame and the 

previously compressed frame. In our framework, we use the same motion compensation 

method as [8]. In the following, the residual 𝑥𝑡
𝑟 , between 𝑓𝑡 and the motion compensated 

frame 𝑓�̅�  can be obtained and compressed by another STPA. Using the compressed 

residual as �̂�𝑡
𝑟, we can reconstruct the compressed frame 𝑓𝑡  = 𝑓�̅� + �̂�𝑡

𝑟.  

3.2  Spatial-temporal priors with an attention module (STPA)  

In STVC, we apply two STPAs to compress 𝑥𝑡
𝑚

 and 𝑥𝑡
𝑟

 for motion and residual 

compression, respectively. Since the two STPAs share the same architecture, we denote 

both 𝑥𝑡
𝑚

  and 𝑥𝑡
𝑟

 by 𝑥𝑡 in this section for simplicity. The compression process in STPA 

can be formulated by  

𝑦𝑡 = 𝐸(𝑥𝑡; 𝜙𝐸)   

𝑦 𝑡 = 𝑄(𝑦𝑡)   
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Fig. 2. The architecture of the proposed STPA network. In convolutions layers, ↑2 and ↓2 indicate 

up and down sampling with the stride of 2, respectively. In STPA, the filter sizes of all 

convolutional layers are set as 3 × 3 when compressing motion and set as 5 × 5 for residual 

compression. The filter number of each layer is set as 128. Attention modules are the same as in 

[29].   

�̂�𝑡 = 𝐷(�̂�𝑡; 𝜃𝐷) 

 

(1) 

Here 𝑥𝑡, 𝑥 𝑡, 𝑦𝑡, 𝑦 𝑡 denote the current input frame, reconstructed frame, the latent 

variables, and the quantized latent variables, respectively. Notation E and D denote the 

encoder and decoder, respectively, and 𝜙 and 𝜃 correspond to their parameters. Notation 

Q denotes real round-based quantization in the inference stage.  

     In the training process, considering that non-differentiable quantization will result in 

the inability to backpropagate the gradient, the work uses a uniform noise to replace the 

quantization here. When compressing the t-th frame, the auto-encoders map the input 

𝑥𝑡 to a latent representation.  

ỹt = U(yt)  

�̃�𝑡 = 𝐷(𝑦�̃�; 𝜃𝐷) (2) 

Where 𝑦 𝑡 and 𝑥 𝑡 represent the latent variables with uniform noise added and its decoding 

reconstruction. Notation U denotes adding uniform noise in the training stage.  

Taking the inputs of only the current 𝑥𝑡 and 𝑦𝑡 to the encoder and decoder, they fail 

to take advantage of the spatial redundancy and are not able to recover missed details 

in the latent variables y.   

On the contrary, the proposed STPA includes hyperprior and attention in both the 

encoder and decoder. The architecture of the STPA network is illustrated in Fig. 2. We 

follow [10] to use four 2×down-sampling convolutional layers with the activation 

function of GDN [7] in the encoder of STPA. In the middle of the four convolutional 

layers and bottleneck of quantized features, we insert an attention module [29] to reduce 

the artifacts and recover missed details. Therefore, the model can pay more attention to 

complex regions to improve coding performance. Therefore, the proposed STPA 
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generates latent representation based on the current frame as well the as previous frame. 

Similarly, the STPA decoder also has an attention module with the four 2×up-sampling 

convolutional layers with IGDN, and thus also reconstructs 𝑥 𝑡 from both the current and 

previous latent representations.   

To reduce the spatial redundancy in the latent variables 𝑦𝑡, an auxiliary hyperprior 

network [10] encodes its structural information 𝑧𝑡. Formulated by  

𝑧𝑡 = 𝐸ℎ(𝑦𝑡; 𝜙ℎ)  

𝑧 𝑡 = 𝑄(zt)  

 𝑝�̂�𝑡|𝑧 𝑡(ŷt|𝑧 𝑡)  ←  Dh(𝑧 𝑡;  θh) (3) 

Where 𝐸ℎ and 𝐷ℎ denote the encoder and decoder of this hyperprior network, and 𝜙ℎ 

and 𝜃ℎ correspond to their trainable parameters. 𝑝�̂�𝑡|𝑧 𝑡(𝑦 𝑡|𝑧 𝑡) are estimated distributions 

conditioned on 𝑧𝑡. There is no prior for 𝑧𝑡, so a factorized density model ψ is used to 

encode 𝑧𝑡 as  

𝑝𝑧 𝑖𝑡|𝜓(𝑧 𝑖𝑡|𝜓) = 𝛱𝑖 (𝑝𝑧𝑖𝑡|𝜓(𝜓) ∗ 𝑈 (−
1

2
,
1

2
)) (𝑧 𝑖𝑡) 

 

(4) 

Where 𝑧𝑖𝑡 denotes the i-th element of z at time t, and i specifies the position of each 

element or each signal.  

3.3  Loss Function  

     The purpose of our video compression framework is to reduce distortion between 

the original input frame, 𝑓𝑡 and the compressed frame 𝑓𝑡 while reducing the number of 

bits utilized for encoding the video. As a result, we propose the rate-distortion 

optimization problem below.  

L =  λD +  R =  λd(𝑓𝑡 , 𝑓𝑡)  +  �̂�𝑡
𝑚  +  �̂�𝑡

𝑟  (5) 

We employ mean square error (MSE) in our approach, and d(𝑓𝑡 , 𝑓𝑡 ) specifies the 

distortion between 𝑓𝑡  and 𝑓𝑡. The amount of bits utilized to encode the representations 

is represented by I(). Both the residual representation �̂�𝑡
𝑟 and the motion representation  

�̂�𝑡
𝑚 should be encoded into the bitstreams in our technique. λ is the Lagrange multiplier 

that determines the trade-off between the number of bits and distortion.  
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Fig. 3. Rate-distortion performance of the proposed approach compared with the learning-based 

video codec in [30], DVC [8], and traditional video compression method H.264 [4] and H.265 

[5] approaches on the UVG and JCT-VC datasets. 

4  EXPERIMENTS  

4.1  Training the proposed network  

      Our proposed approach is trained using the Vimeo-90k dataset [31]. The dataset is 

built for video denoising, deblocking, and super-resolution. Each training sample video 

has seven frames. The first frame is compressed as an I-frame, while the remaining six 

frames are compressed as P-frames. To evaluate compression quality, we use the 

Multiscale Structural Similarity (MS-SSIM) [32] index and the Peak Signal-to-Noise 

Ratio (PSNR), and then train the model with settings that are optimized for MS-SSIM 

and PSNR, respectively. To train the PSNR model, it uses the Mean Square Error 

(MSE). We set λ = 1024 for MS-SSIM and PSNR. The Adam optimizer [33] is utilized 

for training. The initial learning rate is set as 10−4 for loss function. We use Bpp (bits 

per pixel) to express the required bits for each pixel in the current frame to measure the 

number of bits for encoding the representations.  

4.2  Evaluating the performance  

The evaluations are being carried out to ensure that our proposed model is effective. 

The performance is evaluated using the JCT-VC [4] (Classes B and E) and UVG [34] 

datasets. JCT-VC Classes B and UVG have 1920 x 1080 resolutions. The UVG dataset 

has a GOP (group of pictures) size of 12, and the HEVC dataset has a GOP size of 10, 

respectively. We compare our method to that of DVC [8], [30], H.264 [4], and   
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Table 1. BDBR performances with Proposed, DVC, and H.265 model when compared with 

H.264. 

Dataset                     MS-SSIM                     PSNR   

Proposed   DVC  H.265  Proposed  DVC  H.265  

UVG(Average)  -38.62  -16.46  -26.19  -39.24  -37.34  -36.19  

Class B(Average)  -29.59  -29.09  -28.31  -33.17  -27.92  -31.73  

Class E(Average)  -35.51  -33.16  -29.52  -36.01  -22.23  -35.54  

Average  -34.57  -26.24  -28.17  -36.14  -29.26  -34.30  

  

H.265 [5]. We use FFmpeg in very fast mode and the settings in [30] to make 

compressed frames using H.264 and H.265.  

Rate-distortion curve- The rate-distortion curves for the JCT-VC and UVG datasets 

are shown in Fig. 3. The bit rate is determined using Bpp, while the quality is measured 

using MS-SSIM and PSNR. Overall, the proposed MS-SSIM model outperforms DVC 

[8], [30], H.264, and H.265, as illustrated in Fig. 3. DVC is comparable with H.265 at 

low bit rates on the JCT-VC dataset but our approach's rate-distortion curves clearly 

outperform DVC [8], from low to high bitrates on the JCT-VC dataset. Also, it can be 

demonstrated that our PSNR model outperforms DVC [8], [30], H.264, and H.265 on 

all videos (average).  

Bit-rate difference- In addition, we evaluated Bjøntegaard Delta Bitrate (BDBR) [35] 

using H.264 anchors. BDBR calculates the average bit rate difference compared to the 

anchor point, and a lower BDBR value indicates better performance. Table 1 shows the 

BDBR calculated using MS-SSIM and PSNR, where a negative number indicates that 

the bit rate is lower than that of the anchor, which means that it is better than H.264, 

and the bold number is the best result among all learning methods.  

     In Table 1, in order to fairly compare MS-SSIM with optimized methods DVC [8], 

H.264, and H.265, we first report the BDBR of our model based on MS-SSIM. In UVG 

and JCT-VC types B and E, our model is even significantly better than the DVC method 

in terms of MS-SSIM. As shown in Table 1, our model is better than H.264 in MS-

SSIM, with an average BDBR of 34.57 %, which is also better than DVC (BDBR = 

26.24 %). In terms of PSNR, Table 1 shows that our PSNR model outperforms H.264 

(very fast LDP) from low to high bit rates on the UVG and JCT-VC test sets. The BDBR 

results calculated by PSNR in Table 1 also show that the bitrate achieved by our method 

is 36.14% lower than H.264 (very fast LDP). Please note that as far we know, there are 

no learned video compression methods that have exceeded the default setting of H.265 

in PSNR. Our proposed method can be further developed to improve the performance 

of the next generation learning video compression and to help gradually catch up with 

manual standards.  
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5  CONCLUSION AND FUTURE WORK  

      This paper has proposed a spatial-temporal video compression network (STVC). 

Specifically, we proposed an auto-encoders style network with an attention module to 

compress motion and residual, fully exploring the spatial and temporal correlation in 

video frames. We proposed a rate-distortion optimization framework to train a single 

Spatial-temporal autoencoder for reconstruction loss. Key novelty laid on the accurate 

motion representation for exploiting temporal correlation and hyper-priors is leveraged 

to improve the spatial correlation and entropy coding efficiency.   

     We evaluated our methods and reported the performances among the traditional 

H.264/AVC, H.265/HEVC, and learning-based DVC and [30]. Our approach offered 

consistent gains over existing methods across a variety of contents and bit rates, but the 

PSNR model on the default setting of H.265 did not beat the performance, so it needs 

further research and development. Moreover, the proposed approach achieved 

significant performance at the cost of higher encoding complexity. Another possible 

focus for future work is to study reducing complexity and the trade-off between 

complexity and rate-distortion performance. For example, the proposed network may 

be sped up by reducing the number of layers and channels in the autoencoders and the 

motion compensation network or by utilizing a more time-efficient optical flow network 

for motion prediction [1].  

  

References  

[1] T. Chen, H. Liu, Q. Shen, T. Yue, X. Cao, and Z. Ma, “DeepCoder: A Deep 

Neural Network Based Video Compression.”  
[2] Z. Chen, T. He, X. Jin, and F. Wu, “Learning for Video Compression,” Apr. 

2018, doi: 10.1109/TCSVT.2019.2892608.  

[3] S. Aramvith and M.-T. Sun, “MPEG-1 AND MPEG-2 Video Standards,” 1999.  

[4] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the 

H.264/AVC video coding standard,” IEEE Transactions on Circuits and 

Systems for Video Technology, vol. 13, no. 7, pp. 560–576, Jul. 2003, doi: 

10.1109/TCSVT.2003.815165.  

[5] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the high 

efficiency video coding (HEVC) standard,” IEEE Transactions on Circuits and 

Systems for Video Technology, vol. 22, no. 12, pp. 1649–1668, 2012, doi: 

10.1109/TCSVT.2012.2221191.  

[6] M. Xu, T. Li, Z. Wang, X. Deng, R. Yang, and Z. Guan, “Reducing Complexity 

of HEVC: A Deep Learning Approach,” Sep. 2017, doi:  

10.1109/TIP.2018.2847035.  

[7] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end Optimized Image 

Compression,” Nov. 2016, [Online]. Available: 

http://arxiv.org/abs/1611.01704  



11  

  

  

  

  

[8] G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai, and Z. Gao, “DVC: An End-toend 

Deep Video Compression Framework,” Nov. 2018, [Online]. Available: 

http://arxiv.org/abs/1812.00101  

[9] J. Pessoa, H. Aidos, P. Tomas, and M. A. T. Figueiredo, “End-to-End Learning 

of Video Compression using Spatio-Temporal Autoencoders,” in IEEE 

Workshop on Signal Processing Systems, SiPS: Design and Implementation, 

Oct. 2020, vol. 2020-October. doi: 10.1109/SiPS50750.2020.9195249.  

[10] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational image 

compression with a scale hyperprior,” Jan. 2018, [Online]. Available: 

http://arxiv.org/abs/1802.01436  

[11] Y. Hu, W. Yang, and J. Liu, “Coarse-to-Fine Hyper-Prior Modeling for  

Learned  Image  Compression.”  [Online].  Available: 

https://huzi96.github.io/coarse-to-fine-compression.html.  

[12] E. Apostolidis, E. Adamantidou, A. I. Metsai, V. Mezaris, and I. Patras, “Video 

Summarization Using Deep Neural Networks: A Survey,” Jan. 2021, [Online]. 

Available: http://arxiv.org/abs/2101.06072  

[13] Y. Xu et al., “GIF Thumbnails: Attract More Clicks to Your Videos,” 2021. 

[Online]. Available: www.aaai.org  

[14] N. Zou et al., “End-to-End Learning for Video Frame Compression with 

SelfAttention,” Apr. 2020, [Online]. Available: 

http://arxiv.org/abs/2004.09226  

[15] G. Toderici et al., “Full Resolution Image Compression with Recurrent Neural 

Networks,” Aug. 2016, [Online]. Available: http://arxiv.org/abs/1608.05148  

[16] J. Lee, S. Cho, and S.-K. Beack, “CONTEXT-ADAPTIVE ENTROPY 

MODEL FOR END-TO-END OPTIMIZED IMAGE COMPRESSION.” 

[Online].  Available: 

https://github.com/JooyoungLeeETRI/CA_Entropy_Model.  

[17] “Sullivan - RD Opt for Video”.  

[18] T. Li, M. Xu, C. Zhu, R. Yang, Z. Wang, and Z. Guan, “A Deep Learning 

Approach for Multi-Frame In-Loop Filter of HEVC,” IEEE transactions on 

image processing : a publication of the IEEE Signal Processing Society, vol. 

28, no. 11, pp. 5663–5678, Nov. 2019, doi: 10.1109/TIP.2019.2921877.  

[19] J. Liu, S. Xia, W. Yang, M. Li, and D. Liu, “One-for-All: Grouped Variation 

Network-Based Fractional Interpolation in Video Coding,” IEEE Transactions 

on Image Processing, vol. 28, no. 5, pp. 2140–2151, May 2019, doi: 

10.1109/TIP.2018.2882923.  

[20] H. Choi and I. v. Bajic, “Deep Frame Prediction for Video Coding,” Dec. 2018, 

[Online]. Available: http://arxiv.org/abs/1901.00062  

[21] Y. Dai, D. Liu, and F. Wu, “A Convolutional Neural Network Approach for 

Post-Processing in HEVC Intra Coding,” Aug. 2016, doi: 10.1007/978-3-

31951811-4_3.  

  



12  

  

  

  

  

[22] T. Li, M. Xu, R. Yang, and X. Tao, “A DenseNet Based Approach for 

Multiframe In-loop Filter in HEVC,” in Data Compression Conference 

Proceedings, May 2019, vol. 2019-March, pp. 270–279. doi: 

10.1109/DCC.2019.00035.  

[23] T. Chen, H. Liu, Q. Shen, T. Yue, X. Cao, and Z. Ma, “DeepCoder: A Deep 

Neural Network Based Video Compression.”  

[24] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Learning Image and Video 

Compression through Spatial-Temporal Energy Compaction.”  

[25] R. Yang, F. Mentzer, L. van Gool, and R. Timofte, “Learning for Video 

Compression with Hierarchical Quality and Recurrent Enhancement,” Mar. 

2020, [Online]. Available: http://arxiv.org/abs/2003.01966  

[26] F. Wang et al., “Residual Attention Network for Image Classification,” Apr. 

2017, [Online]. Available: http://arxiv.org/abs/1704.06904  

[27] M. Zhao, Y. Xu, and S. Zhou, “Recursive Fusion and Deformable 

Spatiotemporal Attention for Video Compression Artifact Reduction,” in MM 

2021 - Proceedings of the 29th ACM International Conference on Multimedia, 

Oct. 2021, pp. 5646–5654. doi: 10.1145/3474085.3475710.  

[28] A. Ranjan and M. J. Black, “Optical Flow Estimation using a Spatial Pyramid 

Network,” Nov. 2016, [Online]. Available: http://arxiv.org/abs/1611.00850  

[29] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Learned Image Compression 

with Discretized Gaussian Mixture Likelihoods and Attention Modules,” Jan.  

2020, [Online]. Available: http://arxiv.org/abs/2001.01568  

[30] C.-Y. Wu, N. Singhal, and P. Krähenbühl, “Video Compression through Image  

Interpolation,” Apr. 2018, [Online]. Available: http://arxiv.org/abs/1804.06919  

[31] T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman, “Video Enhancement with 

Task-Oriented Flow,” Nov. 2017, doi: 10.1007/s11263-018-01144-2.  

[32] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “MULTI-SCALE STRUCTURAL 

SIMILARITY FOR IMAGE QUALITY ASSESSMENT.”  

[33] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Dec. 

2014, [Online]. Available: http://arxiv.org/abs/1412.6980  

[34] A. Mercat, M. Viitanen, and J. Vanne, “UVG dataset: 50/120fps 4K sequences 

for video codec analysis and development,” in MMSys 2020 - Proceedings of 

the 2020 Multimedia Systems Conference, May 2020, pp. 297–302. doi: 

10.1145/3339825.3394937.  

[35] P. Hanhart and T. Ebrahimi, “Calculation of average coding efficiency based 

on subjective quality scores.” [Online]. Available: http://mmspg.epfl.ch/scenic  

   

  


