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RESEARCH ARTICLE

Qualitative-geometric ‘surrounds’ relations between disjoint 
regions
Michael Worboysa and Matt Duckham b

aSchool of Computing and Mathematical Sciences, University of Greenwich, London, UK; bSchool of Science, 
RMIT University, Melbourne, Australia

ABSTRACT
This paper explores a class of qualitative-geometric relations between 
disjoint regions, embedded in the surface of a sphere or in the plane. 
These relations combine topological information about the configura-
tion of the regions themselves as well as of the geometric Voronoi 
regions surrounding them. The method uses maptrees to construct 
a rigorous and exhaustive framework for n-ary relations between 
ensembles of regions. The resulting uniquely defined relations are 
akin to the verbal spatial relation ‘surrounds,’ in one common inter-
pretation. The paper provides an exhaustive formal classification of 
such extended spatial relations between up to three regions. A further 
exhaustive computational exploration of up to seven regions in the 
sphere also provides an algorithm to enumerate all possible config-
urations. The results demonstrate how the approach can be used to 
provide fine-grained and salient descriptions of qualitative-geometric 
relations for complex scenes involving ensembles of multiple regions.
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1. Introduction

This paper describes the systematic exploration of a class of qualitative-geometric relations 
between disjoint regions. We classify relations between regions embedded in the surface of 
a sphere and in the Euclidean plane by representing not only the topological relations 
between the regions themselves, but also topological relations between the Voronoi 
regions surrounding them. Combining topology and geometry in this way allows us to 
capture more finely grained spatial relations, akin to those often described informally using 
verbs such as ‘surrounds’ (Jackendoff 1976, Rosenfeld and Klette 1985, Vandeloise 1991, 
Cohn et al. 1997, Both et al. 2018).

Our approach has been initiated in earlier publications (cf. Worboys 2012, Both et al. 
2018). However, the central contribution of the current paper is to provide the tools to 
rigorously describe and systematically classify all possible qualitative-geometric region (so- 
called ‘surrounds’) relations. The paper demonstrates this approach exhaustively up to the 
ternary case, with further exploration of such relations in the sphere up to the septenary 
case (i.e. involving seven regions).
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Figure 1 provides a motivating example of where purely topological relations need to 
be supplemented with geometric knowledge. The islands in the illustration form part of 
the Vasörarna (Finnish Valassaaret) archipelago, composed of more than 150 islands out 
of almost 200,000 islands in Finland. From a purely topological viewpoint, all we can say 
about the relations between these islands is that they are pairwise disjoint and disjoint 
from the mainland.

However, we might wish to be able to reason about the various more subtle ways the islands 
interact with each other, the mainland, and other objects, where some islands may be considered 
to surround others. For example, do the more northern islands of Äbbskärsgrynnorna, 
Oxygrynnan, Voråboarnas hällan, Båtslaggrynnan, and Trekantbȯden together surround 
Båtslaget? Is Båtslagbådan also part of the surrounding islands of Båtslaget. Or is it itself, like 
Båtslaget, surrounded by the others? And how do all these islands relate to the other nearby 
islands and the wider Gulf of Bothnia, in which the entire archipelago is located?

Having said that, this paper is careful not to attempt to resolve the precise semantics of 
terms like ‘surrounds’ in natural language. Nor does it aim to supplant or replace existing 
work in the area of spatial reasoning that already defines related qualitative spatial 
relations akin to ‘surrounds’ (for example, based on the convex hull). Instead, our paper 
provides the first systematic treatment of n-ary qualitative-geometric relations – akin to 
‘surrounds’ – where questions such as those above might be unambiguously computed 
and resolved. Our relations may involve any number of participating (simple) regions 
(both surrounding and surrounded) and may involve arbitrary levels of nesting of rela-
tions (e.g. islands surrounded by other islands themselves in bays and in gulfs and so on).

Section 2 reviews the related work on relations that similarly go further than the purely 
topological relations as well as research on higher-order (beyond binary) spatial relations. 
Section 3 summarizes the two formal structures that underpin our work – the combinatorial 

Figure 1. Some islands in the Vasörarna (Finnish Valassaaret) archipelago in the Gulf of Bothnia, part of 
Korsholm municipality of Finland. (Data source: National Land Survey of Finland under a Creative 
Commons 4.0 license.).
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map and the maptree – before introducing and defining the extension of the maptree 
developed in this work: the region maptree (R-maptree). Sections 4 and 5 apply our method 
to an exhaustive classification of qualitative-geometric relations between two and three 
regions, respectively. Section 6 extends the analysis to provide a computational technique 
for the automated exploration of relations between any number of regions. The Appendix 
A includes the results of applying our method to an exhaustive classification of relations 
between up to seven regions. The final section discusses our results and contribution, 
arguing for the potential significance and importance of further exploration of our con-
struction, such as in defining conceptual neighborhoods based on our relations.

2. Background

The major focus of early research advances in qualitative spatial reasoning was an analysis 
of binary topological region relations, most notably the region connection calculus (RCC) 
(Randell et al. 1992, Cui et al. 1993), the 4-intersection model (4IM) and 9-intersection 
model (9IM) (Egenhofer and Franzosa 1991, Egenhofer and Herring 1992), and the 
calculus-based method (CBM) of Clementini et al. (1993), (1995).

These widely cited foundations gave rise to a rich body of related research on region 
relations. The so-called ‘egg-yolk’ representation, for example, combined a certain region 
core with an associated uncertain penumbra (Cohn and Gotts 1996, Roy and Stell 2001, 
Cohn 2017). Similarly, other researchers have explored related models of regions with 
indeterminate or broad boundaries, including extending CBM and 4/9IM (Clementini and 
Di Felice 1996, 1997) amongst other approaches (e.g. Schneider 1996).

The region relations explored in this paper similarly have their roots in this established 
tradition of binary qualitative region relations. However, the relations described in this 
paper differ from these influential models in two important ways. First, our focus concerns 
combined topological and geometric region relations. Combining geometry and topol-
ogy enables us to discern apart finer-grained spatial distinctions than is possible with 
topology alone. Hence, although all regions covered by our representation are all topo-
logically disjoint, they exhibit a rich variety of distinct configurations. Second, unlike the 
binary topological relations between pairs of regions, our region relations are n-ary, 
potentially involving relations between ensembles of multiple regions in unison.

2.1. Qualitative geometric ‘surrounds’ relations

There exists no single agreed definition of ‘surrounds’ in natural language. In some 
accounts, ‘surrounds’ is closest in meaning to ‘around,’ i.e. forming a barrier that completely 
encloses an object (Jackendoff 1976, Talmy 1983, see Figure 2(a)). In other accounts, a looser 
definition is discussed where an object may be only ‘partially included’ in a surrounding 
region (Vandeloise 1991, Correa-Beningfield et al. 2008).

The partial rather complete enclosure is a common feature of computational defini-
tions of ‘surrounds.’ In artificial intelligence, knowledge representation, and qualitative 
spatial reasoning most forms of the complete enclosure are more commonly classified as 
‘contains.’ One exception is Liu et al. (2008) who argue that ‘contains’ involves the 
intersection between region interiors, with ‘surrounds’ reserved for a completely enclosed 
region but with non-intersecting interiors with the enclosing region.
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Rosenfeld and Klette (1985) discuss the degree of ‘surroundedness’ in two senses: firstly, 
as the size of the angle subtended by the field of view from points on the surrounded object 
through the gap in the surrounding object (see also Krishnapuram et al. 1993, Miyajima and 
Ralescu 1994, Figure 2(b)); secondly, in terms of the sinuosity of the path from the 
surrounded region needed to ‘escape’ the surrounding region (Figure 2(b), termed here 
‘visually surrounded,’ but see Rosenfeld and Klette 1985).

In qualitative spatial representations, several authors have used the convex hull of 
a region as the basis of the definition of a ‘surrounds’ relation (Cohn et al. 1997, Donnelly 
2005, Schultz et al. 2006, Bittner et al. 2008, Bennett et al. 2013). The idea is that one region 
‘surrounds’ a second if the second is a subset of the convex hull of the first (see Figure 
2(d)).

This same idea – of a surrounded region being contained within the convex hull of 
a surrounding region – has also been applied to multiple regions. In this case, a region is 
be surrounded if it is contained within the convex hull of the union of a set of surrounding 
regions Hahmann and Brodaric (2013). However, as noted in Both et al. (2018), the 
extension is not a natural one, and leads to counter-intuitive cases that might more 
normally be termed ‘between’ rather than ‘surrounds’ (Figure 2(e)). Indeed, the ternary 
spatial relation ‘between’ (i.e., A is between B and C) has itself been the subject of study. 
The approach taken in Bloch et al. (2006) acknowledges the diversity of meanings of the 
term, by exploring the properties of 10 different yet related definitions of ‘between.’

Figure 2. Six different versions of ‘surrounds’ in the literature, including a. complete enclosure (e.g., 
Jackendoff 1976); b. partial inclusion (e.g., Vandeloise 1991) or partial enclosure (e.g., Krishnapuram 
et al. 1993); c. visually surrounded (e.g., Rosenfeld and Klette 1985); d. contained in convex hull of 
singleton region (e.g., Cohn et al. 1997); e. contained in convex hull of union of regions (e.g., Hahmann 
and Brodaric 2013), degenerate case more akin to ‘between’; RVD-surrounded used in this research, 
following Both et al. (2018).
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One further example in the literature of a ‘surrounds’ relation that allows for a set of 
surrounding regions is the surroundsAttach relation of Dube and Egenhofer (2014). 
Although this approach sits closest in spirit to our qualitative-geometric relation, 
surroundsAttach is designed for the quite different case where regions are pairwise 
disjoint and at the same time fill the space.

With the exception of the purely topological complete enclosure and the surroundsAttach 
relation of Dube and Egenhofer (2014), geometry plays a central role in the definition of all the 
relations discussed above. While derived from distinct geometric bases, the definitions are 
geometrically related, and so some instances may satisfy multiple criteria. For example, the 
partially enclosed figure (Figure 2(b)) is also contained in the convex hull, as is the visually 
surrounded figure (Figure 2(c)). In general, for relations between just two regions, any object 
visually surrounded or partially enclosed with angle α< 180� must also be contained in the 
convex hull.

Instead of the geometry of the field of view, sinuous paths, or the convex hull, the 
qualitative-geometric relation explored in this paper relies on the region Voronoi diagram 
(RVD) associated with our spatial ‘generator’ regions (see Figure 2(f)). As for the familiar 
point Voronoi diagram, the RVD partitions an embedding space into so-called Voronoi 
regions, where the Voronoi region of each generator region is the set of all points in the 
space nearer to that generator region than to any other (Geiger 1993, Okabe et al. 1994, 
2000). We note that in the case of just two regions (binary relations), the RVD-based and 
convex hull-based configurations are equivalent (i.e., in the case of two regions, if one is 
contained within the convex hull of the other, then that region is also RVD-surrounded, 
termed ‘engulfed’ in Both et al. 2018).

Beyond observing that there is no agreement on a single definition of ‘surrounds’ – 
neither in natural language nor in artificial intelligence, knowledge representation, or 
spatial computing – our aim in this paper is not to promulgate any one definition over 
another. We do argue that the qualitative-geometric relation explored in this paper does 
capture an important aspect of ‘surroundedness,’ akin to ‘surrounds’ in the sense 
described in Figures 1 and 2(f). However, we contend that none of the spatial relations 
discussed above has necessarily greater (or lesser) claim to capture the human concept 
and usage of ‘surrounds.’

Instead, the contribution of this paper lies in the rigorous definition of a qualitative- 
geometric relation between regions – akin to the RVD-based ‘surrounds’ in Figure 2(f) – 
that uniquely defines the relations between arbitrary sets of regions, including multiple 
‘surrounding’ and ‘surrounded’ regions, and arbitrary levels of nesting of relations, dis-
cussed further below.

2.2. Higher-order spatial relations

The majority of previous research on spatial relations, including the majority of research 
discussed above, has been focused on binary relations. Not all calculi are based upon binary 
relations. In the single-cross calculus, Freska (1992) proposed a ternary relation between 
points to represent the qualitative orientation of a point with respect to a given line 
segment. Freksa (1992); Zimmermann and Freksa (1996); Moratz et al. (2002) extended 
those relations in the double-cross calculus, further refining the discernible relations with 
a second line segment. These and other formulations extend topological representation to 
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qualitative orientation. An excellent survey of qualitative direction and orientation calculi is 
found in Freksa et al. (2018). In a similar vein, Schlieder (1995) introduced a ternary logic, 
where each triple of points maps to one of three values, depending whether the points are 
in clockwise or anticlockwise orientation, or are collinear.

Bloch et al. (2006) and, more recently, Majic et al. (2020) explore ternary ‘between-
ness’ relations. In Clementini and Billen (2006), an expressive framework for ternary 
projective relations involving three regions in the plane is defined and explored, 
based on tangents to the two reference regions. The approach leads to 34 jointly 
exhaustive, pairwise disjoint relations between three regions, several of which accord 
to subtly different interpretations of ‘between.’ Work in Clementini (2008) extends 
the approach to ternary region relations in the sphere. In the current paper, we also 
address region relations in the sphere, but as as a steppingstone to relations in the 
Euclidean plane.

Importantly, ternary – and in general n-ary – spatial relations can not necessarily 
be decomposed into binary relations. This point is made forcefully by Lewis et al. 
(2013); Lewis (2019) in their investigations into ensembles of regions, as illustrated 
in Figure 3. In the figure, the binary spatial regions between any pair of regions in 
the ensemble on the left are unchanged in the ensemble on the right. In parti-
cular, the highlighted orange region is pairwise disjoint to each of the blue 
regions in both cases. However, the two configurations are evidently topologically 
distinct, with the orange region being ‘completely enclosed’ (in the sense used in 
Figure 2) inside the union of blue regions only in the ensemble on the left.

Nesting of regions also becomes salient for n-ary surrounds relations. For exam-
ple, a region may be surrounded by a one or more regions that is itself surrounded 
by other regions, and so on. The qualitative spatial n-ary relations developed and 
explored in this paper provide a rigorous and uniquely defined answer to ques-
tions, such as those proposed in connection with Figure 1 and such as: Which 
islands (collectively) surround Båtslagbådan? Which islands are surrounded by 
(collections of islands that include) Båtslagbådan? and Which islands(s) surround 
the islands that surround Båtslagbådan? The convex hull notion of ‘surrounds’ 
alone cannot provide unique answers to such questions about ensembles of 
regions, because using the convex hull of the union of a set of regions itself 
requires knowledge of which regions are in or out of the set. Hence, to provide 

Figure 3. Two topologically distinct region ensembles with identical pairwise binary spatial region 
relations (Lewis 2019).
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uniquely defined answers to questions such as these, the RVD-based notion of 
surrounds is a natural choice for further exploration.

3. Preliminaries

This research investigates spatial relations between a finite number of pairwise-disjoint 
regions, each homeomorphic to a closed disk. We consider the first regions embedded in 
the surface of a sphere. We also consider punctures to the sphere which will then result in 
embeddings in the Euclidean plane. Topologically, the sphere is bounded and closed, 
resulting in a simpler construction for our relations. However, relations in the Euclidean 
plane are conceptually more intuitive and clearly important in a mapping context.

The formal framework of this research is based on two principal structures: the 
combinatorial map and the maptree.

3.1. Combinatorial maps

Combinatorial maps, developed by Edmonds (1960) and Tutte (1973), provide formal 
representations of 2-cell connected graph embeddings. The combinatorial map is the basis 
of the maptree (introduced in the following section). In turn, the maptree is the basis of 
the formal structure developed in this paper: the R-maptree (Section 3.3).

More specifically, we are concerned with a specific case of a graph: directed multi-
graphs, also called mutidigraphs or quivers. A directed multigraph G ¼ ðN; E; s; tÞ is a set of 
nodes N together with a set of E of edges and two functions, s : E ! N and t : E ! N, 
which map each edge to its starting and terminal nodes, respectively. Unlike the more 
familiar directed graphs, a directed multigraph may have multiple distinct edges between 
the same pair of nodes.

An embedding of a graph in a surface is a mapping of the graph into a surface such that: 
(a) graph nodes map to points on the surface and (b) graph edges map to nonintersecting 
arcs in the surface, with no arc overlapping allowed. If the embedding has the property 
that each face of the embedded graph is topologically equivalent to a disk, it is called 
a two-cell embedding. In this paper, we are concerned with two-cell embeddings into the 
surface of a sphere or the projective plane (a plane augmented with points at infinity 
where parallel lines intersect) and their corresponding embeddings in the Euclidean 
plane. In the case that the embedding is in the Euclidean plane, then one of the faces 
must be external and unbounded, and so strictly speaking not a two-cell embedding.

Finally, a graph is connected if any pair of nodes may be linked by a path of edges. In 
the case of combinatorial maps we are interested in weakly connected graphs: where the 
underlying undirected graph – with directed edges replaced with undirected edges – is 
connected.

Figure 4 illustrates a combinatorial map with four nodes and seven edges, labeled a–g.

3.2. Maptrees

The tool used to provide unique symbolic representations of such embeddings is the 
maptree. Developed Worboys (2012, 2013), the maptree combines the combinatorial map 
with the adjacency tree (Buneman 1970, Stell and Worboys 2011), resulting in construction 
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that can also represent unconnected graphs. Unconnected graphs are required to deal with 
spatial relations between disjoint regions. With each disjoint spatial region represented by 
a combinatorial map, the maptree provides a unified graph-based structure that combines 
these embeddings.

Figure 5 illustrates the maptree construction. The graph embedding in Figure 5(a) has 
three connected components. Each connected component of the graph embedding is 
represented by a combinatorial map. The maptree in Figure 5(b) unifies these, with each 
combinatorial map represented in the maptree by a black node and incident edges; and 
a white node corresponding to a face of that embedding.

Each edge in the maptree is labeled by a cycle of symbols, where each cycle represents 
a traversal of arcs around the corresponding face in the combinatorial map. Each traversal is 
arranged so that by convention its corresponding face is kept on its left. The overline 
notation � indicates that the arc labeled � is traversed in the opposite direction to its 

Figure 4. A combinatorial map: a two-cell (weakly) connected graph-embedding in the projective 
plane.

Figure 5. A graph-embedding (a) and its maptree (b).
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orientation. So in Figure 5, for example, the black node of the maptree with incident edges 
labeled with cycles bd, bc, and cd in Figure 5(b) represents the boundary between the three 
faces of the component with edges b; c and d in Figure 5(a).

Finally, white nodes are identified when they represent the same face of different 
components. While all faces in each individual combinatorial map will be topologically 
equivalent to a disk, faces in the maptree formed by bridging two or more combinatorial 
maps will not. For example, the central white node of the maptree in Figure 5(b) is a face 
of all three connected components, with bounding arcs represented by cycles e, bd and a 
in Figure 5(a). As a consequence, this resulting face is not topologically equivalent to 
a disk, and maptrees are in general not two-cell embeddings.

When the graph embedding is into a sphere, then the associated maptree provides 
a unique representation (up to homeomorphism of the sphere) of that graph embedding, 
discussed in more detail in Worboys (2012). Representing planar, rather than spherical, 
embeddings simply require additional information about which is the unbounded exter-
nal face of the embedding. The corresponding node in the maptree then becomes the 
root node of a rooted maptree. So, for example, embedding the configuration in Figure 5 
(a) in the Euclidean plane as shown requires only that the external face be identified by 
‘planting’ the corresponding node (the white node connected to edge labeled a) as the 
root of the rooted maptree. As we shall see later, it is also possible to embed maptrees 
into the plane by ‘planting’ an edge or node of the embedded graph (effectively ‘punc-
turing’ the sphere at a point), with the maptree transformed in a similar manner.

3.3. Voronoi regions and R-maptrees

As stated above, our goal is to classify spatial relations between regions by representing 
not only the topological relations between primary ‘generator’ regions themselves but 
also topological relations between the derived Voronoi regions surrounding generator 
regions. Combining geometric and topological relations allows us to capture more finely 
grained spatial relations than purely topological, as discussed in Section 1. Further, as 
argued in Section 2 and illustrated in Figure 2, the RVD-based notion of ‘surrounds’ is 
a natural choice for ensembles of multiple regions.

We need to make a modification to the maptree so that it can represent pairwise- 
disjoint, disk-like regions and take into account their Voronoi regions. To this end, the 
region maptree (R-maptree, for short) is a maptree extended by distinguishing two types 
of white node, the I-node and VI-node, and two types of black node, the B-node and the 
VB-node. Each I-node and B-node represents the interior and boundary of one of the disk- 
like ‘generator’ regions. Each VI-node represents the interior of the corresponding gen-
erator region’s Voronoi region. Each VB-node represents a single connected component 
formed by the shared boundaries to two or more Voronoi regions.

Figure 6 shows the graphical notation for the four node types. The four node types are 
subject to a collection of constraints, namely:

C1 Each I-node is of degree 1, being adjacent to exactly one B-node.
C2 Each B-node is of degree 2, being adjacent to exactly one I-node and exactly 

one VI-node.
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C3 Each VI-node must be adjacent to exactly one B-node and at least one VB-node.
C4 Each VB-node has a degree of at least 2 and is adjacent only to VI-nodes.

Constraint C1 follows from the fact that generator regions are always disk-like and 
pairwise disjoint (even if the Voronoi regions themselves may be unbounded in the case 
embedding in the Euclidean plane). For constraint C2, each generator region boundary 
must separate the generator region interior it encloses from the unique Voronoi region 
interior surrounding it. Constraint C3 follows because each Voronoi region must by defini-
tion contain the boundary of one and only one generator region. Constraint C4 arises 
because Voronoi regions on each side of a Voronoi boundary must be distinct (Voronoi 
regions cannot have cuts) and must be boundaries only of Voronoi regions. (From now on, 
for the sake of conciseness we usually omit the adjective ‘generator’ from ‘generator region.’ 
Unless explicitly Voronoi regions, regions are assumed generator regions.)

From these constraints, we can deduce the following:

C5 The numbers of I-nodes, B-nodes, and VI-nodes are equal.
C6 Each white node is adjacent only to black nodes, and each black node is adjacent 

only to white nodes.

It turns out that the constraints, along with structural properties of the maptree enable us 
to determine all possible region/Voronoi configurations, up to topological invariance. 
(However, it is not yet clear whether every V-maptree results in some region/Voronoi 
configuration.) We next prove a theorem that allows us to more easily generate V-maptrees. 

Theorem 3.1. Each region will form a leaf of a component of the V-maptree as shown in 
Figure 7.

Figure 6. Node types, with I-nodes representing the interior of a generator region; B-nodes represent-
ing the boundary of a generator region; VI-nodes representing the interior of a Voronoi region; and 
VB-nodes representing the boundary of a Voronoi region.

Figure 7. The configuration of nodes, including a V-I-VI node ‘block’ of the maptree.
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Proof. From the right of Figure 7, the I-node is a leaf, by constraint C1, and by constraints 
C4 and C6 must be adjacent to a single B-node. Continuing to move left, this B-node, by 
constraint C2, is also adjacent to a single VI-node. This VI-node, by constraint C3, must be 
adjacent to at least one VB-node, and maybe more (shown with dashed-line connecting 
edges).

It follows that every I-node is adjacent to a unique B-node, which is in turn adjacent to 
a unique VI-node. It is convenient to refer to those units as ‘blocks.’ 

Definition 1. Any connected I-B-VI node component in the maptree, as in Figure 7, is called 
a block. The valency of a block is the number of VB-nodes adjacent to that block’s VI-node.

3.4. Motivating example revisited

Although our primary focus in this paper is on the representation and analysis of 
qualitative-geometric relations using the maptree, before moving forward we return 
briefly to our running motivating example of ‘surrounds’ relations between islands in 
the Gulf of Bothnia. Figure 8 shows an example configuration of 11 islands in the vicinity 
of the island Stora Bergöran in the Korsholm municipality of Finland. The map on the left- 
hand side of Figure 8 has been augmented with Voronoi boundaries W1 and W2 and 
islands (‘generator’ regions) R1–R11. Labels for generator regions boundaries B1–B11 and 
Voronoi region interiors V1–V11 have been omitted from the map on the left-hand side for 
reasons of clarity, but are included in the partial maptree on the right-hand side for 
generator regions R1–R6.

Figure 8. An example configuration of 11 islands in the vicinity of Stora Bergöran in the Korsholm 
municipality of Finland (left-hand side), with corresponding maptree representation resulting from 
generator regions R1–R11 (right-hand side, only R1–R6 shown). (Data source: National Land Survey of 
Finland under a Creative Commons 4.0 license.).
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The figure shows how some surrounds-like relations can be inferred directly from the 
maptree even without edge labels. For example, the surrounding of region R2 by R1 (i.e., 
contained in the convex hull, termed engulfing in Both et al. (2018)) can be inferred from 
the structure of the maptree, with Voronoi boundary W2 a child of W1. However, ensemble 
surrounds relations, such as regions R1 and R4 together surrounding regions R3, requires 
inspection of further information about the edge labels of the maptree. The analysis in the 
following sections steps into more detail about the possible distinct configurations of 
maptrees in the case of two regions, three regions, and beyond, before finally returning to 
our motivating example in the discussion and conclusions.

4. Two-region analysis

We begin by providing an exhaustive analysis of two-region configurations. We shall see 
that on the surface of a sphere, there is only one possible configuration. In the planar case, 
there are two possibilities, corresponding to: (a) a singleton surrounding region (some-
times termed ‘engulfing,’ Both et al. 2018) and (b) the separation between the two.

4.1. Two regions on the surface of a sphere

The only possibility here, is two blocks, each of valency 1, adjacent to the same VB-node. 
The resulting R-maptree is shown in Figure 9, with I-nodes labeled R (region interior); 
B-nodes labeled B (region boundary); VI-nodes labeled V (Voronoi region interior); and VB- 
nodes labeled W (Voronoi region boundary). Note that the edges are not labeled in Figure 
9. This is because each of the black nodes has degree two, and therefore bounded by 
a single edge. Thus, no ambiguity arises by omitting the labels.

4.2. Two regions on the plane

In theory, the surface of the sphere can be punctured at a point in any of the regions or 
boundaries represented by the maptree shown in Figure 9. However, since we constrain 
our regions to be bounded, we can only puncture the sphere at a point in a Voronoi 
region or on a Voronoi boundary. Hence, punctures may only occur at corresponding VI- 
or VB-nodes. The VI- or VB-node chosen for the puncture will then form the root of 
a rooted maptree embedded in the plane. In cases where the puncture occurs in 
a Voronoi region, that Voronoi region will be then unbounded in the Euclidean plane. 
Where the puncture occurs at a Voronoi boundary, at least two unbounded Voronoi 
regions will result (and possibly more than two as we step up to examine relations 
between more than two regions). In cases where the embedding is into the projective 
plane, the exterior face will remain bounded and topologically equivalent to a disk.

Figure 9. The configuration of nodes for two regions on the surface of a sphere.
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As a result, in the two-region case in Figure 9, only nodes labeled W; V1, and V2 are 
candidates for root nodes of the maptree. The W and V1 cases are shown in Figure 10. The 
V2 case is identical to the V1 case, by symmetry.

Figure 11 shows the two embeddings represented by the planar maptrees in 
Figure 10. In the right-hand case, we might describe the region R1 ‘engulfing’ region 
R2 (i.e. the case where a singleton region is ‘surrounding’), while this is not the case 
with the regions in the left-hand case. We may also note that from a purely topolo-
gical viewpoint, the relations between the two regions are identical, both being that 
of disjointness.

5. Three-region analysis

We next provide an exhaustive analysis of three-region configurations, beginning with the 
analysis of embeddings on the surface of a sphere.

5.1. Three regions on the surface of a sphere

There must be exactly three blocks in this case. There are two cases: three blocks of 
valency 1; and one block of valency 2 with two blocks of valency 1. In the case that all 
blocks are of valency 1, then the tree must be connected by a single VB-node (Figure 12, 
Case B). In the second case, one brick has valency 2 and connects to two other bricks, each 

Figure 10. The configuration of nodes for two regions embedded in the Euclidean plane.

Figure 11. The two embeddings of two regions on the surface of the Euclidean plane (cf. Figure 10).
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of valency 1, by identifying VI-nodes (Figure 12 Case A). These are the only possibilities. 
However in Case B, because the black VB-node has a degree greater than 2, we do have to 
consider the labeling of edges around it.

Let us consider the labeling around the VB node W in Case B. We assume that the arc 
represented by W contains no extraneous vertices: that is all vertices are of degree at least 
3. We can make the following observations regarding the structure around W.

(1) Clearly, there are exactly three nodes around W.
(2) Each of the three regions partially bounded by the arc represented by W is 

a Voronoi region. Hence, there can be no edge of the boundary with the same region 
on both sides.

(3) The arc represented by W cannot comprise more than two edges. If it had three 
edges, as we can see from Figure 13, there would have to be more than three regions. If it 
comprised more than three edges, then the two neighboring regions could not be disk- 
like. Therefore, each region is bound by exactly two edges of the boundary W, and so the 
total number of semi-edges is at most six.

Figure 12. The R-maptrees for cases A and B when three regions are embedded on the surface of 
a sphere.

Figure 13. If a boundary of a region comprises three edges, then there cannot be three regions in 
total.
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The above constraints lead to just two (up to relabeling) minimal configurations, 
namely Case B1, where W bounds: ab, a, and b; and Case B2, where W bounds ab, ca, 
bcÞ. Therefore, Cases A, B1, and B2 are the only possible configurations leading to 
embeddings on the sphere. The three R-maptrees are shown in Figure 14.

5.2. Three regions on the Euclidean plane

Figure 15 shows the three configurations of Voronoi boundaries (indicated with hatched 
lies) corresponding to the three Cases A, B1, B2 derived above. As in the two-region case, the 
surface of the sphere can be punctured only at a point in a Voronoi region or on a Voronoi 
boundary. Figure 15 further shows for each case the topologically distinct (up to symmetry) 
locations in which the sphere can be punctured. We consider each case separately.

Case A
For Case A in Figure 14, as Figure 15 shows, there are three topologically distinct 

locations in which the embedding sphere may be punctured. These are labeled α; β, and γ 
and give rise to nodes V1;W2; V2 being elevated to roots of the resulting planar maptrees. 
The configurations with W2 and W3 are identical, by symmetry, as are the configurations 
V2 and V3.

These maptrees are shown in Figure 16. Their corresponding embeddings are shown in 
Figure 17. We can see that Case A.α is the surrounding of two separated regions by 

Figure 14. The three cases for three regions on the surface of a sphere.

Figure 15. The topologically distinct (up to symmetry) places of puncture of the sphere at a Voronoi 
region or Voronoi boundary. Topologically distinct Voronoi boundary punctures are identified with the 
letter β. Topologically distinct Voronoi region punctures are identified with the letters α and γ (with 
the exception of Case B2, where punctures at α and γ are shown for completeness, but result in 
topologically equivalent planar configurations).
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a single region (i.e. ‘engulfing’); Case A.β is one region separated by two other regions, 
one of which surrounds the other; and Case A.γ is the nested surrounding of one region by 
another and both by a third.

Case B
Cases B1 and B2 provide the limiting cases of Case A. In Case B1, the two Voronoi 

regions meet at a point; in Case B2, the two Voronoi regions meet in a line.

Figure 16. The three Case A planar maptrees for three regions on the surface of the Euclidean plane.

Figure 17. The three Case A planar configurations for three regions on the surface of the Euclidean 
plane.
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Considering the first Case B1, Figure 15 shows there are four topologically distinct 
locations in which the embedding sphere may be punctured. These are labeled α, β1, β2, 
and γ, with notation corresponding to that for Case A. Cases β1, β2 result from puncturing 
the sphere at topologically distinct points on W and are subsumed in the single Case B.β. 
These maptrees are shown in Figure 18. All corresponding embeddings are shown in 
Figure 19. We can see that case B1.α is a limiting case of the surrounding of two separated 
regions by a single region; Case B1.β1 is a limiting case of one region separated by two 
other regions, one of which engulfs the other; Case B1.β2 is the case where the Voronoi 

Figure 18. The three Case B1 planar maptrees for three regions on the surface of the Euclidean plane.

Figure 19. The four Case B1 planar configurations for three regions on the surface of the Euclidean 
plane.
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boundary W splits into two discrete lines with the result shown; and Case B1.γ is the 
limiting case of the nested surrounding of one region by another and both by a third.

For Case B2, Figure 15 shows that there appear to be five topologically distinct locations 
in which the embedding sphere may be punctured. These are labeled α, β1, β2, β3, and γ, 
with notation corresponding to that for Case A. However, punctures α and γ result in 
equivalent planar configurations, so we may consider only α, β1, β2, β3. Cases β1, β2, β3 

result from puncturing the sphere at topologically distinct points on W and are subsumed 
in the single Case B.β. These maptrees are shown in Figure 20. All corresponding embed-
dings are shown in Figure 21. We can see that Case B2.α is a limiting case of the surrounding 
of two separated regions by a single region; Case B2.β1 is a limiting case of one region 
separated by two other regions, one of which surrounds the other; Case B2.β2 is the case 
where two regions in combination surround a third; and Case B2.β3 is the case where three 
regions are located pairwise symmetrically opposed.

Figure 21. The three Case B2 planar configurations for three regions on the surface of the Euclidean 
plane.

Figure 20. The three Case B2 planar maptrees for three regions on the surface of the Euclidean plane.
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6. Beyond three regions

The discussion thus far provides a first glimpse of the richness of finer granularity 
topological distinctions afforded by the R-maptree, even with just three regions. As the 
number of interacting regions increases, so too does the number of qualitative-geometric 
distinctions that are possible to discern with the R-maptree.

This section takes the next step into exploring that diversity computationally. By 
representing the essential information of the R-maptree using a portion of its adjacency 
matrix, we present an algorithm for enumerating all R-maptrees between n Voronoi 
regions, examining in more detail those cases up to n ¼ 7.

6.1. R-maptree adjacency submatrix (RMAS)

Given n regions in the sphere, there must exist at least 1 and possibly up to n � 1 disjoint 
Voronoi boundaries that separate them. Hence, for any configuration of n regions, we 
must consider the R-maptrees with order (number of nodes) i where i 2 ½nþ 1; 2n � 1�.

In all cases, the R-maptree can be represented as a binary adjacency matrix of the form 
shown in Figure 22. The central insight behind our algorithm for enumerating all possi-
bilities is that all the information contained in the R-maptree is encoded by the top right- 
hand subsection of the full adjacency matrix, termed here the R-maptree adjacency 
submatrix (RMAS).

6.1.1. RMAS canonical form
The labels of nodes in an R-maptree are arbitrary. Hence the labels of rows and columns of 
an RMAS are also arbitrary, and can reordered without changing the underlying structure 
of the R-maptree the RMAS represents.

In order to more easily discuss and compare RMAS, we adopt a ‘greedy’ canonical form 
for RMAS where rows and columns are ordered such that:

(1) rows are firstly in descending order of number of 1s across the row;
(2) rows are secondarily in descending order of the magnitude of the binary number 

formed by that row; and

Figure 22. R-maptree adjacency submatrix (RMAS) construction (top right), based on adjacency matrix 
of I-B-VI blocks G1::Gi and VB nodes Hiþ1::Hn.
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(3) columns are ordered such that they yield the largest possible binary numbers in the 
highest rows.

Figure 23 provides an illustration of an R-maptree and three equivalent adjacency 
submatrices, one in canonical form. To simplify Figure 23(a), and all R-maptree figures 
below, a diagonal-striped box node is used to represent a B-I-VI block.

6.2. R-maptree adjacency submatrix constraints

Representing the R-maptree as an adjacency submatrix enables the structural constraints 
of R-maptrees to be re-expressed in a format more amenable to computation. More 
specifically, not all i� n � i binary matrices encode valid R-maptrees. The following four 
conditions must be met in order for an i� n � i binary adjacency matrix to be a valid 
encoding of an R-maptree:
C2 The number of 1s in each row of the binary matrix is strictly greater than 0.
C3 The number of 1s in each column of the binary matrix is strictly greater than 1.
C1 The number of all 1s in the binary matrix is equal to o � 1, where o is the order 

(number of nodes) in the corresponding R-maptree.
C4 There exists a path between any pair of 1s in the binary matrix. A path through the 

tree may be found by following sequences of cells, with each adjacent cell in the 
sequence containing a 1 in the same row or column of the binary matrix.

With reference to the R-maptree constraints C1–4 in Section 3.3:
• constraints C1 and C2 concern I- and B-nodes and are unaffected by the reformulation 

of VB and I-B-VI blocks as an adjacency submatrix;
• constraint C3 is captured by constraint C1 above;
• constraint C4 maps to constraint C2 above; and
• constraints C3 and C4 above effectively encode that the adjacency submatrix 

describes a tree, with size (number of edges) equal to order o minus 1 and a (by 
implication unique) path between every pair of edges.

Figure 23. Three equivalent RMAS describing the same (unlabeled) R-maptree. Subfigure ‘a’ shows an 
R-maptree for six regions separated by five Voronoi boundaries. The diagram introduces the graphical 
notation of using unfilled diagonally striped boxes to represent B-I-VI blocks. This notation is used in 
all subsequent diagrams for conciseness. Subfigure ‘b’ shows the RMAS for the R-maptree in Subfigure 
‘a’ in canonical form. Subfigure ‘c’ shows an equivalent RMAS for the R-maptree in Subfigure ‘a,’ not in 
canonical form and formed by swapping columns 3 and 6 in the RMAS in Subfigure ‘b.’ Subfigure ‘d’ 
shows a further equivalent RMAS, not in canonical form, and formed by further swapping columns 1 
and 2 and rows 1 and 5 from the RMAS in Subfigure ‘c.’
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Hence, these constraints are sufficient to ensure the adjacency submatrix satisfying 
those constraints describes a valid R-maptree. 

Theorem 6.1. All four constraints C1–4 are necessary to ensure the adjacency submatrix 
describes a valid R-maptree.

Proof. Proof by contradiction. Table 1 provides four adjacency submatrices, each of which 
satisfy three of the constraints C1–4 but not the fourth. Each adjacency submatrix violates 
a different constraint, and leads to a counterexample graph that is not a valid R-maptree, 
illustrated in Table 1.

6.3. Algorithm

Given the constraints and structures defined above, it is straightforward to write a brute- 
force algorithm to exhaustively generate all possible R-maptrees for n Voronoi regions 
(Algorithm 1). The algorithm iterates through all the n� 1, n� 2, . . . n� n � 1 binary 
matrices (Algorithm 1 lines 2–3) storing any binary matrices that satisfy the constraints in 
the previous section (Algorithm 1 lines 4–5).

Algorithm 1: Brute-force enumeration of R-maptrees for n Voronoi regions
Input: Number n of Voronoi trees
1 Initialize set S ;;
2 for i 2 ½1; n � 1� do

Table 1. Proof by contradiction of Theorem 6.1.
Constraint Adjacency Graph

Case C1 C2 C3 C4 submatrix Comment (not R-maptree)
1 � � � � 1 1 0

1 0 1
0 1 1
0 0 0

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

� row 4< 1

2 � � � �

3 � � � � 1 1 0
1 1 0
1 0 1
0 0 1

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

� of 1s> 6

4 � � � � 1 1 0
1 1 0
0 0 1
0 0 1

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

No path to cells in column 3
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3 foreach binary matrix b with n rows and i columns do
4 if b satisfies constraints C1–4 then
5 S S [ fbg
6 end
7 end
8 end
Unfortunately, there are in general 2ni permutations of an n� i binary matrix. So, whilst 

simple, this brute force algorithm is not computationally tractable, � Oðn!Þ. The search 
space can be reduced by excluding any binary matrices that cannot possibly satisfy 
constraints C1–4, such as binary matrices with empty rows or columns and most with 
sums other than nþ i � 1. For example, a standard result in combinatorics gives the 
number of n� i binary matrices with exactly k 1s and no empty rows or columns as: 

Xi

u¼0

Xn

v¼0

ð� 1Þuþv m
u

� �
n
v

� �
ðm � uÞðn � vÞ

k

� �

While such exclusions significantly reduce the search space (for example, reducing the 
number of permutations of a 6� 5 binary matrix from 1073741824 to 7926790 by 
considering only those matrices with 10 1s and no empty rows or columns), this leaves 
the underlying computational complexity unchanged, Oðn!Þ.

Heuristics to reduce the search space further are likely possible, but left as a focus for 
future research. Instead, the open-source code accompanying this paper implements 
a brute force search with some pruning of the search space, as described above. Using 
standard desktop computers, the approach is tractable for up to i ¼ 7 (i.e. all possible 
topological configurations in the sphere of up to seven regions and their corresponding 
Voronoi boundaries).

6.4. Results

The Appendix A contains the 111 canonical adjacency submatrices for every possible 
R-maptree for between 2 to 7 regions in the sphere: 1 � 2-region R-maptree, 2 � 3-region 
R-maptrees, 4 � 4-region R-maptrees, and 9, 23, and 72 � 5-, 6-, and 7-region R-maptrees, 
respectively). Figure 24 details example configurations from all nine possible five-region 
R-maptrees in the sphere.

7. Discussion and conclusions

This paper has demonstrated that the geometrical information provided by a Voronoi 
partition of a surface can considerably enrich a purely topological representation. Indeed, 
in the cases discussed above, apart from the number of regions, all would reduce to the 
single topological case of pairwise disjoint. We have thus found a convenient and 
qualitative half-way house between the paucity of information that a purely topological 
framework provides and the uncountably infinite cases if we were to assume full 
Euclidean geometry.

Throughout, we have been careful to emphasize that our RVD-based qualitative- 
geometric relations corresponds to one of a number of possible interpretations of the ill- 
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Figure 24. All 9 possible adjacency submatrices and R-maptrees corresponding to five regions on the 
sphere, with example letter-region R-maptree annotations, using the five letters ‘M-I-K-E-W’ as regions, 
and example embeddings in the sphere (dashed lines show approximate Voronoi boundaries).
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defined linguistic notion of ‘surrounds’ (see Figure 2). Nevertheless, returning to the 
motivational example in Figure 1, our qualitative-geometric can be used to provide 
a uniquely answer to the questions posed in the introduction, as illustrated in 
Figure 25. According to the definition of ensemble ‘surrounds’ proposed in Both et al. 
(2018) (intuitively, a region is surrounded by the set of generator regions with adjacent 
Voronoi regions), Båtslaget is surrounded by the combination of Äbbskärsgrynnorna, 
Oxygrynnan, Voråboarnas hällan, Båtslaggrynnan, Trekantbȯden, and Båtslagbådan. 
Båtslagbådan on the other hand is surrounded by Båtslaget, Äbbskärsgrynnorna, and 
Trekantbȯden in combination. And Båtslagbådan and Båtslaget are also together sur-
rounded by the combination of Äbbskärsgrynnorna, Oxygrynnan, Voråboarnas hällan, 
Båtslaggrynnan, and Trekantbȯden.

However, building on the firm formal foundations set out in this paper, our targets for future 
work can be much more ambitious than simply rigorous and uniquely defined descriptions of 
configurations of ensembles as in Figure 25. The R-maptree provides a basis for future work into 
the similarity between scenes; changes and events amongst moving regions; and conceptual 
neighborhoods in sets of n-ary qualitative-geometric relations.

As a final glimpse into this exciting future, Figure 26 illustrates just a few of the 
changes to a simplified R-maptree that accompany the voyage of a sailing boat, 
Hayen, in the Gulf of Bothnia (Figure 26(a)), into a bay in the island group of Replot 
(Figure 26(b)), before mooring in a cove in the island of Stora Bergöran Figure 26(c). 
In purely topological terms nothing has changed in any of the scenes: the islands 
and the boat all remain pairwise disjoint throughout. However, even for the simpli-
fied R-maptree in Figure 26, changes occur in sequence (i.e. underpinned by an 
implicit conceptual neighborhood, yet to be explored) and correspond to salient 
events, such as ‘entering’ the bay formed by the island group of Replot, itself 

Figure 25. Returning to the questions posed in Section 1 for seven islands from Figure 1, showing 
graph embedding of island boundaries i1–i7 and partial RVD boundaries a–g. (Data source: National 
Land Survey of Finland under a Creative Commons 4.0 license.).
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surrounded by the Gulf of Bothnia, and ‘arriving’ in the mooring cove at Stora 
Bergöran. The formal foundations of the R-maptree presented in this paper provide 
both solid and fertile ground for this future work.
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Appendix A. Complete set of R-maptrees for two to seven regions

Appendix A1. R-maptrees for two regions (one adjacency submatrix)
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Appendix A3. R-maptrees for four regions (four adjacency submatrices)
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Appendix A4. R-maptrees for five regions (nine adjacency submatrices)
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