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Abstract: Sargassum muticum is an invasive species to the coasts of the British Isles, mainland
Europe and North America, with negative ecological and socioeconomic impacts. Pelagic Sargassum
inundations on the beaches of the Caribbean have also been causing adverse health, ecological and
economic effects. The finding of commercial uses of these biomasses may alleviate the costs of
removal and control. Both pelagic Sargassum and S. muticum could be low-cost biosorbents for
removing aqueous cationic dyes but may not be suitable for anionic substances without modification.
This study found that a Sargassum biomass could remove up to 93% of methylene blue and that the
species, concentration and treatment (CaCl2) were all statistically highly significant factors (p < 0.001)
in its removal.
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1. Introduction

Sargassum is a broad genus or family of brown seaweed with over 300 species [1].
Three species of Sargassum have recently been causing environmental and economic is-
sues [2–4]. S. muticum, which is native to the northwest Pacific region [5], appeared on
the shores of Europe in the 1970s, displacing native species and having negative environ-
mental impacts and is classified in many European countries as an invasives species [6–8].
Pelagic Sargassum, particularly Sargassum fluitans and S. natans, is a tremendous ecological
resource floating in the open ocean [4,9–11]. Small quantities arriving on the beach give
environmental benefits, such as dune stabilisation [3,4,9,11,12]. Nevertheless, beaches
across the Caribbean and the Gulf of Mexico have experienced massive inundations of
pelagic Sargassum since 2011, negatively impacting the environment, human health and
the local economies [3,13–21]. Removing and disposing of Sargassum is costly [3,9,11,22,23]
and applications that generate revenue are being researched [3,4,22].

The living and dead cells of seaweeds can effectively remove heavy metals and
other pollutants from wastewater [24–27]. Both S. muticum and pelagic Sargassum were
suggested as biosorbents [2,9,26,28,29]. Synthetic dyes are found in the wastewater streams
of many industries and can be highly resistant to conventional biological wastewater
treatments, leaving behind highly coloured and toxic effluents [30,31]. Methylene blue
(MB) is a cationic dye that is commonly used in the textile industry. Ingestion may cause
respiratory issues, nausea, jaundice and skin irritation [32]. Some initial studies have
shown that both S. muticum and pelagic Sargassum can effectively remove synthetic dyes,
such as Methylene Blue [28,33]. However, these studies used freshwater washed and
pretreated Sargassum with H2O2, CaCl2, HCl and formaldehyde to improve the absorption
capacity via chemical modification, including protonation and chemical crosslinking [28,33].
Enhanced biosorption capacity is attributed to the protonation of cell wall components
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and improved stability by the Ca2+ ions of alginate molecules via the formation of the
characteristic alginate arrangement, known as the egg-box structure.

Azo dyes, which are synthetic colours containing an azo group (-N=N-), are the
most used dyes (60–70%) in industrial applications, including printing, textiles, tanning,
packaging and, to a rapidly reducing extent, in the food industry [34–36]. Congo Red
(CR) is an anionic dye that is often used in experiments as a typical example of one of
the hundreds of potential azo dyes [34–36]. Brilliant Blue R (BB), which is a disulfonated
triphenylmethane dye, is an anionic dye that is widely used in biotechnology. It was
effectively removed using a fungal biosorbent (A. tubingensis), with the highest removal
efficiency at lower pH values (pH 2) where the nitrogen-containing functional groups of the
fungus are positively charged, allowing for electrostatic interaction with the OH− groups
of the dye [37].

This study examined the biosorption of three dyes (MB, CR and BB) using two types of
Sargassum with a minimum of pretreatment (S. muticum freshwater rinsed and freeze-dried
and mixed pelagic Sargassum drained and freeze-dried). This research also studied the
effect of CaCl2 pretreatment of Sargassum on the biosorption of MB.

2. Materials and Methods
2.1. Sample Collection and Pretreatment

Sargassum muticum was collected in Broadstairs, Kent (UK) (54.3602◦ N, 1.4320◦ E),
in Spring 2020. The seaweed was rinsed with deionised water and frozen at −20 ◦C,
then freeze-dried for 72 h (ScanVac, Coolsafe, Laboscene freeze drier running at −50 ◦C).
Mixed sargassum samples (Sargassum fluitans, Sargassum natans I, Sargassum natans VIII)
were collected from Shark Bay, South Caicos, the Turks and Caicos Islands 55 (21.491◦ N,
71.503◦ W), between September 2020 and May 2021. The mixed samples were frozen at
−40 ◦C. (Harvest Right HRFD-PMed-SS, Salt Lake City, Utah USA). Samples were frozen to
−40 ◦C. A vacuum established <66 Pa in the chamber. During the drying phase, trays were
warmed to 52 ◦C at <66 Pa for 26 h. At the end of this process, samples were double-bagged
and shipped via air to the University of Greenwich, UK. Seaweed (2.5 g) was incubated
in a CaCl2 solution (0.2 mol L−1), pH 5.0, for 24 h while stirring. The biomass was then
filtered (70 mm qualitative filter paper) and washed twice with deionised water to remove
excess calcium. The treated biomass was then dried in an oven at 60 ◦C for 24 h.

2.2. Methylene Blue, Brilliant Blue and Congo Red Dye Solutions

Methylene blue (C16H18ClN3S·3H2O), brilliant blue (C45H44N3NaO7S2) and congo
red (C32H22N6Na2O6S2) were purchased from Sigma Aldrich (Gillingham, UK). The chem-
ical structures are shown in Figure 1. Different stock solutions were prepared from a
1000 mg L−1 stock solution. Solutions for calibration curves were created by diluting the
stock solution (0–312.5 mg L−1).
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2.3. Biosorption Study

Experiments using different amounts of biomass (0.01–0.4 g) and dye solutions of
10 mg L−1 (80 mL) were conducted in Erlenmeyer flasks (250 mL) at room temperature
(25 ± 2 ◦C) while stirring with contact times between 0–120 min. Samples were centrifuged
at 5000 rpm for 2 min. All experiments were carried out in triplicates. The supernatant was
analysed using a UV spectrophotometer (Jenway 6305, Fisher Scientific, Loughborough,
UK) at wavelengths of 664 nm (MB), 554 nm (BB) and 497 nm (CR) to determine the dye
concentrations. The removal efficiency (η) was calculated using the initial and residual MB
concentrations as follows:

η =
C0 − Ce

C0
× 100% (1)

where C0 is the initial concentration of the dye in solution and Ce is the equilibrium
concentration of dye.

The equilibrium biosorption capacity (Qe) was calculated according to Equation (2).

Qe =
(C0 − Ce)×V

m
(2)

where Qe (mg g−1) is the amount of dye adsorbed by the biomass, C0 and Ce (mg L−1) are
the initial and equilibrium concentration of the dye solution, and m (g) is the amount of
dried biomass.

A first-order kinetic equation was fitted to the MB adsorption by Sargassum (Equation
(3)) [38] using the nonlinear regression function for parameter estimation in IBM SPSS
Statistics (v27) (IBM Corp, Armonk, NY, USA).

q(t) = qe

(
1− e−kt

)
(3)

where q(t) is the amount of dye adsorbed at time t, qe is the amount of dye adsorbed at
equilibrium and k is the adsorption rate constant.

2.4. Statistical Analyses

IBM SPSS Statistics 25 SPSS was used for a three-way ANOVA on the effects of species
(Pelagic Sargassum or S. muticum), pretreatment (CaCl2), Sargassum concentration and
their interactions on the final concentration of MB. Excel 2021 (Microsoft Corporation 2021))
was used for t-tests to compare the statistical significance of the effects of species (Pelagic
Sargassum or S. muticum), pretreatment (CaCl2) and Sargassum concentration on the final
concentration of MB.

3. Results
Effect of CaCl2 Treatment on the Biosorption of Methylene Blue

At a biosorbent dose of 0.1 g, removal efficiencies of 89.98% and 82.55% were achieved
in the initial 30 min of biosorption for CaCl2-treated and untreated S. muticum, respectively.
The difference between the treated and untreated biomass after 30 min was found to
be significant (p = 0.003, t-test, unequal variance, two-tailed). When the biosorbent was
increased to 0.4 g, the removal efficiency increased to 95.48% within the initial 30 min
for CaCl2-treated S. muticum but remained fairly constant at 81.19% for the untreated
S. muticum, indicating that the pretreatment may have some effect on the biosorption
capacity of methylene blue (Figure 2). For the untreated S. muticum, no significant difference
was observed between biosorbent doses of 0.1 g and 0.4 g after 30 min (p = 0.762) and 60 min
(p = 0.299); however, after 120 min at 0.4 g, the concentration in the solution increased,
indicating desorption of the dye, decreasing the removal efficiency to 76.09% compared to
82.91% at 0.1 g, which was a significant difference (p = 0.048).
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Figure 2. Biosorption of methylene blue over 120 min using CaCl2-pretreated or untreated Sargassum
muticum (SM) (0.1 and 0.4 g). Standard deviation n = 3.

The three-way ANOVA showed that species, Sargassum concentration and treatment
(CaCl2) were statistically highly significant factors (p < 0.001) in the MB removal. The
interactions between the species and Sargassum concentration (p < 0.05) and Sargassum
concentration and CaCl2 (p < 0.001) were also statistically significant factors in the removal
of MB.

To describe the adsorption of MB on Sargassum, a first-order kinetic model was
fitted with a high coefficient of determination (Table 1). It was generally seen that the
amount of dye adsorbed at equilibrium was higher in CaCl2-treated seaweed compared to
untreated seaweed, with a maximum difference of 17.29% between the 0.4 g CaCl2-treated
and untreated mixed Sargassum. For the CaCl2-treated seaweed samples (0.1 g biomass),
the adsorption constant differed by only 0.008 between S. muticum and mixed Sargassum.
There was a relatively higher difference in the adsorption constants between using 0.1 g or
0.4 g of CaCl2-treated mixed Sargassum (difference of 0.066). The decrease in adsorption
over time limited the fitting of this model for 0.4 g CaCl2-treated S. muticum.

Table 1. Kinetic parameters qe is the amount of dye adsorbed at equilibrium, k is the adsorption rate
constant and R2 is the coefficient of determination between calculated and average experimental results.

qe k R2

0.1 S. muticum CaCl2 93.641 0.107 0.999

0.4 S. muticum CaCl2 94.538 - 0.999

0.1 Mixed Sarg CaCl2 88.700 0.099 1.000

0.4 Mixed Sarg CaCl2 91.892 0.165 0.999
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Pretreatment of the mixed pelagic Sargassum (S. fluitans, S. natans I, S. natans VIII)
biomass also showed better biosorption capacity when the biomass was treated; after
120 min, CaCl2-treated samples had removed 89.81% (0.1 g biomass) and 93.20% (0.4 g
biomass) of the dye compared to 77.19% and 71.32% for the equivalent untreated biomass
quantities (Figure 3). The difference between the treated and untreated biomass was
significant at all times analysed (30 min, p = 0.011, 60 min p = 0.018, 120 min p = 0.0009).
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Figure 3. Biosorption of methylene blue over 120 min using CaCl2-pretreated or untreated mixed
Sargassum biomass (0.1 and 0.4 g). Standard deviation n = 3.

At low additions of pelagic Sargassum (0.1 g), the treated (p < 0.05) and untreated
(p < 0.01) samples removed statistically more significant amounts than S. muticum. How-
ever, there was no significant statistical difference (p > 0.05) in MB removal between pelagic
Sargassum and S. muticum at 0.4 g, even though the adsorption rate constant was con-
siderably lower for CaCl2-treated S. muticum (k = 0.099) compared to the treated pelagic
Sargassum (k = 0.165).

To test the effect of the biosorbent dose on the biosorption efficiency, the experiment
for untreated S. muticum was repeated, confirming that a higher biosorbent dose resulted
in significant desorption of the dye solution after 120 min. This experiment also confirmed
that biosorption occurred within the initial 15 min of contact (Figure 4) and that Sargassum
biomass as low as 0.05 g was equally efficient in removing MB in the initial 15 min compared
to higher dosages and down to 0.01 g if left for longer than 120 min. Similar results were
obtained with the mixed Sargassum biomass (Figure 5) with 0.05 g biosorbent in 10 mg L−1

(80 mL) of dye, indicating optimal conditions.
There was no removal of BB from the solution when using S. muticum at three concen-

trations studied (<16.80%). However, there was some slight removal of BB by the mixed
Sargassum biomass (<26.99%) (results not shown). Likewise, the removal of congo red from
the solution by either S. muticum or the mixed Sargassum samples showed little biosorption
(<16% after 120 min) (Figure 6).
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Figure 6. Biosorption of congo red over 120 min by Sargassum muticum (SM) and mixed Sargassum
spp. in 0.1 g and 10 mg L−1 (80 mL) dye solution. Standard deviation n = 3.

4. Discussion

Methylene blue (MB) is a cationic thiazine dye that is largely used as a model of
cationic dyes for adsorption studies. Algae were shown to be a low-cost and efficient
alternative biomaterial to remove dyes due to the functional groups present. FTIR analysis
of the brown seaweed, S. muticum, ascribed effective biosorption to the cell wall structure
containing functional groups such as amino, hydroxyl, carboxyl and sulphate, which can
act as binding sites via electrostatic attraction, ion exchange and complexation [39]. Both
anionic dyes investigated showed no or little affinity for the Sargassum biomasses. In
addition to the interactions mentioned above, hydrophobic attractions, chemical bonding,
hydrogen bonds and physical adsorption interactions are also likely to occur between a
biosorbent and dyes. Hence, the ionic charge of the dye will directly affect the adsorption
capacity of the biomass.

Chemical characterisation of many Sargassum species showed that metal content (in
particular arsenic) severely hampers the prospects of using Sargassum species for food
or feed. However, this seaweed’s high metal sorption ability could offer a feasible and
economical approach for removing industrial heavy-metal-bearing wastewaters that require
efficient and cost-effective treatment [40]. Other non-conventional low-cost adsorbents
were reviewed by Rafatullah et al. [41]. The effect of biosorption dosage on methylene
blue dye removal was investigated (0.01−1 g) using an 80 mL dye solution (10 mg L−1,
room temperature).

Optimal biosorption dosages can be used to predict the overall cost of biomass per unit
of the dye solution to be treated. The optimal biosorbent dose for either S. muticum or mixed
Sargassum species was 0.05 g/80 mL, corresponding to Qe values of 157 mg g−1 (120 min)
for S. muticum and 115 mg g−1 (120 min) for the mixed Sargassum sample. Likewise,
contact times over 120 min were investigated, indicating that biosorption (>75% for mixed
Sargassum and >78% for S. muticum) occurred in the initial 15 min. The maximum adsorp-
tion capacity of MB on S. muticum at the optimal pH was reported to be 279 mg g−1 [28].
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The pH was not adjusted in this study, which could have caused the lower values obtained
in this study. Chemical treatment with CaCl2 improved the adsorption capacity, which is in
line with those previously reported for other types of biomaterial [42].

5. Conclusions

Both pelagic Sargassum and S. muticum, either untreated or treated with CaCl2, were
effective in the biosorption of MB from solution. However, Sargassum did not remove the
anionic dyes, namely, CR and BB. Brown seaweed’s primary cell wall polysaccharides are
negatively charged [43,44] and algal cells are typically negatively charged [45–47]. This
negative surface charge may make Sargassum suitable for removing cationic pollutants
but may not be suitable for anionic substances without modification. Still, the results are
encouraging, offering some potential benefits for commercial purposes for this brown,
invasive seaweed as a low-cost adsorbent. Future work could include investigations into
the number of cycles the Sargassum samples will be effective for MB biosorption.
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