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Abstract. Algorithm Substitution Attack (ASA) can undermine the se-
curity of cryptographic primitives by subverting the original implemen-
tation. ASA succeeds when it extracts secrets without being detected.
To launch an ASA on signature schemes, existing research works often
have to collect signatures with successive indices to extract the signing
key. However, collection with successive indices requires uninterrupted
surveillance of the communication channel and low loss rate of transmis-
sion in practice. This hinders the current ASAs from being practically
implemented, and making users misbelieve the threat incurred by ASA
is only at the theoretical level and much far from reality. In this paper,
we first classify a group of schemes called extractable signatures that
achieve traditional security (unforgeability) by reductions ending with
key extraction, showing that there is a generic and practical approach
for ASA to this class of signatures. Then, we present the implementations
of ASAs that only two signatures and no further requirements are need-
ed for extraction of widely used discrete log based signatures like DSA,
Schnorr and Modified ElGamal signature schemes. Our attack presents
a realistic threat to current signature applications, which can even be
implemented in open and unstable environment like a vehicular ad hoc
network. Finally, we prove the proposed ASA is undetectable against
polynomial time detectors and physical timing analysis.
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1 Introduction

Cryptographic primitives have been widely used in information communication
protocols to provide certain type of security properties, like privacy preserving
authentication, and data confidentiality. Some well-studied schemes were stan-
dardized by industry associations such as DSA (Digital Signature Algorithm) or
ECDSA (Elliptic Curve Digital Signature Algorithm) in IEEE, NIST and AN-
SI. The security of these schemes should be trustworthy due to the analysis of
traditional cryptography theoretically and practically. However, Snowden’s rev-
elations have indicated that novel attacking techniques evolve day by day and
might go beyond the scope of traditional cryptography. The emerging attacks
can subvert the cryptographic schemes to leak critical information. One main
type of subversions we deal with in this paper is called Algorithm Substitution
Attack (ASA), which allows attacker to inject malicious code to replace the im-
plemented algorithms without being detected. The subverted algorithm has the
same functionality as the original one and the attacker with the backdoor can
get access to secret information, e.g., client’s private keys. In practice, crypto-
graphic functions are usually invoked in black-box manner. If the crypto library
was replaced by a malicious update pack in a functionality preserving way, users
couldn’t notice the differences.

Signature is a fundamental primitive which provides integrity, public verifia-
bility and non-repudiation. It can be used as building block for more complicated
protocols such as authentication protocols. Some classic signature schemes are
adopted and developed in many industrial standards. Therefore the ASA effects
on these schemes should be carefully examined. The first harm by subverting
algorithms in signature was taken by Young and Yung [24, 25] via the klepto-
graphic attack. Their attack aims to establish a secret channel in the signature to
transfer messages rather than attacking signature itself. ASA was formalized by
Bellare et al. [5] and they launched this attack on symmetric encryption schemes.
Ateniese et al. [1] carefully investigated ASA on signatures and obtained some
meaningful results. They presented generic stateful ASAs on randomized signa-
tures and pointed out that using deterministic unique signature or cryptographic
reverse firewall can resist ASAs. Aiming at the weakness of the randomness, Liu
et al. [11] discussed asymmetric ASAs on signature schemes in which the attack-
er’s public keys are injected. Beak et al. [2] recently have paid close attention to
some specific schemes like DSA and proposed an efficient ASA method.

1.1 Motivation

Although the existing works indicated that randomized signatures were prone to
ASAs, and the theoretical attacks are not practical enough to incur actual harm,
so it is difficult to find any device in reality equipped with reverse firewall [18]
which can resist ASAs. Ateniese et al. [1] aimed to give a generic algorithm to
attack any randomized signature schemes, but the resulting attack still does not
scale well. They designed a subverted algorithm that reveals one bit of secret
key sk from each signature. In order to recover the whole secret key, an attacker
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needs to collect all ||sk|| signatures with different indices 1 to ||sk||, which may
not be practical in real-world application. The asymmetric ASA proposed by Liu
et al. [11] requires only 2 signatures with consecutive indices, trying to improve
the efficiency of collection, but it yields heavy computation cost from public key
operations. On the other hand, symmetric ASA by Beak et al. [2] needs to collect
3 signatures with successive indices which still put “collection with successive
indices” as a requirement.

In summary, one reason that ASAs are not practical is mainly due to the
signatures collection with successive indices. To do this, an attacker needs to
tap the communication of the signer continuously. ASA is often triggered by
virus or trojan in practice, and meanwhile, the attacker couldn’t estimate when
the attack will begin. In mobile applications like VANET, users come in and out
frequently, thus making attackers hard to tap all the channels. In other words,
if the attacker could tap all the communication channels of a device, the device
would be physically under control. The other reason for the poor performance
of ASAs is that they are stateful and the literature does not explore what else
can be provided by maintaining state rather than label.

To address the above problem, one may try to explore various techniques
to recover secret keys. Our work is inspired by a theoretical work, the forking
lemma [19, 20], which can extract the secret key of the signer in discrete log based
signature schemes to finish reduction in the security proof. In forking lemma, the
challenger rewinds the attacker and changes the random oracle answer to form
a fork. If forgeries happened twice in the fork point, the challenger could extract
the secret key by solving two linear equations. In our case, the attacker can’t do
any rewinding and hash function is public rather than random oracle so that we
can’t obtain two signatures with the same randomness and different hash values
for the same message. But we can still set parameters to form solvable equations
to extract secret keys, which is helpful for us to realize collection of signatures
without index requirements for extraction in our subverted scheme.

1.2 Our Contribution

In this section, we describe our results with an observation on relationship be-
tween traditional security notions of signatures and ASA approaches to our con-
crete implementation of ASAs on discrete log based signatures.
Proof technique vs ASAs. In the past decade, provable security has been well
accepted as a security guarantee rather than cryptanalysis. To prove the security
of a cryptographic scheme, we often make a reduction that if an adversary could
break the scheme, we can construct an algorithm that invokes the adversary as
inner process to solve a well established hard problem like discrete log or RSA.
In the area of signature, random oracle methodology [6] is widely employed be-
cause schemes proven to be secure in standard model are often too complicated
and inefficient. To make proofs in random oracle model more convincible, many
works [4, 14, 15, 26] have tried to find proper instantiations of random oracle to
keep the scheme secure in the random oracle model (ROM) still secure in s-
tandard model. According to these results, signature may be the most suitable
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primitive for random oracle model so far. However, not all well known signature
schemes can be proven secure directly in ROM. Bellare et al. [7] proposed that
RSA and Rabin signature schemes provably secure under ROM. However, the
ones based on discrete log problem do not have a direct solution. To solve this
problem, forking lemma [19, 20] was introduced to complete the reduction from
extraction of signing key by rewinding the adversary with different random or-
acles.

Although the techniques above have done extraordinarily to prove traditional
security in ROM for a long time, the situation is different when the adversary
is allowed to subvert algorithms. Extraction techniques like forking lemma can
work in an ideal environments and have no impact on real world when only
traditional security is considered. However, in the ASA cases, the existence of
an extraction algorithm means an adversary can subvert the signing algorith-
m to output signatures with extractable form. Yet the indistinguishability of
simulation in proof of traditional security guarantees that the subversion is un-
detectable. Therefore, we can see a contradiction that the technique leading to
traditional provable security does contribute to ASAs.
Extractable signatures. Different from the previous work of starting ASA
only through randomness, we follow another approach, that is, based on the
above observations, we attack the weaknesses inherited by the primitive in the
provable security structure. This is the key technique to avoid collection with
successive indices. In order to achieve the ultimate goal, it first needs to capture
the notion of signature schemes which are prone to ASA in this way. We present
the definition of extractable signatures to include those schemes with extraction
algorithm in security proof. And we amplify the definition to highlight the dif-
ferent performances in the extraction process.

The notion of extractability (as well as a similar notion of simulation ex-
tractability) comes from the proof of knowledge protocol [3, 21, 13], where exists
an extractor that if the prover can give proof of a statement, the secret witness
can be extracted by the extractor with some internal state of prover. In an ideal
environment, usually the extracted secret can be used to simulate indistinguish-
able games with the adversary so as to complete the security reduction. So far,
many extractable primitives have been proposed to solve different problems, in-
cluding extractable functions [10], extractable one-way functions [8], extractable
hash functions [16], extractable hash proof systems [23] and extractable com-
mitment schemes [12]. However, our definition does not follow exactly the same
way because extractors can only work in simulation, but we need to find a sub-
version algorithm in practice. Therefore we extend our definition to incorporate
those schemes with modified extraction algorithms that can still keep the out-
put signature indistinguishable from normal ones. The first challenge here is
how to describe the scope of schemes accurately. Not all provably secure signa-
ture scheme are extractable. Our definition excludes schemes like RSA signature,
which reduces the security to find an inversion of random element in the range
of one way function keyed by a secret, but does not extracting the secret gen-
erating the one way function. We also need to give precise description to show
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the “degree” of extractability of different schemes. The second challenge is to
allow conversion from extractors in simulation to extractable algorithm in prac-
tice. For example, forking lemma can be regarded as an extraction algorithm
for discrete log based signature schemes in simulation. However the technique of
rewinding the adversary and changing the answer to random oracle is not appli-
cable in realistic scenarios. Therefore, we have to carefully design the subverted
algorithm to achieve the same result with the forking lemma without handling
the random oracle and rewinding. This means that the definition needs to con-
tain more elements to play the role of extraction approaches.
Concrete ASA. In this work, we focus on those ASA approaches based on
extraction algorithms which may help to find more efficient and practical ASA
methods than the generic one. The concrete implementation of ASAs depend on
different schemes respectively.The highlight of our ASA is that our attack does-
n’t need to collect signatures with successive indices, and even eavesdropping is
not necessary either. The results are as follows:

– Our subverted schemes only require 2 signatures regardless of their indices to
recover the signing key. This means that the attacker can collect signatures
at any time from public source without having to keep tapping the signer all
the time. This is much more practical than existing works. We will give our
subverted schemes for DSA [17], Modified ELGamal [19, 20] and Schnorr [22]
signature schemes to show the generality of our method.

– The basic version of the subverted scheme only maintains a constant state
and has a restriction that the message can not repeat. To incorporate du-
plicate messages, our scheme needs to maintain an internal changing state.
We present a dynamic mechanism to maintain a state which can leverage
the extraction computational efficiency and the hardness for signature col-
lection. This state can not only represent the internal order or position but
play a more functional role in the scheme.

Table 1. Performance Comparison

scheme collection mode on indices number of signatures Scope

[1] successive indices q all randomized signatures
[2] successive indices 3 DSA type
[11] successive indices 2 splittable signatures

Ours arbitrary indices 2 extractable signatures

1.3 Organization

The rest of this paper is organized as follows: In section 2, we will introduce the
preliminaries needed. Then we introduce the notion of simulation extractable
signature in section 3, and show how existing schemes are incorporated in this
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frame. In section 4 we present a concrete implementation of ASA on DSA with
the restriction that does not allow repetitive messages and proof. In section 5
we show how to remove the restriction and leverage between extraction effi-
ciency and requirement of signature collection. in section 6 The evaluation of
performance and timing analysis are shown. In section 7, we show that our ASA
method can be applied to many other schemes. The last section includes the
conclusion and future expectation.

2 Preliminaries

In this section, we will introduce the definition of regular and subverted signature
schemes with refined formal description of attack model.

2.1 Signature and its subversion

Definition 1. A regular signature scheme is a triple of algorithms S = (Gen,
Sig, V er). Gen is a key generation algorithm that takes a security parameter λ as
input and outputs a key pair (pk, sk). Sig is the signing algorithm that generates
signature σ with signing key sk and message m. A randomized signing algorithm
also takes a randomness r as input. V er is a publicly computable algorithm that
checks whether the signature σ is valid or not.

Definition 2. A subverted signature scheme for S is a tuple of algorithms S =
(Gen, Sig, V er). Gen is a key generation algorithm that generates a subversion
key subk. This key will join the signing process with a signing key. Sig(m, subk, sk) =
(σ, state) is a subverted signing algorithm that generates a subverted signature
σ with subversion key subk, signing key sk and message m. If state = ∅, Sig is
called stateless. V er is the same as the original verification algorithm. The orig-
inal verification algorithm is deterministic so that the attacker is hard to subvert
it with undectectability. Thus usually in ASAs subverted verification algorithm-
s just remain unchanged. This work does not consider subverting verification
algorithm either.

2.2 Security Notions of ASA

Let A be an ordinary user, C be a challenger in an ASA game. Given S and S,
a basic security model of ASA on signature is the public undetectability which
is formally described by the game below.
During the game, A can reboot the algorithm at any time. If b′ = b, we say A

wins the game. We define advdetectA = |Pr[b′ = b]− 1/2| as the advantage that A
wins the game.

Definition 3. A subverted signature scheme S is publicly undetectable if all
probabilistic polynomial time (PPT) user A can win in GamePubDetectA,S,S with only

negligible advantage.
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Table 2. GamePubDetect
A,S,S

C A
Gen(1n) = (pk, sk)

Gen(1n) = subk
pk

−−−−−−−−−−−−−−→
mi

←−−−−−−−−−−−−−−
b←R {0, 1}
σ = Sig(mi) if b = 0

σ = Sig(mi) if b = 1
σ

−−−−−−−−−−−−−−→
Output b′

Another stronger notion is secret undetectability. In order to define secret
undetectability, the adversary can get access to sk which is not allowed in public
undetectability game. That means even a user who generates valid signatures
can not tell subverted signatures apart form normal ones.

Table 3. GameSecDetect
A,S,S

C A
Gen(1n) = (pk, sk)

Gen(1n) = subk
(pk, sk)

−−−−−−−−−−−−−−→
mi

←−−−−−−−−−−−−−−
b←R {0, 1}
σ = Sig(mi) if b = 0

σ = Sig(mi) if b = 1
σ

−−−−−−−−−−−−−−→
Output b′

Definition 4. A subverted signature scheme S is secretly undetectable if all
probabilistic polynomial time (PPT) user A can win in GameSecDetectA,S,S with only

negligible advantage.
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2.3 Pseudorandom functions

Definition 5. Let f be a random function and F be an efficient, length-preserving
and keyed function {0, 1}∗ × {0, 1}∗ → {0, 1}∗. For any polynomial time distin-
guisher D, we define the advantage

advD = |Pr[DFk(·) = 1]− Pr[Df(·) = 1]|

where k is uniformly chosen. We say that F is a pseudorandom function if for
any PPT D that advD is negligible.

3 Extractable signature

In this section we present our definition of extractable signatures as well as
measures to distinguish different level of extractability. Just like the notion of
splittable signature in [11] to capture the characteristics of schemes suitable for
their attack, this class of signature schemes can cover the scope of schemes prone
to our attack.

Definition 6. A signature scheme S = (Gen, Sig, V er) is q-extractable if there
exists an extractor that can compute the signing key from q signatures forged
by the adversary in simulation. Formally, for all polynomial time adversary A,
there exists a polynomial time extractor E that (pk, sk)← Gen(1n), Pr[EA(pk,
{mi}i=1,...,q, {σi}i=1,...,q, a) = sk] = 1, where a denotes some possible auxiliary
inputs.

Discussion. We can check some signature schemes to see which kind of schemes
are covered by our definition. First, schemes proven secure by forking lemma
belong to this category. The schemes in [19, 20] are 2-extractable. The proof of
knowledge schemes which can be regarded as an extension of signature [13] is 1-
extractable. The Rabin scheme in [7] is 1-extractable but the RSA scheme in the
same literature is not extractable because the secret key cannot be extracted in
the reduction. Due to the same reason, those identity based encryption induced
signatures [9] are also not extractable. Our goal is to find more efficient ASA
methods on these extractable signatures. So we need a measure to show the
effect of ASAs.

Definition 7. Let q be the minimum number of signatures required for key ex-
traction. Let succ/arb denote the mode that the signatures are collected with
successive/arbitrary order of indices. A subverted signature scheme S realizes
(succ/arb, q)-extraction if from q queried subverted signature are collected in
succ/arb way, the signing key can be extracted.

Discussion. According to the definition above, the generic ASA on random-
ized signature schemes in [1] realizes (succ, q)-extraction. Liu et al.’s scheme in
[11] realizes (succ, 2)-extraction while Beak et al.’s scheme [2] realizes (succ, 3)-
extractable. We believe that a q-extractable signature scheme has at least one
ASA approach to implement (arb, q)-extraction. For a non-interactive proof
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of knowledge protocol, the extractor can be transformed directly to subvert-
ed prover with trapdoored CRS to realize 1-extraction. However, for ordinary
signature schemes, the random oracle methodology for extraction are infeasible
directly. Thus, we need to find an alternative approach to achieve the same ex-
traction result according to the structure of schemes respectively. We leave the
question to find a generic transformation as an open problem. In the following
sections, we will show our results for different schemes.

4 Our ASA scheme on DSA

We first present a basic version of (arb, 2)-extractable ASA scheme on DSA with
an additional restriction that there are no duplicate messages. Because same
messages lead to the same signature from the signing algorithm in this scheme,
which contradicts the fact that DSA is randomized, so it is detectable. We will
then show how to remove this restriction. But it is still worth saying that even
the basic version still has practical value, because in the actual implementation
the final message to be signed is usually formed by a message concatenated with
a timestamp, which is usually used to stop replay attacks in many protocols.
Therefore, resigning the same message is not likely to happen in practice. By
exploiting this additional assumption, our ASA can realize signature collection
with arbitrary indices.

4.1 Standard DSA Scheme

Before proposing our subverted scheme, we first give a description of original
DSA scheme (GenDSA, SigDSA, V erDSA) for comparison. H : {0, 1}∗ → Zq is a
collision resistant hash function.

– GenDSA: Randomly choose an 1024 bit prime p and a 160 bit prime q that
q|p−1. Choose a generator g by computing g = h(p−1)/qmod p from random
h until g 6= 1. Randomly select an integer x that 1 ≤ x ≤ q−1 as the signing
key. Then compute y = gxmod p as the verification key. Let H denote SHA-1
function for future extension because other schemes may not use SHA-1.

– SigDSA: Given a message m, select a randomness 1 ≤ k ≤ q−1 and compute
R = gkmod p and r = Rmod q. The signature is computed as s = k−1(e +
xr)mod q where e = H(m). The output is (r, s).

– V erDSA: Given a signature (r, s) of a message m, compute e = H(m) and

X = ges
−1

yrs
−1

mod p mod q. The signature is valid if r = X.

4.2 Subverted DSA Scheme

Now we replace some parts of algorithms above to form a subverted scheme
(GenDSA, SigDSA, V erDSA).
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– GenDSA: Select a PRF F : {0, 1}l × {0, 1}ρ → {0, 1}n and pick κ uniformly
as evaluation key. Let subk = (F, κ).

– SigDSA: A state τ is set to be null initially. Given the first message m1,
signing key x and subversion key subk, compute t1 = F (κ,m1). Then select
a randomness 1 ≤ k ≤ q−1 and compute R1 = gt1kmod p and r1 = R1mod q.
The signature is computed as s1 = (t1k)−1(e+ xr1)mod q where e = H(m).
The signature for m1 is (r1, s1). The state τ is set to be k.
To sign a latter message mi, compute ti = F (κ,mi) and Ri = gtikmod p.
Let ri = Rimod q. The signature is computed as si = (tik)−1(e + xri)mod
q. The signature for mi is (ri, si). The state is still k.

– V erDSA: It is the same as V erDSA.

Remark: It is noticeable that our scheme maintains a constant state since
it is chosen, which is the key for achieving collection without requirement on in-
dices. Existing works with small number of signatures like [11] and [2] require
collection with successive indices because the state to generate next signature
depends on the previous one. Thus missing the former will make for the adver-
sary hard to compute state for key extraction. The state in our algorithm is
irrelevant to order, so that any two signatures can work.

4.3 Key Extraction

The process of extracting the key from any two subverted signatures is analogous
to the process in forking lemma. The details are as follows.

– Given any two message-signature pairs (mi, (ri, si)) and (mj , (rj , sj)) with
mi 6= mj , the attacker can extract the signing key by establishing equations
from the verification process.

ri = geis
−1
i gris

−1
i mod p mod q

rj = gejs
−1
j grjs

−1
j mod p mod q

– Substitute ri, rj in left side and y with gtikmod pmod q and gtjkmod p mod
q and gx, obtain equations in the exponentiation:

tik = eis
−1
i + xris

−1
i mod q

tjk = ejs
−1
j + xrjs

−1
j mod q

– Multiply s to both sides of equations, and obtain:

tiksi = ei + xrimod q
tjksj = ej + xrjmod q

This is a linear equation with two unknowns x and k. Attacker can obtain

x = (tisiej − tjsjei)/(tjsjri − tisirj)

by solving equations with overwhelming probability.
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4.4 Undetectability Analysis

Theorem 1. Let (GenDSA, SigDSA, V erDSA) be a standard DSA scheme, and
(GenDSA, SigDSA, V erDSA) a subverted DSA scheme as above. A is a detector
in the game defined in definition 4. F is an efficient, length-preserving and keyed
function {0, 1}∗ × {0, 1}∗ → {0, 1}∗. Then (GenDSA, SigDSA, V erDSA) is un-
detectable assuming the pseudorandomness of the function F and no duplicate
messages for signing.

Proof. The proof proceeds as a sequence of variants of GameDetectA,S,S in definition

4. Assume A issues q signature queries, and after j − 1th query, the signing
algorithm is rebooted (Without the loss of generality, we assume there is just one
time reboot. More reboots are handled just the same as the one time approach.).
Then we start with Game0.
Game0: This game is just the same as the game description in definition 4 using
SigDSA to answer signature queries.
Game1: In this game, we modify the first answer to signature queries. Given m1

as the first query, using SigDSA to generate a signature (r1, s1). Other queries
are still answered with SigDSA.
Gamei (2 ≤ i ≤ j − 1): In this game, the first i answers are generated using
SigDSA. Other queries are answered with SigDSA.
Gamei (j ≤ i ≤ q): In this game, the first i answers are generated using SigDSA.
Among them, the jth query is answered with SigDSA by resetting the state to
be empty. Other queries are answered with SigDSA.

Lemma 1. The view of adversary in Game0 and Game1 have the perfectly same
distribution.

Proof. In Game1, the first answer is generated with SigDSA. In SigDSA, the
first signature is generated the same as SigDSA by selecting new randomness
with the only difference that SigDSA multiplies a constant t1 before exponential
computation. Therefore, the output of the SigDSA has the same distribution as
SigDSA.

Lemma 2. The view of adversary in Gamei−1 and Gamei where (2 ≤ i ≤ j−1)
and (j + 1 ≤ i ≤ q) are indistinguishable if F is a PRF.

Proof. The only difference between Gamei−1 and Gamei is the algorithm to
generate ith answer. In Gamei, the ith answer is computed via SigDSA in which
F is used to compute ti. Then ti · state is used as the role of randomness in
SigDSA. Note that state is constant before reboot. So F determines whether the
views of adversary in both games are indistinguishable. The formal reduction
proof is given below.

Given an adversary A that can detect whether ASA happens with advantage
ε, one can construct an algorithm C which invokes A as internal process can
determine whether F is a PRF with related advantage as follows:
1. C invokes A by running Gen to obtain (pk, sk) and sends pk to A. The PRF
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challenger O(F, f) runs generate samples a PRF F with secret key κ. This im-
plicitly sets subk = (F, κ) in GenDSA. Thus C doesn’t need to run GenDSA.
2. To answer the lth query that (1 ≤ l ≤ i− 1), C transfers the queries ml to its
PRF challenger as PRF queries to get tl = F (κ,ml) to compute signatures by
SigDSA.
To answer lth query that l = i, C submits mi to its PRF challenger as a
challenge to get a response ti. Then use this value to compute the signature
(ri = gtikmodpmodq, si = (tik)−1(e+ xri)).
To answer lth query that (i < l ≤ q), C computes signatures via SigDSA.
We can see that if ti = F (κ,mi), the game is Gamei−1. If ti is a random num-
ber, then the signature has exactly the same distribution with Gamei. So we
can conclude that if an adversary A has advantage ε in detecting ASA, C has
also advantage ε in judging whether F is a PRF. If ti is uniformly distributed,
A should have no advantage at all.

Lemma 3. The view of the adversary in Gamej−1 and Gamej have the perfectly
same distribution.

Proof. The reason these two games are distributed statistically close is exactly
the same as lemma1. In Gamej , the signing algorithm is rebooted and the ran-
domness is fresh. That is similar to the situation in Lemma1. And We can have
the same conclusion.

We can see that Gameq is the game that all the queries are answered with
PRF, which is just the situation of subverted algorithm. To summarize, if there
exists an adversary who can distinguish an PRF and truly random function with
advantage ε, one can construct an algorithm which can distinguish Game0 and
Gameq with advantage (q − 2)ε. That completes the reduction.

5 Remove the Restriction

The ASA above works only if there are no duplicate messages. Although it is
the case in most applications, the restriction is still not satisfied in theoretical
view. We present a self rebooting mechanism to remove the restriction and show
that there is a trade-off between signature collection hardness and extracting
efficiency. This trade-off does not affect the undetectability which is inherited
from the basic scheme.

5.1 Self rebooting Subverted DSA Scheme

– GensDSA: The same as GenDSA.
– SigsDSA: A state (τ, count) is set to be (⊥, 1) initially. Let u be the upper

bound of count.
Given the first message m1, signing key x and subversion key subk, compute
t1 = F (κ,m1, count). Then select a randomness 1 ≤ k ≤ q − 1 and compute
R1 = gt1kmod p and r1 = R1mod q. The signature is computed as s1 =
(t1k)−1(e + xr1)mod q where e = H(m). The signature for m1 is (r1, s1).
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The state (τ, count) is set to be (k, count+ 1).
To sign a latter message mi, compute ti = F (κ,mi, i) and Ri = gtikmod p.
Let ri = Rimod q. The signature is computed as si = (tik)−1(e + xri)mod
q. The signature for mi is (ri, si). The state is (k, i+ 1).
When count = u, the signing algorithm reboots. The state is reset to be
(⊥, 1).

5.2 A Trade-off

Note that in our key extraction algorithm, ti is asked to be recovered by the
attacker without any interactions. When there is just the message which is public,
recovering ti is not challenging. In above subverted signing algorithm, we add a
counter inside without any information sent outside. Thus, the attacker needs
to guess the value of counter. Because 2 signatures are needed for extraction,
the attacker has to guess the right pair (ti, tj). We assume the signatures are
collected during one interval between two reboots. There are u(u− 1)/2 guesses
which requires u(u− 1)/4 times guessing on average to extract the right signing
key.

One may think that smaller u will reduce the time cost for extraction. But
smaller u will make signature collection harder because two signatures have to be
in the same interval between reboots. When u is getting smaller, reboot happens
more frequently such that the signatures to be chosen for extraction are fewer.
Thus, we need to balance the collection hardness and extraction efficiency.

6 Efficiency and Timing analysis

In this section, we implement the DSA, subverted DSA and self rebooting sub-
verted DSA schemes by the python language with python 3.6.5 version 6. The
experiment platform is based on Intel(R) Core(TM) i5-2450M CPU 2.50 GHz
6.00GB RAM Ubuntu 16.0.4 LTS OS. We test the signature algorithm of D-
SA, subverted DSA and self rebooting subverted DSA schemes with the key
size of 2048 and select the values (p, q) = (2048, 224) and the parameters p =
272724741412588043557947710203986867690454277688440805575142106342549
932411531738937758886972178554326855404053665433359133416709882271949
543376284408718935357783921359742194232401019343065220686599145179761
309781797204443604964926494439544439386178126746958194601240629893093
838723515254766689392922681197770102460611574945878292854181696673249
580301735611881925625216583540104402997824897364837457050092726475210
100593794263914981066146991714458840007621843307981457547938621026925
195853729475814251220338908654577214515725353638513816586269498702254
08892026192172045582814213550678532443786491461797328984235075951, q =
14954797796896221163449295341910259364178377992940089662444747614379

We run the signature algorithm 10,000 times and capture an average running
time. The time cost of signature for DSA, subverted DSA and self rebooting

6 https://www.python.org/downloads/release/python-365/
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subverted DSA schemes is shown in Figure 1, where our subverted DSA scheme
is most effective.

Fig. 1. The time cost of signature for DSA, subverted DSA and self rebooting subverted
DSA schemes

We also evaluate the efficiency of key extraction. With the same massage, we
also can extract the key by the self rebooting operations. We run the key extrac-
tion algorithm 10,000 rounds and capture an average running time. The time
cost of key extraction, as shown in Figure 2. We choose different counter value
from u = 0 to u = 1000 to test the time cost for key extraction. The continuous
u values valid show the trend of key extraction time. From the Figure 2, we can
find the experimental results are consistent with the theoretical analysis.

Fig. 2. The time cost for key extraction

6.1 Immune to Timing analysis

One may notice that in Figure 1 our subverted scheme have noticeable difference
with normal one, which may lead to detection through timing analysis. The time
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difference comes from no randomness generation in most subverted signing pro-
cess. However, we can add some dummy computations to eliminate the difference
because the subversion algorithm is the lower one. For the dummy computation,
we call the PRF function instead of the idle time. We test the PRF function
which costs 0.003172421455383301ms for the average running time with 10,000
rounds. So, a subverted DSA scheme runs about 10 times of dummy computa-
tion to replace the free time while the self rebooting subverted DSA scheme runs
about 6 times dummy computation. Thus our scheme will become undetectable
against timing analysis.

7 Our ASA on more Schemes

Our ASA can be implemented on most discrete log based signature schemes like
forking lemma. We choose two more classic signature schemes to show the gen-
erality of our technique.

7.1 Subverted Schnorr signature scheme

Review Original Schnorr Scheme.

– GenSCH : Generate a cyclic group G with big prime order q. Let g be the
generator and H : {0, 1}∗ → Zq be a collision resistant hash function. Ran-
domly Choose an integer x ∈ Zq and compute y = gx. The verification key
is y and the signing key is x.

– SigSCH : Given a message m, select an integer k ∈ Zq uniformly and compute
r = gk. Let e = H(m, r). Compute s = k + xemod q The signature is (r, s).

– V erSCH : Given a signature (r, s) of a message m, compute e = H(m, r) and
check whether e = H(gsy−e).

Our subverted Schnorr Scheme.

– GenSCH : Select a PRF F : {0, 1}l × {0, 1}ρ → {0, 1}n and pick κ uniformly
as evaluation key. Let subk = (F, κ).

– SigSCH : A state τ is set to be empty initially. Given the first message m1,
signing key x and subversion key subk, compute t1 = F (κ,m1). Then select
a randomness 1 ≤ k ≤ q − 1 and compute r1 = gt1k and r1 = R1mod q.
The signature is computed as s1 = k + xemod q where e = H(m1, r1). The
signature for m1 is (r1, s1). The state τ is set to be k.
To sign a latter message mi, compute ti = F (κ,mi) and ri = gtik. The
signature is computed as si = (tik)−1(e + xri)mod q where e = H(mi, ri).
The signature for mi is (ri, si). The state is still k.

– V erSCH : It is the same as V erSCH .
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7.2 Subverted Modified ElGamal signature scheme

Review Original Modified ElGamal Scheme.

– GenElG: Generate a cyclic group G with big prime order q. Let g be the
generator and H : {0, 1}∗ → Zq be a collision resistant hash function. Ran-
domly Choose an integer x ∈ Zq and compute y = gx. The verification key
is y and the signing key is x.

– SigElG: Given a message m, select an integer k ∈ Zq uniformly and compute
r = gk. Let e = H(m, r). Solve the linear equation e = xr + ksmod q − 1 to
obtain s. The signature is (r, s).

– V erElG: Given a signature (r, s) of a message m, compute e = H(m, r) and
check whether ge = yrrs.

Our subverted ElGamal Scheme.

– GenElG: Select a PRF F : {0, 1}l × {0, 1}ρ → {0, 1}n and pick κ uniformly
as evaluation key. Let subk = (F, κ).

– SigElG: A state τ is set to be empty initially. Given the first message m1,
signing key x and subversion key subk, compute t1 = F (κ,m1). Then select
a randomness 1 ≤ k ≤ q − 1 and compute r1 = gt1k. s1 is computed by
solving e1 = xr1 + ks1mod q− 1 where e = H(m1, r1). The signature for m1

is (r1, s1). The state τ is set to be k.
– V erElG: It is the same as V erElG.

To sign a latter message mi, compute ti = F (κ,mi) and ri = gtikmod q.
si is computed by solving ei = xri + ksimod q − 1. The signature for mi is
(ri, si). The state is still k.

8 Conclusion

Our work considers how to subvert extractable signature schemes more effec-
tively than existing approaches. Efficient attacks on widely deployed signature
schemes such as DSA may warn people not to ignore the security threat incurred
by the ASAs and arm their devices with reverse firewalls. We aim to find generic
and more efficient ASA methods for those un-extractable schemes in the future.
In addition, loosing the goal for ASAs as signing key extraction to arbitrary
forgeries of signature for instance, might bring to more subversion approaches.
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