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Evidence from the last few decades indicates that pollinator abundance and
diversity are at risk, with many species in decline. Anthropogenic impacts
have been the focus of much recent work on the causes of these declines. How-
ever, natural processes, from plant chemistry, nutrition and microbial
associations to landscape and habitat change, can also profoundly influence
pollinator health. Here, we argue that these natural processes require greater
attention and may even provide solutions to the deteriorating outlook for pol-
linators. Existing studies also focus on the decline of individuals and colonies
and only occasionally at population levels. In the light of this we redefine pol-
linator health and argue that a top-down approach is required focusing at the
ecological level of communities. We use examples from the primary research,
opinion and review articles published in this special issue to illustrate how
natural processes influence pollinator health, from community to individuals,
and highlight where some of these processes could mitigate the challenges of
anthropogenic and natural drivers of change.

This article is part of the theme issue ‘Natural processes influencing
pollinator health: from chemistry to landscapes’.
1. Introduction
Animal pollination is one of nature’s most compelling mutualisms: plants offer
a reward to floral visitors in exchange for the transfer of pollen between flowers
to facilitate plant reproduction. Pollination services support a major component
of global food production but are also critical to natural ecosystems [1,2].
However, evidence from recent decades indicates that pollinator abundance
and diversity are at risk, with many species in decline [3–6].

Research identifying the causes of pollinator decline has focused on anthropo-
genic drivers, including pesticides, habitat loss and climate change and
interactions of these constraints [7–10]. That these constraints have detrimental
impacts on pollinators is broadly understood and accepted. However, the natural
processes that influence pollinator health and may contribute to or even mitigate
declines are, by comparison, overlooked. Understanding these processes is vital
for the development of nature-based solutions that support healthy pollinators
and restore their diversity and abundance. For example, pollen and nectar chem-
istry and the pollinator microbiome can influence pollinator health [11–15].
Furthermore, landscapes are increasingly described with respect to their specific
nutritional value to pollinators rather than simply floral diversity or abundance
[16,17]. Here we redefine pollinator health from a community perspective,
critically assess some of the natural processes that influence pollinator health,
and identify natural drivers of change and potential nature-based solutions to
the existential challenges facing pollinators.
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Historically, pollinator health has referred simply to hon-
eybees and specifically honeybee diseases and parasites. As
the importance of wild bees and other pollinators to food pro-
duction and natural habitats has become better understood
[18], there is increasing reason for pollinator health to include
all pollinators at different ecological levels. Pollinator health
must also be understood with respect to a multitude of
drivers and how they influence the full spectrum of species.
 .org/journal/rstb
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2. Natural processes influencing pollinator
health: from the top down

Pollinator health has traditionally been approached by focus-
ing on the individual, or by using a hierarchical and
reductionist approach, working from internal processes
through to the health of the population or species. For
example, López-Uribe et al. [19, p. 271] focused on honeybees,
and defined health as ‘the state of well-being that translates
into the ability of organisms to acquire, allocate and use
energy optimally to increase fitness’. De Miranda et al. [20]
took this further by applying a One Health perspective to a
range of pollinating bees, generating a practical working defi-
nition of bee health, which enabled them to identify a set of
potential metrics for identifying bee health in the field. In
parallel, Parreño et al. [17] have recognized that pollinator
health is influenced by multiple biological processes and
environmental factors, and highlight the importance of nutri-
tional niche space to pollinator health in the context of wild
species of bees. However, such hierarchical reductionist
approaches may miss key traits of pollinator health at the
community level.

Here we expand on López-Uribe et al. [19] and propose an
ecosystems-level approach, starting at the level of the pollina-
tor community and its provision of pollination services
(figure 1). From this perspective, pollinator health can be
argued to be analogous to the stability, robustness or resili-
ence of the pollinator community to environmental change.
Network metrics can be used to assess the health of a com-
munity [21], as can simple measures of abundance, richness
and diversity. Arguably, a trait-based approach, where simi-
lar species can be considered as functional replacements,
might be useful in this perspective. Thus, health at the com-
munity level might not be impacted by the loss or reduction
of one species (ill-health) if it is naturally replaced by a func-
tionally similar species. Concomitant with this, factors such
as pathogens that, at the level of individuals, might be con-
sidered as detrimental to health, could play important
positive roles at the community level in maintaining species
diversity, and thus community health [22]. Consequently, fac-
tors that have been previously viewed solely through the lens
of pollinator health at the individual or population level, such
as food availability, food quality, parasites, pathogens, and
secondary chemicals that enable medication, need to be
reconsidered at the pollinator community level. A definition
of pollinator health at this level might mean that a healthy
pollinator community is resilient in the face of environmental
perturbations and provides a robust pollination service.

Of course, such an ecosystem-led view does not mean that
we can simply ignore the impact of environmental factors on
the health of individual pollinators. Robustness and resilience
at the ecosystem level need to be supported by health at the
individual level, even if that does not mean equal health for
every individual within every species, and so understanding
how factors such as nutritional quality drive individual
health, and, ultimately, reproduction, remains key. For polli-
nator communities to be stable in the long term, their
individual components need to be healthy enough to repro-
duce and contribute to the next generation. Indeed, most
papers in this special issue examine health at the level of indi-
viduals, with only a few focusing on the community level.
We believe that incorporating a community definition of
pollinator health that integrates health at the level of individ-
uals, colonies, and populations within communities provides
the path toward maintaining wild pollinator communities
and the critical services they provide into the future.
3. Floral chemistry influences on pollinator
health and behaviour

Secondary metabolites have been reported frequently in
nectar and pollen [23–26], although there are surprisingly
few examples reporting their effects on pollinator behaviour
and health [13,24]. This may reflect challenges historically
in instrumentation and analysis of compounds only available
from very small sample sizes in low concentrations. Modern
and highly sensitive instruments such as liquid chro-
matography–mass spectroscopy (LC-MS) have opened up
this field.

Most compounds occurring in nectar and pollen are also
recorded elsewhere in the plant [27], where many also pro-
vide a defensive function against antagonists; thus their
presence in the floral reward for pollinators is a paradox
[28]. For example, the insecticidal diterpene grayantoxin 1 is
a defence compound against thrips in the foliage of Rhododen-
dron simsii [29]. The same compound occurs in Rhododendron
nectar at concentrations that are toxic to honeybees and
mining bees whereas, conversely, bumblebees are unaffected
[30]. This differential toxicity alludes to a chemical-based
specialist pollinator syndrome. If consumed, these com-
pounds could present a health challenge to bees at
individual and colony levels, but for bumblebees the flowers
may provide a surfeit of food since few other flower visitors
can tolerate the toxins. In Ireland, the number of Bombus pas-
cuorum nests in the vicinity of R. ponticum is almost double
the number recorded elsewhere [31]. Whether this presents
an adaptation by the plant to optimize pollination service
or adaptation by bees to the toxin is not clear. However, inva-
sive populations of R. ponticum in the British Isles show
reduced toxin levels, suggesting that plants have modified
their chemistry in response to an otherwise poorly adapted
pollinator community [32]. Honeybees avoid grayanotoxin
given a choice, so it does not present an individual or
higher ecological tier health risk unless there are no alterna-
tive food sources. However, Egan et al. [33] report that
pollinators impose negative directional selection against
grayanotoxin in nectar of invasive R. ponticum, which con-
trasts with selection patterns quantified in the species’
native range, where this compound was under positive selec-
tion in nectar. Nectar concentrations were decoupled from
those of leaves in the invasive but not the native range,
which is likely to assist this species to evolve and facilitate
visits by pollinators while simultaneously maintaining
anti-herbivore defence.
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Figure 1. Natural processes and anthropogenic drivers influencing pollinator health and potential mitigating solutions at community, population, social group and
individual levels expanded from López-Uribe et al. [19]. (Online version in colour.)
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Secondary metabolites may therefore have multiple
functions for plants and drive interactions with mutualists
and antagonists. This has been illustrated with caffeine, a
widely distributed plant alkaloid that reportedly provides
a defensive mechanism against insects through toxicity or
feeding inhibition [34–36], behaviour-modifying effects at
individual [37,38] and colony levels [39], as well as anti-para-
site activity against microsporidian parasites of bees (Nosema
spp.) [40,41]. Indeed, the bioactivity of nectar compounds
against bee pathogens illustrates the most direct pollinator
health impact of floral chemistry at the individual level.
Compounds reported to occur in nectar or honey were eval-
uated against the gut parasite Crithidia bombi and shown to
have antimicrobial activity, suggesting potential to mitigate
the challenge of excessive disease burden [12]. More recently,
acquisition of C. bombi by Bombus terrestris was shown to
be significantly reduced in bees feeding on the Calluna
vulgaris (ling heather) nectar metabolite, callunene [11].
Since B. terrestris feeds on heather nectar naturally, and
nectar from this species is the third most abundant in the
UK [16], this provided the first example of an ecologically rel-
evant and widely available disease-mitigating benefit to
pollinator health. However, callunene was not recorded in
the hindgut, where parasites are most abundant, suggesting
it had been metabolized, and consequently that established
infections were not affected when this compound was con-
sumed by a Crithidia-infected bee. Koch et al. [42] provide
a possible explanation for this through a study of the inter-
action of B. terrestris with nectar compounds from lime
(linden) tree flowers (Tilia spp.) and strawberry trees (Arbutus
unedo). Unedone from A. unedo nectar was inhibitory to C.
bombi in vitro and in B. terrestris gynes, whereas tiliaside in
Tilia nectar was only inhibitory in vivo. This is because tilia-
side was deglycosylated by the bumblebee during gut
passage, increasing its antimicrobial activity in the hindgut,
the site of C. bombi infections. Conversely, unedone was inac-
tivated by glycosylation in the midgut by the bumblebee,
only to be deglycosylated by the microbiome in the hindgut,
restoring its activity. Koch et al. [42] thus demonstrate that
metabolism of nectar compounds by the host or the micro-
biome modifies their antiparasitic activity.

When pollinators use floral resources but their larval
stages feed on the foliage of the same plant, there is an eco-
logical conflict and a challenge for the plant to mediate
these interactions. Balbuena et al. [43] present one such
example in Hyles lineata, a common hawkmoth that feeds
on the flowers of Oenothera harringtonii whereas the larvae
feed on its leaves. They monitored growth, survival and
fecundity as individual-level measures of pollinator health
and showed that the plant modifies floral and foliar chem-
istry to optimize the services of pollinators while protecting
against herbivory using a complex of constitutive and
induced chemical processes. The larvae of H. lineata, however,
perform well on other related species of Oenothera, suggesting
that in asymmetric plant–pollinator interactions alternative
larval host plants are critical in maintaining pollinator health.

Mammal pollination systems have evolved in several
plant families, and while some research has identified drivers
of interactions between flowers and bat pollinators [44,45],
there are substantial gaps in our knowledge. One outstanding
question is whether sensory bias evolved to facilitate intras-
pecific communication or for seeking food. There are
several examples of ground-dwelling mammal pollination
systems in southern Africa, many of the pollinators being
nocturnal and so reliant on scent. The quantities of nectar
produced by the host species for mammalian pollinators
are typically far greater than those provided by insect-polli-
nated species, so adapted to suit a specific dietary
requirement. These plants flower in winter when other food
for rodents is scarce. To ensure the mammalian pollinator is
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healthy and able to continue to provide pollination services,
the floral cues provided by the flowers to attract the pollina-
tor are critical in enabling these pollinators to find the right
food. Johnson & Govender [46] report that four species of
rodents were broadly attracted to oxygenated aliphatic
nectar chemicals such as esters and ketones but not to aro-
matics (conjugated planar rings such as benzyls) which
occur frequently in the floral odour of insect-pollinated
plants, nor to a sulfide compound that is attractive to
bats. The attractiveness of some of the ketones and esters
was lost when combined with unattractive compounds,
suggesting the overall chemical environment is important.
These volatile floral chemicals facilitate the exploitation of
rodent sensory bias that likely evolved in intraspecific
communication or searching for seeds.
 Trans.R.Soc.B

377:20210154
4. Nutrients in nectar and pollen and their
importance for pollinator health

Poor nutrition results from the loss of natural habitat
and from extensive monoculture plantings, and diminishing
forage is understood to be a major cause of pollinator
declines [7–9]. Good nutrition, however, can offset stresses
from pesticides and diseases. Overall, diverse and continu-
ously available forage leads to more balanced nutrition and
access to beneficial phytochemicals.

Nectar is an energy source for most pollinators. Nicolson
[47] provides a broad synthesis of nectar chemistry and nutri-
tional quality, including implications for vertebrate
pollinators as well as bees. The historical context of research
on nectar chemistry is touched on, but also recent metabo-
lomic studies (e.g. [48]). A model of the mechanisms of
nectar secretion [49] offers a simple explanation for the differ-
ences in nectar volume and sugar composition which have
stimulated much research on the association between sucrose
proportion in nectar and pollinator type. These patterns are
particularly clear for nectar-feeding birds and their flowers.
Apart from direct nutritional benefits, many nectar com-
pounds such as amino acids and secondary compounds
have indirect effects on foraging behaviour and parasite infec-
tion. Water, usually ignored in the composition of nectar, is
also a nutrient, and the water component of nectar is a
major factor in its variability but also important for consu-
mers. Phenotypic variation in nectar chemistry is common
[50], and there is increasing evidence for effects of microbial
contamination on nectar chemistry [51].

Pollen is more difficult to analyse. It varies widely in
nutrient composition [52,53], but much of this variation
may be due to discrepancies between the methods used in
pollen analysis. Differences in methods make it difficult to
compare studies. In this issue, Lau et al. [54] review the
common methods used to analyse pollen protein and
lipids—the macronutrients most often linked to bee health.
Using Brassica and Rosa pollens, they compared a subset of
these methods while also carrying out a more complete
analysis. Pollen has unique physical properties and it is
demonstrated here that fracturing pollen grains can lead to
marked increases in estimates of protein and lipid content.
Fracturing may be particularly necessary for complete extrac-
tion of components such as fatty acids, which are critical for
pollinator fitness [55]. Fortunately, the widely used Dumas
combustion assay for nitrogen (protein) does not require
this. The authors recommend the use of standardized
methods to facilitate comparisons between independent
studies. In addition, disrupting pollen grains before analysis,
while more important for some pollens than others, may
greatly reduce the variation in data on nutrient content.

The analysis of Brassica and Rosa pollens [54] included
major elements: this area of pollinator nutrition is receiving
increased attention and may be important for the health of
honeybee colonies [56]. De Sousa et al. [57] tested the dose-
related responses of young worker honeybees in cages to min-
eral-laced sucrose solutions. They selected the minerals most
prevalent in pollen, the major source of micronutrients for
bees; it is easier to study responses to minerals in solution.
They divide the eight minerals tested into salts and metals:
however, all are metal ions that play essential roles in insect
physiology, especially transport processes and enzymatic
activity [58]. Honeybees showed some regulatory ability and
avoided high and potentially toxic concentrations of all min-
erals used except Na: this is in agreement with Bertrand’s
rule, which predicts that low concentrations of micronutrients
will be attractive and high concentrations will be repellent.
Honeybees also obtain minerals from nectar and water [59].
Sodium is scarce in the diets of herbivores, and enriching
floral nectar with sodium attracts more pollinator visits and
more species [60].

The larval diets of solitary bees are a mixture of pollen
and nectar with added microbes. Leonhardt et al. [61] inves-
tigated the amino acid and fatty acid profiles of pollen
provisions in the solitary megachilid bee Osmia bicornis, and
whether these nutrients are correlated with bacterial micro-
biomes in the bees and their provisions. Bee larvae and
pupae and larval provisions were sampled from different
populations using trap nests at sites differing in land use
and thus floral resources. Pollen types in provisions were
identified and the nutrients analysed. Bacterial communities
of pollen provisions and bee guts showed strong overlap.
Pollen-derived bacteria may play an important role in
amino acid and fatty acid provisioning; on the other hand,
amino acids and fatty acids in the pollen provisions may
favour particular microbial communities. The authors use
neural network analysis to show correlations between
amino and fatty acids and bacterial genera, but it is not poss-
ible to say whether specific nutrients were synthesized by
plants or bacteria (or both). Microbial interactions may
explain why larvae of both specialist and generalist bees
often fail to develop on unsuitable pollen diets [62].

The final paper in this section looks beyond bees to include
other insect pollinator taxa and addresses pollination at the land-
scape scale. Jones & Rader [63] broadly review the nutritional
challenges for pollinators in agroecosystems, emphasizing the
need to maximize not only bee diversity and abundance but
also crop pollination outcomes. Preserving remnant habitat
and introducing extra floral resources do not necessarily improve
pollinator health or crop yields. The challenge is that much more
information is needed on the nutritional needs of specific polli-
nator taxa and the resources that provide them. Even for bees,
most of the available information on nutritional ecology is for
a limited number of species: Apis mellifera, Bombus and mason
bees (Osmia) [64]. Traditional and new approaches to evaluating
nutritional requirements are outlined here and by [65]. Some of
these methods can be applied to non-bee taxa. There is also
a compelling need to redress the geographical bias in crop
pollination studies [66].
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5. Microbial influence on pollinator health
Microorganisms are major drivers of pollinator health. On the
scale of the individual, effects of microbial associates on host
health form a continuum from the negative impacts of para-
sites to benefits derived from symbionts, and can change on
ecological or evolutionary time scales [67].

While parasites of pollinators can reduce individual
health parameters such as reproductive capacity, foraging
ability and physiological state, hosts can reduce negative
effects of parasites through the action of their immune
system, or through specific diets with medical antiparasitic
effects. A better understanding of the natural mechanisms
by which pollinators are able to prevent, reduce or tolerate
parasite infections may inform pollinator conservation
decisions, if they are, for example, linked to the availability
of certain nectar or pollen sources in the environment [68].
Certain diets can reduce parasite infections in pollinators,
for example through the antiparasitic activity of nectar sec-
ondary metabolites ([42]; see discussion above). Direct
chemical effects of specific diets on parasites may, however,
not be the only mechanisms of antiparasitic action. A sun-
flower pollen diet has, recently, been shown to induce
strong and consistent reduction in the infections of bumble-
bees with the gut parasite C. bombi [69], but, so far,
chemical constituents of sunflower pollen have not been
shown to induce this effect [70]. In this special issue,
Fowler et al. [71] test if the antiparasitic effect of sunflower
pollen could instead derive from a modulation of the
immune response of bumblebees. Bumblebees feeding on a
sunflower or wildflower control diet did not differ in their
induced or constitutive immune responses as measured by
the activity of phenoloxidase and the humoral antibacterial
activity of haemolymph. This suggests that the antiparasitic
effects of a sunflower pollen diet are either linked to
immune parameters (although these were not measured), or
derive from a different, as yet unknown mechanism.

Beneficial microbial symbionts of pollinators can improve
pollinator health through digesting or detoxifying diet
components, defending against parasites, or stimulating
immune and metabolic pathways of the host. Motta et al.
[72] review the existing literature on these health benefits
derived from the bacterial microbiome of social corbiculate
bees (honeybees, bumblebees, stingless bees), and present
new data on the potential of inoculating honeybees with pro-
biotic bacteria as a way to improve their health. They
highlight that stressors like antibiotics or poor diet may dis-
rupt the bee microbiome, and lead to increased disease
susceptibility. Administering probiotic bacteria to bees has
the potential to restore health-promoting microbiomes, but
experimental evidence for the promise of this approach is lar-
gely missing. Motta et al. [72] experimentally show that
commercially available probiotics with bacteria that are not
natively found in the honeybee gut fail to colonize honey-
bees, while cultured native bacterial strain colonies
efficiently and induce the activation of immune and metab-
olism genes. This suggests existing probiotics may have
limited or no benefits for honeybees, but future probiotic
research in bees should focus on using bacterial strains with
beneficial health effects naturally found in bees.

Martin et al. [51] looked beyond the endogenous gut
microorganisms of pollinators, and review the potential
effects of nectar microbes on pollinator health. Bacteria and
yeasts in nectar alter its chemical composition,
with negative (e.g. reduced sugar content) or positive (e.g.
increased amino acid content, increased amounts of micro-
nutrients like vitamins and sterols) effects for pollinator
nutrition and health. Pollinators may modulate their foraging
behaviour based on microbial presence in nectar, likely
through detecting volatile organic compounds released by
nectar microbes. This may facilitate the detection of nectar
sources for pollinators and may affect pollination services
on a landscape scale. Martin et al. [51] also argue for more
research into the effects of nectar microbes on disease
dynamics in pollinators, as these microorganisms could
affect floral transmission of pollinator pathogens, or infec-
tions within pollinators, for example through the
production of antibiotic compounds by floral yeasts.

Nicholls et al. [73] highlight the importance of foraging
behaviour for disease dynamics of pollinators. Horizontal
transmission of pollinator pathogens often occurs on flowers
[74,75]. A better understanding of the factors affecting floral
pollinator disease transmission, such as floral traits and
effects of flowering plant species diversity, may inform a
better design of managed landscapes to reduce the spread
of pollinator diseases. Existing studies in part show contra-
dictory patterns for this interaction [73], but investigating
effects of different foraging behaviour of diverse pollinator
species on disease transmission may help resolve this.

Brown [22] provides an important community- and
landscape-level view of pollinator health, which argues for
considering pollinator parasites as an integral part of biodi-
versity. While most research on pollinator health has
focused on the detrimental effects of parasites on individual
or colony host health, at a landscape level, parasites may
facilitate coexistence of diverse pollinator communities, and
are major natural drivers of evolutionary dynamics. There-
fore, Brown [22] argues that natural host–parasite
interaction networks should be conserved, rather than elimi-
nated. A better understanding of the impacts of floral
rewards on host–parasite interactions may be used to
design landscapes that support pollinators to moderate
levels of parasite infections and ensure pollination services.
6. Landscape, society and pollinator health
The landscapes in which pollinators exist in the so-called
Anthropocene are ultimately determined, and increasingly
so, by human actions. Consequently, the long-term main-
tenance of healthy pollinator communities relies upon
positive, evidence-based and informed actions across all
levels of society, from individuals to global bodies. How-
ever, a key difficulty we face in recommending such
action is our limited understanding of causal drivers of pol-
linator health in natural and semi-natural systems. Given
the range and variety of these drivers, many of which are
covered in this issue, the experimental work to investigate
this is simply too great [76]. By contrast, Saavedra et al.
[77] provide a statistical approach that could enable us to
understand causal drivers of, for example, pollinator rich-
ness, based on observational rather than experimental
data. Given the wealth of observational data in the scientific
literature, and the relative ease with which it can be
collected (as opposed to the cost and complexity of ecologi-
cal experiments), application of probabilistic systems
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analysis rooted in nonparametric causal inference holds out
real hope for the scientific community to take apart the
complex relationships between pollinator communities
and ecological and environmental drivers.

Once recommendations have been identified, based either
on sound experimental or statistical evidence, how can we
implement them most effectively? Numerous pollinator con-
servation initiatives have been put in place around the globe,
but are they on a sound footing? And how can they be
improved? Stout & Dicks [78] analyse current initiatives
and present an analysis of the key elements that are needed
for effective societal interventions to support pollinator
health. Crucially, they also identify higher-level issues—
such as patterns in global trade—that need to be addressed
if we are to support pollinator health, and arguably ecosys-
tem health and biodiversity more broadly. Future pollinator
conservation initiatives designed to incorporate the results
of this analysis would be significantly enhanced.

The direct link between pollinator health and human
health could help highlight the importance of healthy polli-
nator communities and pollination services. In this issue
Garibaldi et al. [79] show that very few studies have evalu-
ated aspects of pollinator health and human health
together, and these contributions were limited to the fields
of nutrition, medicine provisioning, mental health and
environmental quality. Benefits are provided through more
nutritious food, an estimated 28 000 animal-pollinated medic-
inal plants, products such as honey, the maintenance of
green landscapes that enhance mental well-being, and sus-
tainable practices associated with pollinators. This suggests
that pollinator diversity could be a proxy for the benefits
that landscapes provide to human health.

While human impacts of pesticides and climate change
on pollinators have received much attention for their direct
impacts on pollinators [3], other anthropogenic activities
could indirectly influence natural processes with conse-
quences for pollinator health. Climate change, for example,
affects the distribution and phenology of pollinators and
plants, and leads to changes in floral rewards associated
with temperature and water availability. Dai et al. [80] carried
out a long-term study of soil moisture effects on Gentiana aris-
tea in an alpine region on the Tibetan Plateau, and found that
water stress in either direction affected floral traits, pollinator
attractiveness and seed production. These changes were
linked to greater allocation of resources to roots and stems
during water stress.
7. Conclusion
Healthy pollinators live longer and reproducemore, and there-
fore support pollination services more effectively, even in the
presence of pathogens. While the focus of study has been
anthropogenic drivers of change, here we argue that pollinator
health is also influenced bya range of natural processes, includ-
ing nutrient availability secondary metabolites, beneficial
microbes, diseases and predators as well as habitat and land-
scape changes. Consequently, an understanding or analysis
of pollinator health must consider these natural processes,
especially when seeking to mitigate against constraints that
have a negative influence on pollinators. Understanding polli-
nator health at multiple levels of vigour, resilience and function
not only in the context of individuals, colonies and populations
but at the community level is also essential to address the dri-
vers of poor health from floral chemistry and nutrition through
to landscapes to assess vulnerability, adaptability and the
impact of different environments or stressors on different
species. At the community level, pollinator health and resili-
ence reflect sustained pollinator diversity over time,
considering both richness and evenness of pollinator species.
Adopting such a community-level perspective will transform
ecosystem management for healthy and effective pollination
services to crop production and natural landscapes.
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