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Abstract 

This paper presents the development of a novel 

modelling approach, based on the use of deep learning 

(DL), to predict the orthotropic composite properties of 

copper-patterned conductive layers of printed circuit 

boards (PCBs). This data is needed to assess the bulk PCB 

properties with existing methods for laminar composites. 

Image datasets of copper patterned artwork, required with 

this approach, are gathered and the composite 

(homogenised) orthotropic elastic modulus of the 

respective conductive layouts is evaluated through an 

automated, macro-script executed, finite element analyses. 

The modulus values are assigned as labels to each image of 

a copper layout in the dataset. A regression convolutional 

neural network is developed and optimised using a training 

dataset and validated using the test dataset. 

The results show that the DL model can predict the 

orthotopic values of the elastic modulus of highly non-

structured copper patterns accurately, with the absolute 

errors of the predicted vs. true (FEA evaluated) property 

value being less than 3% of the composite propriety range 

for 99% of the patterns in the validation dataset. The 

advantages of the proposed machine learning solution over 

existing techniques are that it can be digitalised and made 

available to the end-user as an easy-to-use and 

computationally fast toolset. The modelling approach can 

enable design engineers effectively explore PCB design 

alternatives, with awareness of their thermo-mechanical 

properties and the effect they have on the assembly 

performance and components’ reliability. 

1. Introduction 

In electronic assemblies, the thermo-mechanical 

reliability of components attached to printed circuit boards 

is impacted by the level of their stiffness and thermal 

expansion compliance. This dictates the need for material 

characterisations that are increasingly embedded in the 

product development flow, particularly for high-value, 

high-reliability, and high-performance electronic products. 

Printed circuit boards (PCBs) are an integral part of any 

electronic assembly and therefore are present in all 

electronic products and systems. PCBs are multi-layer 

composite structures, consisting of dielectric layers 

(typically glass fibre reinforced resins) and conductive 

metal layers (typically etched copper patterns), as 

schematically detailed in Fig. 1. PCBs have thermo-

mechanical properties that depend on the properties of the 

individual layers in the stacked structure. Currently, the 

homogenised (effective) mechanical properties of 

composite structures such as fully stacked PCBs or 

constituent prepreg (fibre-loaded resins) laminates are 

evaluated mainly through physical testing using respective 

metrology instruments and characterisation techniques. 

Testing methods used include TMA, DMA, DIC, and 

others. These tests are expensive to undertake and require 

the use of specialised systems, often integrating different 

types of equipment, and can be done only by technicians 

and operators with relevant skillsets and training. 

 
Figure 1: A schematic (bottom) and real example (top) of 

sheet layers of etched copper laminated onto and/or 

between sheet layers of a non-conductive material 

(fibreglass reinforced resin). 

 

Rule-of-Mixture (ROM) methods such as Reuss and 

Voight, and similar semi-empirical elastic models (Halpin-

Tsai, Nielsen, and Chamis), have been widely used to 

predict the effective properties of various multi-layered 

laminar composites, and particularly of fibre-reinforced 

resins [1,2]. These methods use the constituents’ material 

properties and their volume fractions to estimate the 

effective properties of the composite system.  But the use 

of these methods enables reasonable evaluation only of the 

bounds for the property value and works well only for 

material compositions that feature well-defined and 

structured layouts. In practice, none of these can be used to 

assess accurately the true orthotropic behaviour of real 

fibre-loaded resin laminates and particularly of PCB layers 

featuring complex patterns of conductive artwork. 

For this task, a finite element (FE) simulation has been 

the only viable modelling option; but the challenge is in the 

complexity of the modelling task with this method and the 

unique and new finite element model that must be 

developed for each composite structure of interest [3]. This 

is evident from several investigations using finite element 

analysis that have been reported in the public domain. 

Khan et al. developed a simplified micromechanics model 

Copper 

patterned layer Copper  
Epoxy Resin  Fibreglass 

reinforced 

resin 

Prepreg   



    

     

for calculating the mechanical properties of plain weave 

composites [4] and Sudheer et al. studied fibre-resin 

systems for varying percentages of fibre volume but 

limited their work only to very simple geometries [5]. Kim 

et al. demonstrated the application of large-scale finite 

element analysis using direct numerical simulation (DNS) 

which described explicitly the composite constituents and 

their interactions, for evaluating the mechanical properties 

of metal matrix composites, active fibre composites, cross-

ply laminates, and 3-D orthogonal woven composites [6]. 

Other studies on fibre-reinforced polymers using finite 

element analysis reached a similar conclusion that the 

numerical simulation is superior to existing analytical 

methods and can generate a more comprehensive and 

accurate evaluation of the effective composite properties 

[7,8].  

Recently, there has been an interest to exploit methods 

from the domain of computational intelligence to predict 

the properties of composite material systems [9-11]. 

Hamidi et al. presented a high-level general methodology 

that aimed at the use of machine learning models for 

predicting the properties of polymer composites using the 

composite constituents, but their approach has not been 

applied to electronics applications [9]. Barbosa et al 

reported a study on several laminate composites with a 

varying number of layers and angles of orientation 

employing machine learning models [10]. Research by 

Pathan et al [12] and Abueidda et al [13] deployed a similar 

machine learning modelling strategy, for predicting the 

composite properties of unidirectional fibre composite 

structures and two-phase, two-dimensional checkerboard 

composite, respectively, where the ground-truth data used 

in the training process are obtained from finite element 

analyses.  

Unlike the extensive modelling of the composite 

thermo-mechanical properties of fibre-reinforced resins 

used as prepregs (dielectric layers) in a common PCB 

stack-up, very little work is reported on approaches and 

methods to derive the composite properties of conductive 

layers. One of the reasons is the geometric complexity of 

the conductive artwork resulting in highly unstructured 

patterns which, even for the same copper fraction in a 

representative cell volume, can have very different 

composite properties, hard to predict with any of the rule-

of-mixture methods available for composite systems. 

This work demonstrates the feasibility of integrating, 

digitalising, and applying methods from two computational 

domains - mechanics and intelligence (Machine Learning), 

to the domain of composite materials and their 

homogenised mechanical property characterisation. The 

modelling approach targets specifically the problem of 

predicting the homogenised orthotropic elastic modulus of 

conducive layers featuring realistic and highly non-

structures patterns as found in modern PCB multi-layer 

stack-up composites. A computational approach using 

deep learning models that use as input the image of the 

conductive pattern and information for the modulus of the 

layer’s constituents is developed and demonstrated.  

2. Methodology 

The proposed methodology deploys an AI-based 

modelling approach, using data and supervised learning, 

which is fundamentally different from most of the current 

methods used for the task of composite material 

characterisation. It does not rely on physical testing and the 

use of metrology instruments, and unlike the analytical and 

physics-based modelling approaches has the potential to 

overcome their key limitations in evaluating the 

homogenised mechanical properties of composite material 

structures (e.g., compromised accuracy due to the 

approximations made, model complexity, computational 

time).  

The proposed methodology is realised in several steps, 

detailed graphically in Fig.1, and involves certain data 

flow, model developments, and computations. 

 

Figure 1: Methodology for development of AI-based 

modelling capability for homogenised properties of copper 

patterned layers used in printed circuit boards. 

 

Step 1: Gather PCB design data and obtain layer 

characteristics. The metal patterned layers, typically 

copper (as in this study), are defined most with PCB Gerber 

or ODB files. The graphics file shows the 2D layout of the 

copper in each conductive layer of the PCB stack. 

Properties of constituent materials (copper and resin from 

the adjacent prepregs) are also obtained. 

Step 2: Process the Gerber files and extract images with 

predefined pixel resolution/size of copper patterns. Process 

the images in binary greyscale format and save them in 

chosen pixel-based image file format (e.g. bitmap BMP). 

Step3: Develop and use an automated process for the 

image-to-parametrised finite element model data flow and 

the high-fidelity analysis of the copper patterns given with 

each image in the dataset. Obtain the orthotropic thermo-

mechanical property values of interest from respective 

simulated load cases. In the absence of experimental 

measurements, these values are taken as the ground truth. 

Step 4: Create an expanded database where each image 

of a copper pattern is linked (labeled) with the respective 

composite property value obtained in the previous Step 3. 
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Step 5: Split the dataset randomly into (1) training data 

- used to build the deep learning model and (2) validation 

data - used to validate the accuracy and performance of the 

model. Define the deep learning model structure - for 

example, a convolutional neural network (CNN), the 

model parameter estimation algorithm, and any training 

parameters. Then train the CNN model. The model has as 

input the image of a copper pattern, with a predefined 

image size/resolution, and the output is the composite 

material property for which the model has been trained. 

Sperate models for each property of interest can be 

considered and constructed. 

Step 6: Validate the deep learning model(s) developed 

in Step 5 by using the validation dataset. Analyze 

predictive power and accuracy. Iterate with Step 5 to 

optimise the model structure and parameters, if required. 

3. Data and Modelling Developments 

3.1 Raw Data of PCB Copper Artwork 

The raw data in this study consisted of Gerber files 

providing conductive artwork images with size/resolution 

up to 4,000×4,000 pixels. Image processing was realised 

using resizing and multi-image cropping with varying steps 

to generate a substantially larger dataset of copper pattern 

images with the size of 100×100 pixels. The final dataset 

contained approximately 26,000 images. In terms of the 

image dataset used to develop and validate the machine 

learning model, the dataset size was increased 4X through 

a process of rotation of each image by 90, 180, and 270 

degrees, respectively.  

We consider the conductive layer of the PCB as a bi-

material composition (copper-resin) because during PCB 

lamination the resin of the prepreg fills the gaps of the 

conductive pattern thus forming a composite layer. The 

material properties of interest of the constituent materials 

making the PCB copper layer – copper and resin, are listed 

in Table 1. 

 

Table 1: Mechanical properties of conductive layer 

constituents:  copper and epoxy resin. 

Elastic 

Properties 

Symbol 

(unit) 
Epoxy Resin Copper 

Young’s 

Modulus 
E (GPa) 3.0 110.0 

Poisson’s 

Ratio 
v (-) 0.40 0.34 

 

3.2 Composite Property Evaluation with FEA 

Finite element analysis technology was deployed to 

evaluate the composite properties of the bi-material copper 

patterned layers. This is the only feasible and most accurate 

approach to evaluate the three values of the orthotropic 

elastic modulus, 𝐸𝑥 , 𝐸𝑦 , 𝐸𝑧, where X-Y defines the plane of 

the layer, and Z is the out-of-plane direction. To achieve 

this, a scripted macro for FEA using ANSYS APDL 

simulation software was developed to automate the 

analysis process for all images in the dataset. It should be 

noted that while for the deep learning with image data the 

rotated image variants of an original image are different 

data points, the FEA was required only for the original 

(non-rotated) copper patterns to obtain the respective 

orthotropic (X, Y and Z) properties. For the other three 

associated images with a pattern (90, 180, and 270 

rotations), their orthotropic properties are specified 

through appropriate consideration of the axis orientation in 

relation to the un-rotated image. 

A parameterised 3D model with a fixed mesh that has 

matched the pixel resolution of the images. The automated 

simulation-in-the-loop is executed over the entire (un-

rotated) set of images in the database. In each such 

iteration, one image is taken from the database and the 

binary material information is extracted on a pixel-by-pixel 

basis, and then transferred into the respective material 

specification for the mesh elements corresponding to the 

image pixels (see Fig. 2). 

 

Figure 2: Example of (a) an image of copper pattern from 

a PCB Gerber file transferred onto (b) an equivalent finite 

element (FE) model. The FE model in (b) shows the load 

case boundary conditions for X-loading under the iso-strain 

condition at the boundary of the pattern. 

 

Once the finite element mesh model for a given pattern 

is defined, the macro script defines sequentially several 

load cases, assuming iso-strain conditions as shown in Fig. 

2, right) that simulate the mechanical responses of the 

composite pattern to loads, in X, Y and Z. The 

unidirectional displacement/elastic strain results can then 

be used to compute the equivalent homogenised modulus 

of the composite pattern in the respective X, Y and Z 

directions. The load case settings, the respective load case 

analyses, and the extraction of FEA results (directional 

displacement, strain, and stress) along with the secondary 

calculations for the homogenised properties are also 

automated within each FEA iteration executed by the 

macro-script. 

The FEA of the patterns in the dataset is performed in 

a shared memory mode (16 logical processors) on a server-

spec Intel Xeon CPU@2.20 GHz processor and 10 

physical cores. It has taken approximately 72 hours to 

assess all 26,000 copper patterns in the dataset with an 

image resolution of 100×100 pixels. Each analysis within 

the loop had additional load cases executed which, in 

addition to the three orthotropic (X, Y and Z direction) 

(a) (b) 



    

     

values of the composite Young’s modulus, have provided 

also results to enable the prediction of the orthotropic 

values of the coefficient of thermal expansion and the ratio 

of transverse strain to axial strain (Poisson’s ratio 

equivalent). The latter set of results is not discussed in this 

paper. At each iteration, the obtained properties of the 

composite pattern are exported and stored in a results file, 

with a link to the associated image in the database.  

Figure 3 shows an example of results obtained from the 

load case used to evaluate the composite Young’s modulus 

in X (𝐸𝑥). The load conditions are detailed in Fig. 2(b). The 

force applied in the X direction is represented as a load in 

the form of pressure P, and the X-displacement degree-of-

freedoms on that side are coupled. The coupled 

displacement value in X at the boundary of the pattern is 

extracted from the FEA and used to calculate the 

equivalent properties. 

 

Figure 3: Example of FEA prediction for X-displacement 

(mm) field of a copper pattern under  

 

For the copper pattern illustrated in Fig. 2(b), the 

volumetric fraction of copper content is 0.321. The 

mechanical load response results, under the load case to 

derive Young’s modulus in the X direction, are summarised 

in Table 2. For this copper pattern, similar results are 

obtained with the other load case loadings and informed 

that: 𝐸𝑦 = 10.068 GPa, 𝐸𝑧 =37.319 GPa. 

 

Table 2: Summary results obtained from FEA (example 

composite pattern shown in Fig. FFF2). 

X-displacement 

at the pattern’s 

coupled UX 

side, 

UX (mm) 

Force 

in X 

𝑭𝑿  
(N) 

Normal 

Strain in 

X at 

pattern 

boundary: 

(𝜺𝒙𝒙) 

Young’s 

modulus in 

X,  

𝑬𝒙 (GPa) 

=
𝑭𝑿/𝑨𝒓𝒆𝒂

𝜺𝒙𝒙
 

0.878e-3 0.35 0.878e-3 11.390 

 

All absolute predictions of the orthotropic modulus for 

the copper patterns in the dataset are normalised over the 

range 0 to1, with normalised value of 0 corresponding to 3 

GPa (resin modulus, 0% Cu fraction) and 1 corresponding 

to 110 GPa (the copper modulus, 100% Cu fraction).  

3.3 Deep Learning Modelling 

The image dataset, now labeled with the respective 

composite values (normalised over the 0-1 range) of the 

orthotropic modulus,  enables targeting the construction of 

a convolutional neural network  (CNN) model [14]. 

Because of the image size and resolution, it is possible to 

attempt a CNN model with fewer layers and smaller 

convolution kernels sizes compared with standard deep 

learning neural network architectures. The latter would 

require substantially larger datasets to train compared to 

those available for this case study, given the highly non-

linear nature of the problem, and can take days of training 

time. Several CNN networks were built using different 

parameters for the model structure to achieve optimal 

predictive performance. The optimised convolutional 

neural network is composed of convolutional layers, max-

pooling layers, a fully connected layer, and a softmax layer 

as detailed in Fig. 4. The pattern resolution of the dataset  

(100×100 pixels images) dictates the size of the 3-channel 

input data (third array dimension is 1 as grey image data is 

deployed, i.e. input size 100×100×1). This CNN is 

constructed as a regression model which means the output 

is a real scalar value. 

 

 

Figure 4: Convolutional neural network (CNN) for the 

orthotropic material properties of copper-patterned 

composite layers. 

 

The deployed CNN model structure has been designed 

with several modules.  

• Input layer: The size of the input images is 100×100 

with a single channel (greyscale image). For the 

problem of images representing different copper 

patterned composite layers, the images are binary 

(black and white, representing the copper and resin, 

respectively). 

• Convolutional CNN module: This is a composition of 

neural network layers that includes: 

o Convolutional 2D layer: The convolutional layer 

uses a kernel (a matrix) of learnable weights 



    

     

which is slid across the input image and multiplied 

by the input so that the output is enhanced in some 

aspect, thus extracting relevant features. The 

proposed CNN model contains six modules and 

hence there are six convolutional layers. The 

kernel size is 2x2 in all cases, but the number of 

filters is different across the layers - 8, 16, 32, 64, 

128, and 128 for layers 1 to 6, respectively. 

o Rectified Linear Unit (ReLU) layer: The ReLU is 

a non-linear threshold activation function. 

performed to each element of the input. The ReLU 

sets any value less than zero to zero and keeps any 

positive value unaltered. The use of ReLU layer 

helps avoid overfitting. 

o Batch Normalisation (BN) layer: The batch 

normalization is an operation used to normalise 

the elements of the input to each layer by using 

the mean and variance for each mini-batch 

independently. 

o Pooling layer: The pooling layer is used to reduce 

the dimensionality of the feature maps. The 

developed CNN model uses 2×2 pooling layers 

applied with a stride of 2 pixels. This provides a 

reduction of the size of each feature map by a 

factor of 2 and consequently is reducing the 

number of pixels (values) in each feature map to 

one quarter. The last CNN Module #6 in the 

proposed model does not have a pooling layer, 

and hence the output from the last convolutional 

layer is 128 feature maps with the size of 3×3 

pixels. 

• Dropout layer: The introduction of a dropout discards 

neurons in the fully connected layer with a certain 

probability to avoid the problem of over-fitting the 

solvable weights of the neural network. As a 

technique, it also gives the benefit of accelerating the 

training of the CNN model. The dropout probability 

value used in this model development is 0.2. 

• Fully connected layer: Each neuron node of the fully 

connected layer is connected to each neural node of 

the upper layer, and the neuron nodes of the same 

layer are disconnected. The CNN model feeds the 

features of the last convolution layer to a fully 

connected layer with 1152 neurons. This fully 

connected layer is essentially a 1×1×1152 

convolution operation on the output from the previous 

layer (kernel 3×3 and 128 feature maps). 

• Regression output layer: The regression layer 

computes the mean-squared error (MSE) loss. 

 

The CNN model structures for the three orthotropic 

values of Young’s modulus are trained using the 

parameters detailed in Table 3. For each CNN model, the 

training process using MATLAB with 90,000 images takes 

approximately 130 minutes to perform on a GPU Nvidia 

Quadro P5000 graphics card and a 10-core Xeon 

CPU@2.20 GHz station. 

Table 3: Parameter values used to design and train the 

convolutional network models. 

Parameter Value 

Number of epochs 150 

Batch size 256 

Optimisation 

Algorithm 

Adaptive Moment Estimation 

(ADAM) 

Learning rate 1e-3 

Loss function Mean Squared Error 

 

4. Results and Discussions 

To assess the predictive power and model accuracy of 

the developed CNN models, the following metric for 

accuracy is used: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝑣𝑎𝑙
× 100      (1) 

where 

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = ∑ 𝐹𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑃𝐶𝑁𝑁(𝑖), 𝑃𝐹𝐸𝐴(𝑖), 𝑇𝐷)
𝑁𝑣𝑎𝑙
𝑖=1      (2) 

 

𝐹𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑃𝐶𝑁𝑁 , 𝑃𝐹𝐸𝐴 , 𝑇𝐷) = 

                     {
0,    𝑖𝑓 |𝑃𝐶𝑁𝑁 − 𝑃𝐹𝐸𝐴| > 𝑇𝐷

1,    𝑖𝑓 |𝑃𝐶𝑁𝑁 − 𝑃𝐹𝐸𝐴| ≤ 𝑇𝐷
                  (3) 

 

and 𝑃𝐶𝑁𝑁(𝑖) is the CNN model predicted value (over 

normalised [0,1] range) for the composite property 𝑃, 𝑃 ∈
 {𝐸𝑥, 𝐸𝑦, 𝐸𝑧} associated with an image (copper pattern) 

with index 𝑖, 𝑃𝐹𝐸𝐴(𝑖) is the true (normalised) value of the 

composite property, evaluated with a finite element 

analysis, 𝑇𝐷 is a threshold value, and 𝑁𝑣𝑎𝑙  is the size of the 

validation dataset, in this investigation 𝑁𝑣𝑎𝑙 = 15,000 

images. 

Table 4 details the performance metrics of the 

developed CNN models for Young’s modulus E of the 

copper patterned composites comprising the validation 

dataset. The model accuracy value (in %, see Eq.1) 

measures the percentage of copper patterns (images) in the 

validation dataset for which the difference between the 

CNN-predicted and the true value of the property, both 

normalised in [0,1], is less than the respective threshold 

value TD. A summary of this performance metric for three 

different threshold levels is detailed. The TD values are 

taken as 0.01, 0.03, and 0.05. It can be noted that TD =0.01 

(or 1% of the normalised composite property range) is 

equivalent to approximately 1.07 GPa in absolute terms. 

 

Table 4: Summary of the prediction accuracy of the CNN 

models for the composite orthotropic Young’s modulus 

(in-plane 𝐸𝑥  and 𝐸𝑦 , and out-of-plane 𝐸𝑧). 

TD 

Ref 

TD 

value 

𝑪𝑵𝑵 𝑴𝒐𝒅𝒆𝒍 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 (%) 

(Eq.1 ) 

𝑬𝒙 𝑬𝒚 𝑬𝒛 

TD1 0.01 80.86 81.39 89.75 

TD3 0.03 98.60 98.86 99.99 

TD5 0.05 99.89 99.90 100.0 



    

     

It is observed that the in-plane modulus (𝐸𝑥   and 𝐸𝑦) of 

a composite pattern has a clear non-linear dependency on 

the copper content and that the stiffness of the structure is 

very sensitive to the spatial layout of the copper. The CNN 

models were still capable to capture very well the 

relationship between the copper layout pattern and the 

associated composite Young’s modulus in the data, and 

show a very good predictive capability for such a complex 

task. The CNN models for the in-plane modulus can predict 

the property value with an error less than 1 GPa 

(approximately) for about 80% of all copper patterns in the 

validation dataset. The accuracy increases substantially, 

above 98.5%, if the accuracy threshold loosens to about 3 

GPa. Figure 5 details the CNN model predicted values for 

𝐸𝑥   and 𝐸𝑦 versus the ground truth (FEA obtained) values 

of the property. 

 

Figure 5: CNN predicted values vs. ground truth FEA 

values of the [0,1]-normalised in-plane orthotropic 

Young’s modulus 𝐸𝑥  and 𝐸𝑦 of PCB conductive copper 

patterns in the validation dataset (size 15,000 patterns). 

Red dotted lines represent the ±5% error band. 

 

The CNN model for the out-of-plane modulus 𝐸𝑧  
features better accuracy: 90% of the validation patterns 

have the predicted composite property value with an error 

less than 1 GPa (approximately) compared to the true 

value, and practically 100% of the copper patterns have 

predicted 𝐸𝑧 values with an error less than 3GPa. The 

reason is that in the out-of-plane direction (Z) the copper 

and the resin materials form a bi-material composition that 

results in a strictly longitudinal (parallel) composite 

configuration. Hence the composite modulus 𝐸𝑧 is 

dependent on the fraction of copper. The CNN model for 

𝐸𝑧   shows an improved predictive power because of the 

ability to establish this dependency and the associated 

relationship between the stiffness and the copper fraction. 

Figure 6 illustrates in a similar format, CNN predicted vs. 

true 𝐸𝑧   values, the accuracy of the constructed model. 

 
Figure 6: CNN predicted values vs. ground truth FEA 

values of the [0,1]-normalised out-of-plane orthotropic 

Young’s modulus 𝐸𝑧 of PCB conductive copper patterns in 

the validation dataset (size 15,000 patterns). Red dotted 

lines represent the ±5% error band. 

4. Conclusions 

A novel, machine learning-based, modelling 

methodology utilising deep learning neural networks to 

predict the orthotropic composite properties of PCB 

conductive layers was developed. The investigation has 

demonstrated the application of this approach for 

predicting the effective elastic modulus of copper patterns 

with complex layouts. The convolutional neural network 

models were found to be a feasible and advantageous 

alternative to experimental testing or high-fidelity finite 

element analysis for assessing the properties of composite 

layers. Unlike the latter methods, once developed the deep 

learning models can be used to assess any composite 

pattern in a cost and computationally efficient manner. 

They require a simple input from the user in the form of an 

image of the pattern which is readily available from PCB 

design specifications.   

The CNN models reported in this paper featured the 

following absolute error performances: 

• Accuracy of 1% of the composite property range or 

better with 80% of the composite conductive 

patterns. 

• Accuracy of 3% of the composite property range or 

better with at least 98.5% of the composite 

conductive patterns. 



    

     

It has been found that the orthotropic properties 

associated with the out-of-plane direction can be predicted 

by a CNN model very accurately, explained by the fact that 

in that direction the layout of the copper and the resin 

represents a parallel composition of the two materials. The 

in-plane composite properties are predicted with less 

accuracy because of the strong sensitivity, in a non-linear 

manner, of the composite property to the actual 2D layout 

features of the pattern and because of the weaker 

dependence on the copper volume fraction. 

The use of a CNN model enables fast prediction and 

unlike the FEA approach does not require special skillsets 

and toolsets to use. With an expanded and pattern-

diversified dataset, there is a realistic prospect that the 

CNN models can improve their performance and 

prediction accuracy. This can also allow for increasing the 

size/resolution of the images and building more advanced 

CNN model structures. The machine learning technology 

discussed in this paper is also applicable to the problem of 

designing redistribution layers (RDLs) for advanced IC 

packaging with desired composite properties. 
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