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Abstract—Electrostatic charge of solid particles can cause
problems in many handling processes and need to be evalu-
ated in terms of charge levels and charge polarity. An induc-
tive charge sensor is suitable for the evaluation of both levels
and distributions of particle charges at the same time. How-
ever, the performance of charge sensing is critically subject
to its signal process, which can result in huge errors. One
of error sources is drifting of the baseline tracked, which
leads raw signals generated by the sensor to be distorted.
Especially in determining polarity and quantity of bipolar
charges, the distorted signal leads to significant biases and
errors in charge measurements, when the number of particles
measured is big. Currently, the existing correction algorithms
cannot produce a satisfied result in baseline tracking. In this
paper, the baseline drifting problem for the charge signals has been explored according to the types of charge polarity.
For unipolar charge signals, charge polarity and quantity are determined directly by a poles-pairing method without
any further baseline correction. For bipolar charge signals, a new method in baseline tracking and correction has been
developed based on dynamic time warping algorithm. Further optimization by a double-check process is used to remove
the ‘small hump’ errors in the signal. With the results of the charge measurements, this new method shows significant
advantages on accuracy and efficiency of charge detection compared to the other existing methods.

21 Index Terms— Electrostatic charge, inductive sensor, signal restoration, baseline tracking, dynamic time warping.

I. INTRODUCTION22

ELECTROSTATIC charge generated in powder processing23

is popular in many industries, especially in pharmaceuti-24

cal and metallurgical industries whereas particles experience25

the friction between particles and container wall during mix-26

ing, blending and transportation [1]. Static charge on particles27

can cause severe problems such as agglomeration, segregation,28

adhering to the equipment, or even fire explosion [2], [3].29

Even if the problems are not so severe, levels of charge and30

charge polarity can influence material characteristics such as31

size of agglomeration, which shows that proper assessments32

of particle charge are necessary for process control [4].33

Traditionally, many methods have been used to detect charge34

behaviour and charge levels of powders, but none of them can35

rapidly obtain charge distributions among the particles except36

inductive charge sensors [5]–[8]. The principle of an inductive 37

charge sensor developed at the Wolfson Centre is shown in 38

Fig. 1 [9], where the particles are fed by a vibrating feeder into 39

a ring-shaped sensor. When a charged particle passes through 40

the sensor ring, the charge on the particle generates an image 41

charge on the ring, which produces an induced current in the 42

sensor. The induced current is integrated by a pure integrator 43

and converted to a voltage signal so the charge for the particle 44

can be detected. For a single particle, the charge (Q) is subject 45

to the voltage induced and the capacitance of the feedback 46

capacitor in the integrating circuit, which can be obtained by: 47

Q = CINT�V G/(1 + G) (1) 48

where CINT is the capacitance of the feedback capacitor, G 49

is the gain of the amplifier circuit, and �V is the absolute 50

voltage induced by the charged particle. 51

With series charged particles passing through the sensor 52

(electrode), a sequence of voltage impulses generated by the 53

particles in time domain represents the particle charges. Total 54

charge for all particles is obtained by accumulating the charges 55

on individuals so charge levels and polarity can be detected 56

by averaging the charge over the mass of the particles and 57

impulse direction respectively. A typical signal is shown in 58

Fig. 2. 59

To process the charge from the signal in Fig. 2, it faces a 60

few challenges: identifying peak and peak direction, baseline 61

drifting and noise reduction, where the baseline is the signal 62

output without any charged particles passed through the sensor. 63
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Fig. 1. Schematic overview of an inductive charge sensor and the
principle of charge measurement by scanning charged particles.

Fig. 2. A typical charge signal from inductive sensor which contains
noise and baseline drifting.

The baseline is important for calculating the charge by Eq. (1)64

as the �V is the absolute value between the baseline (before65

particle entering) and peak value (particle at the centre of the66

ring sensor). So, baseline tracking in signal process is critical67

for charge measurement of an inductive sensor.68

To process it in a computer, baseline tracking can be69

really challenged using an algorithm because of the baseline70

drifting, which refers to that a charge signal deviates from71

non-charged position and fluctuates slowly up and down due72

to charge remaining in the sensor and slow charge dissipated.73

Such fluctuations prevent further peak detection in waveform74

correctly. Based on a review of the existing baseline tracking75

and correction methods, a new solution is introduced in this76

paper for different types of charges. For unipolar charges,77

change polarity and quantity are determined directly by a78

poles-pairing method without further baseline correction, but79

for bipolar charges a new baseline correction method based on80

dynamic time warping algorithm is developed with a further81

optimization by a repeat process (check on signal sharpness).82

II. RELATED WORKS AND THE PROBLEMS83

Signal drifting is common in many sensors, which causes84

linear or nonlinear changes in the overall trend of signals85

and disturbs the useful signals, especially amplitude mea-86

surements of signals [10], [11]. For inductive charge signals,87

Hussain [9] argued that the reason for that was the particle88

concentration. Because the charge amplifier connected to the89

sensor was essentially an integrator, a time was needed to90

integrate the impulses generated by a single particle. When91

multiple particles passing through the sensor, the remained92

charges might saturate the electronic equipment and created93

signal drifting. Similarly, smaller particles were more likely to94

produce signal drifting than large ones, because large particles95

had better dispersion characteristics and more spacing between 96

the particles in the sensor. Through comparative experiments, 97

the effect of particle concentration and particle size on baseline 98

drifting was demonstrated. Common methods to track baseline 99

in literature can be classified into three categories: filters, 100

wavelet transform and curve fitting in signal process. 101

Using a filter to remove baseline drifting is to eliminate the 102

low-frequency components in the signal through a high-pass 103

filter, i.e., to erase the trend of slow changes in the signal. 104

Sigurdsson et al. [12] believed that a high-pass filter could 105

indeed reduce the large-scale displacement and distortion of 106

the waveform. However, it still led to a loss of low-frequency 107

components in the data, because sometimes it was impossi- 108

ble to determine the frequency range of interest. Similarly, 109

Maess et al. [13] argued that a high-pass filter was not an 110

alternative to de-trending or even baseline correction, and that 111

a criterion should be established to identify the distortion 112

caused by filter. 113

Baseline correction by wavelet transform functions was 114

consistent with that of removing drifting by filter, i.e., remov- 115

ing the non-drastic changing components from the signal. 116

The signal was firstly decomposed to remove the baseline 117

with the wavelet transform. Daubechies and Symlet were 118

the two commonly used mother wavelets [14]. After proper 119

decomposition, an approximate coefficient was obtained from 120

the low-frequency part of the signal, and the detail coefficient 121

was derived from the high-frequency part of the signal. It was 122

believed that the baseline was related to the approximate 123

coefficient [15]. However, like the filter method, the wavelet 124

transforms arbitrarily assumed that the baseline was separated 125

from the rest of the signal. Moreover, for some cases that the 126

baseline drifting was much larger than the scale of the signal, 127

the decomposition level of the data was not enough, and a 128

deeper decomposition was usually required [16]. 129

Curve fitting was a more popular method compared to the 130

others. It reduced the loss of low-frequency components of the 131

signal to some extent. By this method, the baseline was fitted 132

to a N-order polynomial, thereby removing it from the signal. 133

The conventional curve fitting methods were polynomial fitting 134

and spline fitting based on least-squares criterion [17]–[19]. 135

As a mathematical optimization technique, the least square 136

criterion sought the optimal function matching of data by 137

minimizing the sum of squares of errors. Since the curve fitting 138

method required user inputs to select a subset of points on the 139

signal for fitting, although there were satisfactory results under 140

the premise of an accurate selection of points, it still contained 141

too much subjective judgment and would be a laborious task 142

for a large amount of data. 143

Moreover, Pang et al. [20] used nonlinear morphologi- 144

cal filtering to achieve the purpose by selecting appropriate 145

structural elements for expansion and corrosion operations. 146

The result gave a higher signal-to-noise ratio and a minimum 147

mean square error, but it was challenging to choose a right 148

structural element. For curve fitting, non-quadratic criteria 149

were used by Mazet et al. [21] to determine polynomial 150

coefficients at a better match. It could have a better fit, but 151

an appropriate cost function needed to be selected manually, 152

and the user’s subjectivity might cause a wrong fitting. 153

All the baseline tracking methods described above focused 154

on an overall signal, and getting a general trend of the wave- 155

form, and then eliminated the trend, while retaining the signal 156

component that changed dramatically. In other words, these 157

methods obtained a baseline first and then found the starting 158
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Fig. 3. Two time series signals ×1 and ×2 for the similarity of the time
series.

point (baseline point) for every signal of interest on that line,159

which was a holistic to local approach. The methods could160

quickly locate a general trend as a baseline but had difficulties161

to prove that the baseline point was on the line or not.162

Instead, a new local to holistic baseline tracking method163

developed in this study can identify some obvious baseline164

points with high accuracy first, and then obtain a baseline to165

orient the whole signal based on these points. By the way, most166

the obvious points in the waveform can be secured accurately,167

and the other points can be obtained with the assistance of the168

obvious ones. This method works based on individual peaks169

in the signal. In case of unipolar and bipolar charges, baseline170

tracking solutions can be different. For unipolar charge signals,171

a subtraction method is used in the study to simplify the172

problem by calculating amplitude of peaks directly without173

using the new method. Given the complexity of bipolar charge174

signals, the new local to holistic baseline tracking method is175

used to find the baseline points first and then derive a baseline.176

To locate the baseline points, a threshold method is developed177

based on the dynamic time warping (DTW) algorithm [22].178

The new mothed provides a better accuracy to locate the179

baseline points and minimizes errors of the wrong points on180

the line.181

III. DYNAMIC TIME WARPING ALGORITHM182

Dynamic time warping (DTW) algorithm is an algorithm183

to measure the similarity between two time series, especially184

for time series with different lengths, e.g., audio signals of185

different people reading the same word [23], [24]. DTW186

algorithm calculates the similarity of time series of different187

lengths by extending and shortening them, as shown in Fig. 3,188

two time series (solid lines) and their similarity (dotted lines)189

with corresponding points on the solid lines.190

The DTW algorithm measures the similarity between two191

time series using the sum of the distances between all cor-192

responding points, which is called the warp path distance.193

For example, Q = q1, q2, . . . , qi , . . . , qn and C = c1,194

c2, . . . , c j , . . . , cm are two time series with different lengths,195

an m × n distance matrix D (shown in Fig. 4) needs to196

be established for the dynamic programming algorithm. The197

matrix element d(qi , c j ) represents the distance between qi198

and c j . The Euclidean distance is generally used, d (qi , cj) =199

(qi − c j )
2

200

Briefly, this algorithm is looking for the shortest path201

through several elements in the matrix, and the elements that202

the path passes through are the corresponding points when the203

two series are compared. After obtaining the distance matrix,204

Fig. 4. The distance matrix and cumulative distance matrix for ×1 and
×2 showing the shortest warping path.

a cumulative distance matrix (loss matrix) DTW (Fig. 4) is 205

generated according to the continuity and monotonicity princi- 206

ple of the dynamic programming algorithm. In the cumulative 207

distance matrix, the element can be expressed as: 208

DTW(1, 1) = D(1, 1) 209

DTW(1, j) = D(1, j − 1) + d(q1, c j ) 210

DTW(i, 1) = D(i − 1, 1) + d(qi , c1) 211

DTW(i, j) = d(qi , c j ) + min{DTW(i-1, j), 212

DTW(i-1, j-1), DTW(i, j-1)} (2) 213

In Eq. (2), d is the distance between qi and c j . DTW is 214

the sum of the Euclidean distance of the current position 215

and the minimum of the adjacent three cumulative distances. 216

DTW (m, n) is the warp path distance, which is the shortest 217

distance between two time series. In Fig. 4, by tracking from 218

DTW (1, 1) to DTW (m, n), the shortest warping path can be 219

obtained. 220

Dynamic time warping algorithms have been used in bio- 221

medical applications, such as recognition, classification, and 222

extraction of ECG signals [24], [25]. Because of its flexi- 223

bility in template matching, it is used most often in voice 224

recognition [26]. 225

IV. METHODOLOGY FOR BASELINE TRACKING 226

A. Baseline Tracking for Unipolar Charge Signals 227

For the unipolar charge signal, all signal peaks generated 228

by charges have the same polarity direction (see Fig. 5). 229

In a unipolar charge signal, the amplitude of a peak is the 230

vertex of each peak, i.e., the difference between baseline point 231

and the peak represented by red dots in the figure. The starting 232

point of the peak is where the signal starts to change and 233

is represented by green points. Since all peaks in the signal 234

are in the same direction, the true magnitude of a peak is 235

vertical distance between the starting point and the ending 236

point. It means that by finding these points, the true amplitude 237

can be obtained without any baseline correction. 238

To find out the starting and ending points of the peaks, 239

the peaks must be detected first. Taking each bit of a sig- 240

nal S, if s(i)>s(i+1) and s(i)>s(i-1), the value s(i) is the 241

maximum point. If s(i)<s(i+1) and s(i)<s(i-1), the s(i) 242

is the minimum point. After identifying all the peaks, the 243

true magnitudes are formed by pair positive and negative 244

peaks. 245

For positive charges, the peaks of a magnitude always start 246

with a minimum point and end at a maximum point on the 247

timeline. For negative charges, they are opposite. In practice, 248
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Fig. 5. A unipolar charge signal and true amplitudes in the signal.

Fig. 6. Four cases of pole distribution.

Fig. 7. Indiscernible teeth in the waveform.

the peak points in charge signals may be not in pairing or249

the signal starts with different type of peaks (maximum or250

minimum point) (Fig. 6 (2) and (3)), this will lead to some251

errors in peak detection. To solve the problem, any signals can252

be classified in four categories as shown in Fig. 6 as paired253

peaks (case of (1) and (4)) and unpaired peaks (case of (2)254

and (3)). With the categories, the distribution of peaks in the255

signal is checked and classified. Then the positive and negative256

peaks are paired according to their categories to form the true257

amplitudes.258

Since any charge signals have residual noises in the wave-259

form (see Fig. 7), the noise does not cause any baseline260

drifting to the signal but can be detected by the peak detection,261

which directly influences the impulse pairing for the unipolar262

charge signals.263

To remove any error peak pairs, a threshold value was setup264

in the study. If the magnitude of any point pairs was less than265

Fig. 8. Fake peaks and varied start points in a bipolar charge signal.

the threshold, the peaks were accounted as noise and ignored. 266

The threshold value needs to be selected carefully according 267

to the data, which can eliminate the noise without affecting 268

the signal. Therefore, for unipolar charge, the amplitude and 269

location of the true peaks can be obtained according to the 270

filtered peak pairs without using baseline tracking. 271

B. Baseline Tracking for Bipolar Charge Signals 272

Baseline tracking for bipolar charge signals is much more 273

complicated compared to the unipolar charge signals, as both 274

positive and negative peaks are presented for peak detection. 275

For a typical bipolar charge signal shown in Fig. 8 as an 276

example, it is hard to judge whether the point p1 is a point 277

between two positive peaks or a valid negative peak. Similarly, 278

the point p2 could be either a valid positive peak or a 279

transitional region of two negative peaks. This creates fake 280

peaks, which needs to be identified before measuring it. The 281

fake peaks in the signals are rarely mentioned in the literature, 282

but they are crucial for determining the charges carried by 283

particles in inductive charge sensors. So, baseline tracking is 284

necessary for removal of any drifting in original signals in 285

order to process the charge signals accurately. 286

To solve the ‘fake peaks’ problem, a new method of judging 287

the shape of each peak is proposed in this paper. A standard 288

templated signal for a single particle (for example, a positive 289

peak) is used to compare with the waveform in a raw signal 290

for multiple particles to extract position and amplitude of valid 291

individual peaks. To analyze similarity between the template 292

signals and the virgin signals from the sensor, the dynamic 293

time warping algorithm is applied. 294

Because output of a dynamic time warping algorithm is an 295

accumulative distance that reflects the difference between the 296

two-time series, by the formula, this distance can be easily 297

converted into similarity as: 298

Similarity = 1/(Distance + 1) (3) 299

The advantage of the dynamic time warping algorithm is 300

capability of comparing time series in different signal lengths, 301

which is suitable for the peak comparison. 302

To achieve this, a single particle is firstly used to generate 303

a standard charge signal, in which typical rise trend and drop 304

trend are extracted as the template signals of a valid peak. 305

The templates influence further baseline tracking and need to 306

be done carefully. Fig. 9 shows typical rise and drop trends 307

extracted from the signals of polymer and calcium carbonate. 308

Secondly, peak detection is performed on the original raw 309

signals. By pairing the obtained adjacent positive and negative 310
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Fig. 9. Standard template signals of a true peak signal. Raising trend
for polymer particle and dropping trend for calcium carbonate particle.

Fig. 10. Selection of similarity threshold.

poles, the uncertain rising trends and dropping trends are311

detected. Considering that the amplitude of each peak is312

different, and the dynamic time warping algorithm is based313

on Euclidean distance, thus each uncertain trend needs to314

be normalized so that their amplitude is consistent with the315

template signal. Then, the similarity between uncertain trends316

and the template signals is compared by the dynamic time317

warping algorithm.318

The results of a similarity comparison shown in Fig. 10319

demonstrate that, the similarity between a template signal and320

a valid peak generated by a charge (true peaks) is always321

higher than 0.999. If the similarity is less than 0.999, it322

means a fake trend. With the experimental tests, it can be323

indicated that the value of 0.999 is the key threshold to324

distinguish a true peak in a raw signal. Although most of the325

trends are also very similar to the template signals (>0.99 in326

similarity), the baseline points can be distinguished when the327

similarity reaches 0.999, which proves that the dynamic time328

warping algorithm can achieve high accuracy in comparing the329

waveform shape, which can recognize the target signals.330

If a monotonous trend between two poles is generated331

entirely by a single charge, it can be inferred that the previous332

peak is also of the same polarity as the present peak. The333

starting point of the present trend, then, is the transition point334

sandwiched between two homo-polar peaks. These points are335

the points on the baseline, and a rough baseline can be336

determined by the defined baseline points. However, there337

are still some baseline points hidden in between the peaks.338

Because the monotonous trend that contains a baseline point339

can have two situations, the baseline point can belong to a340

positive peak and a negative peak simultaneously.341

To overcome this challenge, the waveform is divided into342

segments and then compared with the standard templated343

Fig. 11. Detecting baseline points in peaks of opposite polarity.

signal to locate the baseline points. As shown in Fig. 11, point 344

p1 is a positive signal peak, and point p2 is a negative peak. 345

On the monotonic curve from p1 to p2, taking p1 as a constant 346

starting point, the trend in different lengths in the direction of 347

p2 is taken and compared with the standard dropping trend. 348

If the similarity between the downtrend of some segments and 349

the standard signal is greater than 0.999, the endpoints of these 350

downtrends (the red dot in the figure) are marked. After all 351

subsets of a trend are compared, the abscissa of all marked 352

points is averaged to calculate the position of the final baseline 353

point. 354

By the way, two different types of baseline points can be 355

detected. Although there is no guarantee that all the baseline 356

points in a signal can be detected, the similarity threshold of 357

0.999 ensures the accuracy of the points already have been 358

found. The baseline points can be used to form the baseline 359

of the charge signal for further charge detection. To form the 360

baseline in the signal, linear regression is used to create the 361

fitting lines between the baseline points, because the number 362

of baseline points in a signal are significant and creating fitting 363

lines with polynomial regression is time-consuming. However, 364

the baseline tracking obtained by a linear function between the 365

baseline points can generate called ‘humps’ errors between 366

the peaks after repositioning the points, which needs to be 367

removed by a further process. 368

C. Reprocess the Problematic ‘Humps’ Errors 369

As identified, some slow drifting causes the ‘humps’ errors. 370

Even with the DTW algorithm, fake signals cannot be removed 371

completed in the processed signal after the baseline correction 372

as shown in Fig. 12. These errors are obvious in shape 373

compared to the peaks produced by the charges. So, evaluating 374

sharpness of the peaks for peak shape comparison is applied 375

to solve the problem as shown in Fig. 12. 376

The principle for sharpness comparison method is, a hump 377

and a charge peak as shown in the figure, with a horizon- 378

tal line, BC taken at the middle position of the amplitude 379

(between the baseline point and the peak) and then getting 380

the length AD from this line to the vertex. The sharpness 381

of peaks is measured by the value of AD/BC. To identify a 382

charge peak, the sharpness for a peak is less than a certain 383

threshold. Otherwise, it is a hump. Generally, if the threshold 384

is set to 4, most of humps can be identified. This threshold 385

may need to change according to different materials. Although 386

there are other methods that can be used for the ‘humps’ error 387

removal, the sharpness comparison method is simplest and 388

cheapest in computing time consumption. More thinking on 389

baseline correction for the humps have been given as taking 390
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Fig. 12. Humps in processed signal and evaluation of the sharpness of
the peak.

Fig. 13. (a) Calcium carbonate particles, (b) expanded polypropylene
beads.

the trend changing rate and comparing it to particle velocity.391

This can be done in future study.392

V. EXPERIMENTAL RESULTS AND DISCUSSION393

To evaluate the new baseline tracking method, experimental394

study has been carried out on an electrostatic inductive sensor395

developed at the Wolfson Centre [9]. The capacitance of the396

feedback capacitor in the sensor is 10pF. A signal is taken by397

a data acquisition in MATLAB with a sample rate of 10 kHz.398

The tests run for a period of 6 seconds while the material is fed399

into the sensor. The signal has been processed in MATLAB400

with the new algorithms developed, for charge levels (charge401

to mass ratio) and polarity determinations.402

Two typical particulate materials are selected, which can403

produce unipolar positive and negative charge. One material is404

expanded polypropylene beads produced by JSP Corporation405

(ARP5920), producing negative charges. Particle size of the406

polymer beads is about 3-5 mm. The other material is cal-407

cium carbonate with size of 0.85-1.0 mm, producing positive408

charges. The materials are shown in Fig. 13.409

All experiments have been carried out in a temperature and410

humidity-controlled room (25oC and 45%-50% RH). In the411

experiments, the particles are charged in a plastic container412

for the same vibration time so similar charge can be achieved.413

With a vibratory feeder, a selected number of particles are fed414

into the sensor, so a charge signal of the particles is obtained.415

In principle, number of the peaks in the signal must be equal416

to the number of particles. However, due to the limitation of417

feeding method that the particles may be not dispersed very418

well, the number of the peaks detected may be different to419

the number of the particles fed. Therefore, when evaluating420

the algorithm error, the number of the peaks in the signal421

accounted manually is compared to the algorithm result. The422

number of particles fed into the sensor is used as a reference.423

The results in Fig. 14 and 15 are the signals for 20 calcium424

carbonate particles and 20 polymer-beads, respectively. In the425

signals, the red point is the positive pole corresponding to each426

peak, and the green point is the negative pole. The magnitude427

Fig. 14. The peaks detected for a positive charged signal of calcium
carbonate.

Fig. 15. The peaks detected for a positive charged signal of calcium
carbonate.

Fig. 16. Baseline points detected for a bipolar charged raw signal.

and distribution of the charge obtained by the algorithm are 428

represented by a stem diagram. In Fig. 14, it shows 20 peaks 429

detected from an output signal of the sensor and the amplitudes 430

and positions in time domain corresponded to the raw signal. 431

In Fig. 15, only 17 peaks are detected in the original signal, 432

and shown in the results given by the algorithm. By the error 433

definition, there is no error for unipolar charge signal. If the 434

threshold of noise is set reasonably, the algorithm will have 435

minimum errors, as the algorithm can automatically detect 436

every peak without any approximate processing. 437

Fig. 16 shows a bipolar charge signal obtained by mixing 10 438

calcium carbonate particles and 10 polypropylene beads. There 439

are 8 positive and 9 negative peaks detected in the signal by 440

the sensor. For the 17 peaks, 13 baseline points are detected 441

and marked in red circles. These baseline points are connected 442

by using a linear function to form a rough baseline. 443

With the baseline correction, the signal can be processed, 444

and the drifting is removed (see Fig. 17). The ‘humps’ formed 445

after baseline correction are detected by the sharpness method 446
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Fig. 17. Humps detection in processed signal.

Fig. 18. The result of the baseline correction algorithm by Mazet [21].

and marked with red crosses, and the remaining true peaks are447

marked with green dots. The bottom diagram in Fig. 17 is the448

result after removing the humps, which shows that 8 positive449

and 9 negative peaks in the raw data are detected successfully.450

It Fig. 18, it presents a result of the same signal using the451

baseline correction method proposed by Mazet et al. [21] as452

a comparison. The Mazet’s method uses polynomial fitting to453

derive the baseline, and the polynomial order is estimated by454

minimizing a non-quadratic criterion. Comparing the results in455

Fig. 16, 17, and 18, it can be found that the baseline obtained456

by the Mazet’s algorithm is quite rough at some key positions457

(such as the starting points of some peaks). The results by the458

Mazet’s method also contain many fake detections when it459

deals with the subtle noise and the drifting, being miscounted460

for charge peaks. To remove the fake detections of the peaks,461

the current method has a great advantage.462

For bipolar charge signals, the processed results still contain463

some errors as the proposed method only finds part of the464

baseline points to make a rough estimate of the baseline.465

To quantify the error and verify the repeatability of the algo-466

rithm, more experiments with a specific number of particles467

have been carried out, which four groups (the total number468

of particles are 20, 40, 60, and 100, respectively, contained469

the same number of calcium carbonate and polypropylene470

particles) are used. The error can be calculated by:471

error = errorpos

numberpos
× numberpos

numbertotal
+ errorneg

numberneg
472

× numberneg

numbertotal
= errorpos + errorneg

numbertotal
(4)473

where error pos and errorneg are the difference between the474

actual number of peaks and the number of peaks given by the475

algorithm for positive and negative charges.476

From the experimental results (in Fig. 19), the error of the477

four signals before hump removal is about 25-30%, which is478

relatively high. However, after the hump removal, the error479

Fig. 19. The error analysis for different numbers of particles used in one
detection.

of the algorithm drops significantly. Especially when number 480

of particles increases to more than 50, the error is dropped 481

to within 3%. It suggests that the hump errors caused by an 482

inappropriate baseline have a huge impact on the results. While 483

focusing on the accuracy of baseline tracking, the proposed 484

algorithm also generates many hump errors, but the errors can 485

be reduced by the hump removal. 486

In addition, efficiency of the program developed has been 487

evaluated and optimized. Because the dynamic time warping 488

algorithm needs to build a cumulative distance matrix to 489

obtain the similarity, in charge signals a single trend may 490

contain thousands of data for a total 60,000 data in current 491

single test. It is very time-consuming to generate a large 492

cumulative distance matrix and calculating the values of the 493

elements. In detection of baseline points between opposed- 494

polarity peaks, the efficiency of the program is very poor when 495

a high number of peaks are dealt with, and it may take hours to 496

solve all the data. To improve the efficiency of the program, 497

the detection interval is increased when the baseline points 498

between the bipolar peaks are detected. Instead of traversing 499

every data point, 20 evenly distributed data points are used 500

on each trend, and one of the most suitable baseline points is 501

selected. With the improvement, the processed results show the 502

same accuracy as before, but the running time of the program 503

is significantly reduced to less than five minutes. 504

To achieve a faster detection speed, the number of sampling 505

points on a single trend can be reduced further, because 506

20 sampling points is still in a sufficiently accurate sampling 507

range. Sample points can be set to 15 or 10 depending on the 508

signals obtained, which can reduce the detection time further 509

in a few seconds. This approach is flexible, which allows for 510

trade-offs between accuracy and processing time by changing 511

the sampling interval. 512

VI. CONCLUSION 513

Static charges measured by an inductive sensor are highly 514

depended on baseline tracking in the signal process. The 515

study shows that none of the exiting methods can deal with 516

the complexity of bipolar charge signals in baseline tracking. 517

A new baseline tracking method has been developed based on 518

types of charge polarity in the charge signals. 519

For unipolar charge signals, the study shows that polarity 520

and distribution of the signals can be obtained simply by 521

calculating magnitude of the paired poles without baseline 522

tracking. For any bipolar charge signals, variation of baseline 523

points detected in between the opposed peaks prevents correct 524

tracking. Therefore, a similarity comparison method between 525

a standard charge template and a charge signal based on 526
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dynamic time warping (DTW) algorithm has been developed527

and show great advantages for baseline tracking of bipolar528

charge signals. However, ‘humps’ errors due to slow drifting529

in the signals result in huge errors. By an evaluating sharpness530

of peaks method, the experiment results show that the error531

rate of the algorithm in a detection can drop from about 30%532

down to about 3%.533

One drawback of the proposed method is a large processing534

time due to the number of data points processed. With an535

acceptable accuracy, the time can be reduced by control of536

the data points or increasing the sampling interval. User-537

defined similarity thresholds and sampling intervals make this538

algorithm flexible. The study shows the similarity of 0.999 is539

key threshold to distinguish a true peak in a raw signal.540

In the study, some further works are remaining. As selection541

of standard template signals for determining the threshold542

value used is crucial, selection criterions need to be studied for543

more situations to avoid any deviation in the selection. Also,544

other methods for hump errors removal in baseline correction545

need to be studied in future.546
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