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Abstract

This paper presents a new Updated Reference Lagrangian Smooth Particle Hydrodynamics (SPH) algorithm for the analysis
f large deformation isothermal elasticity and elasto-plasticity. Taking as point of departure a Total Lagrangian setting and
onsidering as referential configuration an intermediate configuration of the deformation process, the equation of conservation
f linear momentum and three geometric conservation laws (for the deformation gradient, its cofactor and its determinant)
re re-written leading to a very generic system of first order conservation laws. The key feature of the formulation is a
uitable multiplicative decomposition of the conservation variables, leading to a very simple final set of equations with striking
imilarities to the conventional Total Lagrangian system albeit re-written in terms of alternative Referential Updated conservation
ariables which are evolved in time. Taking advantage of this new Updated Reference Lagrangian formalism, a second order
ntropy-stable SPH upwinding stabilisation method will be introduced. With respect to previous publications by the group,
new three-stage Runge–Kutta time integration method is implemented in order to increase the CFL stability restriction.

inally, and to demonstrate the robustness and applicability of the methodology, a wide spectrum of challenging problems
ill be presented and compared, including some benchmark three-dimensional large deformation elasto-plasticity problems. To

acilitate its ease of implementation, the paper explores the use of a series of novel expressions for the evaluation of kernels
nd the gradients of kernels to provide the SPH user the freedom to choose amongst various options, all leading to equally
onvincingly robust results.
2022 Published by Elsevier B.V.
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1. Introduction

Numerical methods that do not require connection between nodes or the creation of sub-regions (elements)
n the process of discretisation comprise a large family of methods called meshless (or meshfree) methods, see
.g. Belytschko et al. [1], Huerta et al. [2] and Chen et al. [3] for in-depth studies. The main objective of such
echniques is to eliminate some of the limitations related to mesh dependence of conventional computational

ethods. Since the approximations are constructed in terms of nodes (particles) and not based on elements (their
istortion may degrade accuracy), meshfree methods can address a range of problems much wider than mesh-based
ethods. Moreover, meshfree methods [4] have the potential of circumventing some difficulties usually faced in the

re-processing stage, i.e., meshfree methods eliminate the standard mesh generation process, making the integration
etween Computer Aided Engineering (CAE) and Computer Aided Design (CAD) easier [5].

One of the earliest meshfree methods is the Smooth Particle Hydrodynamics (SPH), first presented in 1977 by
ingold et al. [6] and Lucy [7]. Libersky et al. were amongst the first to use the SPH method in the context of

trength of materials [8] and dynamic solid mechanics [9]. The SPH method gives numerical solutions to initial–
oundary value problems defined by conservation laws of continuum mechanics combined with constitutive relations
or the materials involved. It is important to emphasise that SPH is not based on discrete particles colliding with each
ther or presenting cohesive-like behaviour. Instead, SPH is a fully Lagrangian modelling scheme that permits the
iscretisation of continuum partial differential equations through the approximation of properties at a set of points
istributed over the domain, without the need of defining a spatial mesh. The Lagrangian nature of the method
nd its ability to keep accurate history of events, associated with its meshless characteristics, represent the main
dvantages of SPH. A massive number of publications regarding the SPH method is available in the literature. The
orks by Monaghan [10], Swegle et al. [11] and Vignjevic et al. [12] and references therein provide comprehensive

eviews of the topic.
The classical Eulerian and Updated Lagrangian displacement-based SPH methods are known to suffer from a

umber of well-known drawbacks, such as numerical instabilities in the form of spurious zero-energy modes and
ensile instability (the latter only in the case of Eulerian SPH) [13–26], lack of consistency [18,20,27,28], loss of
onservation [24,29,30] and reduced order of convergence for derived variables such as stresses and strains [24].
istinct research groups [31–44] have come up with various solutions for the different issues faced in SPH.
ome interesting work has also been reported in [45,46] where a hourglass control based stabilisation algorithm is
mployed for the description of elasto- and visco-plastic continuum. It is however still not yet clear how to introduce
ppropriate numerical viscosity through the classical Coleman–Noll procedure in order to ensure the production of
on-negative numerical entropy. Additionally, the kernel function as well as the gradient of its kernel used in [45,46]
re evaluated based on standard updated isotropic (spherical) kernels, which may not be optimal in the presence of
trong anisotropic changes in volume. In the recent work by Lee et al. [26], a Riemann solver based stabilisation
trategy for a mixed-based SPH framework for large strain explicit solid dynamics was presented. The framework
istinguishes from standard SPH techniques due to the fact that the conservation of the linear momentum p is

solved along with the conservation equations for the deformation gradient F and its minors. Conservation laws
of geometric quantities such as the deformation gradient F, the volume map (Jacobian) J and the area map (co-
factor) H are introduced aiming at the establishment of a mixed set of conservation laws. In previous works, but in
different contexts, Lee et al. [47,48] proposed other methodologies which had as unknowns the linear momentum, the
deformation gradient and the total energy. With both the linear momentum and the deformation gradient tensor being
primary variables of the problem, stresses converge at the same rate as the velocities and displacements. Moreover,
the new formulation was shown to be efficient in nearly incompressible and bending dominated scenarios. However,
in case of extreme deformations in the incompressible limit, the { p, F} formulation lacks robustness. In [49], in the
context of Finite Element Method (FEM), Gil et al. enhanced the formulation for nearly and truly incompressible
deformations with the novelty of introducing a conservation law for the Jacobian J of the deformation gradient,
providing extra flexibility to the scheme. In [50], a new geometric conservation law for the co-factor H of the
deformation gradient was also added to the framework, leading to an enhanced mixed-formulation, very amenable for
constitutive laws strongly dependent on the cofactor of the deformation. The development of this new conservation
equation was possible due to the simplification introduced by the use of a tensor cross product operation, presented
for the first time in the context of solid mechanics in [51] and further explained in [52].

The evolution of the above mentioned works resulted in a mixed methodology in the form of a system of
Total Lagrangian first order conservation laws { p, F, H, J }. Following these developments, a new stabilised total
2
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Lagrangian SPH methodology was introduced in [26], aiming at the removal of spurious zero-energy modes
and improved order of convergence of variables such as stresses and strains. Moreover, in this approach, linear
consistency is fulfilled by performing kernel and gradient corrections, as proposed in [28]. Global conservation
of angular momentum is strictly ensured with the introduction of a monolithic angular momentum projection
algorithm, first presented in [24]. The stabilisation methodology presented in [26] does not require user-defined
artificial stabilisation parameters and is based on physical pressure and shear wave speeds.

Even though the combination of all these developments has greatly improved the current state of SPH methods in
ast solid dynamics, there is still the lack of a robust updated Lagrangian SPH framework, which is necessary when
opological changes (i.e. fracture, separation) in the geometry need to be taken into account along the solution. With
his idea in mind, the present work puts forward a new stabilised Updated Reference Lagrangian SPH framework,
imed to be a robust alternative tool for computer simulations in fast solid dynamics problems, prepared for
he future endeavour of handling problems with topological changes. Specifically, and by adopting as referential
onfiguration an intermediate configuration of the deformation process, the equation of conservation of linear
omentum and three geometric conservation laws (for the deformation gradient, its cofactor and its determinant)

re re-written leading to a very generic (incremental) system of first order conservation laws. One attractive feature
f the methodology is its possibility to degenerate into either Total or purely Updated Lagrangian formulations. The
ctual use of the methodology in the context of fracture mechanics [53] is the next step of this work, beyond the
urrent scope, along with the consideration of thermal effects induced by strong thermo-mechanical coupling due
o shocks.

The paper is broken-down into the following sections. Section 2 starts by presenting the Total Lagrangian
ormulation of the conservation laws to be solved, encompassing the linear momentum and three geometric
onservation laws. The section continues deriving the new Updated Reference Lagrangian set of conservation laws in
erms of a new set of alternative conservation variables and introducing their appropriate (entropy) work conjugates.
ection 3 presents the variational statements of the problem. Section 4 presents the Smooth Particle Hydrodynamics
iscretisation scheme. Special attention is paid to two aspects: first, the Riemann based (upwinding) numerical
issipation employed; second, the introduction of four different options for the evaluation of kernels and gradients of
ernels needed for SPH implementation. Section 5 briefly presents the three-stage explicit Runge–Kutta scheme used
o evolve the semi-discrete equations in time, improving the numerical CFL restriction previously published in the
iterature. Section 6 presents a simple projection technique to ensure strict total conservation of angular momentum.
ection 7 includes the algorithmic flowchart of the resulting numerical scheme and how to degenerate into their
otal and purely Updated Lagrangian algorithmic counterparts. Section 8 presents a set of numerical examples to
ssess the convergence, conservation and stability of the computational framework, with detailed comparison with
xisting implementations available in the literature. Section 9 presents some concluding remarks.

. Reversible elastodynamics

.1. A summary of the total Lagrangian formalism

Consider the three dimensional deformation of an isothermal body of material density ρR moving from its initial
ndeformed configuration ΩV , with boundary ∂ΩV defined by an outward unit normal N , to a current deformed
onfiguration Ωv at time t , with boundary ∂Ωv defined by an outward unit normal n (see Fig. 1). The time
ependent motion φ(X, t) of the body can be described by a system of first order Total Lagrangian conservation
aws [24–26,54,55], summarised as

∂U
∂t
+

3∑
I=1

∂F I

∂ X I
= S in ΩV . (1)

ere, U is the vector of conservation variables, F I is the flux column vector in I th material direction and S is the
ource term, described as

U =

⎡⎢⎢⎣
p
F
H

⎤⎥⎥⎦ , F I = −

⎡⎢⎢⎣
P E I

v ⊗ E I

F (v ⊗ E I )

⎤⎥⎥⎦ , S =

⎡⎢⎢⎣
f R
0
0

⎤⎥⎥⎦ . (2)
J H : (v ⊗ E I ) 0
3
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Fig. 1. Deformation of a solid body.

In above system of equations, p = ρRv is the linear momentum per unit material volume, v represents the
velocity field, f R is the body force per unit material volume, {F, H, J }1 represent the deformation gradient tensor,
ts co-factor and its Jacobian, P represents the first Piola–Kirchhoff stress tensor and the material identity tensor I
s expressed as I =

∑3
I=1 E I ⊗ E I with the Cartesian material coordinate basis being defined as

E1 =

⎡⎣1
0
0

⎤⎦ ; E2 =

⎡⎣0
1
0

⎤⎦ ; E3 =

⎡⎣0
0
1

⎤⎦ . (3)

IV and CURL represent the material divergence and curl operators carried out with respect to the material
onfiguration, and the symbol represents the tensor cross product between vectors and/or second order tensors,
ee [52].

As the system of conservation laws presented above has more equations than needed, suitable compatibility
elationships (also known as involutions [47,48,56,57]) are necessary, namely

CURLF = 0; DIVH = 0. (4)

For closure of the system above, a suitable constitutive relationship for the stresses P compliant with the principle
of objectivity (frame invariance) and the second law of Thermodynamics (Coleman–Noll procedure) is presented
in Remark 1. Finally, for the complete definition of the initial boundary value problem, both initial and boundary
(essential and natural) conditions must also be specified as appropriate.

Remark 1. In this work, and without loss of generality, a Mooney–Rivlin hyperelastic constitutive model has
been considered, where the strain energy density is defined as a convex multi-variable function W of the triplet of
deformation measures {F, H, J } [50,58,59] as

W (F, H, J ) = ζ J−2/3 (F : F)+ ξ J−2 (H : H)3/2
− 3

(
ζ +
√

3ξ
)
+

κ

2
(J − 1)2, (5)

here ζ , ξ and κ (bulk modulus) are positive material parameters. By comparison of the tangent elasticity operator
t the initial configuration with that of classical linear elasticity, appropriate values for the material parameters ζ

nd ξ can be defined in terms of the shear modulus µ, that is, 2ζ + 3
√

3ξ = µ [58]. Following Refs. [24–26], the
rst Piola Kirchhoff stress tensor can be expressed as

P = Σ F +Σ H F + ΣJ H, (6)

1 Classically, the definitions for the triplet of deformation measures are F = ∇ φ, H = 1 F F and J = det F, respectively.
0 2

4
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where the conjugate stresses {Σ F,Σ H ,ΣJ } are defined by

Σ F =
∂W
∂ F
= 2ζ J−2/3 F; Σ H =

∂W
∂ H
= 3ξ J−2 (H : H)1/2 H (7)

and

ΣJ =
∂W
∂ J
= −

2
3
ζ J−5/3(F : F)− 2ξ J−3(H : H)3/2

+ κ(J − 1). (8)

2.2. Updated reference Lagrangian formalism

Taking inspiration from the work presented in Ref. [23,45,46], an equivalent system of Updated Reference
Lagrangian conservation equations can be written in terms of a new configuration, additional to the well established
material (initial) and spatial (current) configurations. This new configuration is defined as an intermediate or
incremental configuration through which the continuum has passed (convected) during the deformation process
at a previous time instant or load increment (refer to the so-called “Fixed” in time configuration in Fig. 1).
This extra configuration can be adopted as a new reference configuration, leading to what we will refer to as a
Updated Reference Lagrangian formulation. As we will see, this additional referential (intrinsic) configuration leads
to an enhanced formulation, capable of degenerating into the classical Total Lagrangian or Updated Lagrangian
formalisms.

By doing this, the triplet of deformation measures {F, H, J } (from material to spatial configurations) can be
obtained via a multiplicative decomposition as

F = f Fχ ; H = hHχ ; J = j Jχ , (9)

where { f , h, j} represents the set of (incremental) deformations measured from the reference to the spatial
configuration, whereas {Fχ , Hχ , Jχ } denotes the set of (known) deformations measured from the material to the
reference configuration.

In order to derive the Updated Reference Lagrangian formalism, we can utilise appropriate push forward
transformations for vector and flux quantities [60], that is, multiplying material vector quantities {U ,S} by J−1

χ

and post-multiplying the Total Lagrangian flux F by H−1
χ , making use of the Piola identity

3∑
I=1

∂F I

∂ X I
= Jχ

3∑
i=1

∂
(
F H−1

χ

)
i

∂χi
, (10)

q. (1) thus becomes

J−1
χ

∂U
∂t
+

3∑
i=1

∂
(
F H−1

χ

)
i

∂χi
= J−1

χ S; in Ωχ , (11)

hich can then be particularised for the individual components of U , yielding

J−1
χ

∂ p
∂t
− divχ

(
P H−1

χ

)
= J−1

χ f R, (12)

J−1
χ

∂ F
∂t
− divχ

(
v ⊗ H−1

χ

)
= 0, (13)

J−1
χ

∂ H
∂t
− divχ

(
F

(
v ⊗ H−1

χ

))
= 0, (14)

J−1
χ

∂ J
∂t
− divχ

(
v ·
(
H H−1

χ

))
= 0. (15)

Additionally, we introduce the following intermediate variables defined as

pχ = ρχv; ρχ = J−1
χ ρR; σ χ = P H−1

χ ; f χ = J−1
χ f R . (16)

With these, and with use of (9), above system ((12)–(15)) after some algebraic manipulation reduces to
∂ pχ
= divχσ χ + f , (17)
∂t χ

5
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∂ f
∂t
= divχ (v ⊗ i) , (18)

∂h
∂t
= curlχ (v f ) , (19)

∂ j
∂t
= divχ

(
hT v

)
. (20)

ere, divχ and curlχ represent the divergence and curl operators carried out with respect to the referential
onfiguration, and the referential identity tensor i is being defined as i =

∑3
i=1 ei

χ ⊗ ei
χ with

e1
χ =

⎡⎣1
0
0

⎤⎦ ; e2
χ =

⎡⎣0
1
0

⎤⎦ ; e3
χ =

⎡⎣0
0
1

⎤⎦ . (21)

It is worth emphasising that the primary unknown variables of the Updated Reference Lagrangian system introduced
herein are { pχ , f , h, j}. Crucially, the updates of incremental geometric deformations { f , h} (18) and (19) must
ensure the satisfaction of appropriate involutions, namely

curlχ f = 0; divχ h = 0. (22)

Combining above equations into a system of conservation laws formulated in the reference configuration gives

∂Uχ

∂t
+

3∑
i=1

∂F i
χ

∂χi
= Sχ ; in Ωχ . (23)

ere, Uχ is the vector of conservation variables (per unit of reference configuration), F i
χ is the flux vector in

th direction at reference domain and Sχ is the source term (per unit of reference configuration). Their respective
omponents are

Uχ =

⎡⎢⎢⎣
pχ

f
h
j

⎤⎥⎥⎦ , F i
χ = −

⎡⎢⎢⎣
σ χ ei

χ

v ⊗ ei
χ

f
(
v ⊗ ei

χ

)
h :

(
v ⊗ ei

χ

)
⎤⎥⎥⎦ , Sχ =

⎡⎢⎢⎣
f χ

0
0
0

⎤⎥⎥⎦ . (24)

It is important to remark the simplicity of the above system of Updated Reference Lagrangian conservation
equations ((24)) with striking similarities to the previously presented Total Lagrangian system ((2)), which will
naturally facilitate its computational implementation.

2.3. Hamiltonian (or total energy density) and constitutive relationship for stresses

In order to provide a proper physical meaning to the conjugate fields (with respect to the conservation variables
Uχ ) of the system at hand, consider the total energy density (or Hamiltonian Hχ [61–63] per unit of reference
volume in case of reversible processes) defined by

Hχ (χ , t) = Ĥχ ( pχ , f , h, j) =
1

2ρχ

pχ · pχ +Wχ ( f , h, j), (25)

nd Hχ (χ , t) and Ĥχ ( pχ , f , h, j) represent alternative functional representations of the same magnitude. For the
sothermal case under consideration, the notion of Hamiltonian is simply the total energy per unit reference volume.

aking use of Eq. (25), and introducing the conjugate stresses with respect to { f , h, j} to be

Σ f =
∂Wχ
; Σ h =

∂Wχ
; Σ j =

∂Wχ
, (26)
∂ f ∂h ∂ j
6
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the associated work conjugates Vχ can then be obtained as

Vχ =
∂Ĥχ

∂Uχ

=

⎡⎢⎢⎢⎢⎢⎢⎣

∂Ĥχ

∂ pχ

∂Ĥχ

∂ f
∂Ĥχ

∂h
∂Ĥχ

∂ j

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

v

∂Wχ

∂ f

∂Wχ

∂h
∂Wχ

∂ j

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
v

Σ f

Σ h

Σ j

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (27)

pon the use of the tensor cross product property shown in [50], the above conjugate stresses {Σ f ,Σ h,Σ j } can
indeed be related to the standard Cauchy stress tensor σ χ via the rate of internal work per unit reference volume,

escribed as

σ χ : ḟ = Ẇχ ( f , h, j) (28a)

= Σ f : ḟ +Σ h : ḣ + Σ j j̇ (28b)

= Σ f : ḟ +Σ h :
(

f ḟ
)
+ Σ j (h : ḟ ) (28c)

=
(
Σ f +Σ h f + Σ j h

)
: ḟ , (28d)

here the superimposed dot represents the usual material time derivative describing the change in f associated
ith a specific particle initially located at position X . Comparing the left hand side of Eq. (28a) with Eq. (28d)

eads to the following relationship

σ χ = Σ f +Σ h f + Σ j h. (29)

emark 2. To complete the definition of the Cauchy stress tensor (29), one plausible option is to rewrite the
eferential conjugate stresses {Σ f ,Σ h,Σ j } of the system in terms of their material counterparts {Σ F,Σ H ,ΣJ }

(previously presented in Remark 1). This is achieved by first utilising the pull back equivalent of the convex multi-
variable function Wχ ( f , h, j) = J−1

χ W (F, H, J ), followed by the use of the multiplicative decomposition for the
triplet of deformation measures (9) and the chain rule. For instance, the conjugate stress of f gives

Σ f =
∂Wχ ( f , h, j)

∂ f
= J−1

χ

∂W
(
F( f Fχ ), H(hHχ ), J ( j Jχ )

)
∂ f

(30a)

= J−1
χ

∂W
∂ F
:

∂ F( f Fχ )
∂ f

(30b)

= J−1
χ Σ F FT

χ . (30c)

Similarly, the conjugate stresses of h and j are now given by

Σ h = J−1
χ Σ H HT

χ ; Σ j = ΣJ . (31)

emark 3. Many practical engineering applications often exhibit some permanent inelastic deformation. In order
o describe this irrecoverable behaviour, the simple case of rate-independent von Mises plasticity in conjunction
ith either linear or nonlinear hardening rule will be considered in this paper. Within the context of large strains,

t is customary to decompose the deformation gradient tensor F into an elastic component Fe and a permanent
eformation component F p, namely F = Fe F p. In addition, and utilising the decomposition of F = f Fχ , the
lastic left Cauchy Green tensor be can now be rewritten in terms of both incremental deformation gradient tensor
f and referential plastic strain cp as

be = FC−1
p FT

= f
(
Fχ C−1

p FT
χ

)
f T
= f c−1

p f T
; c−1

p = Fχ C−1
p FT

χ . (32)

The standard return mapping algorithm to update the (referential) plastic strain cp in order to ensure that the

irchhoff stress satisfies, for instance, a von Mises type of plastic constraint can be seen in Ref. [26].

7
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3. Weak form statements

In general, a standard weak variational statement for the isothermal mechanical system is established by
ultiplying the local differential Eqs. (23) (written in terms of the conservation variables Uχ ) with their appropriate

work conjugate virtual fields δVχ , and integrating over the reference domain Ωχ of the body, to give

0 =
∫
Ωχ

δVχ •
∂Uχ

∂t
dΩχ −

∫
Ωχ

δVχ • Sχ dΩχ +

∫
Ωχ

δVχ •
∂Fχ

i

∂χi
dΩχ , (33)

where the symbol • is used to denote the inner (dual) product of work conjugate pairs. Integrating by parts the last
term on the right hand side of (33), and re-arranging the resulting equation yields∫

Ωχ

δVχ •
∂Uχ

∂t
dΩχ =

∫
Ωχ

δVχ • Sχ dΩχ +

∫
Ωχ

Fχ
i •

∂δVχ

∂χi
dΩχ −

∫
∂Ωχ

δVχ •Fχ
N d Aχ , (34)

here the normal fluxes are defined as Fχ
N = Fχ

i Nχ
i with Nχ

i being the outward unit normal to the reference
omain in the i th direction. Above representation (34) can be particularised to the case of the linear momentum pχ

nd the triplet of incremental geometric deformation measures { f , h, j} as∫
Ωχ

δv ·
∂ pχ

∂t
dΩχ = −

∫
Ωχ

σ χ : ∇χδv dΩχ +

∫
Ωχ

δv · f χ dΩχ +

∫
∂Ωχ

δv · t B d Aχ
; (35a)∫

Ωχ

δΣ f :
∂ f
∂t

dΩχ =

∫
Ωχ

δΣ f : ∇χv dΩχ ; (35b)∫
Ωχ

δΣ h :
∂h
∂t

dΩχ =

∫
Ωχ

δΣ h :
(

f ∇χv
)

dΩχ ; (35c)∫
Ωχ

δΣ j
∂ j
∂t

dΩχ =

∫
Ωχ

δΣ j h : ∇χv dΩχ . (35d)

The main purpose of integrating by parts as shown above is to enable the imposition of the boundary conditions
via boundary fluxes. This is indeed useful for the momentum update (35a) as it introduces naturally the boundary
tractions t B , but less so in the case of geometric conservation Eqs. (35b)–(35d).

4. Spatial discretisation

4.1. A point of departure: corrected SPH approximation at material domain

Consider the elastic body discretised by a cloud of particles as shown in Fig. 2. In the context of corrected SPH
ethods [20,28], any arbitrary vector function g is in general interpolated at any given position (quadrature point)

ia corrected (scatter) kernel functions W̃ with a given compact support of radius 2h around every particle. For a
iven position Xa , the vector g can be approximated as

g(Xa) =
∑
b∈Λb

a

Vb gbW̃b(∥rab∥, hb); W̃b(∥rab∥, hb) = C∗ [Wb(∥rab∥, hb)] , (36)

here ∥rab∥ =
√

rab · rab being the distance to its centre and rab = Xa − Xb the position vector. Typically, the
material smoothing length hb is in the form of

hb(∥rbj∥) = fh max
j∈Λ j

b

(
∥rbj∥

)
; ∥rbj∥ =

√rbj · rbj ; rbj = Xb − X j , (37)

here fh is the (scalar) coefficient used to scale the size of the compact support. Here, Λb
a (or Λ j

b) represents the set
f neighbouring particles b (or j) belonging to the domain of influence (or compact support) of a given radius 2h
f particle a (or b), Vb and gb represent the material volume and time-varying vector function g stored at particle
. In this paper, we employ the commonly used quadratic kernel function described in Ref. [64], with the value of
caling coefficient fh = 0.6.

To ensure the exact satisfaction of both constant and linear completeness, above corrected kernel approximation
scalar) operator C∗[•] is defined according to [28] as[ ]
C∗ [Wb(∥rab∥, hb)] = αa 1+ βa · rab Wb(∥rab∥, hb), (38)

8
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a

Fig. 2. Illustration of the domain of influence (also known as compact support) for particle a.

with the parameters

αa =

⎛⎝∑
b∈Λb

a

Vb
[
1+ βa · rab

]
Wb(∥rab∥, hb)

⎞⎠−1

(39)

nd

βa = −

⎡⎣∑
b∈Λb

a

(Vb rab ⊗ rab) Wb(Xa)

⎤⎦−1 ∑
b∈Λb

a

Vb rabWb(∥rab∥, hb). (40)

In addition, for the evaluation of the material gradient of any arbitrary vector function g, we employ the following
approximation introduced in [28]

∇0 g(Xa) =
∑
b∈Λb

a

Vb
(
gb − ga

)
⊗ ∇̃0Wb(∥rab∥, hb); ∇̃0Wb(∥rab∥, hb) = C∗ [∇0Wb(∥rab∥, hb)] . (41)

Specifically, the gradient correction (vector) operator C∗[•] is defined as

C∗ [∇0Wb(∥rab∥, hb)] = −

⎛⎝∑
b∈Λb

a

Vb∇0Wb(∥rab∥, hb)⊗ rab

⎞⎠−1

∇0Wb(∥rab∥, hb). (42)

In expression (41), the term −ga is included in order to ensure that the gradient vanishes for a uniform field [28].
In addition, the use of the kernel gradient correction ∇̃0 ensures that the gradient of any linear field is exactly
evaluated [10].

Given the fact that the kernel is usually a function of the distance ∥r∥ to its centre, the gradient evaluation can
now follow via the chain rule, namely

∇0Wb(∥rab∥, hb) =
dW (∥rab∥, hb) d∥rab∥

=
dW (∥rab∥, hb) rab

. (43)

d∥rab∥ d rab d∥rab∥ ∥rab∥

9
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4.2. Corrected SPH approximation at reference domain

For the case of the Updated Reference Lagrangian formalism, the kernel function as well as its gradient evaluation
ust be expressed in terms of the reference configuration. Since we aim at applications involving large deformations,

tandard updated isotropic (spherical) kernels would not be optimal (see e.g. [65]). Due to the possible presence
f strong anisotropic changes in volume, and consequently in the particle spacing, the use of anisotropic kernels
s better suited. Moreover, in such approach, provided that no severe topological changes take place, the initial
ist of neighbouring particles can be kept constant throughout the simulation, providing exceptional accuracy in a
ost-efficient manner. This can be achieved by relating quantities in the material and reference configurations via
he concepts of push forward φ∗[•] and pull back φ−1

∗
[•] operations. For example, the reference kernel function

Wb(χa) can be considered as the push-forward equivalent of the material kernel function. This can be expressed in
erms of the operation

Wb(χa) = φ∗ [Wb(∥rab∥, hb)] = J−1
χ ,bWb(∥rab∥, hb). (44)

n the same spirit of Eq. (44), the push-forward equivalent of the material kernel gradient is2

∇χ Wb(χa) = φ∗ [∇0Wb(∥rab∥, hb)] = J−1
χ ,b F−T

χ ,a∇0Wb(∥rab∥, hb). (45)

otice that the evaluations for the reference kernel function (44) and the associated gradient (45) still require
eometrical information attached to the material domain, that is, rab. In order to ensure that the kernel function
epends solely on the information at the reference domain, one viable option is to approximate the material vector
sed in (44) as the pull back equivalent of its reference counterpart, that is

rab = Xa − Xb ≈ φ−1
∗

⎡⎢⎣χa − χb  
rχ ,ab

⎤⎥⎦ (46a)

=
[
FAve

χ ,ab

]−1 rχ ,ab = r̂ab. (46b)

here rχ ,ab = χa − χb denotes the reference position vector whereas the average (second order) approximation is
FAve

χ ,ab =
1
2

[
Fχ ,a + Fχ ,b

]
. With this at hand, the reference kernel function can now be rewritten as

W (∥rab∥, hb) ≈ W (∥φ−1
∗

[rχ ,ab]∥, hb(∥φ−1
∗

[rχ ,ab]∥)) = W (∥r̂ab∥, ĥb); ĥb = fh max
j∈Λ j

b

(
∥r̂ab∥

)
. (47)

aking use of (43) and the pull back quantities (46), we can further approximate the material gradient described
n (45) to be

∇0Wb(∥rab∥, hb) ≈
dW (∥r̂ab∥, ĥb)

d∥r̂ab∥

r̂ab

∥r̂ab∥
= ∇0Wb(∥r̂ab∥, ĥb). (48)

In the current work, we exploit four different options to obtain reference kernel functions and their corresponding
radient evaluations, which are summarised as follows:

• Option#1. Both the kernel function and its gradient are first corrected (ensuring zeroth- and first-order
completeness) in the material domain and then are pushed forward to the reference domain. Mathematically,
these are expressed as

W̃b(χa) = φ∗ [C∗ [Wb(∥rab∥, hb)]] = J−1
χ ,bC∗ [Wb(∥rab∥, hb)] ; (49a)

∇̃χ Wb(χa) = φ∗ [C∗ [∇0Wb(∥rab∥, hb)]] = J−1
χ ,b F−T

χ ,aC∗ [∇0Wb(∥rab∥, hb)] . (49b)

• Option#2. On the contrary, this particular option first pushes forward the material kernel function and its
gradient to the reference domain, followed by the application of appropriate corrections at reference domain,

2 This is not a classical push forward transformation of a vector typically used in continuum mechanics. Notice that in this case, we
define the push forward mappings of kernel approximation (44) and its gradient evaluation (45) between two different configurations, hence
Jacobian is necessary to be included in those expressions.
10
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that is

W̃b(χa) = C∗ [φ∗ [Wb(∥rab∥, hb)]] = C∗
[

J−1
χ ,bWb(∥rab∥, hb)

]
; (50a)

∇̃χ Wb(χa) = C∗
[
φ∗ [∇0Wb(∥rab∥, hb)]

]
= C∗

[
J−1
χ ,b F−T

χ ,a∇0Wb(∥rab∥, hb)
]
. (50b)

• Option#3. As an alternative to option#2, we can rewrite the material kernel function (47) (in terms of the
reference geometrical information) via the pull back equivalent of the reference vector (46) to yield

W̃b(χa) = C∗
[
φ∗
[
Wb(∥φ−1

∗
[rχ ,ab]∥, hb(∥φ−1

∗
[rχ ,ab]∥))

]]
(51a)

= C∗
[

J−1
χ ,bWb(∥r̂ab∥, ĥb)

]
; (51b)

∇̃χ Wb(χa) = C∗
[
φ∗
[
∇0Wb(∥φ−1

∗
[rχ ,ab]∥, hb

(
∥φ−1
∗

[rχ ,ab]∥
)
)
]]

(51c)

= C∗
[

J−1
χ ,b F−T

χ ,a∇0Wb(∥r̂ab∥, ĥb)
]
. (51d)

• Option#4. Alternatively, we can re-define the push-forward operation of the gradient operator (45) using the
average of the deformation mapping between pairwise interacting particles, that is φ∗ [∇0Wb(∥rab∥, hb)] =
J−1
χ ,b

[
FAve

χ ,ab

]−T
∇0Wb(∥rab∥, hb). This yields

W̃b(χa) = C∗
[
φ∗
[
Wb(∥φ−1

∗
[rχ ,ab]∥, hb(∥φ−1

∗
[rχ ,ab]∥))

]]
(52a)

= C∗
[

J−1
χ ,bWb(∥r̂ab∥, ĥb)

]
; (52b)

∇̃χ Wb(χa) = C∗
[
φ∗
[
∇0Wb(∥φ−1

∗
[rχ ,ab]∥, hb

(
∥φ−1
∗

[rχ ,ab]∥
)
)
]]

(52c)

= C∗
[

J−1
χ ,b

[
FAve

χ ,ab

]−T
∇0Wb(∥r̂ab∥, ĥb)

]
. (52d)

For the numerical examples examined in this paper, the robustness and accuracy of the overall algorithm is
not adversely affected regardless of the option used for SPH kernel approximation. However, we believe it is
extremely informative to explore these various possibilities and provide the user with several options, in order
to choose the most convenient one from the point of view of their computational implementation.

.3. SPH semi-discrete equations

Upon the use of corrected SPH kernel approximations for Uχ and δVχ , along with the corrected gradient
valuation for ∇χδVχ , in expression (34), the SPH discretisation for the system { pχ , f , h, j} described in (17)–(20)
ecomes

V χ
a

d pa
χ

dt
= Tχ

a + V χ
a f a

χ + Aχ
a ta

B, (53)

V χ
a

d f a

dt
=

∑
b∈Λb

a

1
2
(vb − va)⊗ Cχ

ab, (54)

V χ
a

dha

dt
= f a

⎛⎝∑
b∈Λb

a

1
2
(vb − va)⊗ Cχ

ab

⎞⎠, (55)

V χ
a

d ja
dt
= ha :

⎛⎝∑
b∈Λb

a

1
2
(vb − va)⊗ Cχ

ab

⎞⎠+∑
b∈Λb

a

D j
ab. (56)

Here, the representation for the (algorithmic) internal nodal force Tχ
a is defined as

Tχ
a =

∑
b∈Λb

a

1
2

(
σ a

χ Cχ
ab − σ b

χ Cχ
ba

)
+

∑
b∈Λb

a

D pχ

ab , (57)

ith the (pseudo) area operators, see [26], defined as
χ χ χ ˜ χ χ χ ˜
Cab = 2Va Vb ∇χ Wb(χa), Cba = 2Va Vb ∇χ Wa(χb). (58)

11
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In the above expressions, V χ
a and Aχ

a represent the volume and the referential tributary area and ta
B its traction

ector computed directly from the given traction boundary conditions. Notice that Aχ
a = 0 for those particles not

placed on the boundary.
Finally, the remaining terms {D pχ

ab ,D j
ab} in Eqs. (53) and (56) are the so-called numerical dissipation terms.

These terms can be introduced and derived using the semi-discrete version of the classical Coleman–Noll procedure
in order to ensure the production of non-negative numerical entropy. Following a similar procedure presented in
Ref. [66], and after some algebraic manipulations, the Godunov-type numerical dissipations are summarised here
for completeness

D pχ

ab = S
pχ

ab (vR
ab − vL

ab); D j
ab = S j

ab

(
Σ R

j,ab − Σ L
j,ab

)
, (59)

where [•]L ,R
ab are the left and the right states of the reconstructed values obtained via linear reconstruction

procedure [26]. The positive definite stabilisation tensors are expressed in terms of the average pressure wave speed
cAve

p,ab and the average shear wave speed cAve
s,ab as

S
pχ

ab =
ρAve

χ ,ab∥C
χ ,Skew
ab ∥

2

[
cAve

p,abnab ⊗ nab + cAve
s,ab(I − nab ⊗ nab)

]
; S j

ab =
cSkew

ab · cSkew
ab

2ρAve
χ ,abcAve

p,ab∥C
χ ,Skew
ab ∥

, (60)

where [•]Ave
ab =

1
2 ([•]a + [•]b) and the unit vector is given by nab =

xb−xa
∥xb−xa∥

. The pseudo-area vector Cχ ,Skew
ab

(along with its norm magnitude ∥Cχ ,Skew
ab ∥) and its push forward equivalent (spatial) vector cSkew

ab are defined as
Cχ ,Skew

ab =
1
2

(
Cχ

ab − Cχ
ba

)
and cSkew

ab =
1
2

(
ha Cχ

ab − hbCχ
ba

)
.

Notice here that the stabilisation term applied to the linear momentum evolution (53) alleviates the appearance
of spurious zero energy modes due to rank deficiency inherent to the use of nodal particle integration, whereas the
stabilisation in the volume map update (56) may potentially be used to address pressure instabilities (especially in
near incompressibility) if necessary. For all the numerical examples presented below, it is worth pointing out that
no dissipation has been included in (56) by strongly enforcing the value of D j

ab equal to zero.

5. Time discretisation

Insofar as the resulting set of semi-discrete equations is rather large, it will only be appropriate to employ an
explicit type of time integrator. In this work, a three stage Runge–Kutta explicit time integrator [67] is used. This
is described by the following time update equations from time step tn to tn+1

U ⋆
χ ,a = Un

χ ,a +∆t U̇n
χ ,a

(
Un

χ ,a

)
, (61a)

U ⋆⋆
χ ,a =

3
4
Un

χ ,a +
1
4

(
U ⋆

χ ,a +∆t U̇ ⋆

χ ,a

(
U ⋆

χ ,a

))
, (61b)

Un+1
χ ,a =

1
3
Un

χ ,a +
2
3

(
U ⋆⋆

χ ,a +∆t U̇ ⋆⋆

χ ,a

(
U ⋆⋆

χ ,a

))
. (61c)

Additionally, the geometry is also updated via the same time integrator presented above, resulting in a monolithic
time update procedure in which the unknowns Uχ =

(
pχ , f , h, j

)T are updated along with the (spatial)
geometry x through Eqs. (61). Moreover, the maximum time step ∆t = tn+1

− tn is governed by a standard
Courant–Friedrichs–Lewy (CFL) [47] condition given by

∆t = αC F L min

(
∥xa − xb∥

cAve
p,ab

)
, (62)

here αC F L is the CFL stability number and cAve
p,ab the average pressure wave speed between particles a and b.

nless otherwise stated, a value of αC F L = 0.9 has been chosen in the following examples to ensure both accuracy
nd stability.

It is worth noticing that in expression (62), the characteristic particle spacing ∥xa−xb∥ is computed with respect
o the current (or spatial) configuration. The evaluation for pressure wave speed is however approximated by dividing
he standard linear wave speed cLin by the average (minimum) stretch between the pairwise interacting particles a
p

12
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and b, described as

cAve
p,ab =

cLin
p

λAve
ab
; cLin

p =

√
λ+ 2µ

ρR
; λAve

ab =
1
2

(λa + λb) , (63)

where µ is the shear modulus, λ is the Lamé first parameter and λa and λb are the minimum stretch of particles a
and b, respectively.

6. Conservation of angular momentum

The resulting SPH algorithm does not exactly fulfil conservation of angular momentum, since the strain
measures { f , h, j} are no longer exclusively obtained from the current geometry. Although deviation from strict
conservation is minimal, a monolithic discrete angular momentum projection algorithm is presented, following the
work of [24,68]. In our numerical experiments, we have observed that activation of this algorithm is not strictly
necessary unless “machine accurate” strict angular momentum conservation is sought. Specifically, the local internal
nodal force Tχ

a is suitably modified (in a least-square sense) in order to preserve the global angular momentum,
whilst still ensuring the global conservation of linear momentum.

Adapting the procedure presented in [68] to the Runge Kutta time integrator considered herein, sufficient
conditions for the global preservation of the discrete linear and angular momentum within a time step are explicitly
enforced at each of the three stages described as

∑
a

V χ
a Tχ ,α

a = 0;
∑

a

V χ
a XXXα

a × Tχ ,α
a = 0; XXXα

a =

⎧⎨⎩
xn

a −∆tvn
a; α = n

xn
a +

∆t
6

(
v⋆

a − vn
a

)
; α = ∗

xn
a +

∆t
6

(
vn

a + v⋆
a + 4v⋆⋆

a

)
; α = ∗∗

. (64)

A least-square minimisation procedure is used to obtain a modified set of internal nodal forces T̂
χ

a that satisfy
the above conditions. This can be achieved by computing the minimum of the following functional (ignoring time
arguments for brevity)

Π (T̂
χ

a , λang, λlin) =
1
2

∑
a

V χ
a (T̂

χ

a − Tχ
a ) · (T̂

χ

a − Tχ
a )

− λang ·

(∑
a

V χ
a XXXa × T̂

χ

a

)
− λlin ·

(∑
a

V χ
a T̂

χ

a

)
.

(65)

After some simple algebra, a modified set of internal nodal forces T̂ a is obtained in the form of

T̂
χ

a = Tχ
a + λang ×XXXa + λlin, (66)

here the Lagrange multipliers {λang, λlin} are the solution of the following system of equations[∑
a V χ

a
[
(XXXa ·XXXa)I −XXXa ⊗XXXa

] ∑
a V χ

a X̂XXa∑
a V χ

a X̂XXa −
∑

a V χ
a

][
λang
λlin

]
=

[
−
∑

a V χ
a XXXa × Tχ

a∑
a V χ

a Tχ
a

]
, (67)

ith the indicial notation
[
X̂XXa

]
ik
= Ei jk

[
XXXa
]

j .

. Algorithmic description

For ease of understanding, this section summarises the algorithmic implementation of the SPH methodology
resented in previous sections. We start by including a graphical representation of the method, as illustrated in
ig. 3.

Algorithm (1) summarises the complete algorithmic description of the proposed Updated Reference Lagrangian
PH methodology. Notice that, under certain conditions, the proposed methodology degenerates to the case of
ither Total Lagrangian SPH [26] or pure Updated Lagrangian SPH. For example, if the conditional statement in
lgorithm 1 is set to “FALSE” for every time integration process, the reference domain would remain unchanged
hroughout the entire simulation. In this case, the reference domain coincides with the material domain, implying that

13
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Fig. 3. The proposed Updated Reference Lagrangian algorithm comprises a series of multiplicative incremental configurations as illustrated
above. For instance, from time tn to t2n , the complete deformation gradient at time t2n , namely F2n , is evaluated via the previously computed
deformation gradient Fn (now being stored and assigned as a deformation gradient at intermediate configuration Ωv(tn)) and a series of
incremental deformation gradients { f ∆1

, f ∆2
, . . . , f ∆n } between the reference configuration Ωv(tn) and the new configuration Ωv(t2n).

the corrected kernel and gradient approximations are only carried out once. On the other hand, if the conditional
statement returns “TRUE” at every time step of the time integration process, pure Updated Lagrangian SPH is
retrieved. Specifically, corrections for kernel function and its gradient are performed at every time step, which may
significantly increase the overall computational cost. One key feature of the proposed approach is the ability to
suitably update the reference domain when certain criteria (e.g. internal state variable, maximum value of stretch)
are met. This will be explored in forthcoming publications, especially in the application of fast dynamic fracture.
However, in this work, we choose to update the reference domain at a fixed number n of time steps (pre-defined
by user) with the aim to check the performance of this approach. Its graphical representation is illustrated in Fig. 3
for clarity.

8. Numerical examples

8.1. Column

As a first example, a unit squared cross section column of length L = 6 m is studied. To assess the performance
of the proposed method on various deformation modes (e.g. stretching, bending and twisting), the column is initiated
with three different dynamic loading scenarios (see Fig. 4). These include:

• Scenario I: tensile mode. The column is pulled with an initial (linear) velocity profile described as v0 =[
0,

V0Y
L , 0

]T
with the value of V0 = 50 ms−1. The bottom surface of the column is clamped, the top surface

is left free and the remaining boundaries are enforced with symmetric roller support.
• Scenario II: bending mode. The column is subjected to bending by the application of an initial linearly varying

velocity profile given by v0 =

[
V0Y

L , 0, 0
]T

where V0 = 10 ms−1 is the maximum velocity applied. The column

is clamped at the bottom and free on all other sides.
14
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Algorithm 1: Updated Reference Lagrangian SPH Algorithm

Input : initial geometry Xa and initial states of pχ ,a , f a , ha ja

Output: current geometry xa , particle velocity va and current states of Fa , Ha and Ja

(1) INITIALISE Fχ ,a = Hχ ,a = I , Jχ ,a = 1 and xa = χa = Xa

(2) FIND neighbouring particles within a given support size (Λb
a)

(3) COMPUTE corrected kernel and gradient approximations

for Time t0 to Time t do

if update at this step = TRUE then

(4) COMPUTE the velocity as va =
Jχ ,a pχ ,a

ρR

(5) ASSIGN Fχ ,a ← f a Fχ ,a , Hχ ,a ← ha Hχ ,a , Jχ ,a ← ja Jχ ,a and χa ← xa

(6) UPDATE the linear momentum pχ ,a = J−1
χ ,aρRva

(7) REINITIALISE f a , ha , ja

(8) COMPUTE corrected kernel and gradient approximations

(9) COMPUTE σ χ ,a

end
(10) EVALUATE p and s-wave speeds: cp, cs

(11) COMPUTE time increment: ∆t

for RK time integrator = 1 to 3 do
(12) COMPUTE slope of linear reconstruction procedure

(13) COMPUTE right-hand-side of the mixed-based system:
ṗχ ,a , ḟ a , ḣa and j̇a

(14) ENSURE conservation of angular momentum
(15) COMPUTE smoothed velocities using the corrected kernel

(16) EVOLVE pχ ,a , f a , ha ja and xa

(17) COMPUTE σ χ ,a

end
(18) COMPUTE smoothed variables using the corrected kernel

(19) EXPORT results for this time step

(20) ADVANCE in time

end

• Scenario III: twisting mode. The column is twisted with an initial sinusoidal velocity field relative to the
origin given by v0 = [0,Ω0 sin (πY/2L), 0]T where Ω0 = 105 rad s−1 represents the magnitude of initial
angular velocity. Enforcement of boundary conditions is identical to that of Scenario II (bending mode).

Aiming to display convergence of the algorithm, four successively refined (uniform) models are used. These include
(M1) 5 × 5 × 25, (M2) 7 × 7 × 35, (M3) 9 × 9 × 49 and (M4) 17 × 17 × 97 number of particles. In terms
of constitutive model, a neo-Hookean material is used. A summary of the data simulation used is also presented in

Table 1.
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Fig. 4. Column test cases. (a) Tensile. (b) Bending. (c) Twisting.

Table 1
Column: material and data simulation used.

Material density ρR 1100 kg m−3

Young’s modulus E 0.017 GPa
Poisson’s ratio ν 0.3
Kernel type Quadratic kernel function
Smoothing factor fh 0.6
CFL αCFL 0.9

8.1.1. Scenario I: Tensile mode
This problem is specifically designed to check if the proposed method can circumvent spurious modes in

tretching dominated problems. In this case, four different options for gradient corrections (summarised in
ection 4.2) ensuring zeroth and first order completeness are employed and compared. As shown in Fig. 5, all four
ptions described above yield extremely similar results in comparison to the published Total Lagrangian result [26],
lmost undistinguishable. Moreover, the global numerical dissipation introduced in the algorithm can be assessed
y computing the difference between the total conserved energy and the summation of kinetic and elastic strain
nergies, as reported for model M1 in Fig. 6. It is interesting to notice that all four possible options ensure the
eneration of global numerical dissipation over the entire duration of the simulation. Only slight variations are
bserved. Regardless of which option is used, the total numerical dissipation of the algorithm is reduced when
ncreasing the number of particles. This is shown in Fig. 7. It is worth pointing out that, for problems accompanied
ith large topological changes (such as material separation in dynamic fracture), it is instructive to use Option#3 and

Option#4 where the computations of kernel function and its gradient are carried out at (post-fractured) referential
configuration. This is in contrast to Option#1 and Option#2 where the computations are at (pre-fractured) material
configuration without considering separation process, hence not suitable for scenario involving severe topological
changes.

8.1.2. Scenario II : Bending mode
The main objective of this problem [24,69,70] is to assess the applicability of the proposed algorithm by carrying

out frequent updates of the reference configuration. Doing this with the classical SPH algorithm [23] would activate
spurious mechanisms, and eventually lead to the breakdown of the scheme. For this reason, updates of the reference
configuration are carried out at every time step. Obviously this is unnecessary but it has been done to check whether
the algorithm triggers possible instabilities. Fig. 8 illustrates the deformed shape of a bending column where colour
indicates pressure contour. Remarkably, even with a small number of particles (M1), the obtained result agrees very
well with the Total Lagrangian result. No instabilities are observed. As shown in Fig. 9a, the amount of numerical
dissipation reduces with an increasing number of particles. For completeness, we also simulate the same problem
by updating the reference configuration at every 3, 30 and 300 time steps and the same results are obtained (see
Fig. 9b).
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Fig. 5. Tensile mode. Pressure distribution for model M4 at two different time instants, namely t = 0.215 s (first row) and t = 0.3 s (second
ow). Results are obtained using the four options for the computation of the kernel function and its gradient presented in Section 4.2. Update
f the reference domain is carried out at every time step of the time integration process.

.1.3. Scenario III : Twisting mode
In order to examine the robustness of the algorithm, a well documented twisting example introduced in [24–

6,71] is considered. Fig. 10 compares the deformation process of the structure at time t = 0.1 s using the four
odel refinements previously described. Similar results in terms of deformed shape and pressure field are observed.
inally, and for qualitative comparison, Fig. 11 monitors the evolution of the accumulated angle at four different
ositions,3 namely N11, N12, N13 and N14. Comparing the proposed algorithm with the published Total Lagrangian
PH algorithm [26], no noticeable difference is observed.

3 Notice that the initial angles at positions {N11, N12, N13, N14} are measured from the axis X in a counter-clockwise direction. For
instance, the initial angles of {N , N , N , N } are θ = {225◦, 315◦, 45◦, 135◦}, respectively.
11 12 13 14
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Fig. 6. Tensile mode. Evolution of total numerical dissipation for model M1 considering different options of kernel evaluations. Results are
obtained by updating the reference domain at every time step of the time integration process.

Table 2
L-shaped structure: material and algorithmic parameters used in the simulation.

Material density ρR 1100 kg m−3

Young’s modulus E 50,500 N m−2

Poisson’s ratio ν 0.3
Kernel type Quadratic kernel function
SPH correction Option#2
Smoothing factor fh 0.6
CFL αCFL 0.9

8.2. L-shaped structure

As previously explored in Refs. [25,59,66,72,73], the main objective of this classical benchmark problem is to
xamine the capability of the proposed algorithm of preserving both the linear and angular momenta of a system.
n L-shaped structure (see Fig. 12) is subjected to an external torque induced by a pair of time-varying tractions

cting on two of its boundary faces F1(t) and F2(t), described as

F1(t) = −F2(t) =

⎡⎣150
300
450

⎤⎦ f (t) (N/m2), f (t) =

⎧⎨⎩t 0 ≤ t < 2.5 s,
5− t 2.5 ≤ t < 5 s,
0 t ≥ 5 s.

(68)

n this example, a neo-Hookean model is considered. The values of all the parameters and the associated SPH
ngredients used in the simulation can be found in Table 2. For completeness, three different levels of particle
efinements are considered. More precisely, {M1, M2, M3} comprise {828, 5445, 13950} number of SPH particles,
espectively. To assign the volume of each SPH particle, a tributary volume distribution is used.

First, a particle refinement study for the proposed SPH algorithm is carried out. In Fig. 13, the deformation
attern of the structure predicted using a small number of particles (M1) agrees extremely well with the results
btained using finer discretisations (M2 and M3). For comparison purpose, a Total Lagrangian Upwind SPH [26]
iscretised with M3 is also included and compared. Practically identical pressure profiles are observed (see Fig. 13).

Second, Figs. 14a and 14b examine the ability of the proposed algorithm (discretised with M3) of preserving both

he linear momentum and angular momentum of the system. Specifically, the global linear momentum is close to
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Fig. 7. Tensile mode. Evolution of total numerical dissipation for different model refinements using (a) Option#1, (b) Option#2, (c) Option#3
nd (d) Option#4. Results are obtained by updating the reference domain at every time step of the time integration process.

and oscillates around) zero machine accuracy at all times as no movement of the centre of mass is appreciated. The
lobal angular momentum is however expected to be conserved after the loading phase, that is when time t > 5

s. Additionally, Fig. 14c illustrates the time histories of different forms of energy obtained using the proposed
algorithm and the Total Lagrangian SPH. These include kinetic energy, strain energy and total energy, where the
latter is defined as the sum of kinetic and strain energies. Identical results are observed. Given the fact that some
consistent upwinding stabilisation terms are introduced in our SPH algorithm, a slight decrease in the total energy
19
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Fig. 8. Bending mode. Pressure distribution at time t = 0.45 s using four different model refinements, namely (M1) 5 × 5 × 25, (M2)
× 7 × 35, (M3) 9 × 9 × 49 and (M4) 17 × 17 × 97 number of particles. First four columns show the results obtained using the

roposed algorithm with updates performed at every time step of the time integration process. The last column shows Total Lagrangian
PH results for comparison purposes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
ersion of this article.)

Fig. 9. Bending mode. Evolution of total numerical dissipation for (a) four different model refinements with updates performed at every
time step of the time integration process, and (b) M1 model with different frequent updates of the referential domain.

is unavoidable after the loading phase. As expected, numerical dissipation decreases with a progressive level of
refinement, as reported in Fig. 14d.
20
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Fig. 10. Twisting mode. Pressure distribution at time t = 0.1 s using four different model refinements, namely (M1) 5 × 5 × 25, (M2)
7 × 7 × 35, (M3) 9 × 9 × 49 and (M4) 17 × 17 × 97 number of particles. First four columns show the results obtained using the

roposed algorithm with updates performed at every time step of the time integration process. The last column shows Total Lagrangian SPH
esults for comparison purposes.

Table 3
Impact bar: material and data simulation used.

Material density ρR 8930 kg m−3

Young’s modulus E 117 GPa
Poisson’s ratio ν 0.35
Yield stress τ 0

y 0.4 GPa
Linear hardening modulus H 0.1 GPa
Kernel type Quadratic kernel function
Smoothing factor fh 0.6
Gradient correction Option#1
CFL αCFL 0.9

8.3. Impact bar

In this example, a copper bar of length L = 0.0324 m and of radius R = 0.0032 m impacts against a rigid wall
ith a dropping velocity given by v0 = [0, 0,−V0]T , where V0 = 227 m s−1. The main purpose of the example is to

ssess the performance of the proposed algorithm in capturing large plastic flows under high speed impact [26,74].
he geometry of the problem is illustrated in Fig. 15. A (Hencky-based) von Mises hyperelastic–plastic material, in
onjunction with isotropic linear hardening rule, is chosen for the simulation of this problem. A summary of data
imulation and material properties used are reported in Table 3. To assign the volume for every particle, a tributary
olume is used.

Due to the symmetry of the problem, only a quarter of the geometry is represented and discretised using three
evels of refinement, namely (M1) 1560, (M2) 3744 and (M3) 7280 particles. Fig. 16 compares the deformation
rocess of the structure at time t = {40, 60, 80} µs using these three models. Similar deformed shapes are observed,
ith colour contours indicating equivalent von Mises stress and plastic strain profiles. In terms of the energy plot

see Fig. 17a), the kinetic energy of the system decreases upon impact. Such energy first transforms into elastic strain
nergy (prior to plasticity), followed by the addition of plastic dissipation (within the plastic regime). Moreover,
iven the nature of the proposed algorithm, a very small amount of the kinetic energy also converts to monotonic

ecreasing numerical dissipation during the deformation process, as displayed in Fig. 17b.
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Fig. 11. Twisting mode. Time history of twisting angle for model M4 at four different locations, namely (a) N14, (b) N13, (c) N11 and (d)
N12.
22
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Fig. 12. L-shaped block.

Fig. 13. L-shaped block. Pressure distribution at time t = 7.8 s using three different model refinements, namely (M1) 828, (M2) 5445 and
(M3) 13 950 number of particles. First three columns show the results obtained using the proposed SPH algorithm with updates performed
at every time step of the time integration process. The last column shows Total Lagrangian SPH results for comparison purposes.

For verification purposes, it is worth noticing that the results obtained using the proposed SPH algorithm match
extremely well with those of the Total Lagrangian SPH counterpart. The final radius of the copper bar at time
t = 80 µs predicted by the proposed algorithm is shown in Fig. 18b, benchmarked against other published numerical
results [26,75].4 As shown in Refs. [75], the solutions obtained using the standard linear 4-noded tetrahedra (being
widely used in commercial software) typically suffers from volumetric locking and pressure instabilities. The
proposed meshfree method clearly circumvents these issues.

8.4. Necking bar

The following benchmark example [76–80] illustrates necking of a cylindrical bar, of radius R = 0.006413 m
nd length L = 0.053334 m, under tension. The complete geometry of the bar can be viewed in Fig. 19. Notice that
geometric imperfection (one percent reduction in the radius) is introduced to induce necking in the central region

4 For the same level of accuracy, and due to the higher numerical dissipation of the SPH method, the results obtained with the SPH
algorithm have been obtained with slightly finer discretisation than those of the robust Petrov–Galerkin Finite Element Method explored by
the authors in their previous publications [48–50,58,59]. The latter however requires a few user-defined stabilisation parameters.
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Fig. 14. L-shaped block. Evolution of (a) the components of global linear momentum, (b) the components of global angular momentum
nd (c) different forms of energy (e.g. kinetic energy K , strain energy Ψ and total energy E = K +Ψ ) using M3 model. In addition, the
ime evolution of (d) global numerical dissipation for three different model refinements is also monitored. Notice that [•]U L F refers to the

results obtained via the proposed Updated Reference Lagrangian SPH algorithm and [•]T L F refers to the results from the published Total
agrangian SPH algorithm [26].
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Fig. 15. Impact bar.

Table 4
Necking bar: material and data simulation used.

Material density ρR 7850 kg m−3

Young’s modulus E 206.9 GPa
Poisson’s ratio ν 0.29
Yield stress τ 0

y 0.45 GPa
Residual yield stress τ∞y 0.715 GPa
Linear hardening modulus H 129.24 MPa
Saturation exponent δ 16.93
Kernel type Quadratic kernel function
Smoothing factor fh 0.6
Gradient correction Option#1
CFL αCFL 0.9

of the bar. The top surface of the cylindrical bar is stretched with smooth time-varying velocity profile described
as

v0 =

⎡⎣0
0
V

⎤⎦ ; V =

{
V0 + (V1 − V0) ξ 3

01

(
10− 15ξ01 + 6ξ 2

01

)
; if 0 ≤ t ≤ t1

V1 + (V2 − V1) ξ 3
12

(
10− 15ξ12 + 6ξ 2

12

)
; if t1 < t ≤ t2

, (69)

ith

ξ01 =
t − t0
t1 − t0

; ξ12 =
t − t1
t2 − t1

. (70)

Here, the value of the parameters are t0 = V0 = V2 = 0, t1 = 0.0007 s, V1 = 10 ms−1 and t2 = 0.0014 s. Graphical
representation of this bell-shaped velocity profile (69) is depicted in Fig. 19c.

The material properties of the (Hencky-based) von Mises material and the simulation parameters are summarised
in Table 4. Nonlinear hardening rule as proposed in [76] is chosen.

Due to the presence of symmetry planes, only a slice (of π
16 rad) of the upper half of the cylinder is simulated

ith appropriate boundary conditions. For completeness, two levels of particle refinement for the model are
tudied. Model M1 contains a number of 1428 SPH particles and model M2 comprises 5535 particles. The
article distributions are non-uniform and each particle carries a volume tributarily distributed from the associated
25
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Fig. 16. Impact bar. A sequence of deformed structures at time t = {40, 60, 80} µs (from top to bottom) using {M1, M2, M3} (left to right).
In terms of contour plot, von Mises stresses (left side) and equivalent plastic strain (right side). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 17. Impact bar. Time history of (a) different forms of energy (e.g. kinetic energy K , the sum of strain energy Ψ and plastic dissipation
Wp , and total energy being defined as K +Ψ + Wp) using M3 and (b) global numerical dissipation for three model refinements. Notice
that [•]U L F refers to the results obtained via the proposed Updated Reference Lagrangian SPH algorithm and [•]T L F refers to the results
from the published Total Lagrangian SPH algorithm [26].

Fig. 18. Impact bar. (a) Pressure comparison at 80 µs for M3. Results obtained via Total Lagrangian SPH (left side) and the proposed SPH
algorithm (right side), and (b) evolution of the radius of the bar measured at the impact interface for three different model refinements.
Notice that [•]U L F refers to the results obtained via the proposed Updated Reference Lagrangian SPH algorithm and [•]T L F refers to the
results from the published Total Lagrangian SPH algorithm [26].
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Fig. 19. (a) Problem set-up; (b) Necking bar details and (c) Applied bell-shaped velocity profile (69).

Fig. 20. Non-uniform distribution of SPH particles for M1 and M2.

eighbouring particles. In order to accurately capture the onset of necking, more particles are placed within the
rucial necking zone, see Fig. 20.

Fig. 21 shows the time evolution of the deformation pattern with both plastic strain and equivalent von Mises
tress plotted. The proposed method can clearly capture the formation of necking at the central region of the bar.
dditionally, Fig. 22a depicts a comparison of the proposed SPH algorithm against the recently published Total
agrangian SPH formulation [26] at the end of the simulation (that is, when the total elongation of the bar is of
4 mm). Remarkably, both formulations produce very similar results in terms of deformed shape and pressure field.
or qualitative comparison, we also monitor the ratio between current and initial radius of the bar in necking regime
s a function of the elongation. Indeed, our results agree extremely well with those of published experimental and
umerical results [79,80]. This can be seen in Fig. 22b.

For visualisation purposes, Fig. 23 displays a three dimensional view of the cylindrical bar at different levels of
eformation. No spurious hourglassing is observed in the necking zone.
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Fig. 21. Necking bar. A sequence of deformed structures when the total elongation of the bar is of {10, 12, 14} mm (from top to bottom)
using {M1, M2} (left to right). In terms of contour plot, von Mises stress profile (left side) and equivalent plastic strain (right side).
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Fig. 22. Necking bar. (a) Pressure comparison when the total elongation of the bar is 14 mm for model M2. Results obtained via Total
Lagrangian SPH (left side) and the proposed SPH algorithm (right side), and (b) radius reduction in the necking region compared against
published results [76]. Notice that [•]U L F refers to the results obtained via the proposed Updated Reference Lagrangian SPH algorithm and
[•]T L F refers to the results from the published Total Lagrangian SPH algorithm [26].

9. Conclusions

In this paper, a new Updated Reference Lagrangian Smooth Particle Hydrodynamics algorithm for the analysis of
large deformation isothermal elasticity and elasto-plasticity has been presented. From the continuum point of view,
by exploiting as referential configuration an intermediate configuration of the deformation process, the equation of
conservation of linear momentum and three geometric conservation laws (for the deformation gradient, its cofactor
and its determinant) have been rewritten leading to a very generic (incremental) system of first order conservation
laws. Moreover, this can be degenerated into a Total Lagrangian system (previously pursued by the authors in [24–
26]) or into a purely Updated Lagrangian system. Technically speaking, only the geometric conservation law
for the deformation gradient (out of the three geometric conservation laws) is strictly necessary. An appropriate
multiplicative decomposition of the conservation variables has resulted into an amenable mixed set of conservation
equations with striking similarities to the conventional Total Lagrangian system, apart from the use of alternative
referential (incremental) conservation variables and corresponding entropy (work) conjugate fields.

From the computational implementation standpoint, a second order (in space and time) entropy-stable SPH
upwinding stabilisation method is employed by means of the use of the Rankine Hugoniot jump conditions, without
resorting to any ad-hoc algorithmic regularisation. A new three-stage Runge–Kutta time integration method is
implemented resulting in values of the CFL stability restriction close to one. With the aim of demonstrating the
robustness and potential of the methodology, an ample suite of challenging problems (in elasticity and elasto-
plasticity) have been presented and thoroughly analysed. The amount of numerical dissipation introduced by the
algorithm has been strictly monitored through the extra implementation of a conservation equation for the total
energy density, though not strictly required from the modelling point of view. The use of alternative kernels and
gradients of kernels as well the use of different strategies to select the referential (incremental) configuration has
been explored.

The next step of our work is the adaptation of the current Updated Reference Lagrangian SPH framework
to handle dynamic fracture problems typically accompanied by complex topological changes caused by material

separation.
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Fig. 23. Necking bar. A sequence of deformed structures with von Mises profile when the total elongation of the bar is of
{0.028, 0.054, 0.09, 0.124, 1.854, 5.864, 9.852, 10.956, 11.642, 12.342, 12.704, 14} mm (from left to right and top to bottom). Results obtained
via model M2 with updates performed at every time step of the time integration process.
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