
Vol.:(0123456789)

https://doi.org/10.1007/s11269-021-03028-6

1 3

A Cox Process with State‑Dependent Exponential Pulses 
to Model Rainfall

Nadarajah I Ramesh1  · Gayatri Rode1 · Christian Onof2

© Crown 2021

Abstract
A point process model based on a class of Cox processes is developed to analyse precipita-
tion data at a point location. The model is constructed using state-dependent exponential 
pulses that are governed by an unobserved underlying Markov chain. The mathematical 
formulation of the model where both the arrival rate of the rain cells and the initial pulse 
depth are determined by the Markov chain is presented. Second-order properties of the 
rainfall depth process are derived and utilised in model assessment. A method of moment 
estimation is employed in model fitting. The proposed model is used to analyse 69 years of 
sub-hourly rainfall data from Germany and 15 years of English rainfall data. The results 
of the analysis using variants of the proposed model with fixed pulse lifetime and vari-
able pulse duration are presented. The performance of the proposed model, in reproducing 
second-moment characteristics of the rainfall, is compared with that of two stochastic mod-
els where one has exponential pulses and the other has rectangular pulses. The proposed 
model is found to capture most of the empirical rainfall properties well and outperform the 
two alternative models considered in our analysis.

Keywords Cox process model · Exponential pulse · Rainfall · Second-order properties

1 Introduction

Rainfall is the main input to hydrological systems. Access to rainfall data is therefore 
essential to an understanding of how a hydrological catchment behaves. Available rain-
fall data sets are however often not long enough for the application in question. The lack 
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of available data might mean that it is impossible to assess catchment response to a suf-
ficiently wide range of rainfall events, or lead to poor estimates of the probability of high 
or low flows. Hydrological studies, flood and drought design will thus all benefit from the 
availability of a stochastic rainfall model that is able to generate long series of rainfall at 
scales such as one hour.

There are many approaches to modelling precipitation as a stochastic process. Among 
them, the following classes can be distinguished:

– statistical models which may for instance involve the use of a standard distribu-
tion to represent the rainfall depth, with Markov chain occurrences (Kannan and 
Farook  2015), of a Generalised Linear Model to relate rainfall with climatologi-
cal drivers (Chandler and Wheater  2002), or of (S)ARIMA models (Dabral and 
Murry 2017); alternatively, the task is to specify both a marginal distribution and a 
correlation structure (see Papalexiou 2018);

– models in which the scaling, i.e. scale-independent features of rainfall depths over 
ranges of temporal scales are modelled explicitly (Lovejoy and Schertzer 2013);

– mechanistic models in which the scale-dependent features of the rainfall time-series are 
modelled explicitly (Onof et al. 2000).

Models in the last category involve representations of the clustering of small contributions 
by rain cells to the total depth, in which the clustering of these cells inside storms is either 
modelled explicitly (Poisson-cluster models) or arises from having the rates of arrival of 
cells governed by a Markov process (Doubly stochastic or Cox models). The first approach 
is more prominent in the literature as the initial seminal paper by Rodriguez-Iturbe et  al. 
(1987) triggered a series of publications over the past 30 years in which the models they 
presented were further developed and tested with a growing range of types of rainfall. These 
typically focused on the use of one of two types of clustering processes for the underlying 
continuous rainfall process: the Bartlett-Lewis and the Neyman-Scott processes. In the first, 
cell arrivals follow the storm arrival in a secondary Poisson process which is truncated by 
a random variable representing the duration of storm activity. In the second, two random 
variables are specified: the delay between storm and cell arrival and the number of cells 
per storm. For reviews of the first period of these developments, see Onof et al. (2000). For 
more recent papers in this area, see Kilsby et al. (2007), Kaczmarska et al. (2014), Onof and 
Wang (2020), Kim and Onof (2020), Aryal and Jones (2020).

The second, i.e. doubly stochastic approach has been developed in parallel and benefited 
from consistent improvements over the past 10 years. Ramesh et  al. (2012) employed a 
class of doubly stochastic Poisson point processes (DSPP), rather than Poisson cluster pro-
cesses, as the driving point process in their stochastic models. Thayakaran and Ramesh 
(2013) extended this class of models to a multi-site model. Thayakaran and Ramesh (2017) 
explored the use of instantaneous pulses with these doubly stochastic models. Garthwaite 
and Ramesh (2018) utilised this class of models, incorporating reanalysis climatological 
data, to model winter season rainfall. These models were further developed by attaching an 
exponentially decaying pulse to each point of such a point process with the focus on repro-
ducing the properties of fine-scale rainfall (Ramesh et al. 2017).

The aim of this paper is to pursue this research programme of exploration of the poten-
tial of DSPP models in modelling observed rainfall. The appeal of this modelling approach 
is that it explicitly models an underlying non-observed state of the rainfall process which 
represents the atmospheric drivers of the rainfall generation mechanism. Here, we extend 
this class of Cox process models with exponentially decaying pulses by allowing the 
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distribution of the initial pulse depth to be dependent on the state of the underlying Markov 
chain. This innovation we present in this paper makes an important contribution to the real-
ism of such models in that it imparts greater physical realism to them. This is because the 
pulse depth distribution is now dependent upon the underlying atmospheric state. This new 
model is used to describe the probabilistic structure of the rainfall at a single rain-gauge. 
The proposed model is applied to a set of sub-hourly rainfall data from Bracknell in Eng-
land, obtained from the U.K. Meteorological Office, and also to a set of rainfall data from 
Bochum, Germany.

The mathematical formulation of the proposed Cox process model with state-dependent 
exponential pulses is described in Sect.  2. Second-moment characteristics of the rainfall 
intensity are studied in Sect. 3. Mathematical expressions for the aggregated rainfall pro-
cesses are also derived in Sect.  3. Parameter estimation is discussed in Sect.  4. A case 
study, which employs two different versions of the model, using 15 years of English rain-
fall data and 69 years of German rainfall data is presented in Sect. 5: the performance of 
the proposed model is thereby compared with that of a doubly stochastic rectangular pulse 
model and another exponential pulse model. Conclusions are summarised in Sect. 6.

2  Exponential Pulse Model with State‑Dependent Initial Pulse Depth

Let {N(t)} be a stationary Cox process, evolving in time, representing the arrival pattern of 
rain cells at a location. Suppose that the arrival rate of the process is governed by an under-
lying two-state continuous time Markov chain where state one represents the low intensity 
rain spell and state two the high intensity one. The arrival rates of rain cells in the two 
states are denoted by �1 and �2 respectively, whereas the transition rates of the Markov 
chain between the two states are denoted by � (1 → 2) and � (2 → 1) . Each cell of the point 
process {N(t)} has a rainfall pulse of random initial ‘depth’ X and the pulse depth decays 
exponentially with time at a constant rate � . The initial depth of the rain pulse depends on 
the state of the Markov chain at the pulse origin. The state-dependent distributions of the 
initial pulse depth in the two states are left unspecified. The mean initial depths of rain 
pulses are �X1

 and �X2
 in states one and two, respectively. All the active pulses terminate 

after a fixed duration d. The pulses are taken as mutually independent, as well as independ-
ent of the point process {N(t)}.

We define a random variable Xt−u(u) as the rainfall depth of the pulse originating at time 
(t − u) , measured at time t. Xt−u(u) is given by the following equation:

where X1 and X2 are the initial amplitudes of pulses in States 1 and 2 respectively. The rain-
fall intensity Y(t) at time t is the sum of all active pulses at time t and so can be written as

A schematic description of the model is displayed in Fig. 1.

(1)X
t−u(u) =

⎧
⎪
⎨
⎪
⎩

X1e
−𝛽u if Markov chain is in State 1 at (t − u) and u ≤ d

X2e
−𝛽u if Markov chain is in State 2 at (t − u) and u ≤ d

0 if u > d

(2)Y(t) =
∑

ti∈[t−d,t]

Xti
(t − ti) =

∫

d

u=0

Xt−u(u)dN(t − u).
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3  Second‑Order Properties of the Processes

To study the second-order properties, let � = [�1,�2] be the stationary distribution of the 
underlying Markov chain which is obtained by solving � Q= 01×2 under the constraint �1 + 
�2 =1, where Q is the generator matrix, and is given by �1 = �

�+�
 and �2 = �

�+�
. The mean 

initial depth of a pulse is obtained by conditioning on the state of the underlying Markov 
chain at the origin of the pulse and it can be written as E(X) = �X = �1�X1

+ �2�X2
.

3.1  Second‑Order Properties of the Intensity Process

We shall first study the second-order moment properties of the rainfall intensity process 
Y(t) recognising that they are related to the properties of the point process {N(t)} . The 
mean intensity of the point process {N(t)} is given by m = �1�1 + �2�2 =

��2+��1

(�+�)
 . Hence, 

the mean of the rainfall intensity process Y(t) is obtained by taking expectations on both 
sides of the Eq. (2) and is given as:

The autocovariance of the rainfall intensity process Y(t) at lag � is defined by:

(3)

E[Y(t)] =
∫

∞

0

E
{
Xe−�u

}
dN(t − u)

=
∫

d

0

E{X}e−�u dN(t − u)

=
(
�1�X1

+ �2�X2

)(1 − [e−�d]

�

)(��2 + ��1

(� + �)

)

(4)
CY (�) = Cov[Y(t),Y(t + �)]

=
∫

∞

0
∫

∞

0

E
{
X(t−u)(u)X(t+�−v)(v)

}
Cov{dN(t − u), dN(t + � − v)},

Fig. 1  Diagrammatic representation of state-dependent initial depth exponential pulse model with a fixed 
pulse duration d 
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where Cov {dN(t), dN(t + u)} is the covariance density of the point process {N(t)} . Ramesh 
(1998) showed that

where �(.) is the Dirac delta function and A is a constant given by A =
��(�1−�2)

2

(�+�)
. Using this 

in Eq. (4), we obtain the expression for the covariance of the rainfall intensity process Y(t) 
as follows:

By completing the two integrals, we obtain:

It follows that, by conditioning on the state of the underlying Markov chain at the origin 
of a pulse,

Hence, by substituting these expressions in Eq. (5), we get

where,

The variance of the rainfall intensity process is obtained by setting � = 0 in Eq. (6), and 
is given by:

3.2  Second‑Order Properties of the Aggregated Process

Rainfall is normally recorded in the form of cumulative amounts over discrete time inter-
vals of a constant width such as hourly or daily rainfall. In order to study the properties of 

Cov{dN(t), dN(t + u)} = m�(u) + Ae−(�+�)u

CY (�) =
∫

d

0
∫

d

0

E[Xt−u(u) Xt+�−v(v)]
{
m�(u + � − v) + Ae−(�+�)(�+u−v)

}
du dv

= mE[X2]
∫

d

0

e−�(�+u)du + A
∫

d

0
∫

d

0

E(X)e−�uE(X)e(−�v)
{
e−(�+�)(�+u−v)

}
du dv

(5)

CY (�) =

{
mE[X2]e−�� [1 − e−�d]

}

�
+
[A�2

X
e−�(�+�)[1 − e−d(�−�−�) − e−d(�+�+�) + e−2�d]

(� + [� + �])(� − [� + �])

]

E[X2] = [�1E(X
2

1
) + �2E(X

2

2
)] and �2

X
= [E(X)]2 = [�1�X1

+ �2�X2
]2

(6)CY (�) = K1(1 − e−�d)e−�� + K2(1 − e−(�+�)d)e−(�+�)�

K1 =
m[�1E(X

2

1
) + �2E(X

2

2
)](1 − e−�d)

�

K2 =

{
A[�1�X1

+ �2�X2
]2[1 − e−d(�−�−�) − e−d(�+�+�) + e−2�d]

}

(�2 − (� + �)2)

(7)
Var[Y(t)] =

{
m[�1E(X

2

1
) + �2E(X

2

2
)](1 − e−�d)

}

�

+

{
A[�1�X1

+ �2�X2
]2[1 − e−d(�−�−�) − e−d(�+�+�) + e−2�d]

}

(�2 − (� + �)2)
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the aggregated rainfall totals in disjoint intervals of length h, we define Y (h)

i
 for i = 1, 2,⋯ , 

as

The second-moment properties of the aggregated rainfall can be obtained by using the 
following general expressions given by Rodriguez-Iturbe et al. (1987)

In addition, we also make use of the following two integrals in our derivation

Using the above results and substituting the equations for E{Y(t)} and CY (�) given by 
Eqs. (3) and (6) into Eqs. (8)−(10), we obtain the following expressions for the mean, vari-
ance and autocovariance of the aggregated rainfall process for our model as:

Note here that the derivation of these equations does not assume any specific distribu-
tion for the initial pulse depth X. However, in the data analysis section below we assume an 
exponential distribution for X, although other distributions can be used.

4  Estimation of Model Parameters

In the absence of a suitable likelihood function in a closed form, stochastic models are usu-
ally fitted with the generalised method of moments. A set of properties are chosen so as to 
minimise some measure of discrepancy between the theoretical and empirical estimates of 

Y
(h)

i
=
∫

(ih)

(i−1)h

Y(u)du.

(8)E
{
Y
(h)

i

}
= hE{Y(t)}

(9)VarY
(h)

i
= 2

∫

h

0

(h − u)CY (u) du

(10)Cov
{
Y
(h)

i
, Y

(h)

i+k

}
=
∫

h

−h

CY (kh + u)(h − |u|) du

∫

h

0

(h − u)e−cu =
h

c
−

1

c2
+

e−ch

c2
and

∫

0

−h

(h − u)e−cu =
−h

c
−

1

c2
+

ech

c2
.

(11)E
{
Y
(h)

i

}
= h[�1�X1 + �2�X2]

(
1 − e−�d

�

)(��2 + ��1

(� + �)

)

(12)Var(Y
(h)

i
) = 2K1

[
h

�
−

1

�2
+

e−�h

�2

]
+ 2K2

[
h

(� + �)
−

1

(� + �)2
+

e−h(�+�)

(� + �)2

]

(13)
Cov

{
Y
(h)

i
, Y

(h)

i+k

}
= K1

[
1 − 2e−�h + e−2�h

�2

]
e−�(k−1)h

+ K2

[
1 − 2e−(�+�)h + e−2(�+�)h

(� + �)2

]
e−(�+�)(k−1)h
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the chosen properties. Let y be a vector of observations and � =( �1 , �2,..., �p) be a vector of 
unknown parameters in the model. Let T(y) = (T1(y),⋯ , Tk(y)) be the vector of summary 
empirical statistics calculated from the observations and E�(T(y)) = � (�) = (�1(�),⋯ , �k(�)) 
be the theoretical expected value of the chosen summary statistics according to the model. 
Denote the measure of disagreement between T and � by

where wi is the weight assigned to the ith term in the summation and �i(�) is the expected 
value of the ith summary statistics. The method of moment estimates are obtained by mini-
mising S(� ∣ y) over �.

4.1  Objective Functions

The models we considered in this paper have either seven or eight parameters, depending 
on whether the pulse duration is taken as a constant or variable. We employ the Method of 
Moment (MoM) estimation technique to estimate the model parameters and use the mean 
( � ), standard deviation ( � ) and lag-1 autocorrelation ( � ) at different time-scales. There are 
several choices for the objective function to be used in MoM estimation including the gen-
eralised method of moment technique suggested by Jesus and Chandler (2011). Another 
useful objective function utilised by Cowpertwait et al. (2007) is given as

This function can also be modified to incorporate a weighted sum of squares, where wih is 
the weight assigned to the ith statistics at time-scale h:

4.2  Optimisation

We use the objective function given by either Eq. (15) or (16) to estimate model param-
eters. The objective function (16) works better for large data sets and is therefore used for 
the German rainfall data. Numerical minimisation of the objective function is performed 
using R optimisation routines (R-Core-Team 2017) that uses function evaluations as well 
as derivatives. The approach we used was to employ an initial search algorithm that uses 
function evaluations only (Nelder-Mead downhill simplex method) to find a promising 
region of optimal parameter values in the parameter space. A derivative based algorithm is 
then utilised to find refined estimates.

(14)S(� ∣ y) =

k∑

i=1

wi[Ti(y) − �i(�)]
2

(15)

∑

h

((
1 −

�̂�(h)

𝜇(h)

)2

+

(
1 −

𝜇(h)

�̂�(h)

)2

+

(
1 −

�̂�(h)

𝜎(h)

)2

+

(
1 −

𝜎(h)

�̂�(h)

)2

+

(
1 −

�̂�(h)

𝜌(h)

)2

+

(
1 −

𝜌(h)

�̂�(h)

)2
)

(16)

∑

h

(

w1h

[(
1 −

�̂�(h)

𝜇(h)

)2

+

(
1 −

𝜇(h)

�̂�(h)

)2
]

+ w2h

[(
1 −

�̂�(h)

𝜎(h)

)2

+

(
1 −

𝜎(h)

�̂�(h)

)2
]

+ w3h

[(
1 −

�̂�(h)

𝜌(h)

)2

+

(
1 −

𝜌(h)

�̂�(h)

)2
])
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5  Data Analysis

The model developed in Sect.  2 has been applied to two different data sets, one from 
Bracknell in England and the other from Bochum in Germany. The Bracknell data set was 
collected over a period of 15 years, in the form of rainfall bucket tip times, whereas the 
Bochum data set was collected as five minute rainfall depths over a period of 69 years. We 
explored two different versions of the model proposed in Sect. 2. The first one assumed 
that the lifetime of the rain pulses terminates after a fixed duration d and the second one 
extended this model by taking the pulse duration d as a random variable.

5.1  Analysis of Bracknell Data

We begin our analysis with the fixed pulse duration model applied to the Bracknell data. 
Previous studies suggest that d = 1 is sufficient to capture the properties of rainfall well 
and we shall use this value in our analysis. In addition, we take the initial pulse depth X at 
the pulse origins as independent random variables with an exponential distribution with 
parameter �1 at State 1 and �2 at State 2. Our model then has seven parameters per month 
and we estimate them by the method of moments approach using the objective function 
given in Eq. (15). The estimates of the model parameters, when this model is applied to 
the Bracknell data, are given in Table A1 (See Supplementary Material for Table A1). The 
time-scales used in fitting were h = 20 minutes for the mean and h = 10, 30, 60 minutes 
for the standard deviation and lag-1 correlation. The estimates show that the rainfall bursts 
have high arrival rates ( �2 ) in State 2 with shorter sojourn times ( 1∕� ) and low arrivals 
( �1 ) with long sojourn times ( 1∕� ) in State 1.

Our model performance is assessed by comparing the fitted values of the theoretical 
properties, calculated using the estimated parameters, with the corresponding empirical 
values. The comparison was made at both sub-hourly and sub-daily time-scales, including 
those that are not used in fitting. In addition, simulation bands using 1000 simulations from 
the fitted model were calculated and displayed with observed (empirical) and fitted (theo-
retical) values.

For all the plots in this section, the black line represents the empirical values, the blue 
line shows the fitted values of our proposed state-dependent exponentially decaying initial 
pulse model M2, the red lines show the simulation bands. We compare the results of the 
proposed model (M2) with that of the model which has a common initial pulse distribution 
in both states (M1). The brown dashed lines are for model M1: they are included in the 
plots for comparison. Figure A1 shows that the empirical and fitted means of the aggre-
gated rainfall at h = 1 hour are in excellent agreement and hence the mean rainfall has been 
reproduced well by the fitted model (see Supplementary Material for Fig. A1). The same is 
true at all the other time-scales, as the mean is simply scaled by a factor of h.

The empirical and fitted values of the standard deviation of the accumulated rainfall at 
several time-scales ( h = 1∕6, 1, 6 hours) are displayed in the left-hand panels of Fig. A2, 
along with simulation bands (see Supplementary Material for Fig. A2). Here again, both 
observed and fitted curves are in excellent agreement, at all time-scales, and the alignment 
between the observed and fitted values of our proposed model M2 is better than that of the 
reference model M1 which has a fitted value outside the simulation bands for the month 
May. The empirical and fitted values of the lag-1 autocorrelation of the accumulated rain-
fall are displayed in the right-hand panels of Fig. A2, along with simulation bands. Both 
observed and fitted curves are in excellent agreement at finer time-scales. Although there 
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are some differences between the observed and fitted curves at coarser time-scales, they are 
both well within the simulation bands. Here again the model M2 provides a better fit.

The observed and fitted values of the coefficient of variation of the aggregated rain-
fall are in good agreement at all time-scales in the left-hand panels of Fig. A3, including 
those that are not used in fitting (See Supplementary Material for Fig. A3). Once again 
it is noticeable that the proposed model M2 has better alignment with empirical values 
than the model M1. The right-hand panels of Fig. A3 display the observed values of the 
proportion of dry periods together with simulation bands from the fitted model M2 at time-
scales h = 1∕12, 1∕6, 1∕3 hours. The model appears to reproduce these reasonably well 
and capture their pattern across the year quite well at finer time-scales, but not at coarser 
time-scales. Our model tends to overestimate the proportion of dry periods at coarser time-
scales. However, these statistics are not used in fitting and hard to reproduce at all values of 
h, as they depend more on the scale of measurement.

To compare the performance of the two models (M2 and M1) numerically, we calcu-
lated the root mean square error (RMSE) of the three statistics used in fitting. Their mean 
square error is calculated as the squared difference between the empirical and fitted val-
ues of the statistics averaged over all eleven time-scales considered in our analysis, from 
h=1/12 to h = 24 , separately for each month. The smaller the values of the RMSE, the 
better the model fit, as it shows closer agreement between the observed and fitted values. 
Table A2 shows the values of the root mean square error of the three statistics mean, stand-
ard deviation and autocorrelation (see Supplementary Material for Table A2). It is clear 
from the Table that the RMSE values of the model M2 are mostly smaller than those of 
M1, which provides evidence of the fact that M2 outperforms M1.

5.2  Analysis of Bochum Data with Fixed Pulse Duration Model

Here, we use our state-dependent initial pulse model with the fixed pulse duration to ana-
lyse the Bochum rainfall data over a 69 year period. We start our analysis by taking the 
pulse duration as d = 1 and assume that the initial pulse depths follow exponential distribu-
tions with mean 1∕�1 and 1∕�2 in States 1 and 2, respectively. This model was fitted to the 
data using the weighted objective function given in Eq. (16) separately for each month, to 
obtain the parameter estimates and they are given in Table A3 (see Supplementary Mate-
rial for Table A3). The weights applied to the statistics in the objective function were cal-
culated as the reciprocal variance of the yearly statistics at each time-scale over the 69 
years. The time-scales used in fitting were h = 60 minutes for the mean and h = 5, 20, 60 
minutes for both the standard deviation and autocorrelation, as well as h = 12 hour for 
autocorrelation.

The estimates show that the overall pattern of the rainfall characteristics is similar to 
that of the Bracknell data, suggesting the two regions have similar rainfall patterns. The 
Bochum rainfall bursts have slightly smaller arrival rates ( �1, �2 ) but longer sojourn 
times ( 1∕�, 1∕� ) in both states when compared with those of Bracknell data. In addition, 
both states have larger mean for initial pulse depth ( 1∕�1 , 1∕�2 ) for the Bochum data. This 
suggests that Bochum experiences fewer rainfall bursts but with larger initial pulse depth 
than Bracknell. Another point worth noting is that the estimates of the parameter � for 
Bochum data are smaller than those for Bracknell, which suggests that the rain pulses take 
longer to deposit the rain. Estimates of � show that, for each of the 12 months, the rain 
pulses deposit 95% of their rain within 30 minutes, and 99% within 50 minutes from their 
pulse origin.
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The plot for the observed and fitted mean rainfall at time-scale h = 1 is displayed in 
Fig. A4 (see Supplementary Material for Fig. A4). There is close agreement between the 
fitted and empirical values at h = 1 hour and also at all other time-scales. The left-hand 
panels of Fig. 2 show the empirical and fitted values of the standard deviation of the accu-
mulated rainfall at time-scales h = 1∕6, 1, 6 hours along with their simulation bands. Here 
again both observed and fitted curves are in near perfect agreement at all time-scales, 
including those that are not used in fitting. The same can be said about the empirical and 
fitted values of the lag-1 autocorrelation of the accumulated rainfall displayed in the right-
hand panels of Fig. 2.

The left-hand panels of Fig. 3 show the empirical  values of the skewness coefficient 
for the accumulated rainfall at time-scales h = 1∕6, 1, 6 hours along with the simulation 
bands from the fitted model. The fitted model clearly underestimates the skewness at sub-
hourly time-scales but does reasonably well at coarser time-scales. The right-hand panels 
of Fig. 3 display the empirical values of the proportion of dry periods together with a simu-
lation band from the fitted model M2 at time-scales h = 1∕12, 1∕6, 1∕3 hours. The model 
appears to reproduce the proportion of dry periods reasonably well and capture its pattern 
across the year quite well at these sub-hourly time-scales, but not at coarser time-scales.

5.3  Analysis of Bochum Data with Variable Pulse Duration Model

In this section, we extend our model to allow the pulse lifetime d to vary rather than tak-
ing a fixed value. This can be done in different ways and one approach is to take the pulse 
lifetime as a random variable with a specified distribution. Another approach is to take 
d as a parameter of the model and try to estimate it along with other parameters and we 
employ this second approach in this paper. When d is taken as a parameter, the expres-
sions for mean, variance and autocovariance given in Eqs. (11), (12) and (13) are still valid 
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Fig. 2  Observed (black) and fitted (blue) values of the standard deviation (left-hand panels) and autocor-
rrelation (right-hand panels) of the aggregated rainfall at h=1/6, 1, 6 hours for the model M2 along with 
simulation bands (red) for Bochum data
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and we treat them as functions of one additional parameter. The eight model parameters 
�,�,�1,�2, �, �1, �2 and d are estimated by employing the weighted objective function 
(16) and using the statistics mean ( � ), variance ( � ) and autocorrelation ( � ) over the same 
combination of time-scales as those used earlier for the fixed d model in Sect. 5.2. The esti-
mated model parameters are given in Table 1.

The parameter estimates have similar patterns to those of the earlier model with fixed d 
and the mean sojourn times 1∕� of the State 2 are shorter in summer months than those of 
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Fig. 3  Observed (black)  values of the skewness (left-hand panels) coefficient of the aggregated rainfall 
for the model M2 along with simulation bands (red) for Bochum data. The right-hand panels show the 
observed values (black) of the proportion of dry periods with simulation bands (red) from the fitted model 
M2

Table 1  Parameter estimates for the state-dependent initial pulse depth model with variable pulse lifetime 
for Bochum data

Month � � �
1

�
2

� �
1

�
2

�
X

d

JAN 0.00274 0.195 0.160 42.364 6.639 1.225 1.986 0.812 0.871
FEB 0.00298 0.207 0.108 42.089 6.414 1.372 1.996 0.726 0.837
MAR 0.00286 0.219 0.117 39.539 9.319 0.907 1.861 1.096 0.890
APR 0.00311 0.220 0.084 31.992 9.475 0.703 1.991 1.409 0.821
MAY 0.00379 0.326 0.095 22.926 12.455 0.322 0.872 3.082 0.657
JUNE 0.00260 0.318 0.092 16.517 12.216 0.160 0.895 6.213 0.614
JULY 0.00207 0.302 0.081 12.335 10.604 0.133 0.980 7.489 0.580
AUG 0.00206 0.303 0.083 12.711 10.815 0.134 1.075 7.432 0.666
SEP 0.00217 0.295 0.081 16.722 10.034 0.208 0.951 4.787 0.662
OCT 0.00224 0.204 0.080 34.653 7.962 0.697 1.810 1.426 0.839
NOV 0.00249 0.192 0.099 44.521 6.065 1.138 1.930 0.874 0.803
DEC 0.00268 0.199 0.117 46.143 6.385 1.164 1.883 0.855 0.888
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the winter months. The values of overall �̂�X are again larger for summer months, showing 
higher initial rainfall intensity for the pulses, when compared with the winter months. The 
parameter estimates 𝛽  are similar to those of the fixed d model used earlier. The estimated 
values of d suggest that the average duration of the pulse lifetime for Bochum is between 
0.58 and 0.89 hours.

Figure 4 displays the observed and fitted means of the aggregated rainfall at h = 1 and 
they are in perfect agreement which shows that the mean rainfall has been reproduced very 
well by the fitted model. The dashed line (brown) in Figs. 4 and 5 is for the fitted values 
of the model described in the next subsection, and is given here for comparison and will 
be discussed in Sect. 5.4. The empirical and fitted values of the standard deviation of the 
accumulated rainfall are given in the left-hand panels of Fig. 5 at sub-hourly and higher 
time-scales, along with simulation bands. Here again, both empirical and fitted values of 
our proposed model M2 are in excellent agreement at all time-scales, including those not 
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Fig. 4  Observed (black) and fitted (blue) values of the mean rainfall at h=1 hour time-scale for the state-
dependent initial pulse depth model M2 with variable lifetime, along with simulation bands (red), for 
Bochum data. The dashed line (brown) is for the rectangular pulse model M0 discussed in Sect. 5.4
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Fig. 5  Observed (black) and fitted (blue) values of the standard deviation (left-hand panels) and autocorrre-
lation (right-hand panels) of the aggregated rainfall at h=1/6, 1, 6 hours for the state-dependent initial depth 
model M2 with variable lifetime, along with simulation bands (red) for Bochum. The dashed line (brown) is 
for the rectangular pulse model M0 discussed in Sect. 5.4
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used in fitting. The simulation bands suggest that the sampling distribution of the standard 
deviation is skewed at sub-hourly time-scales for the summer months but it gets better and 
less skewed at coarser time-scales. The observed and fitted values of the lag-1 autocorrela-
tion of the aggregated rainfall for the state-dependant initial pulse model M2 are in very 
good agreement in the right-hand panels of Fig.  5 for all time-scales. Hence, the fitted 
model M2 performs well in reproducing the autocorrelations.

The empirical values of the skewness coefficient of the accumulated rainfall are given 
in the left-hand panels of Fig. 6, for hourly and higher time-scales, along with simulation 
bands. Our model vastly underestimates the skewness at sub-hourly time-scales but does 
reasonably well at coarser time-scales. The observed values of the proportion of dry peri-
ods are displayed in the right-hand panels of Fig. 6, together with simulation bands from 
the fitted model at sub-hourly time-scales. The model appears to reproduce these reason-
ably well and capture their pattern across the year quite well at h = 1∕12, 1∕6 hours, but 
not at other time-scales. In general, our model overestimates the proportion of dry periods 
at coarser time-scales. These are, however, minor discrepancies given that these statistics 
are not used in the fitting, depend more on the scale of measurement and are affected by the 
occasional arrival of rain pulses in State 1.

To study how well our model captures the extreme rainfall, we compare the annual 
extreme values of the observed rainfall data with those generated by the proposed model. 
Figure 7 shows the ordered empirical annual maximum rainfall (red solid lines) against the 
reduced Gumbel variate for h = 1∕12, 1, 24 hours along with the vertical interval plots show-
ing the variability of the simulated ordered maxima from the fitted model. The mean of the 
100 simulated ordered maxima for each plotting position is identified by the triangles in 
the interval plots . The return periods of the extreme rainfall are specified at the foot of the 
plot above the x-axis. At the five minute ( h = 1∕12 ) time-scale, the model underestimates 
the extremes. As reported in previously published studies, see for example (Cowpertwait 
et al. 2007), the estimation of extreme values at sub-hourly time scales is a common problem 
for most stochastic point process models for rainfall and our results reveal the same. Despite 
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Fig. 6  Left: Observed (black) values of the skewness coefficient for the aggregated rainfall at h = 1, 6, 24 
hours with simulation band (red) from the fitted model. Right: Observed (black) values of the proportion of 
dry period of the aggregated rainfall at h = 1∕12, 1∕6, 1∕3 for the state-dependent initial pulse depth model 
M2 with variable lifetime for the Bochum data
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the underestimation at the sub-hourly level, our model reproduces extremes well at the hourly 
time-scale, which is a notable improvement from earlier results (Ramesh et al. 2017), and the 
same goes for the daily time-scale.

5.4  Model Comparison

The variable pulse duration model described in Sect. 5.3 provided the best results for the 
Bochum data. To assess the performance of this model, we shall compare it with one of the 
existing doubly stochastic point process models for rainfall. The Bracknell data analysis 
in Sect.  5.2 compared the performance of the state-dependent initial pulse depth model 
M2 with that of the common initial pulse depth model M1. As there were no substantial 
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differences in the results of the two models in that comparison despite some improvement, 
we now chose to compare the results of the state-dependent initial depth exponential pulse 
model M2 with that of a doubly stochastic rectangular pulse model (M0), described in 
Ramesh (1998), when both models are fitted to the Bochum data.

Figure 4 displays the empirical mean rainfall and the fitted values of the mean rainfall 
from the doubly stochastic rectangular pulse model (M0) as well as the state-dependent 
exponential pulse model (M2). The broken brown line shows the fitted values of this rec-
tangular pulse model in Figs. 4 and 5 and the other lines of the plots are as described ear-
lier in Sect. 5.3. Figure 4 shows that the mean rainfall has been reproduced better by our 
new model M2, especially for the summer months.

The left-hand panels of Fig.  5 compare the fitted values of the standard deviation of 
the accumulated rainfall from the two models with the empirical values at sub-hourly and 
coarser time-scales. The observed and fitted curves are in excellent agreement for the state-
dependent exponential pulse model which clearly outperforms the rectangular pulse model 
at all time-scales in reproducing the standard deviation of the rainfall. The observed and 
fitted values of the lag-1 autocorrelation of the aggregated rainfall for the two models are 
compared in the right-hand panels of Fig. 5. They suggest that the rectangular pulse model 
vastly overestimates the autocorrelation at sub-hourly time-scales whereas, the state-
dependent exponential pulse model provides a near perfect fit at these time-scales. The 
performance of the rectangular pulse model gets better at the hourly time-scale, although 
not as good as that of the exponential pulse model, but it gets worse again for coarser 
time-scales.

Here again, to compare the performance of the proposed state-dependent initial pulse 
depth model M2 with that of a rectangular pulse model M0 numerically, we calculated 
the root mean square error (RMSE) of the three statistics used in fitting. They are cal-
culated as the square root of the squared difference between the empirical and fitted 
values of the statistics, averaged over all eleven time-scales considered in our analysis. 
Smaller values of the RMSE means closer alignment between the observed and fitted 
values. Table  2 shows the values of the root mean square error of the three statistics 
mean, standard deviation and autocorrelation for the two models M0 and M2 applied to 

Table 2  Root mean square error 
of the three statistics used in 
fitting for the models M0 and M2

Month Mean Std Deviation Correlation

M0 M2 M0 M2 M0 M2

JAN 0.0342 0.0310 0.4691 0.0121 0.4691 0.0784
FEB 0.0376 0.0147 0.4634 0.0217 0.4634 0.0526
MAR 0.0023 0.0091 0.2666 0.0267 0.2666 0.0760
APR 0.0000 0.0185 0.3093 0.0292 0.3093 0.0561
MAY 0.0941 0.0314 0.2446 0.0274 0.2446 0.0417
JUN 0.1448 0.0360 0.1592 0.0462 0.1592 0.0514
JUL 0.2751 0.0496 0.9305 0.0379 0.9305 0.0372
AUG 0.2143 0.0471 0.7310 0.0453 0.7310 0.0378
SEP 0.2510 0.0197 0.7230 0.0171 0.7230 0.0464
OCT 0.0041 0.0073 0.4172 0.0367 0.4172 0.0533
NOV 0.0000 0.0182 0.6977 0.0449 0.2652 0.0135
DEC 0.0463 0.0390 0.4584 0.0415 0.2795 0.0125
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the Bochum data. Results show that the RMSE values of the model M2 are smaller than 
those of M0 in almost every case, providing evidence to the fact that M2 outperforms 
M0.

6  Conclusions

This paper presented a class of Cox process models with state-dependent exponential 
pulses to describe the statistical properties of the accumulated rainfall totals. Mathe-
matical expressions were derived for the second-order moment properties of the rain-
fall intensity and the aggregated rainfall processes. Our data analysis showed that the 
proposed model reproduced most of the second-moment properties well at various 
time-scales. We analysed two versions of the model, one with fixed duration for the 
pulse lifetime and the other with variable pulse lifetime. Both models performed well 
in reproducing the second-moment properties of rainfall but the variable-pulse-lifetime 
model showed some improvement, in terms of the alignment between the observed and 
fitted values of the properties studied.

Model performance was assessed by comparing the proposed state-dependent initial-
pulse-depth model with either a common initial-pulse-depth model or a doubly-stochastic 
rectangular pulse model. The proposed model performed better in reproducing the rainfall 
properties in both cases. Possible future work could consider generalising the exponential 
decay of the initial pulse depth, by allowing two different rates of decay for the two states. 
This might introduce more variation in the rainfall duration. Another direction for future 
research would be to explore the extension of this model to a multi-site framework that will 
allow us to model rainfall data from multiple stations in a catchment area.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s11269- 021- 03028-6.

Acknowledgements Deutsche Montan Technologie and Emsgenossenschaft/Lippeverband in Germany are 
gratefully acknowledged for providing the Bochum data.

Author Contributions NR: Conceptualization, Methodology, Writing and editing manuscript. CO: Method-
ology, Data curation, Writing and editing manuscript. GR: Writing-original draft, Formal analysis, Investi-
gation, and Model fitting.

Funding This work was supported partly by a Vice-Chancellor’s scholarship from the University of Green-
wich when Gayatri Rode completed her PhD degree.

Data Availability The Bracknell rainfall data are available from the U.K. Meteorological Office on CEDA 
(https:// archi ve. ceda. ac. uk/) for users who apply.

Declarations 

Ethical Approval All authors kept to the Ethical Responsibilities of Authors

Consent to Participate Not applicable.

Consent to Publish The authors declare that they consent to publish this manuscript.

Competing of Interest The authors declare that they have no conflict of interest.

312 N. I. Ramesh et al.

https://doi.org/10.1007/s11269-021-03028-6
https://doi.org/10.1007/s11269-021-03028-6
https://archive.ceda.ac.uk/


1 3

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Aryal NR, Jones OD (2020) Fitting the bartlettlewis rainfall model using approximate bayesian computation. 
Math Comput Simul 175:153–163

Chandler RE, Wheater HS (2002) Analysis of rainfall variability using generalized linear models: a case 
study from the west of ireland. Water Resour Res 38(10):10–1

Cowpertwait P, Isham V, Onof C (2007) Point process models of rainfall: developments for fine-scale structure. In 
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 463, 
The Royal Society, pp. 2569–2587

Dabral P, Murry MZ (2017) Forecasting of rainfall time series using sarima. Environ Process 4:399–419
Garthwaite AP, Ramesh N (2018) Parsimonious modelling of winter season rainfall incorporating reanalysis 

climatological data. Hydrol Res 49(6):2030–2045
Jesus J, Chandler RE (2011) Estimating functions and the generalized method of moments. Interface focus, 

rsfs20110057
Kaczmarska J, Isham V, Onof C (2014) Point process models for fine-resolution rainfall. Hydrol Sci J 

59(11):1972–1991
Kannan SK, Farook JA (2015) Stochastic simulation of precipitation using markov chain-mixed exponential 

model. Appl Math Sci 65(9):3205–3212
Kilsby CG, Jones P, Burton A, Ford A, Fowler HJ, Harpham C, James P, Smith A, Wilby R (2007) A daily 

weather generator for use in climate change studies. Environ Model Softw 22(12):1705–1719
Kim D, Onof C (2020) A stochastic rainfall model that can reproduce important rainfall properties across 

the timescales from several minutes to a decade. J Hydrol 589:125150
Lovejoy S, Schertzer D (2013) The weather and climate: emergent laws and multifractal cascades. Cam-

bridge University Press
Onof C, Chandler R, Kakou A, Northrop P, Wheater H, Isham V (2000) Rainfall modelling using poisson-cluster 

processes: a review of developments. Stoch Env Res Risk A 14(6):384–411
Onof C, Wang L-P (2020) Modelling rainfall with a bartlett-lewis process: new developments. Hydrol Earth 

Syst Sci 24(5):2791–2815
Papalexiou SM (2018) Unified theory for stochastic modelling of hydroclimatic processes: Preserving marginal 

distributions, correlation structures, and intermittency. Adv Water Resour 115:234–252
R-Core-Team (2017) R: A language and environment for statistical computing (version 3.4. 2) [computer 

software]. Vienna, Austria: R Foundation for Statistical Computing
Ramesh N (1998) Temporal modelling of short-term rainfall using cox processes. Environmetrics: The official 

journal of the International Environmetrics Society 9(6):629–643
Ramesh N, Garthwaite A, Onof C (2017) A doubly stochastic rainfall model with exponentially decaying 

pulses. Stochastic Environmental Research and Risk Assessment pp. 1–20
Ramesh NI, Onof C, Xie D (2012) Doubly stochastic poisson process models for precipitation at fine time-

scales. Adv Water Resour 45:58–64
Rodriguez-Iturbe I, Cox DR, Isham V (1987) Some models for rainfall based on stochastic point processes. 

Proc R Soc Lond A 410(1839):269–288
Thayakaran R, Ramesh N (2013) Multivariate models for rainfall based on markov modulated poisson processes. 

Hydrol Res 44(4):631–643
Thayakaran R, Ramesh N (2017) Doubly stochastic poisson pulse model for fine-scale rainfall. Stoch Env 

Res Risk A 31(3):705–724

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

313A Cox Process with State Dependent Exponential Pulses to Model…‑

http://creativecommons.org/licenses/by/4.0/

	A Cox Process with State-Dependent Exponential Pulses to Model Rainfall
	Abstract
	1 Introduction
	2 Exponential Pulse Model with State-Dependent Initial Pulse Depth
	3 Second-Order Properties of the Processes
	3.1 Second-Order Properties of the Intensity Process
	3.2 Second-Order Properties of the Aggregated Process

	4 Estimation of Model Parameters
	4.1 Objective Functions
	4.2 Optimisation

	5 Data Analysis
	5.1 Analysis of Bracknell Data
	5.2 Analysis of Bochum Data with Fixed Pulse Duration Model
	5.3 Analysis of Bochum Data with Variable Pulse Duration Model
	5.4 Model Comparison

	6 Conclusions
	Acknowledgements 
	References




