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Figure 1: 3D meshes from “start walking 1”, “walking on treadmill 2”, and “stop walking 1” clips combined into a motion
sequence. The frames at which these clips are cut together were identified using our skeleton-based match point detector
system.

ABSTRACT
In free-viewpoint video (FVV), the motion and surface appearance
of a real-world performance is captured as an animated mesh.While
this technology can produce high-fidelity recreations of actors, the
required 3D reconstruction step has substantial processing demands.
This means FVV experiences are currently expensive to produce,
and the processing delay means on-set decisions are hampered by
a lack of feedback. This work explores the possibility of using RGB-
camera-based skeletal tracking to reduce the amount of content
that must be 3D reconstructed, as well as aiding on-set decision
making. One particularly relevant application is in the construction
of Motion Graphs, where state-of-the-art techniques require large
amounts of content to be 3D reconstructed before a graph can
be built, resulting in large amounts of wasted processing effort.
Here, we propose the use of skeletons to assess which clips of
FVV content to process, resulting in substantial cost savings with a
limited impact on performance accuracy. Additionally, we explore
how this technique could be utilised on set to reduce the possibility
of requiring expensive reshoots.
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1 INTRODUCTION
Free-viewpoint video (FVV) is a content creation technique inwhich
the motion and surface appearance of a performance are captured
by a number of cameras. RGB and sometimes infrared cameras are
arranged around a performer, facing inwards, to capture that person
from multiple perspectives simultaneously. Reconstruction tech-
niques are then used to process these 2D views into an animated
mesh with a video texture. This 3D asset can then be used (e.g. in
a game engine such as Unity) for creating experiences viewable
in virtual reality (VR) or augmented reality (AR) displays. As FVV
characters are high fidelity, but support viewing with six degrees-
of-freedom, FVV is becoming a popular content creation tool for
AR/VR experiences. As this content is captured from the real world,
it requires no pre- or post-hoc 3D modelling. It can result in media
that is in some ways more realistic than motion-captured perfor-
mances applied to rigged avatars. It also automatically captures
secondary motions (e.g. clothes) and can capture appearance as
well as movement.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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One barrier that FVV faces in becoming a major content produc-
tion tool is the cost of turning the 2D views from the camera rig
into a 3D mesh, a process that we refer to as 3D reconstruction. 3D
reconstruction is an enormously data intensive process, requiring
the compute power of render farms for long periods of time. This
translates directly into cost, with this cost being linearly tied to
the amount of 3D reconstructed content. So while a day of filming
in an FVV studio can result in a substantial amount of captured
content, production budgets require the careful selection of which
clips to 3D reconstruct into mesh assets.

As production costs increase with the amount of content that is
3D reconstructed, one possible technique to reduce costs is through
content reuse. For FVV this could mean looping repetitive move-
ments such as in walk cycles. The cyclic motion of walking means
a short clip can be looped to give the impression of a much longer
sequence. Hereafter we refer to this process as video loops. Another
technique to allow content reuse is through Motion Graphs. In
Motion Graphs, short clips of content (e.g. walking, turning, etc.)
are sequenced together interactively. Hereafter, we refer to these
as video sequences. Similarly to video, FVV is often considered to be
fixed at the point of filming, meaning FVV content can lack the in-
teractivity that rigged avatars possess. As a result, video sequences
also have the potential added benefit of allowing FVV content to
respond to real-time events by sequencing together appropriate
clips.

To create both video loops and sequences, we must find points
at which the cut can be disguised. This requires that the shape and
dynamics of the character performance be similar at these moments.
We call these moments match points. As we will discuss in Section
2, a large amount of research has been done to explore how good
match points can be identified from the 3D mesh. We argue that
these state-of-the-art methods are cost prohibitive in most produc-
tion contexts, as the requirement to perform 3D reconstruction on
all captured content before searching for match points is extremely
wasteful.

Through the identification of match points before 3D reconstruc-
tion, our method can avoid processing large numbers of frames
which are later deemed unsuitable. We propose identifying match
points by comparing 3D skeletons derived from multi-view RGB
camera data. To assess the performance of our method against
the state-of-the-art, we use receiver operating characteristic (ROC)
curves to identify match points in a synthetic dataset that we con-
structed. To show that ourmethod alsoworks on real-world data, we
visualise results using heatmaps and visual examples. A small drop
in performance against the state-of-the-art, coupled with substan-
tial cost savings, indicates that our skeleton-based technique may
be a viable mechanism for reducing costs and processing time when
producing types of FVV content for which these techniques are
suitable (e.g. when building Motion Graphs, content with loopable
motion, etc.). Our method can also help with creating controllable
characters in the context of FVV, opening up this production tech-
nique to a new group of creators looking to make interactive con-
tent. We also show that these techniques may be suitable for use
on set. On-set usage would allow for takes to be assessed for the
quality of match points available, i.e. takes with poor or ambiguous
quality match points could be re-filmed immediately, with feedback
provided to the actor to ensure similar body pose and dynamics.

This would further reduce costs by minimizing the need to re-shoot
at a later date, and improve the quality of the end product through
better match points. This work builds on a previous poster on our
technique, presented at IEEEVR, by locating it within the research
landscape through background research and providing a full de-
scription of the process for reproducibility [MacQuarrie and Steed
2020]. This work additionally explores further examples and use
cases. These include using our technique to generate scores to as-
sess match point quality, as well as the feasibility and potential uses
of deploying it on set.

2 RELATEDWORK
2.1 Free-Viewpoint Video
Free-Viewpoint Video (FVV) was pioneered by the work of Kande
et al. in [Kanade et al. 1997]. A seminal series of works brought
high-quality FVV to fruition [De Aguiar et al. 2008; Narayanan
et al. 1998; Starck and Hilton 2003, 2007; Starck et al. 2005; Vlasic
et al. 2008]. In our work, we rely on a reconstruction technique
similar to that described in [Collet et al. 2015]. Previous works were
built on in [Collet et al. 2015] – through multimodal reconstruction
and saliency-based adaptive meshing – to produce improvements
in reconstruction robustness and visual quality. In this method, a
character performance is captured by an array of inward-facing
RGB and infrared cameras, arranged in a cylinder. For each camera
view, green screen and depth-from-stereo techniques are used to
segment the character from the background. A 3D mesh of the
character is then built for each frame using 3D reconstruction
algorithms, which is textured using data from the RGB cameras.
This results in a video-textured 3D mesh that captures appearance
and surface dynamics, but in which the meshes are temporally
unstructured.

There has been work exploring the creation of temporally con-
sistent meshes. In one approach, a parameterized template mesh is
fitted [Carranza et al. 2003; Loper et al. 2015]. Another technique is
to deform the mesh from a single frame over time to represent the
changing shape [Ahmed et al. 2008; Budd et al. 2013; Cagniart et al.
2010; Huang et al. 2011; Mustafa et al. 2016; Tung and Matsuyama
2010]. Both of these techniques can produce excellent results, and a
temporally consistent mesh brings some advantages over unstruc-
tured meshes. Temporal consistency allows the use of mesh editing
techniques, reduces data bandwidth requirements, andmeans shape
comparisons between frames can be trivially calculated using the
Euclidean distance between corresponding vertices [Casas et al.
2012a,b]. However, model-based approaches may produce artifacts
when deformations cannot be well represented by the model’s
parameter space [Collet et al. 2015]. Likewise, mesh-deformation
techniques may produce artifacts in the case of large or rapid shape
changes, or if the mesh drifts across the object’s surface during
deformation [Bojsen-Hansen et al. 2012; Casas et al. 2012b; Mustafa
et al. 2016]. In the FVV system in use in this work, the mesh topol-
ogy of the resulting 3D avatars are temporally unstructured [Collet
et al. 2015].

2.2 Video Loops and Sequences
The seamless looping of 2D videos to create the illusion of a single,
endless video was proposed in [Schödl et al. 2000], who called this



Skeletal Tracking for Cheaper Motion Graphs and On-Set Decision Making in FVV CVMP 2020, Dec. 17–18, London, UK

technique Video Textures. Video Textures leverage similarities in
the appearance and dynamics between frames in a video sequence,
cutting backwards and forwards in the video in a way that is essen-
tially imperceptible. This drew from work on concatenating video
clips to generate longer sequences in [Bregler et al. 1997], and was
extended to portray human motion in [Flagg et al. 2009].

An analogous technique has been applied in the realm of 3D
motion capture data [Arikan and Forsyth 2002; Kovar et al. 2008;
Lee et al. 2002; Tanco and Hilton 2000]. In these techniques, a corpus
of motion capture data is examined to identify similar appearance
and dynamics between frames. These match points between frames
can then act as edges in a “Motion Graph” of motion elements,
allowing motions to be sequenced together in a plausible way at
run-time. Further work on Parameterized Motion Graphs allowed
even greater control of character movements [Heck and Gleicher
2007; Rose et al. 1998].

There has been a large amount of work looking at how similar
techniques can be applied in the field of FVV [Casas et al. 2012b;
Prada et al. 2016]. In order for motion graph techniques to be suc-
cessful in the context of FVV, there are two main components
required. First, good match points must be established in which the
transition between frames will be least noticeable. Secondly, the
frames must be blended together. In our work, we focus on how
to identify good match points between frames in FVV sequences.
As such, we do not blend our meshes together. However, making
effective blends between FVV clips when the topology of the mesh
is unstructured has been considered in [Prada et al. 2016].

2.3 Match Point Identification
Our work is concerned with identifying points at which cuts be-
tween shots – or, in the case of motion loops, cuts back into the
same shot – will be least noticeable. To allow a convincing blend to
be achieved, frames must be found in which the character is in near-
identical poses. For temporally consistent meshes, shape similarity
can be calculated as the Euclidean distance between correspond-
ing vertices [Casas et al. 2012a,b]. For unstructured meshes, shape
similarity is harder to assess. There has been a great deal of work
in the assessment of shape similarity, both to facilitate 3D object
search and retrieval and in the context of 3D video creation [Huang
et al. 2010a; Kazhdan et al. 2003; Shilane et al. 2004; Tangelder
and Veltkamp 2004]. Here, we present an overview of the works
relevant to our technique, and describe how our skeleton-based
shape comparison system adds to previously utilized methods in
the context of 3D video creation.

Starck and Hilton explored how FVV sequences could be cut
together by manually identifying match points [Starck and Hilton
2007]. Xu et al. considered automatic detection through the use
of 3D histograms [Xu et al. 2006]. In [Huang et al. 2010a], Huang
et al. compared various shape similarity metrics in the context of
identifying match points between unstructured mesh sequences
of human motion. They compared a number of 3D shape descrip-
tors, including Shape Histograms [Ankerst et al. 1999] and Shape
Spherical Harmonics [Kazhdan et al. 2003]. Using ROC curves, they
compared these techniques using both synthetic and real datasets.
Huang et al. concluded that Shape Histograms performed best,

and reported an optimal binning arrangement [Huang et al. 2010a,
2007].

Huang et al. continued this investigation in [Huang et al. 2010b]
by comparing Shape Histograms against Reeb Graphs [Tung and
Schmitt 2005], a skeleton-based shape similarity metric. Their find-
ings concluded that both perform similarly on real and synthetic
datasets. While the Reeb Graph used in [Huang et al. 2010b] is
skeleton-based, the nodes of the graph encode information about
the 3D mesh such as local surface area. As a result, these Reeb
Graphs require the 3D meshes be reconstructed before they can
be compared. Huang et al. also explored simplifying motion graph
searches using skeletons that were manually annotated on the 3D
mesh [Huang et al. 2015].

The performance of other shape descriptors for the purpose of
match point detection was explored in [Veinidis et al. 2017]. Veinidis
et al. explored several other shape descriptors, e.g. PANORAMA [Pa-
padakis et al. 2010], inwhich a 3D shape is projected onto panoramic
cylinders before comparison. Similarly to Huang et al., ROC curves
were used to evaluate performance, and all investigated shape de-
scriptors required the complete reconstruction of the 3D shape
before comparisons could be made. In the work of Prada et al. on
motion graphs for unstructured meshes [Prada et al. 2016], match
points in FVV were identified through exhaustive search carried
out on the meshes, using a technique for comparing 3D shapes
originally proposed by Funkhouser et al. [Funkhouser et al. 2004].
Surface colour information was considered by Huang et al. in their
work on shape-colour histograms [Huang et al. 2015].

Match points represent points in two FVV sequences where the
3D shape has similar appearance and dynamics. The above works
generally handle appearance similarity, and then extend this to
dynamics by ensuring a similar appearance between neighbouring
frames over a temporal window (e.g. [Huang et al. 2009, 2010a]).
We discuss this process in more details in Section 3.

As shown here, there is a large body of work that explores shape
similarity metrics in the context of FVV production. These works
have been shown to produce excellent results. Each of these works,
however, requires the reconstructed 3D meshes to be available
before the comparisons can be performed. In this work, we explore
the use of 3D skeletons as a way to avoid performing the expensive
and time-consuming processing step prior to comparisons. As less
information is available at the comparison stage, it is anticipated
that our method may yield less accurate results than the state-of-
the-art mesh comparisons, but reduce the overall cost and time of
production.

3 SKELETON-BASED MATCH POINT
DETECTOR

The use of skeletons to describe the shape of a FVV sequence
may initially seem problematic. As FVV techniques capture surface
dynamics not represented in traditional motion capture, this nuance
will be lost in a skeleton-based descriptor. However, the current
generation of FVV struggles to process thin elements such as loose
hair and fabric. In practice, actors generally tie their hair up, and
wear relatively well fitting clothing. As a result of the topology,
our method should not result in “false negatives”, but only “false
positives”, with the errors likely contained in secondary motions.
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Figure 2: Data flow through our SBMPD system, from RGB image data input to 3D skeleton comparison output.

As a result, skeletons may often be a suitable descriptor to establish
match points. In Section 8, we discuss possible ways in which our
method could be extended to detect secondary motions that do not
fit the skeleton.

As FVV captures the surface appearance of a performance, it
would not be acceptable for the actors to wear motion capture
markers. Additionally, the volumetric capture technology in use
here uses semi-structured infrared light as part of its 3D reconstruc-
tion technique [Collet et al. 2015], so there would be interference
from off-the-shelf RGB-D cameras such as Kinects as these also
use infrared light. Instead, our skeleton-based match point detector
(SBMPD) identifies the 3D location of a performer’s joints using an
array of calibrated RGB cameras. These 3D skeletons are then com-
pared to identify good match points between frames. The overall
structure of our method is shown in Figure 2, and we now describe
each of its components in more detail.

2D Skeletons. Our system works on data captured in an FVV
studio with 𝑛 RGB cameras (in our case, 𝑛 ≈ 50). RGB cameras must
be calibrated. Using OpenPose [Cao et al. 2017], 2D skeletons are
detected from each RGB camera for each frame. Each RGB camera
records images of 2048x2048 pixels. The output of this process is the
2D location of 25 joints identified for each frame for each camera.

3D Skeletons. The 𝑛 2D skeletons for each frame are then com-
bined to create a single 3D skeleton per frame. As OpenPose pro-
vides a confidence value for each joint, we use a cutoff value of 0.5
to ignore joints that were identified with low confidence. Using the
camera calibration matrices, the 2D location of each joint in each
camera can be considered a ray in 3D space. Each joint’s 3D coor-
dinate is taken to be the point with the minimum sum of squared
distances to all rays for that joint, which we find using an open
source Matlab function1.

Skeleton comparison. Similarity between frames is then assessed
by comparing these 3D skeletons. First, we align the 3D skeletons
using an open source implementation of the Kabsch algorithm2. As
freely rotating the character around all axes may cause animations
to leave the ground plane (e.g. walking into the sky or through
the ground), we instead restrict rotation calculations to be purely
around the “up” vector. A similarity matrix 𝑆𝑠 (𝑖, 𝑗) is constructed,

1https://uk.mathworks.com/matlabcentral/fileexchange/37192-intersection-point-of-
lines-in-3d-space
2https://github.com/charnley/rmsd

in which each entry is taken to be the summed Euclidean distance
of the joint locations between the 3D skeletons for frames 𝑖 and 𝑗 .

Temporal filtering. The skeleton comparison above only provides
the similarity of static skeletons, so no dynamic information is
captured. A commonmethod to capture dynamic frame information
is through temporal filtering. This process has been used before in
the context of Video Textures to maintain dynamics when finding
match points [Efros et al. 2003; Schödl et al. 2000], and has also
been used in the context of 3D shape matching [Huang et al. 2010a].
In this technique, comparisons from neighbouring frames in the
static similarity matrix 𝑆𝑠 are incorporated into a frame’s measure.
To achieve this, a convolution is applied to 𝑆𝑠 . Entry 𝑆𝑤=𝑡 (𝑖, 𝑗) in
a temporal similarity matrix is the mean of cells 𝑆𝑠 (𝑖 − 𝑡, 𝑗 − 𝑡) to
𝑆𝑠 (𝑖 + 𝑡, 𝑗 + 𝑡), where 𝑡 is the temporal window size.

4 EVALUATION METHODOLOGY
4.1 Synthetic Data
We evaluated our skeleton-based match point detector using a
method similar to that employed in the relatedworksmost similar to
our own [Huang et al. 2010a, 2015; Veinidis et al. 2017]. Specifically,
we use ROC curves, evaluating the detector against a ground truth.
To allow a ground truth to be available, the technique was evaluated
against synthetic data.

To construct the synthetic data set, motion capture data was ap-
plied to a rigged avatar. We generated synthetic data using an avatar
animated using six motion capture performances freely available
on Mixamo.com. As the 3D mesh of the avatar has a known and
fixed topology, we establish ground truth similarity by calculating
the average difference in position and velocity for each vertex. For
this, 3D shapes must first be aligned, which we achieved as for
3D skeletons, using an open source implementation of the Kabsch
algorithm. The alignment rotation is only calculated around the
“up” vector to ensure actions do not leave the ground plane. In this
way, ground truth was calculated in a similar way to [Huang et al.
2010a].

Distances between frames in the ground truth were then nor-
malized into the range [0,1]. This provides a ground truth matrix in
which an entry𝐺𝑇 (𝑖, 𝑗) contains the normalized difference between
two frames 𝑖 and 𝑗 . This normalized ground truth matrix is then
turned into a binary classification matrix by applying a threshold.
We use a value of 0.3 as this was the threshold used in [Huang et al.
2010a]. The binary classification matrix 𝐵𝐶 is defined such that
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Figure 3: Flowchart showing synthetic data generation from
an avatar animation.

𝐵𝐶 (𝑖, 𝑗) = 1 if 𝐺𝑇 (𝑖, 𝑗) < 0.3 and 0 otherwise (i.e. 𝐵𝐶 (𝑖, 𝑗) encodes
a binary value indicating if frames 𝑖 and 𝑗 are considered similar).

To ensure the synthetic data set accurately mirrored the inputs
our skeleton-based technique would receive in the real world, the
RGB camera layout of the physical volumetric studio cameras was
re-created in Blender. In our case, this is ~50 inward-facing RGB
cameras in a cylinder-shaped rig. The extrinsic matrix of each
physical camera – calculated during the calibration step of a real
production shoot – was applied to a virtual camera, exactly recre-
ating the physical dimensions of the rig. The FOV of the virtual
cameras were set to be equivalent to the physical cameras, and
the avatar was scaled such that it represented an actor who was
172cm tall. Two-dimensional RGB image sequences of the avatar
animations were generated for each of these camera views. This
provides a dataset comparable to that produced by the volumetric
capture rig in a real-world context, as well as ground-truth data.
An overview of the process used to create a datatset for a single
avatar animation is shown in Figure 3.

4.2 Real data
We also perform an evaluation of our skeleton-based match point
detector on real-world data. Due to the fact that the 3D meshes
in our FVV data are temporally unstructured, it is not possible to
establish a ground truth for this real-world data. As a result, ROC
curve analysis is not appropriate. Instead, we present examples and
heatmaps to visually show how well our SBMPD method works.
Additionally, through real-world data we analyze to what extent our
method could be used on-set to derive near-real-time information
on the quality of match points in filmed scenes, allowing the re-
shooting of takes in which no suitable match points were detected.

5 RESULTS
5.1 Synthetic data
Here, we present the performance of our SBMPD on synthetic data
using ROC curves. Six motion capture performances were used to
animate an avatar. These animations were “walking forward” (45
frames), “start walking” (71 frames), “stop walking” (72 frames),
“jump” (57 frames), “turn 180 degrees” (24 frames) and “walking in
a circle” (67 frames).

A temporal ground truth (TGT) was used that captured the shape
and dynamics of the mesh at each frame. The TGT was calculated

Figure 4: Self-similaritymatrices for the six animations (left
to right: walk forward, start, stop, jump, turn, walk circle).
Top row: temporal ground truth normalized into [0, 1] range.
Center row: binary classification matrix i.e. top row thresh-
olded at 0.3. Bottom row: our method i.e. SBMPD value for
static frame similarity (temporal window size = 0). In the
heatmaps (top and bottom rows) a darker color indicates
frames are more similar.

as in [Huang et al. 2010a]. For each pair of frames across all anima-
tions, the 3D meshes for those frames were aligned, and the average
difference in Euclidean distance and velocity for all vertices was
calculated. The velocity of a vertex was calculated based on its loca-
tion in the following frame. The average vertex Euclidean distance
and velocity were each weighted by 0.5 and summed to provide a
final TGT value. For further details, see [Huang et al. 2010a]. The
self-similarity (i.e. an animation compared against itself) TGT and
resulting binary classification matrix for each clip are shown in
Figure 4.

The SBMPD as described in Section 3 was then used to calcu-
late the difference between all frames in self-similarity sequences.
The values generated by this method for a static frame (temporal
window size = 0) are shown on the bottom row of Figure 4.

To incorporate temporal information, the similarity matrices are
convolved as described in the “temporal filtering” paragraph in
Section 3. This requires choosing an appropriate temporal window
size, with the optimal window size being dependent on the rate
of motion and frame rate of the capture [Huang et al. 2010a]. In
all of our examples, the frame rate was 30fps. We show a range of
temporal window sizes applied to the “walking forward” animation
in Figure 5. As can be seen in Figure 5, the heatmaps show diagonal
lines in both directions. Diagonal lines from top right to bottom left
indicate incorrectly identified match points – these are points in
which the static skeletons appear similar, but where the dynamics
of the joints are different. An example of this in the walk cycle is
when the arms in two frames are swinging in opposite directions,
but the static frames appear similar. As shown in Figure 5, in this
context a temporal window size of two is best to remove these
incorrect matches, without blurring the matrix to the point where
correct similarities cannot be identified (i.e. diagonal lines from top
left to bottom right are preserved). As a result, we conclude that a
window size of two is appropriate for the rate of movement in our
synthetic data, and use this window size in the following analysis.

In Figure 6 an ROC curve shows the performance of our SBMPD,
incorporating temporal information using a temporal window size
of two and comparing against the TGT.
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Figure 5: Above: heatmaps for normalized SBMPDvalues for
self-similarity of “walking forward”, convolved over differ-
ent temporal window sizes. Darker colors indicate frames
are more similar. The differences between the heatmaps are
subtle, so below we show these heatmaps thresholded with
a value of 0.4. This value of 0.4 was chosen by trial and error
to graphically show the effect of the window size.

Figure 6: Self-similarity SBMPD performance as ROC curve
against temporal ground truth (temporal window size = 2).

Discriminator accuracy can be reported statistically using the
area under the curve (AUC), where the area under an ROC curve is
given as a number. An AUC of one indicates ideal discrimination
for a given dataset. In Figures 4 and 6 we have presented only self-
similarity. It is also possible to calculate all pairwise comparisons
between animations. Our SBMPD achieved an average AUC of
0.988 for self-similarity comparisons and 0.972 across all pairwise
comparisons. A complete breakdown of each comparison result is
shown in Table 1.

5.2 Real data
We tested our SBMPD on real data. Eleven shots were filmed. These
were two "walking on treadmill” clips (250 and 362 frames), three
“start walking” clips (47, 54 and 52 frames), two “stop walking” clips
(87 and 63 frames), two “walk arc right” clips (30 and 36 frames), and
two “walk arc left” clips (40 and 37 frames). Although we have a 3D
processed mesh for all frames, unlike with the synthetic data above,
the topology of the mesh is not fixed. As a result, it is not possible
to create a ground truth. Instead of performing a statistical analysis,

Table 1: Area under ROC curves for all pairwise animation
comparisons (temporal window size = 2). As the table would
be symmetric, repeated values are not shown. Blank entries
indicate an ROC curve could not be constructed due to a
lack of acceptable transition frames in the temporal ground
truth.

Animation Walk forward Start Stop Jump Turn Walk circle

Walk forward .980
Start .970 .985
Stop .975 .978 .993
Jump – .996 .996 .988
Turn .963 .915 .938 .982 .993

Walk circle .966 .952 .943 – .961 .988

Figure 7: Normalized SBMPD results for static frame self-
similarity of the real-world walk cycle “walking on tread-
mill 1” (250 frames). Darker colors indicate frames are more
similar.

in this section we present heatmaps and examples of match points
identified by our SBMPD.

As indicated by the names of our clips, we filmed multiple takes
for each action. In practice, it would be reasonable to film this many
takes in a volumetric capture studio. However, due to the cost of
processing, turning each of these shots into a 3D mesh to identify
good match points would likely be prohibitively expensive. Ideally,
our SBMPD could be used to identify which of the similar shots
should be processed to achieve the best end result. To this end, we
also present visually the processed meshes for the best matches
found by our SBMPD, and compare these against the meshes at
match points our SBMPD indicated would be less good.

5.2.1 Using the SBMPD to Identify Match Points. First, we use a
heatmap to show static frame self-similarity for a walk cycle in
Figure 7. In this figure, the repeated motion caused by the nature of
the walk cycle is clearly visible as diagonal lines. This indicates that
OpenPose-based 3D skeletons are a viable way to identify shape
similarity in data captured from the real world.

To incorporate the dynamics of the model, we convolve the
similaritymatrix as discussed in Section 3. Using the same technique
outlined in Section 5.1, we identify that a temporal window size of
two is best for the rate of motion in our real data. We use a temporal
window size of two in the remainder of our analysis.
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Figure 8: “Start walking 1” against 125 frames of “walking
on treadmill 1” (temporal window = 2). Left: normalized
heatmap of SBMPD score between frames. Right: heatmap
thresholded at 0.3, with this value chosen by trial and error.

We start with an example of creating a motion sequence. In this
example, we want the character to begin in a standing position
before walking forwards. For this, we must find a match point to
allow a cut into one of the walking clips from a “start walking” clip.
Figure 8 shows normalized SBMPD scores for transitions between
frames in the “start walking 1” clip and the “walking on treadmill 1”
clip. We use only 125 frames from the latter clip to make the images
easier to understand.

It is interesting to note that this combination of actions could
not have been produced without cutting between two clips – as the
physical size of the capture studio is limited, the actor could not
start walking and then walk more than two steps at normal speed
before leaving the capture volume. Although we film the actor
walking on a treadmill, due to the jolt as the treadmill started and
stopped, we were unable to film a natural looking “start walking”
motion on the treadmill. As such, combining clips would have been
necessary to achieve this sequence.

As can be seen in Figure 8, suitable transitions cannot be identi-
fied for earlier frames in the “start walking” clip. This is as expected;
as the actor was in a neutral standing position before they started
walking, there would not be a suitable cut into a walking clip from
these frames. Later in the “start walking” clip, similarities in the
pose and dynamics of the character between frames are found be-
tween the clips, allowing a reasonable cut to be identified. An entire
sequence composed of “start”, “walk” and “stop” clips is shown in
Figure 1.

5.2.2 Using SBMPD Score to Assess Match Point Quality. As dis-
cussed in Section 3, the SBMPD “score” is the summed Euclidean
distance of each of the 3D skeleton joints, convolved over a tempo-
ral window. As such, the score itself depends on whatever unit is
used in the camera calibration matrices used to create the 3D skele-
tons. As a result, SBMPD scores are only comparable within the
settings of a single calibrated rig. For reference, our SBMPD scores
range from approximately 20 to 250, with a lower score indicating
a better match.

Here, we consider the issue of deciding which clips to process
into 3Dmeshes. By finding thematch points with the lowest SBMPD
scores, we hope that we can find a good join without needing to
process all of the clips. To demonstrate this, we again consider the
example of cutting from a “start walking” clip into one of any of
the walking clips.

Table 2: Lowest SBMPD values for all “start walking” clips
to all “walking” clips. The lowest and highest of these scores
are highlighted in bold. Note that the below scores represent
the best possible match point between each pair of clips, as
identified by our SBMPD.

Clip name Start 1 Start 2 Start 3

Walking on treadmill 1 45 39 36
Walking on treadmill 2 41 36 34

Walk arc right 1 61 58 55
Walk arc right 2 62 57 58
Walk arc left 1 53 54 54
Walk arc left 2 65 67 66

Figure 9: Left: best match point with a SBMPD score of 34.
Right: “worst of the best” match point with a SBMPD score
of 67. It is clear visually that themeshes on the left aremore
similar.

We calculate the SBMPD score for all of these possible pairs.
Each of these pairwise results are shown in Table 2. Based on these
SBMPD values, we identified that the best cut (i.e. match point
with the lowest SBMPD score) is between “Start walking 3” and
“Walking on treadmill 2”. We also identified that the “worst of the
best” match points is between “Start walking 2” and “Walk arc left
2”. By this, we mean that the best match point between these two
clips is worse than the best match point between all other pairs of
clips.

To tell if our SBMPD had correctly identified how “good” these
match points are, we examined the processed meshes. Note that in
a real-world context, these meshes would not be available at the
comparison stage, as they would not have been processed yet. By
looking at the processed meshes as shown in Figure 9, it was clear
visually that the meshes for the match point with the lower SBMPD
score were more similar. As these two match points represent the
best identified frames to cut between their respective clips, the
SBMPD had correctly identified the better match. In practice, this
would allow a decision to be made about which clips to process
based on the 3D skeletons derived from the RGB camera feeds.
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This indicates that decisions can be made about which clips to
process into 3D meshes using the SBMPD score. It is interesting
to note that in the “start, walk, stop” motion sequence shown in
Figure 1, there was no great transition into a “stop walking” clip
available. The best identified transition had an SBMPD score of
45. In all of the “stop walking” clips, our actor was leaning very
slightly backwards, while in the “walking on treadmill” clips they
were leaning slightly forwards. This is difficult to correct for, as
we only rotate around the “up” axis to ensure animations remain
on the ground plane. If we had had access to the 3D skeletons on
set, we could have provided this note to our actor and re-filmed the
motion, allowing a better transition to be available.

6 USING THE SBMPD SYSTEM ON SET
Ideally our SBMPD would work in near real-time. If match point
quality could be assessed on set, clips with poor quality match
points could be re-filmed immediately, potentially saving time and
money if more studio time was required to re-film content at a
later date. Near real-time 3D skeleton creation also has other useful
on-set applications, such as driving rigged avatars to allow the
immersive playback of a clip with 6DoF.

Comparisons between 3D skeletons, and generating the 3D skele-
tons from the 2D skeleton data, are trivial due to the reduced pose
feature vector representation of 25 joint locations per frame. The
longest running task is the processing of the RGB camera feeds into
2D skeletons by OpenPose. OpenPose is accelerated using the GPU.
The input image from each RGB camera is 2048x2048 pixels. On a
PC with an Intel i7-4790@3.6GHz CPU and an NVIDIA GeForce
GTX 980 Ti graphics card, these images are processed by OpenPose
into 2D skeletons at around 8fps. There are around 50 RGB cameras
(𝑛 ≈ 50) in the volumetric capture rig. Using this single PC, the
RGB feeds could be processed at 8/𝑛 ≈0.16fps.

This is likely to be too slow for on-set usage. The OpenPose pro-
cessing can be parallelized, however. As volumetric capture studios
are likely to have large numbers of powerful GPUs available in the
processing farm, it may be practical to have one GPU dedicated
to each RGB camera feed. It may also be possible to reduce the
processing complexity by using a subset of the RGB cameras. In
future work, we intend to explore the impact that the number and
spread of RGB cameras employed has on 3D skeleton and match
point identification accuracy. Additionally, we intend to further
explore the opportunities of using 3D skeletons on set.

7 COMPARISON AGAINST THE
STATE-OF-THE-ART

The state-of-the-art in mesh comparisons produces excellent re-
sults in the context of identifying match points between FVV clips.
However, the cost of processing all of the meshes before compari-
son is likely prohibitively expensive in all but the highest-budget
productions. Our SBMPD is novel in that it attempts to find match
points before mesh processing, allowing good match points to be
identified at a fraction of the cost of state-of-the-art systems.

7.1 Accuracy
As our skeleton comparisons happen before 3D mesh processing,
they do not have access to the 3D mesh during match point identifi-
cation. As a result, it was anticipated that our SBMPD system would
not reach the same levels of accuracy as mesh-based approaches, as
these techniques have more information available to make compar-
isons. Despite this, our method performs well, most likely because
3D skeletons are an excellent descriptor of human pose. Techniques
that result in temporally consistent meshes could be considered to
be the state-of-the-art in regards to identifying match points be-
tween clips [Ahmed et al. 2008; Budd et al. 2013; Cagniart et al. 2010;
Carranza et al. 2003; Huang et al. 2011; Loper et al. 2015; Mustafa
et al. 2016; Tung and Matsuyama 2010]. While these techniques
suffer from other limitations, as discussed in Section 2.1, compar-
isons between frames can be performed easily using the distance
between corresponding vertices [Casas et al. 2012a,b]. As this is
similar to how the ground truth was calculated for our synthetic
data in Section 5.2, temporally consistent meshes may be thought of
as producing ground-truth-level identification of match points. This
means methods employing temporally consistent meshes could be
considered to produce discrimination with an AUC of 1, while our
AUC across all shots was 0.972. In this case, our SBMPD performed
with 2.8% poorer accuracy than the state-of-the-art for the synthetic
dataset. This small performance drop, however, comes with large
improvements in processing time and cost requirements.

7.2 Cost and time
The largest cost associated with a FVV production is likely to be
the mesh processing costs. The cost of mesh processing with cur-
rent state-of-the-art comparison techniques increase proportionally
with the amount of content being compared, while mesh processing
costs for our system are instead tied only to the duration of content
required for the final output. We take as an example the start-walk-
stop sequence created in Section 5.2, which was created from 11
clips totalling around 45 seconds. The commercial rate to process
one minute of high-quality FVV content at the time of writing is
around £60003. To process all of these meshes for comparison would
therefore cost £4500. Using our SBMPD to identify match points
before mesh processing would have resulted in only processing ex-
actly the frames required for the final seven second output, at a cost
of around £700. We must also account for the processing incurred
by our SBMPD. As outlined in Section 6, running OpenPose on
the camera feeds is the processing dominant task. Given 50 render
nodes in the farm, each processing a camera stream, we would ex-
pect OpenPose working at 8fps to process the 45s of footage (1350
frames, given 30fps) in approximately 2.8 minutes. Given the cost
of processing on the render farm is £10/min4, this equates to a cost
of around £28. This means our SBMPD would cost £728, compared
to £4500 for state-of-the-art methods. This represents a 6.2-fold
reduction in cost for this example. It is important to note, however,
that the cost saving can be much larger, depending on the duration
of content captured and required for the final output.

While the time taken to process meshes varies depending on the
speed and number of nodes in the render farm, a recent estimate

3Personal communication with Dimension Studio, 2020
4Personal communication with Dimension Studio, 2020
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from a commercial FVV studio required one hour of processing
per six seconds of content5. Using the same example from Section
5.2, this represents a wait of 7.5 hours using state-of-the-art mesh
comparisons, against our SBMPD that would require just over an
hour to processes the meshes for the final output. Additionally, it
may be possible for our SBMPD to provide near-real-time feedback
on if the correct content had been captured, as discussed in Section 6,
which is not possible with mesh-based comparison techniques.

8 LIMITATIONS AND FUTUREWORK
By applying our SBMPD system to data captured in a volumetric
studio, we have shown that our method works in a real-world
context. It will require more data from a range of motions, actors,
clothing and scenarios, however, before it can be claimed that our
approach works well in practice. As our shape descriptor does
not capture secondary motions, shoots involving loose hair and
clothing may prove problematic for our method. We leave these
investigations as future work.

As discussed in Section 2.2, creating loops and sequences of
FVV clips has two components: identifying good match points, and
blending the clips together at these points. This work focuses on
the former, and we have not attempted to perform mesh blending
on our results. This can make it hard to assess visually how our
method compares to others. In future work, we intend to perform
mesh blending to allow comparisons to be made more easily. We
also do not perform time warping [Kovar and Gleicher 2003], which
has been applied in the area of FVV to improve blends [Boukhayma
and Boyer 2018]. Additionally, we have not created Motion Graphs
automatically using our identified transitions. While such an in-
vestigation would be interesting, here we instead explored how
our SBMPD could be used manually in FVV production workflows.
As indicated in Section 2.2, however, Motion Graph construction
requires identifying match points between clips. As such, state-of-
the-art techniques entail wasted production effort when creating
Motion Graphs that we have shown our system would significantly
reduce, making such techniques usable in practice.

In our synthetic data analysis presented in Section 5.1, our
ground truth data is created from a rigged articulated avatar. There-
fore our synthetic animations do not exhibit secondary motions,
such as cloth dynamics, which would be present in real data. Using
a different dataset that simulated hair and cloth dynamics might
improve ecological validity.

We have compared our results against the state-of-the-art in
match-point identification, currently considered to be temporally
consistent meshes [Casas et al. 2012a,b]. These techniques, however,
suffer from other issues such as artifacts during large or rapid shape
changes, as discussed in Section 2.1. A comparison against other
techniques, such as Shape Histograms [Huang et al. 2010a], would
be useful to further illuminate the trade-offs between cost, accuracy
and final output quality. We intend to do this in future, either with
help from the authors or by re-implementing their work.

Our SBMPD system achieves high ROC accuracy against the
ground truth, and performs well on real-world data based on visual
inspection. Due to the highly reduced feature representation used
– only 25 joint positions of the 3D skeleton are stored per frame

5Personal communication with Dimension Studio, 2020

– it is unlikely that our SBMPD system will ever be as accurate
as comparisons performed on the processed mesh. One possible
approach to improve the results would be to take a hybrid approach,
where the SBMPD is used to identify a small number of candidate
match points, which are then processed into 3D meshes for more
accurate comparison. OpenPose can also be used to identify fin-
ger positions and facial expressions, which could be incorporated
into SBMPD comparisons. Additionally, it may be possible to use
information from the 3D skeletons to allow comparisons using 2D
image metrics, such as comparing between interpolated RGB views.
We leave these investigations as future work.

Our mechanism to turn 2D skeletons into 3D skeletons is very
simple. More robust 3D skeleton tracking could be employed. This
could involve making more use of the 2D joint identification confi-
dence values to weight their contribution to the 3D joint positions,
or by performing temporal filtering. Both of these have previously
been investigated in the context of 3D skeleton tracking from multi-
view RGB cameras [Ohashi et al. 2018; Schwarcz and Pollard 2018].

A major advantage of our system is the time saved against state-
of-the-art techniques and the potential of deploying a near-real-
time version on set. A qualitative evaluation of how these improve-
ments impact the content production pipeline would improve our
understanding of how these techniques can be deployed in practice.

9 CONCLUSION
In this work, we considered the use of 3D skeletons to improve the
FVV production pipeline. FVV is an increasingly common way to
produce immersive content. Despite this, it has a number of limi-
tations, including cost, processing time, and a lack of interactivity
caused by the content being fixed at the point of filming. To reduce
the amount of content that needs to be processed, it may be possible
to reuse content through motion loops. To improve interactivity,
previous works have explored how to create motion sequences
from clips of FVV content. These works, however, have identified
points to cut between clips by comparing the 3D meshes. As the
main cost associated with FVV production is in creating these 3D
meshes, we have argued that performing these comparisons earlier
in the production pipeline could reduce cost and processing time.
To this end, we evaluated the use of 3D skeletons derived from the
2D camera views using OpenPose to identify cut points between
FVV clips.

We analyzed the performance of our method on synthetic data
using ROC curves. Our method produced good results, achieving
an average AUC of 0.988 for self-similarity comparisons and 0.972
across all pairwise comparisons. We also demonstrated through
examples that our technique works well on real-world data. Al-
though our SBMPD performed with 2.8% poorer accuracy than the
state-of-the-art for our synthetic dataset, cost and processing time
requirements increase with the duration of the final output rather
than the compared content. In a real-world example, this translated
to a 6.2-fold improvement. Despite the fact that 3D skeletons do
not capture secondary motions such as clothing and loose hair, we
believe our results indicate that this method has great potential to
improve the FVV production pipeline in practice.
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