Capacity building on dimensioning, design and operation of small-scale pneumatic dryers

Dr Marcelo Precoppe

Crop Postharvest Technologist | Food and Markets Department | Natural Resources Institute | Faculty of Engineering and Science | University of Greenwich

Background

The most suitable types of equipment available for drying cassava is a pneumatic dryer. Stateof-the-art industrial pneumatic dryers are available and are used to process cassava in many tropical countries. However, in Africa, most cassava processing centres are small enterprises and their expansion have been constrained by the lack of a small-scale pneumatic dryer. The objective of this 30-days-long trip was to build capacity on an equipment manufacturer in Ghana on how to dimension, design and install small-scale pneumatic dryers. The activities were in cooperation with the Food Research Institute (FRI) of the Council for Scientific and Industrial Research (CSIR) and supported by Cassava: Adding Value for Africa, Phase II (CAVAII), plus the CGIAR Research Program on Roots, Tubers and Banana (RTB). The participants were Hormeku Engineering Works, an equipment manufacturer, and Tropical Starch Company Limited, a processing centre.

Dryer dimensioning and design

The first activity on capacity building on dryer dimensioning and design was an introductory workshop about drying fundamentals. Table 1 shows the workshop syllabus and Appendix 1 shows a selection of the slides used.

Pneumatic dryers	Burners	Heat exchangers	Feeders' hopper
Main components	Fuel sources	Heat transfer area	Solid flow properties
Moisture content Energy consumption	Heating power	Double-pipe, multi-pipe and shell-and-tube heat exchangers	Arching Ratholing
Throughput capacity		Heating power	
Feeding mechanism	Blowers	Drying duct	Cyclone separator
Solid mass flow rate	Types of impellers	Diameter	Standard designs
Agglomeration	Air mass flow rate	Length	Collection efficiency
Uniformity	Air velocity	Solid temperature and	Parallel installation
Types of feeders	Pressure drop	humidity Air temperature and	Series installation
		humidity	Dust control

Table 1 Syllabus of the workshop "Drying fundamentals" held at Food Research Institute, CSIR, Ghana.

Following the introductory workshop, the first step on dimensioning the dryer was to investigate the processing centres' desired throughput capacity. Several processing centres in Ghana were contacted and it was concluded that most of them use flatbed dryers, processing on average, 250 kg of fresh roots per hour. A workshop was thereafter, conducted helping participants to learn how to determine the correct drying conditions and the right dimensions of the drying duct. Calculation steps are shown in Appendix 2 and the results presented in Table 2.

Table 2 Results	from calculating	g drying conditions and	d dimensioning the drying duct.

Wet solid feeding rate	Wet solid moisture	Dried solid moisture	Water evaporation rate
125.00 kg/h	40% (wet basis)	12% (wet basis)	39.77 kg/h
Drying air mass flow rate	Heat input	Air enthalpy at dryer inlet	Air temperature at dryer inlet
767.81 kg/h	195.67 MJ/h (54.35 kW)	254.84 kJ/kg	208.00 °C
Air volume flow rate	Drying duct diameter	Residence time	Length of the drying duct
802.08 m³/h	0.1883 m	2.48 seconds	17.37 m

After calculating the drying conditions and the size of the drying duct, it was possible to dimension the cyclone. Different cyclone standards were used for the calculations and thereafter selected based on their predicted collecting efficiency, but also considering the predicted pressure drop (Table 3). Calculation steps are presented in Appendix 3. The Stairmand standard design was chosen and its dimensions are shown in Figure 1.

Cyclone design standard	Predicted collecting efficiency (%)	Predicted pressure drop (Pa)
Stairmand HE	86.2	170
Lapple LE	86.1	150
Swift LE	86.1	150
Peterson/Whitby LE	85.8	160
Swift HE	85.4	160

Table 3 Predicted collecting efficiency and pressure drop for different cyclone standards.

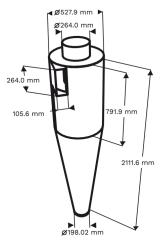


Figure 1 Results from dimensioning the cyclone using the Stairmand standard.

The next step was to dimension the blower. Appendix 4 shows a selection of the slides used in the workshop "Fan design fundamentals". To make calculations easier, several online resources were used, as shown in Appendix 5. Figure 2 shows the obtained blower design.

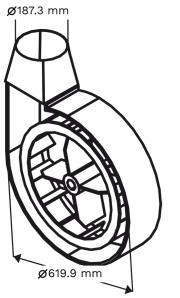
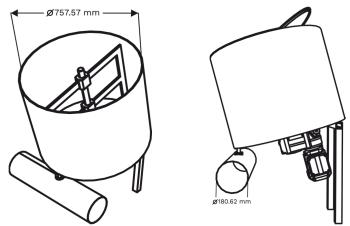



Figure 2 Results from dimensioning the blower.

For the feeder, a workshop was held explaining the main steps on how to design it. Some of the slides used are shown in Appendix 6. Design of feeders requires laboratory analysis of the wet solid properties, for this reason, this task was carried out in the UK by the Department of Chemical Engineering, with the support from The Wolfson Centre for Bulk Solids Handling Technology, both at the University of Greenwich. Figure 3 shows the obtained design.

Figure 3 Feeder designed by the Department of Chemical Engineering, with the support from The Wolfson Centre for Bulk Solids Handling Technology, University of Greenwich.

Because of time constraints, no workshop on the design of heat exchangers was held. Instead, Arnaud Chapuis and Michel Rivier, both from CIRAD, will design a suitable shell-and-tube heat exchanger and provide the drawings. After that, the heat exchanger will be built in November by Hormeku Engineering. In the meantime, a multi-pipe heat exchanger, that has been manufactured for another dryer, will be used (Figure 4).

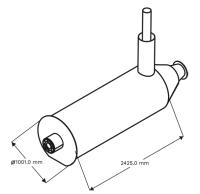


Figure 4 Heat exchanger to be used while awaiting the design from CIRAD.

Dryer construction

After dimensioning the dryer, the next step was choosing the construction material. All parts that contact with the drying solid will be manufactured using food-grade stainless steel. Effort was made to keep the cost low, and to use locally available resources. Table 4 shows the expected material cost, and Table 5 shows the expected manufacturing cost. Combined, the total cost is USD 11,825.00, but it does not include the heat exchanger. Final cost is expected to be USD 15,000.

	c		
Table 4 Material cost	for the construction of	he pheumatic dryer	(heat exchanger not included).

Material	Quantity	Unit price (USD)	Total price (USD)
1 mm food grade stainless steel plate	6	180.00	1,080.00
2 mm food grade stainless steel plate	8	290.00	2,320.00
6 mm food grade stainless steel plate	1	880.00	880.00
6 mm low-carbon steel plate	2	90.00	180.00
1.5 mm low-carbon steel plate	3	30.00	90.00
70x70x6 mm angle iron	2	50.00	100.00
50x50x3 mm square pipe	2	30.00	60.00
60 mm stainless steel shaft	1	260.00	260.0
50 mm bearing	2	250.00	500.00
0.8 mm aluminium sheet	3	350.00	1,050.00
15 HP motor	1	380.00	380.00
1 HP geared motor	1	170.00	170.00
Diesel burner	1	1,250.00	1,250.00
Control box	1	315.00	315.00
50 mm mineral wool roll	7	40.00	280.00
		TOTAL	8.915.00

3

Table 5 Manufacturing cost of the pneumatic dryer (heat exchanger not included)).
---	----

Material	Quantity	Unit price (USD)	Total price (USD)
Argon gas (tank)	2	270.00	540.00
Filler rod (package)	1	125.00	125.00
Cutting disc (unit)	10	3.00	30.00
Gasoline (litres)	10	5.00	50.00
Grinding disc (unit)	5	3.00	15.00
Paint (litres)	10	15.00	150.00
Workmanship (hours)	400	5.00	2,000.00
		TOTAL	2,910.00

Dryer installation

A visit was made to Tropical Starch, the processing centre where the dryer will be installed. Measurements of the building were taken, and it was agreed where to place the equipment. However, it was observed that the height of the roof was low, making not possible to fit the dryer inside the building. A common solution would be to make an opening through the ceiling for the drying duct to pass. However, this would require a loading crane for its installation. The availability and cost of renting such lifting equipment were investigated. It was concluded not to be feasible, particularly on regions far from Accra. The dryer was therefore redesigned, and the drying duct segmented, allowing it to be installed inside the building, without the need for a lifting equipment. Figure 5 shows the building where the dryer will be installed at Tropical Starch and Figure 6 shows the segmented drying duct, that allows assembly without a crane.

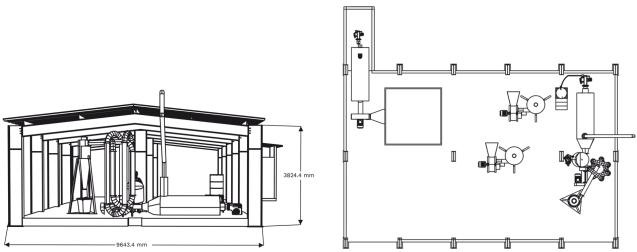


Figure 5 Building at Tropical Starch where the dryer will be installed.

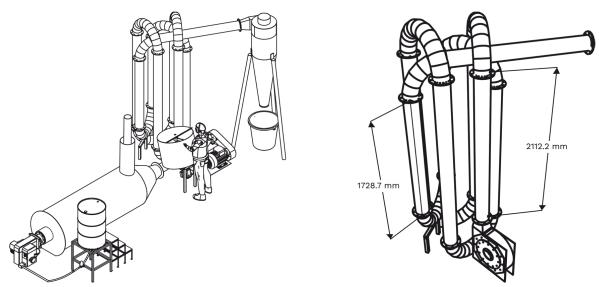


Figure 6 Pneumatic dryer designed with a segmented drying duct for easy installation.

For thermal insulation, to reduce costs, instead of covering each section of the drying duct with mineral wool, it was decided to use one single cover, as shown in Figure 7.

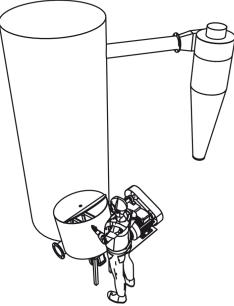
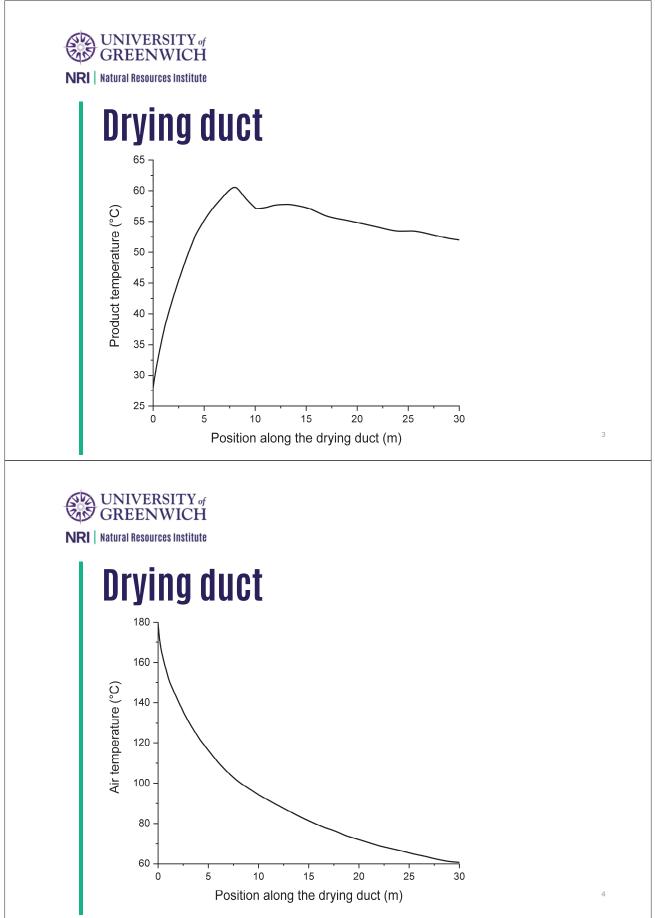


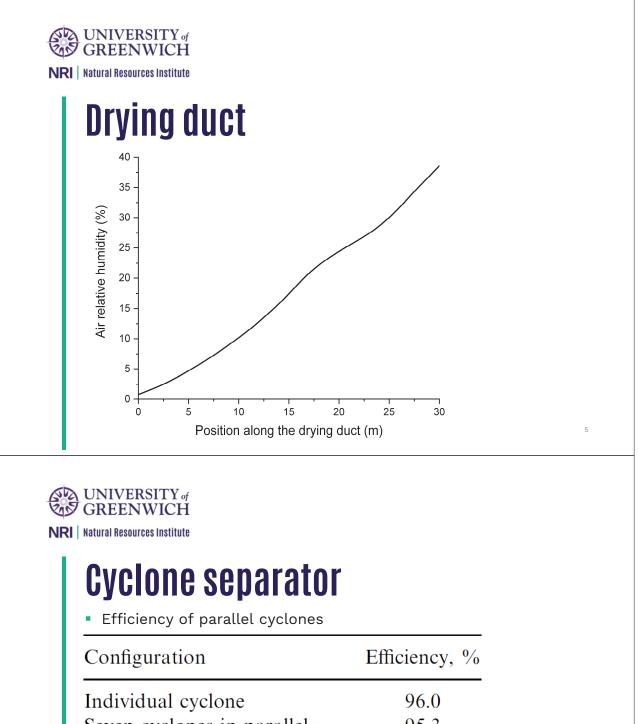
Figure 7 Drying duct insulated with a single cover of mineral wool, shield by an aluminium sheet.

Wrap-up and follow-up activities

A presentation summarizing the capacity building activities done and describing the next steps was made at the Food Research Institute. The presentation was attended by the CAVAII directors who have travelled to Ghana. It included a processing centre virtual tour, that can be watched in Appendix 7 (Adobe Flash Player required).




Figure 8 Presentation summarizing the capacity building activities on dimensioning, design, and installation of pneumatic dryers.


At the time of writing, the dryer is being manufactured at Hormeku Engineering. In October, it will be installed at Tropical Starch and in November, the users will be trained, plus the dryer will be troubleshot. The schedule of the follow-up activities is shown in Table 6. The final report will be delivered in December 2018.

Activities	September 2018	October 2018	November 2018
Dryer construction			
Dryer installation			
User's training			
Troubleshooting			

Table 6 Schedule of the follow-up activities.

Seven cyclones in parallel 95.3 (individual hoppers) Seven cyclones in parallel 94.1 (common hopper) Fourteen cyclones in parallel 92.2 (common hopper)

Source: Koffman (1953)

Design of small-scale pneumatic dryers for cassava processing Dr Marcelo Precoppe | Crop Postharvest Technologist | Natural Resources Institute | Faculty of Engineering and Science | University of Greenwich

Determine the capacity of the processing centre: Make sure the equipment is of suitable capacity to the user

Calculate the wet solid feeding rate: Considering the capacity of the processing centre: Mws=125 kg/h

Determine with the user the moisture content (wet basis) of the wet solid: ${\tt MCws=40\%}$

Determine with the user the moisture content (wb) of the dried solid: ${\sf MCds=12\%}$

Convert wet solid moisture content from wet basis to dry basis: Xws=MCws/(100-MCws) Xws=**0.666666666666667 kg/kg**

Convert dried solid moisture from wet basis to dry basis: Xds=MCds/(100-MCds) Xds=**0.13636 kg/kg**

Calculate the dry matter mass flow rate: Mdm=Mws-(Mws*MCws) Mdm=**75 kg/h**

Calculate dried solid mass flow rate: Mds=Mdm+(Xds*Mdm) Mds=**85.2273 kg/h**

Calculate water evaporation rate: Mw=Mdm*(Xws-Xds) Mw=39.7727 kg/h

THE QUEEN'S ANNIVERSARY PRIZES For Higher and Further Education 2015

University of Greenwich, a charity and company limited by guarantee, registered in England (reg. no. 986729). Registered Office: Old Royal Naval College, Park Row, Greenwich, London SE10 9LS. Medway Campus

Central Avenue, Chatham Maritime, Kent ME4 4TB United Kingdom

Determine the ambient air absolute humidity:

Ambient Temperature: 30 °C Ambient relative humidity: 60% Yamb=**16.03 g/kg**

Determine dryer outlet absolute humidity: Dryer outlet temperature: 60 °C

Dryer outlet relative humidity: 50% Yout=**67.83 g/kg**

Determine the required air mass flow:

Mair=Mw/(Yout-Yamb) Mair=**767.813 kg/h**

Calculate the energy needed to evaporate 39.7727 kg of water per hour:

Use 2.5 MJ/kg as latent heat of water vaporization, based on the cassava heat of sorption: Qw=Mw*2.5

Qw= 99.4318 MJ/h

Calculate the heat used to increase solid temperature:

Use cassava specific heat 4.40112 kJ/kg K: Temperature of the wet solid: 23.90 °C Temperature of the dried solid: 52 °C Qts=Mdm*4.40112 *(Tds-Tws) Qts=**9.27536 MJ/h**

Calculate the required heat input:

Multiply the result by 1.8 to account for other losses Qin=(Qw+Qts)*1.8 Qin=**195.673 MJ/h**

Calculate the dryer inlet required air enthalpy: Hin=Qin/Mair Hin=254.844 kJ/kg

Determine dryer inlet air temperature:

Enthalpy should be 254.844 kJ/kg Absolute humidity should be 16.03 g/kg RHin=0.139% Tin= **208 °C**

THE QUEEN'S ANNIVERSARY PRIZES For Higher and Further Education 2015

University of Greenwich, a charity and company limited by guarantee, registered in England (reg. no. 986729). Registered Office: Old Royal Naval College, Park Row, Greenwich, London SE10 9LS.

Medway Campus

Central Avenue, Chatham Maritime, Kent ME4 4TB United Kingdom

Determine the absolute humidity of the air at the dryer outlet:

Dryer outlet temperature: 60 °C Dryer outlet relative humidity: 50% Yout=**67.83 g/kg**

Calculate the humid volume of the air at the dryer outlet:

Dryer outlet temperature (Tout): 60 °C Absolute humidity of the air at the dryer outlet (Yout): 67.83 g/kg VH=(0.00283+0.00456*Yout)*(273+Tout) VH=**1.04463 m³/kg**

Calculate the air volume flow rate:

Air mass flow rate (Mair): 767.813 kg/h VL=Mair*VH VL=**802.080 m³/h**

Calculate the are of the drying duct:

Air velocity of the air at the drying duct (Vair): 8 m/ IA=(VL/Vair)/3600 IA=**0.027850 m²**

Calculate the diameter of the drying duct: ID=2*(SQRT(IA/PI))

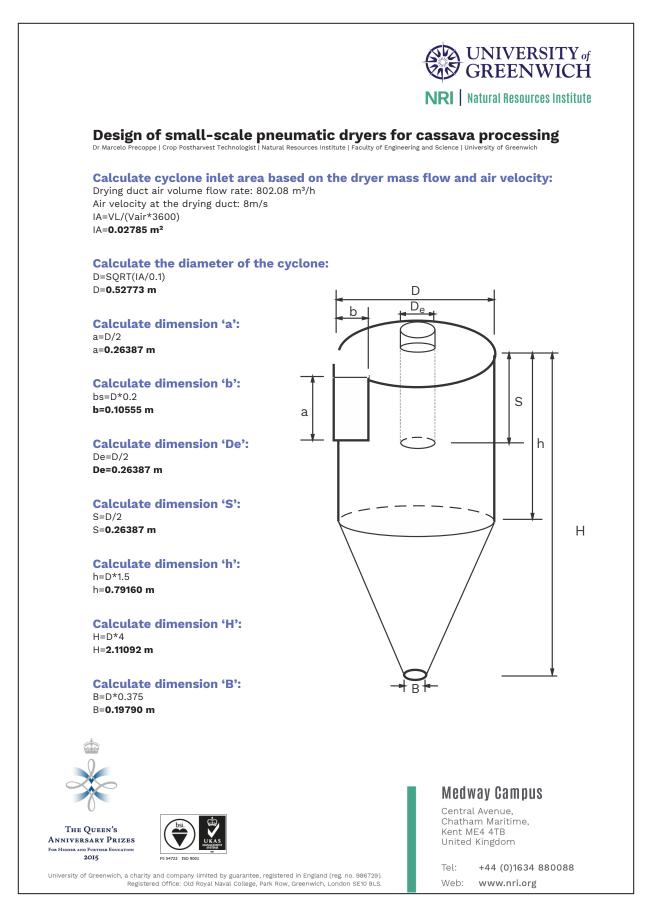
ID= **0.18831 m**

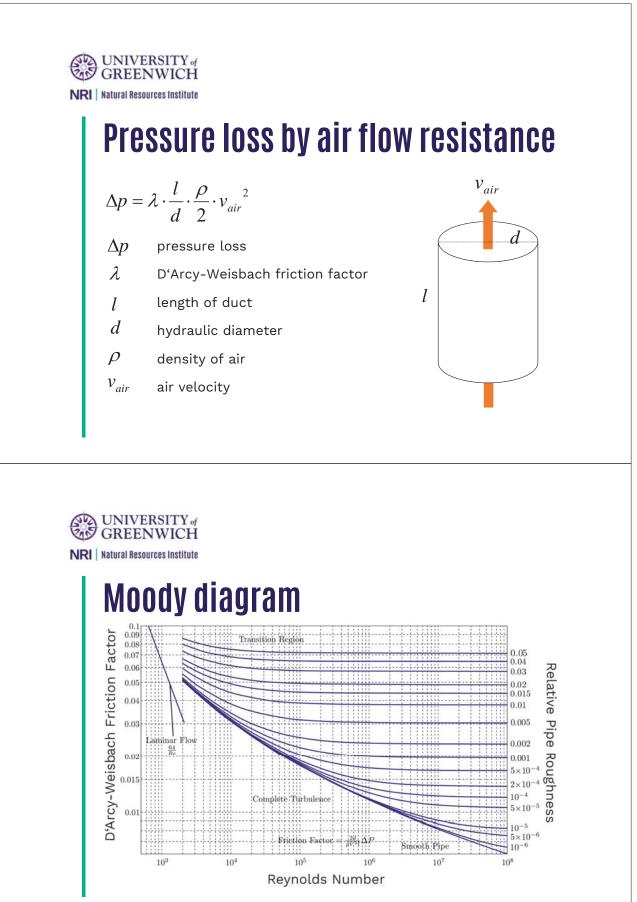
Determine residence time:

Water evaporation rate (Mw): 39.7727 kg/h RT=0.03917+0.03324*exp((Mw-2.56642)/8.65914) **RT=2.48104 seconds** (required residence time to evaporate 39.7727 kg/h)

Calculate the required length to the drying duct:

Velocity of the solid in the drying duct (Vs): 7 m/s Ldc=Vs*RT Ldc=**17.3673 m**


THE QUEEN'S ANNIVERSARY PRIZES For Higher and Further Education 2015



University of Greenwich, a charity and company limited by guarantee, registered in England (reg. no. 986729). Registered Office: Old Royal Naval College, Park Row, Greenwich, London SE10 9LS.

Medway Campus

Central Avenue, Chatham Maritime, Kent ME4 4TB United Kingdom

GREENWICH

Reynolds number

$$\operatorname{Re} = \frac{\rho \cdot v_{air} \cdot d}{\mu}$$

d hyraulic diameter (m)

 V_{air} air velocity (m/s)

$$ho$$
 density of air (kg/m³)

 μ dynamic viscosity (Pa s)

$$\operatorname{Re} = \frac{v_{air} \cdot d}{v}$$

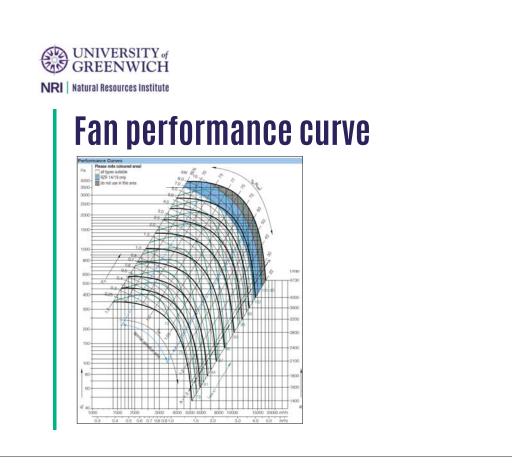
d hyraulic diameter (m)

 V_{air} air velocity (m/s)

V kinematic viscosity (m²/s)

4

With the contrast of the cont


GREENWICH

Relative pipe roughness

$$RPR = \frac{2}{3}$$

 ${\mathcal E}$ roughness of pipe

Material	ε (mm)
Concrete, coarse	0.25
Concrete, new smooth	0.025
Drawn tubing	0.0025
Glass, Plastic Perspex	0.0025
Iron, cast	0.15
Sewers, old	3.0
Steel, mortar lined	0.1
Steel, rusted	0.5
Steel, structural or forged	0.025
Water mains, old	1.0

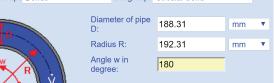
NRI | Natural Resources Institute

a a		e drop ca				<u>55501</u>					
Group: Straight pipes		Subgroup: d	circular		•						
	Diamet D:	er of pipe	40		mm	•					
	Length	of pipe L:	2		m	T					
Pipe roughnes	ss: 0	15			mm	•					
r ipo rouginio	0.	10									
Flow medium:	/	Air at 119	9 °C (/	Averag	ge: 30; 2	08)					
Condition:		liquid	• ga	iseous							
			0								
Mass flow: The second secon		19.195	325		kg/h	V					
Mass flow of 76	7.813 kg	g/h divid	ed be	etweeı	n the 40	0 pip	es: 19	.1953	325 k	g/h	
Weight density:		0.87872	2		kg/m³	▼					
		0.0 (440	~~ ·					~ ~ ~			
	ir at 119	°C (119	°C is	the a	verage	betw	veen 3	30 °C	and	208 °C)	
		°C (119 22.74955			verage 0-6 Pa s		veen 3	30 °C	and	208 °C)	
Density of the a Dynamic Viscosi	ty: ▼ 2	22.74955	5	1	0-6 Pa s	•					nigewerte/luft_e.htr
Density of the a Dynamic Viscosi	ty: ▼ 2 nic visco	22.74955	5	1	0-6 Pa s ne calc	•					nigewerte/luft_e.htr
Density of the a Dynamic Viscosi Calculate dynar	ty: ▼ 2 nic visco 1020	22.74955	5	1 ne onli	0-6 Pa s ne calc ar	ulato					nigewerte/luft_e.htr
Density of the a Dynamic Viscosi Calculate dynar Pressure: Temperature:	ty: ▼ 2 nic visco 1020 119	22.74955 osity usi	5 ng th	1 Milliba Celsiu	0-6 Pa s ne calc ar us ▼	ulato					nigewerte/luft_e.htr
Density of the a Dynamic Viscosi Calculate dynar Pressure: Temperature:	ty: ▼ 2 nic visco 1020	22.74955 osity usi	5 ng th	1 Milliba Celsiu	0-6 Pa s ne calc ar	ulato					nigewerte/luft_e.htr
Density of the a Dynamic Viscosi Calculate dynan Pressure: Temperature: Dy	ty: ▼ 2 nic visco 1020 119 namic visco	22.74955 osity usi	5 ng th	1 Milliba Celsiu	0-6 Pa s ne calc ar us ▼	ulato					nigewerte/luft_e.htr
Density of the a Dynamic Viscosi Calculate dynan Pressure: Temperature: Dy	ty: ▼ 2 nic visco 1020 119 namic visco	22.74955 osity usi	5 ng th	1 Milliba Celsiu	0-6 Pa s ne calc ar us ▼	ulato					nigewerte/luft_e.htr
Density of the a Dynamic Viscosi Calculate dynam Pressure: Temperature: Dy Pressure (inlet, abs	ty: V 2 nic visco 1020 119 namic visco	22.74955 osity usi sity: 22.74	5 ng th	1 Milliba Celsiu	0-6 Pa s ne calc ar us ▼	ulato					nigewerte/luft_e.htr
Density of the a Dynamic Viscosi Calculate dynam Pressure: Temperature: Dy Pressure (inlet, abs 1020 Temperature (inlet): 30	ty: V 2 nic visco 1020 119 namie visco .): mbar	22.74955 osity usi sity: 22.74	5 ng th	1 Milliba Celsiu	0-6 Pa s ne calc ar us ▼	ulato					nigewerte/luft_e.htr
Density of the a Dynamic Viscosi Calculate dynar Pressure: Temperature: Dy Pressure (inlet, abs 1020 Temperature (inlet):	ty: V 2 nic visco 1020 119 namie visco .): mbar	22.74955 osity usi sity: 22.74	5 ng th	1 Milliba Celsiu	0-6 Pa s ne calc ar us ▼	ulato					nigewerte/luft_e.htr

NRI | Natural Resources Institute

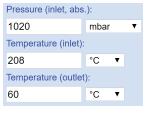
Pressure drop: 0.25 mbar Pressure drop: 25 mbar Pressure drop at the heat exchange: 1000 Pa (25*40) Calculate pressure loss at the straight section Use the online pressure drop calculator: www.pressure-drop Group: Straight pipes Subgroup: ircular Pipe roughness: 0.15 mm mm Pipe roughness: 0.15 mm mm Flow medium: Air at 134 °C (Average: 208; 60) Condition: liquid gaseous Mass flow: 767.813 kg/h Weight density: 0.84634 kg/m³ Dynamic Viscosity: 23.38855 10-6 Pa s Calculate dynamic viscosity using the online calculator: Dynamic viscosity: 23.38855 10-6 Pa s Pressure: 1020 Millibar Pressure: 1020 mbar Celsius Using the o	Pressure drop: 25 Pa per pipe Number of pipes: 40 Pressure drop at the heat exchange: 1000 Pa (25*40) Calculate pressure loss at the straight section Use the online pressure drop calculator: www.pressure-d Group: Straight pipes Subgroup: circular Diameter of pipe 188.31 mm V Length of pipe 1: 17.3673 m V Pipe roughness: 0.15 mm V Flow medium: Air at 134 °C (Average: 208; 60) Condition: Iiquid gaseous Mass flow: V 767.813 kg/h V Veight density: 0.84634 kg/m ³ V Density of the air at 134 °C (134 °C is the average between Dynamic Viscosity: V 23.38855 10-6 Pa s V Calculate dynamic viscosity using the online calculator: w Dynamic viscosity: 23.38855 [10 ⁻⁶ (Pa s)] Pressure: 1020 Millibar V Temperature: 134 Celsius V Pressure (inlet, abs.): 1020 mbar V Expensions (inlet, abs.): 1020 mbar V Temperature (culet): 60 °C V						
Number of pipes: 40 Pressure drop at the heat exchange: 1000 Pa (25*40) Calculate pressure loss at the straight section Use the online pressure drop calculator: www.pressure-d Group: Straight pipes V Subgroup: circular V Diameter of pipe 188.31 mm V Length of pipe L: 17.3673 m V Pipe roughness: 0.15 mm V Flow medium: Air at 134 °C (Average: 208; 60) Condition: Iliquid Gaseous Mass flow: V 767.813 kg/h V Veight density: 0.84634 kg/m ³ V Density of the air at 134 °C (134 °C is the average between Dynamic Viscosity: V 23.38855 10-6 Pa s V Calculate dynamic viscosity using the online calculator: w Dynamic viscosity: 23.38855 [10 ⁻⁶ Pa s V Calculate dynamic viscosity using the online calculator: w Dynamic viscosity: 23.38855 [10 ⁻⁶ Pa s V Calculate dynamic viscosity using the online calculator: w Dynamic viscosity: 23.38855 [10 ⁻⁶ Pa s V Calculate dynamic viscosity using the online calculator: w Dynamic viscosity: 23.38855 [10 ⁻⁶ Pa s V Calculate dynamic viscosity using the online calculator: w Dynamic viscosity: 23.38855 [10 ⁻⁶ Pa s V Calculate dynamic viscosity using the online calculator: w Dynamic viscosity: 23.38855 [10 ⁻⁶ Pa s V Calculate dynamic viscosity using the online calculator: w Dynamic viscosity: 23.38855 [10 ⁻⁶ Pa s V Calculate dynamic viscosity using the online calculator: w Dynamic viscosity: 23.38855 [10 ⁻⁶ Pa s V Calculate dynamic viscosity using the online calculator: w Dynamic viscosity: 23.38855 [10 ⁻⁶ Pa s V] Pressure: 1020 Millibar V Temperature: 134 Celsius V	Number of pipes: 40 Pressure drop at the heat exchange: 1000 Pa (25*40) Calculate pressure loss at the straight section Use the online pressure drop calculator: www.pressure-d Group: Straight pipes Subgroup: circular Pipe roughness: 0.15 mm Flow medium: Air at 134 °C (Average: 208; 60) Condition: Ilquid gaseous Mass flow: 767.813 kg/h Veight density: 0.84634 kg/m ³ Density of the air at 134 °C (134 °C is the average between Dynamic Viscosity: 23.38855 10-6 Pa s Calculate dynamic viscosity using the online calculator: w Dynamic viscosity: 23.38855 [10 ⁻⁶ (Pa s Pressure: 1020 Millibar Pressure: 134 Celsius Pressure: 134 Celsius Pressure (inlet, abs.): 1020 mbar Temperature (outlet): 60 cc Superature (outlet): 1020 mbar Temperature (outlet): 1020 mbar 1020 mbar 102	Pressure of	drop:		0	.25 mb	ar
Use the online pressure drop calculator: www.pressure Group: Straight pipes Subgroup: circular Diameter of pipe D: Length of pipe L: 17.3673 m Pipe roughness: O.15 Pipe roughness: Pipe roughnes	Use the online pressure drop calculator: www.pressure- Group: Straight pipes Subgroup: circular Diameter of pipe 188.31 mm Condition: Pipe roughness: 0.15 mm Pipe roughness: 0.238855 10-6 Pa s Pipe roughness: 0.238855 10-6 Pa	Number of pipe	es: 40		ge: 1000) Pa (25*	40)
Diameter of pipe D: Length of pipe L: 188.31 mm Pipe roughness: 0.15 mm Flow medium: Air at 134 °C (Average: 208; 60) Condition: liquid gaseous Mass flow: ▼ 767.813 kg/h Weight density: 0.84634 kg/m³ ▼ Density of the air at 134 °C (134 °C is the average betweet Dynamic Viscosity: 23.38855 10-6 Pa s ▼ Calculate dynamic viscosity using the online calculator: Ω Dynamic viscosity: 23.38855 [10 ⁻⁶ (Pa s)] 1 Pressure: 1020 Millibar ▼ Temperature (inlet; 134 Celsius ▼ 1020 mbar<	Pipe roughness: 0.15 Pipe roughness: 0.15 Mass flow: 0.15 Iquid gaseous Mass flow: 767.813 Kg/h Veight density: 0.84634 Kg/m ³ Veight density: 0.84634 Valight density: 23.38855 10-6 Pa s Dynamic viscosity: 23.38855 [10 ²⁰ mbar Temperature 134 Celsius Pressure (inlet, abs.): [1020 mbar Temperature (outlet): 203 c Co	Use the online	pressure	drop calc	ulator:		
D: 100.31 Length of pipe L: 17.3673 Pipe roughness: 0.15 mm Flow medium: Air at 134 °C (Average: 208; 60) Condition: liquid • gaseous Mass flow: ▼ 767.813 Kg/h ▼ Weight density: 0.84634 kg/m³ ▼ Density of the air at 134 °C (134 °C is the average betwee Dynamic Viscosity: 23.38855 10-6 Pa s ▼ Calculate dynamic viscosity using the online calculator: Dynamic viscosity: 23.38855 [10 ⁻⁶ (Pa s)] Pressure: 1020 Millibar Pressure (inlet, abs.): 1020 mbar ▼ Temperature (inlet): 208 °C ▼ Temperature (outlet):	Pipe roughness: 0.15 Pipe roughness: 0.15 Imm Imm Flow medium: Air at 134 °C (Average: 208; 60) Condition: Iquid • gaseous Mass flow: 767.813 Kg/h Imm Veight density: 0.84634 Usinght density: 0.84634 Usinght density: 0.84634 Value Intervention Dynamic Viscosity: 23.38855 10-6 Pa s Imm Calculate dynamic viscosity using the online calculator: Dynamic viscosity: 23.38855 Intervention Intervention Pressure: 1020 Millibar Temperature 134 Celsius Pressure (inlet, abs.): 1020 mbar Temperature (outlet): 60 °C 60 °C Temperature (outlet): 60 °C	Group: Straight pipe	s ▼ S	Subgroup: circ	cular	•	
Pipe roughness: 0.15 mm<▼	Pipe roughness: 0.15 Pipe roughness: 0.15 Imm Imm Flow medium: Air at 134 °C (Average: 208; 60) Condition: liquid gaseous Mass flow: 767.813 Kg/h Imm Veight density: 0.84634 Kg/m ³ Imm Density of the air at 134 °C (134 °C is the average betweet Dynamic Viscosity: 23.38855 10-6 Pa s Calculate dynamic viscosity using the online calculator: Imperature: 134 Celsius Pressure: 1020 Millibar Temperature: 134 Celsius Pressure: Intervise			er of pipe 18	38.31	mm	•
Flow medium: Air at 134 °C (Average: 208; 60) Condition: liquid gaseous Mass flow: ▼ 767.813 kg/h ▼ Weight density: 0.84634 kg/m³ ▼ Density of the air at 134 °C (134 °C is the average between Dynamic Viscosity: ▼ 23.38855 10-6 Pa s ▼ Calculate dynamic viscosity using the online calculator: y Dynamic viscosity: 23.38855 [10 ⁻⁶ (Pa s)] Pressure: 1020 Millibar ▼ Temperature: 134 Celsius ▼ Pressure (inlet, abs.): 1020 mbar ▼ Temperature (inlet): 208 °C ▼	Flow medium: Air at 134 °C (Average: 208; 60) Condition: Iquid • gaseous Mass flow: 767.813 Kg/h Veight density: 0.84634 Density of the air at 134 °C (134 °C is the average betweet Dynamic Viscosity: 23.38855 Dynamic Viscosity: 23.38855 Io-6 Pa s Calculate dynamic viscosity using the online calculator: Dynamic viscosity: 23.38855 Io ⁶ (Pa s)] Pressure: 1020 Millibar Temperature: 134 Celsius Io20 mbar Temperature (outlet): Go °C Co Versers's Star Prizzes Versers's Verserserse Star Prizzes Io30 Io30 Io40 Io50		Length	of pipe L: 17	7.3673	m	•
Flow medium: Air at 134 °C (Average: 208; 60) Condition: Iiquid ● gaseous Mass flow: ▼ 767.813 kg/h ▼ Weight density: 0.84634 kg/m³ ▼ Density of the air at 134 °C (134 °C is the average betweed Dynamic Viscosity: ▼ 23.38855 10-6 Pa s ▼ Calculate dynamic viscosity using the online calculator: ↓ Dynamic viscosity: 23.38855 [10 ⁻⁶ (Pa s)] Pressure: 1020 Millibar ▼ Temperature: 134 Pressure (inlet, abs.): 1020 mbar ▼ Temperature (inlet): 208 °C ▼ Temperature (outlet):	Flow medium: Air at 134 °C (Average: 208; 60) Condition: Iquid • gaseous Mass flow: 767.813 Kg/h V Veight density: 0.84634 Density of the air at 134 °C (134 °C is the average betweet Dynamic Viscosity: 23.38855 Dynamic Viscosity: 23.38855 Ocho Pas Calculate dynamic viscosity using the online calculator: Dynamic viscosity: 23.38855 Io ^o (Pas) Pressure: 1020 Millibar Pressure: 1020 Mass °C Temperature 134 Celsius Veight contents °C Go °C Star Pressure * Io20 mbar Temperature (outlet): * Go °C * * * * * * * * * * * * * * *	L.					
Flow medium: Air at 134 °C (Average: 208; 60) Condition: □ liquid gaseous Mass flow: ▼ 767.813 kg/h ▼ Weight density: 0.84634 kg/m³ ▼ Density of the air at 134 °C (134 °C is the average betwee Dynamic Viscosity: ▼ 23.38855 10-6 Pa s ▼ Calculate dynamic viscosity using the online calculator: M Dynamic viscosity: 23.38855 [10 ⁻⁶ (Pa s)] Pressure: 1020 Millibar ▼ Temperature: 134 Celsius ▼ Pressure (inlet, abs.): 1020 mbar ▼ Temperature (inlet): 208 °C ▼	Flow medium: Air at 134 °C (Average: 208; 60) Condition: liquid • gaseous Mass flow: 767.813 Kg/h Weight density: 0.84634 Density of the air at 134 °C (134 °C is the average betweet Dynamic Viscosity: 23.38855 Dynamic Viscosity: 23.38855 Io-6 Pa s Calculate dynamic viscosity using the online calculator: x Dynamic viscosity: 23.38855 Io-6 Pa s Calculate dynamic viscosity using the online calculator: x Dynamic viscosity: 23.38855 Io20 Millibar Pressure: 1020 Millibar Temperature (inlet): 208 C Fremperature (outlet): 60 °C Star P RZBS Star P RZBS Image: Image: Image: Image: <						
Condition: Iliquid gaseous Mass flow: T67.813 kg/h T Weight density: 0.84634 kg/m ³ T Density of the air at 134 °C (134 °C is the average between Dynamic Viscosity: 23.38855 10-6 Pa s T Calculate dynamic viscosity using the online calculator: w Dynamic viscosity: 23.38855 [10 ⁻⁶ (Pa s)] Pressure: 1020 Millibar T Temperature: 134 Celsius T Pressure (inlet, abs.): 1020 mbar T Temperature (inlet): 208 °C T	Condition: Iiquid • gaseous Mass flow: ▼ 767.813 kg/h ▼ Weight density: 0.84634 kg/m³ ▼ Density of the air at 134 °C (134 °C is the average between Dynamic Viscosity: ▼ 23.38855 10-6 Pa s ▼ Calculate dynamic viscosity using the online calculator: w Dynamic viscosity: 23.38855 [10 ⁻⁶ (Pa s)] Pressure: 1020 Millibar ▼ Temperature: 134 Celsius ▼ Pressure (inlet, abs.): 1020 mbar ▼ Temperature (outlet): 208 °C ▼ Temperature (outlet): 60 °C ▼ WEEN'S EXPTRZES VEEN'S Surger Bigson Figure (Inlet, abs.): 1020 mbar ▼ Temperature (outlet): 60 °C ▼ Surger Libox Surger (Inlet, abs.): 1020 mbar ▼ Temperature (outlet): 1020 resure (Inlet, abs.): 1020 mbar ▼ Temperature (Inlet): 208 °C ▼ Surger Libox Surger (Inlet, abs.): 1020 mbar ▼ Temperature (Inlet): 208 °C ▼ Surger (Inlet, abs.): 1020 mbar ▼ Surger (Inlet, abs.): 1020 Surger (Inlet, abs.): 10	Pipe roughnes	ss: 0.1	15		mm	•
Condition: liquid ● gaseous Mass flow: ▼ 767.813 kg/h Weight density: 0.84634 kg/m³ Density of the air at 134 °C (134 °C is the average between Dynamic Viscosity: 23.38855 10-6 Pa s Calculate dynamic viscosity using the online calculator: wn	Condition: I iquid • gaseous Mass flow: ▼ 767.813 kg/h ▼ Weight density: 0.84634 kg/m³ ▼ Density of the air at 134 °C (134 °C is the average between Dynamic Viscosity: ▼ 23.38855 10-6 Pa s ▼ Calculate dynamic viscosity using the online calculator: w Dynamic viscosity: 23.38855 [10 ⁻⁶ (Pa s)] Pressure: 1020 Millibar ▼ Temperature: 134 Celsius ▼ Pressure (inlet, abs.): 1020 mbar ▼ Temperature (outlet): 208 °C ▼ Temperature (outlet): 60 °C ▼ WEEN'S EXPTRZES DY DYNAMIC VISCOSITY (Same Company limited by guarantee, registered in England (reg. no. 98672	Flow medium:	Δ	ir at 134 °(ade: 208:	60)
Mass flow: ▼ 767.813 kg/h ▼ Weight density: 0.84634 kg/m³ ▼ Density of the air at 134 °C (134 °C is the average between Dynamic Viscosity: 23.38855 10-6 Pa s ▼ Dynamic Viscosity: ▼ 23.38855 10-6 Pa s ▼ Calculate dynamic viscosity using the online calculator: wo Dynamic viscosity: 23.38855 [10 ⁻⁶ (Pa s)] Pressure: 1020 Millibar ▼ Temperature: 134 Celsius ▼ Pressure (inlet, abs.): 1020 mbar ▼ 1020 mbar ▼ Temperature (inlet): 208 °C ▼	Mass flow: 767.813 kg/h Weight density: 0.84634 kg/m ³ Density of the air at 134 °C (134 °C is the average between Dynamic Viscosity: 23.38855 10-6 Pa s Calculate dynamic viscosity using the online calculator: w Dynamic viscosity: 23.38855 10-6 Pa s Calculate dynamic viscosity using the online calculator: w Dynamic viscosity: 23.38855 [10 ⁻⁶ (Pa s)] Pressure: 1020 Millibar • Temperature: 134 Celsius • Pressure (inlet, abs.): 1020 mbar • 1020 mbar • • • VERN'S °C • • • 0 °C • • • • WERN'S • • • • • • Weight density: • • • • • • • • • • • • • • • • • • •					-	00)
Weight density: 0.84634 kg/m³ Density of the air at 134 °C (134 °C is the average between Dynamic Viscosity: 23.38855 10-6 Pa s Calculate dynamic viscosity using the online calculator: v Oynamic viscosity: 23.38855 [10 ⁻⁶ (Pa s)] Pressure: 1020 Millibar ▼ Temperature: 134 Celsius ▼ Pressure (inlet, abs.): 1020 mbar ▼ 1020 mbar ▼ Temperature (inlet): 208 °C ▼	Weight density: 0.84634 kg/m³ Density of the air at 134 °C (134 °C is the average between Dynamic Viscosity: 23.38855 10-6 Pa s Dynamic Viscosity: 23.38855 10-6 Pa s Calculate dynamic viscosity using the online calculator: w Dynamic viscosity: 23.38855 [10 ⁻⁶ (Pa s)] Pressure: 1020 Millibar Temperature: 134 Celsius 1020 mbar Temperature (inlet, abs.): 1020 mbar 208 °C 208 °C 1020 mbar 208 °C 100 °C 100 °C 1020 mbar 1030 °C 1040 °C 105 °C 103				gabooac		
Density of the air at 134 °C (134 °C is the average between Dynamic Viscosity: ▼ 23.38855 10-6 Pa s ▼ Calculate dynamic viscosity using the online calculator: w Dynamic viscosity: 23.38855 [10 ⁻⁶ (Pa s)] Pressure: 1020 Millibar ▼ Temperature: 134 Celsius ▼ Pressure (inlet, abs.): 1020 mbar ▼ Temperature (inlet): 208 °C ▼ Temperature (outlet):	Density of the air at 134 °C (134 °C is the average between Dynamic Viscosity: 23.38855 10-6 Pa s Calculate dynamic viscosity using the online calculator: w Dynamic viscosity: 23.38855 [10 ⁻⁶ (Pa s)] Pressure: 1020 Millibar Temperature: 134 Celsius Pressure (inlet, abs.): 1020 mbar Temperature (inlet): 208 °C Temperature (outlet): 60 °C WEEN'S RAY PRIZES NOT S So State St	Mass flow:	r	767.813		kg/h	V
Dynamic Viscosity: ▼ 23.38855 10-6 Pa s Calculate dynamic viscosity using the online calculator: □ Dynamic viscosity: 23.38855 [10 ⁻⁶ (Pa s)] □ Pressure: 1020 Millibar ▼ Temperature: 134 Celsius ▼ Temperature (inlet, abs.): □ 1020 mbar Temperature (inlet): □ 208 °C °C ▼	Dynamic Viscosity: 23.38855 10-6 Pas Calculate dynamic viscosity using the online calculator: Dynamic viscosity: 23.38855 [10 ⁻⁶ (Pas)] Pressure: 1020 Millibar Temperature: 134 Celsius Pressure (inlet, abs.): 1020 mbar Temperature (inlet): 208 Celsius For example of the state of the stat	Weight density:	(0.84634		kg/m³	•
Calculate dynamic viscosity using the online calculator: Dynamic viscosity : 23.38855 [10 ⁻⁶ (Pa s)] Pressure: 1020 Millibar Temperature: 134 Celsius Pressure (inlet, abs.): 1020 mbar 1020 mbar Temperature (inlet): 208 °C Celsius 1020 mbar	Calculate dynamic viscosity using the online calculator: Dynamic viscosity : 23.38855 [10 ⁻⁶ (Pa s)] Pressure: 1020 Millibar Temperature: 134 Celsius Pressure (inlet, abs.): 1020 mbar Temperature (inlet): 208 °C Temperature (outlet): 60 °C WEEN'S MARY PRIZES MARY PRIZES DES 5.55 F54723 150.901 F5 4472 http://www.selstered.org/sels	Density of the a	air at 134	°C (134 °C	C is the	average	betw
Dynamic viscosity : 23.38855 [10 ⁻⁶ (Pa s)] Pressure: 1020 Millibar Pressure (inlet, abs.): 1020 mbar Temperature (inlet): 208 °C Temperature (outlet):	Dynamic viscosity : 23.38855 [10 ⁻⁶ (Pa s)] Pressure: 1020 Millibar Temperature: 134 Pressure (inlet, abs.): 1020 mbar Temperature (inlet): 208 °C Temperature (outlet): 60 °C F5 54723 150 9001 treenwich, a charity and company limited by guarantee, registered in England (reg. no. 96)	Dynamic Viscos	sity: 🔻 2	3.38855		10-6 Pa s	V
Dynamic viscosity : 23.38855 [10 ⁻⁶ (Pa s)] Pressure: 1020 Millibar Pressure (inlet, abs.): 1020 mbar Temperature (inlet): 208 °C Temperature (outlet):	Dynamic viscosity : 23.38855 [10 ⁻⁶ (Pa s)] Pressure: 1020 Millibar Temperature: 134 Pressure (inlet, abs.): 1020 mbar Temperature (inlet): 208 °C Temperature (outlet): 60 °C F5 54723 150 9001 treenwich, a charity and company limited by guarantee, registered in England (reg. no. 96)	Calculate dvna	mic visco	sitv using	the onl	ine calcu	Ilato
Temperature: 134 Celsius Pressure (inlet, abs.): 1020 mbar Temperature (inlet): 208 °C Temperature (outlet):	Temperature: 134 Pressure (inlet, abs.): 1020 mbar Temperature (inlet): 208 C<						
Temperature: 134 Celsius ▼ Pressure (inlet, abs.): 1020 mbar ▼ Temperature (inlet): 208 °C ▼ Temperature (outlet):	Temperature: 134 Pressure (inlet, abs.): 1020 mbar Temperature (inlet): 208 °C Temperature (outlet): 60 °C Temperature (outlet): 60 °C Figure Eleveration Figure Eleveration Figure Eleveration Figure 2000 F	D	1000		N 41111		_
Pressure (inlet, abs.): 1020 mbar ▼ Temperature (inlet): 208 °C ▼ Temperature (outlet):	Pressure (inlet, abs.): 1020 mbar Temperature (inlet): 208 °C Temperature (outlet): 60 °C Temperature (outlet): 60 °C Temperature (outlet): 55 °C Temperature (outlet): 60 °C Ferriter (outlet						V
1020 mbar ▼ Temperature (inlet): 208 °C ▼ Temperature (outlet):	1020 mbar Temperature (inlet): 208 °C Temperature (outlet): 60 °C Star Parizes Ray Parizes F5 54723 F5 54723 Terenvich, a charity and company limited by guarantee, registered in England (reg. no. 98672	remperature.	104		Celai	us •	
Temperature (inlet): 208 °C ▼ Temperature (outlet):	Temperature (inlet): 208 °C Temperature (outlet): 60 °C WEEN'S Vary Prizes Its Prizes Its Strame Eleverations F5 strate 150 9001		1 ·	T			
Temperature (outlet):	Temperature (outlet): 60 °C • C • C • C • C • C • C • C •						
	60 C VEEN'S RYPRIZES RYPRIZES RYPERE EDUCATION F5 54723 ISO 9001 reenvulch, a charity and company limited by guarantee, registered in England (reg. no. 98672	208	°C ▼				
60 °C V	UEEN'S ARY PRIZES ARY PRIZES STATURE REVEATION 15 F5 54723 ISO 9001 F5 54723 ISO 9001 Greenwich, a charity and company limited by guarantee, registered in England (reg. no. 98672						
	ARY PRIZES EXTINAL EDUCATION US FS 54723 ISO 9001 Sreenwich, a charity and company limited by guarantee, registered in England (reg. no. 98672	60	°C ▼				
	ARY PRIZES EXTING EDUCATION DIS FS 54723 ISO 9001 Sreenwich, a charity and company limited by guarantee, registered in England (reg. no. 986)						
	ARY PRIZES EXTINAL EDUCATION US FS 54723 ISO 9001 Sreenwich, a charity and company limited by guarantee, registered in England (reg. no. 98672						
	ARY PRIZES EXTINAL EDUCATION US FS 54723 ISO 9001 Sreenwich, a charity and company limited by guarantee, registered in England (reg. no. 98672)		*			
	UST HER EDUCATION 15 F5 54723 ISO 9001 Greenwich, a charity and company limited by guarantee, registered in England (reg. no. 9867	UEEN'S ARY PRIZES		KAS			
		URTHER EDUCATION	54723 ISO 9001	AGEMENT YSTEMS 905			
ARY PRIZES							

NRI Natural Resources Institute


Pressure drop:

0.62 mbar

Pressure loss at the straight section of the drying duct: 62 Pa


Calculate pressure loss at the bends of the drying duct:

Use the online pressure drop calculator: <u>www.pressure-drop.com/Online-Calculator</u> Group: Bends
V Subgroup: Circular bend V

Very small radius, each section of the drying duct touching each other to reduce heat losses

Pipe roughness:	0.	.15	mm 🔻		
Flow medium:		Air at 134 °C (Ave	rage: 208; 60)		
Condition:		○ liquid ● gaseous			
Mass flow: The mass flow:		767.813	kg/h ▼		
Weight density:		0.84634	kg/m³ ▼		
Dynamic Viscosity:	¥	23.38855	10-6 Pa s 🛛 🔻		

Pressure drop:

0.16 mbar

Pressure drop per 180° bend: 16 Pa The dryer will probably have 2 bends of 180° and one bend of 90° Pressure loss at the bends of the drying duct: **40 Pa** (16*2.5)

THE QUEEN'S ANNIVERSARY PRIZES For Higher and Further Education 2015

University of Greenwich, a charity and company limited by guarantee, registered in England (reg. no. 986729). Registered Office: Old Royal Naval College, Park Row, Greenwich, London SE10 9LS.

Medway Campus

Central Avenue, Chatham Maritime, Kent ME4 4TB United Kingdom

NRI | Natural Resources Institute

Calculate total pressure loss

Pressure loss at the heat exchange: 1000 Pa Pressure loss at the straight section of the drying duct: 62 Pa Pressure loss at the bends of the drying duct: 40 Pa Pressure loss at the cyclone separator: 170 Pa Total pressure loss: **1272 Pa**

Select suitable blower design using the software Ventil

Download the software Ventil from: www.nicotra-gebhardt.com/images/content/Infocenter/proselecta/Ventil_330.zip

Input Data		Units —		Air Density		- Units
Volume Flow	1072.17	m³/h	₹I.	Auto	C Fixed	
V.F. Reduction	0.		-	Temperature	208.	°C 🔽
_	-		_	Altitude	0.	m 🔻
Pressure	1272.	Pa	-	Density	0.73248	kg/m³ 🖃
 Static 	🔿 Total			-	,	Ingrin

Select suitable blower design using the online tool from New York Blower Go to: <u>https://apps.nyb.com/FanToSize/ProductSelection.aspx</u>

PERFORMANCE CONDITIONS (All Fields Required) Please note that JavaScript must be enabled to proceed.

		Flease note that savascript must be enabled to pr			
Units of Measure	SI: m3/hr, Pa	Altitude	0	m	
Flow Type	AM3/HR O NM3/HR	Operating Temperature	208	°C	
Pressure Type	💿 Fan SP 🔵 Fan TP 🔵 SP Rise	Max Temperature	218	°C	
Volume Flow	1072 m3/hr	Cold Startup Temperature	30	°C	
Pressure	1272 Pa	Density	0.71613	kg/m3	

THE QUEEN'S ANNIVERSARY PRIZES For Higher and Further Education 2015

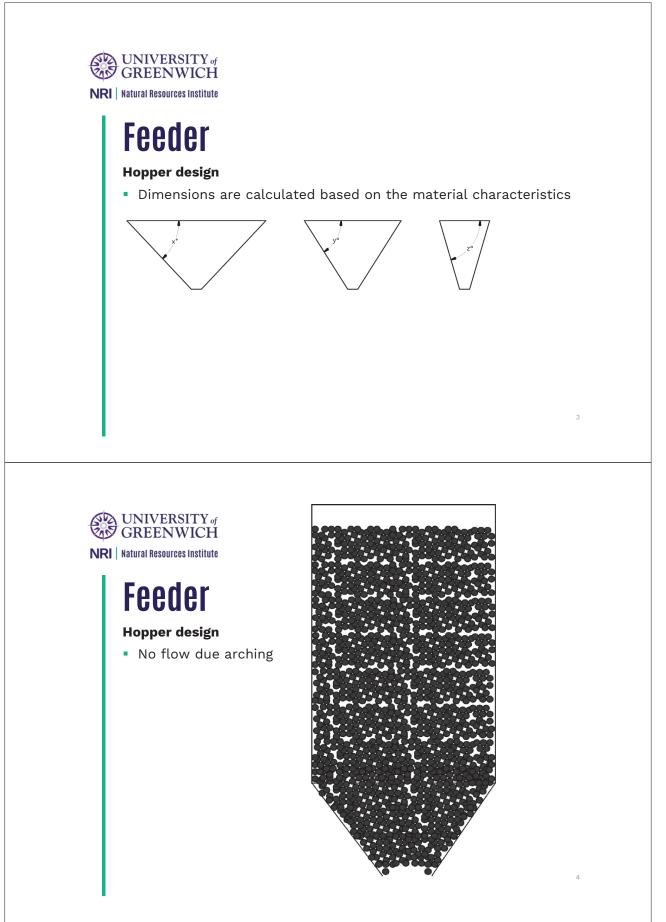
University of Greenwich, a charity and company limited by guarantee, registered in England (reg. no. 986729). Registered Office: Old Royal Naval College, Park Row, Greenwich, London SE10 9LS.

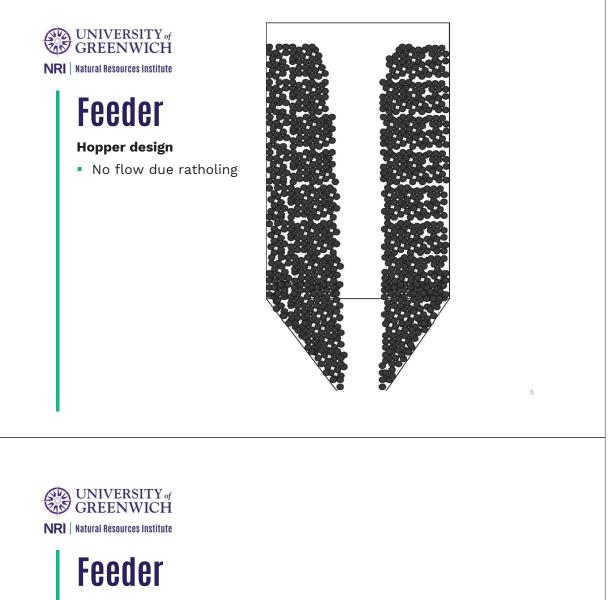
Medway Campus

Central Avenue, Chatham Maritime, Kent ME4 4TB United Kingdom

Feeder

- Hopper
- Feeding mechanism





Determine material flow properties

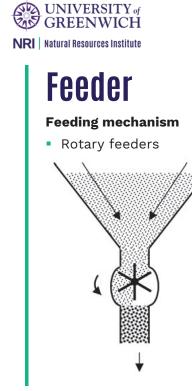
2

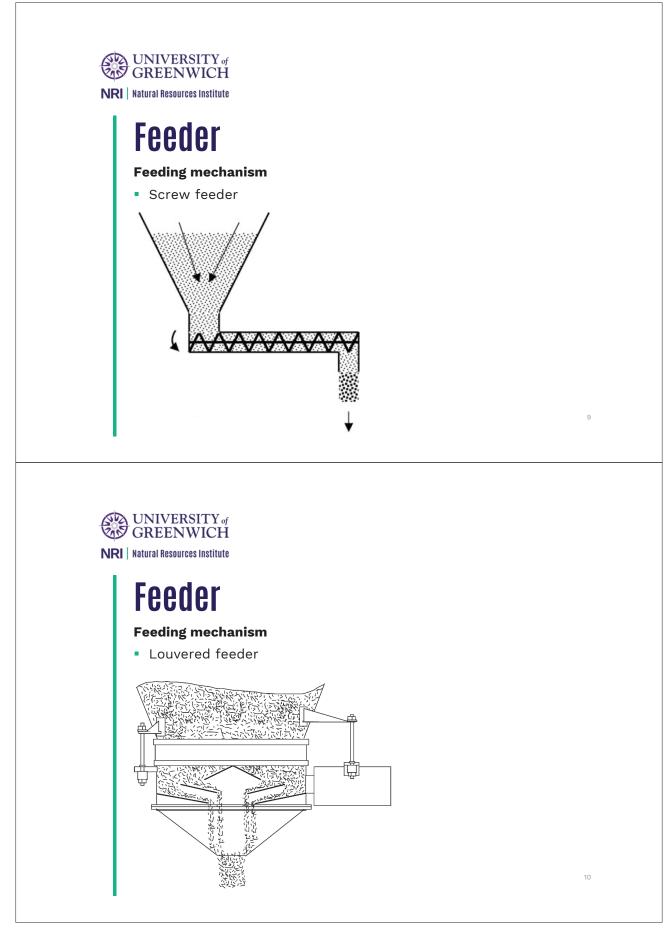
- Cohesive Strength
- Wall friction
- Compressibility
- Density and porosity
- Particle shape and size

Feeding mechanism

- Based on the material characteristics
- Based on the feeding rate
- Based on the dryer requirements

GREENWICH


Feeder


Feeding mechanism

- Uniform and controlled feeding rate
- Full dispersion of the wet solids in the air stream

8

No lumps

