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Abstract. Researchers have turned their focus on leveraging either
dynamic or static features extracted from applications to train AI algo-
rithms to identify malware precisely. However, the adversarial techniques
have been continuously evolving and meanwhile, the code structure and
application function have been designed in complex format. This makes
Android malware detection more challenging than before. Most of the
existing detection methods may not work well on recent malware sam-
ples. In this paper, we aim at enhancing the detection accuracy of
Android malware through machine learning techniques via the design
and development of our system called MFF-AMD. In our system, we first
extract various features through static and dynamic analysis and obtain
a multiscale comprehensive feature set. Then, to achieve high classifica-
tion performance, we introduce the Relief algorithm to fuse the features,
and design four weight distribution algorithms to fuse base classifiers.
Finally, we set the threshold to guide MFF-AMD to perform static or
hybrid analysis on the malware samples. Our experiments performed on
more than 25,000 applications from the recent five-year dataset demon-
strate that MFF-AMD can effectively detect malware with high accuracy.

Keywords: Malware detection · Hybrid analysis · Weight
distribution · Multivariate feature fusion

1 Introduction

The proliferation of Android applications has been benefited from the rapid
development of portable electronic devices, such as smartphones, tablets, and
wearable smartwatches. As a byproduct, the number of malware has been con-
stantly increasing over these years targeting at Android-based smartphones.
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For Android users, there are several indications of this trend of ever-increasing
threats of malware [1]. According to the Symantec research report [2], 23,795
Android malware on average were detected daily in 2017, an increment of 17.2%
compared to that of 2016. While 360 Beaconlab [3] reported that approximately
12,000 malware samples per day on average were intercepted in 2018. Compared
with that of 2017 or even three years ago, the malware detection rate has been
reduced substantially. As AV-TEST [4] pointed out, this reduction is due to that
malware is being designed and injected in a more complicated way, implying that
attackers have focused on “better” quality of malware rather than the quantity.
The corresponding malware detection methods should also be improved to adapt
to the upgrade and development of malware.

In this work, we propose a model of MFF-AMD to address the above issues.
Our model is built via a combination of dynamic and static techniques. Through
the analysis of 25,000 samples obtained in the past five years, we extract fea-
tures that can identify malicious applications from benign ones. More multiscale
features can be used to describe an application better so as to detect malware
more accurately. Meanwhile, to achieve a balance between efficiency and accu-
racy, our model automatically determines the analysis method. Specifically, we
extract some basic static features including permissions, sensitive API calls, and
other related features inferred from the basic features.

We also check the intent to see whether it is used to deliver sensitive messages.
To extract more comprehensive dynamic features, we investigate the work related
to detecting malware based on dynamic behaviors. We further implement a UI
component testing scheme based on Android activity to trigger more malicious
behaviors. In short, we extract the malware from more various dimensions, which
can improve the malware detection consequently.

When training our model, we propose four weight distribution algorithms for
base classifier fusion. We experimentally conclude that the overall performance
of MFF-AMD is much better than those of a single-base classifier and other
weight distribution algorithms. We also test the Android app samples from 2015
to 2019, to prove the robustness of our model. Experiments show that our model
achieves good detection performance for Android malware samples from different
years.

In summary, we highlight the major contributions of this paper as follows:

1. In order to solve the problem that existing methods cannot fully extract
Android application features, we propose a model named MFF-AMD, which
can achieve automated detection of Android malware, and our experimental
results show that MFF-AMD can provide 96% accuracy on average.

2. MFF-AMD can automatically control the detection process during sample
testing by training models that can adapt to static features or both static
and dynamic features. Therefore, our model achieves higher accuracy with
lower overhead.
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3. In the process of training the model, in order to maximize the overall accuracy
of MFF-AMD, we design a lightweight weight distribution algorithm to fuse
the base classifiers. Experimental results show that our method can improve
the overall accuracy by 3.53% on average.

The rest of the paper is organized as follows: In Sect. 2, we review the related
work of Android malware detection based on machine learning. We introduce our
feature extraction process in Sect. 3. We then describe our model implementation
in Sect. 4. The experiment results and analysis are presented in Sect. 5. Finally,
we conclude our paper and outlook future directions in Sect. 6.

2 Related Work

There have been many approaches to detect malware based on machine learning
combined with Android static analysis. Wu et al. [5] used the Kmeans and K
nearest neighbor (K-NN) algorithms, which combined with static features includ-
ing permissions, intents, and API calls. Their main contribution is to provide a
static analysis paradigm for detecting Android malware and to develop a system
called DroidMat. Arp et al. [6] proposed a lightweight detection method based
on Support Vector Machine (SVM) running on the mobile terminal.

Unlike static detection, some methods use dynamic features combined with
machine learning, for instance, AntiMalDroid [7] is a framework of detecting
malware based on the analysis of dynamic behavior via the SVM algorithm,
in which the features are extracted from the log behavior sequence. Saracino
et al. [8] proposed MADAM, which can combine several classes of features, from
distinct Android levels, and applied both anomaly-based and signature-based
mechanisms. Afonso et al. [9] proposed a system to dynamically identify whether
an Android application is malicious or not, based on the features extracted from
Android API calls and system call traces.

The hybrid analysis includes both dynamic analysis and static analysis. The
AndroPytool framework [10] is a new hybrid analysis-based work. It proposes a
malware detection method based on static and dynamic feature fusion through
the combination of ensemble classifiers. They mainly develop their tools based
on Flowdroid [11]. Their experiment result shows that AndroPytool can achieve
up to 89.7% detection accuracy. TrustDroid [12] is a hybrid approach that can
both operate on the phone and on a server. It takes the Android byte code
and converts it into a textual description using Jasmin syntax. MARVIN [13]
uses machine learning based on hybrid static and dynamic features (SVM and
L2 regularized linear classifiers). MARVIN evaluates the risks associated with
unknown Android applications in a malicious scoring form from 0 to 10.

Some other works [14–19] combined static analysis and dynamic analysis. We
find that many studies calculate dynamic behavior based on logs and some sys-
tem parameters, which will introduce computational overhead. Different from
those works, we utilize a hook framework to directly monitor the triggered
dynamic behavior, which has lower overhead. Meanwhile, we parse Android UI
components to trigger more behaviors to improve detection as much as possible.
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Moreover, we combine more comprehensive dynamic features with static ones
used in malware detection to obtain higher accuracy.

3 Multivariate Feature Extraction

The main purpose of extracting features is to distinguish malware from benign
functions. According to the related studies, the behavior of the Android appli-
cation mainly relates to the static code and dynamic behavior; thus, we intend
to extract contributive features between malware and benign applications based
on these two aspects. In order to improve our model’s robustness across diverse
malicious samples, we use Android malicious families or Android applications
across four years. At the same time, we consider the upgrade of the Android
SDK version and the popularity of the 4G network communication with the
Android application.

Fig. 1. The different distribution of the same permission on each data set.

3.1 Static Feature Extraction

Static features can be extracted without the need of running an application,
which relies on concrete static analysis. We can perform automated extraction
of some static features by using the python API provided by Androguard to
analyze apk files. Androguard is an open source and supports extensions. It can
implement automated reverse apk and easily extract static features of applica-
tions. We note that many related studies in the feature extraction part only give
attention to whether exists a certain feature in the AndroidManifest.xml file or
just describe the feature vector in binary code. The possible drawback is that the
features of different codes of 1 are the same contribution for malware detection.
Therefore, one improvement we made is to increase the frequency of utilization
of features based on the original method. Features with large frequency may rep-
resent more important features. We also portray as many Android app details
as possible.

– Permissions. The Android permission mechanism specifies operations that
can be performed at different risk levels. With a more than 11,000 separate
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sample set in the benchmark, our main idea is to extract the permission
feature expressed in benchmarks and verify all the samples in our experimen-
tal dataset to see if the permission feature is effective in detecting malware.
Figure 1 shows the different distribution of the samples we extracted from
2015 to 2019. From Fig. 1 we can see that almost 168 permission features
we extracted are identical in distribution on each data set, though there are
still some differences. Our assumption is that the greater the difference in
permissions, the stronger the ability to distinguish malware.

– Intents. Intent can launch activities, create services, and communicate with
other Android apps. Figure 2 shows the code that carries sensitive data
through an intent object.

– API calls. Android officially marks the API’s risk level, and those sensitive
APIs are often leveraged as a powerful feature in Android malware detection.

– Components. We calculate the number of Android components as a contin-
uous feature, including activity, service, broadcast receiver, etc.

– Code features. Enhancing the robustness of malware detection requires
exploring techniques that can confuse source codes. We indicate if there is a
confusion technique by whether the code calls the relevant package.

– Certificate. Certificate signing is an Android protection mechanism, which
can prevent apk files from being tampered by malicious developers.

– APK file structure. We extract the entire apk file directory structure and
analyze it.

Fig. 2. Easy intent: sensitive data are transformed to TargetActivity by binding explicit
intent object.

3.2 Dynamic Feature Extraction

The acquisition of dynamic features relies on the installation and running of
the Android application to detect malicious behavior that cannot be detected
by static analysis. Through the Inspeckage based on the Xposed framework,
we hook the application to be tested and enable dynamic monitoring of the
application’s various behaviors. We analyze the log files generated during the
dynamic analysis process to achieve batch extraction of dynamic features.
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– Networks. We capture the network data and analyze the data packet to
determine whether the HTTP request contains sensitive data related to the
user.

– File and SQLite operations. We focus on the file or database operations
of the application recorded in the log. Our main research objects are the path
and data of the file, which may include sensitive information.

– Command execution. Malware can call system programs in sensitive direc-
tories to execute commands aiming to achieve camouflage and malicious oper-
ations. We count the number of executions of the system command, coded as
a continuous feature.

3.3 Application Coverage

Android applications are based on event-driven, and the execution process can
be simply summarized as driven by various input events, and the application
completes a variety of different logical functions. The key to malware detection
based on dynamic analysis is the application’s execution coverage. Our model
does not intent to insert probes into the application to calculate the code cover-
age during testing, because modifying code, repackaging, and other operations
are not conducive to automated detection. So, in order to improve the effect of
dynamic analysis, we design an event testing scheme based on the Android UI
view. Our main idea is not to modify the apk but to input as many as UI events
as possible to the activity component information of the Android application.
In this way, potential malicious behavior can be triggered as much as possible.
Figure 3 shows the dynamic detection scheme based on the UI view. Android will
render the UI view and layout information currently on the screen. We construct
the socket script through the activity information obtained by static analysis and
try to communicate with the View Server to request the analysis result of the
current screen information in real-time. Then, we parse the results on the client
and obtain a simplified view tree that can uniquely locate all layout information
through the parsing algorithm. Finally, through analyzing the components to
formulate corresponding test events, we aim to trigger as many input events as
possible. Therefore, we obtain corresponding dynamic features by monitoring
the running behavior of the application.

3.4 Feature Selection

To reduce the overhead of training models and improve the detection accuracy,
we first select and reduce the dimensionality of both static features and dynamic
features. The feature selection is used to filter out the features that are more suit-
able for detecting malware, so as to have a positive effect on studying malicious
samples. We use the Relief algorithm for feature selection, and select features
with larger weights to participate in training. The advantage of choosing Relief
is to separate the feature selection from the training process, and the algorithm
performs well in terms of time complexity.
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Fig. 3. Testing scheme based on UI view.

4 Implementation

4.1 Architecture

By analyzing the existing studies on Android malware detection, the method
of using machine learning is generally divided into several stages: data filtering,
feature extraction, model training, and model testing. We analyzed the steps
of the malware detection process in detail and optimized it based on the tra-
ditional method. As shown in Fig. 4, during the training, our detection model
extracts multi-dimensional static features and dynamic features from Android
APK samples collected from different sources.

Fig. 4. MFF-AMD’s architecture.
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In the features pre-processing stage, we use the Relief algorithm to process
the features, including the feature selection and feature dimensionality reduction.
Based on the processed features, we use five base binary classification algorithms
for supervised training, including SVM, RF, CART, BAGGING, and K-NN.
Finally, we design four weight distribution algorithms including RSen, RSpe,
RHM, and RD to allocate dual weights to the five base classifiers and obtain the
combination of a pair of weights distribution strategies with the highest overall
accuracy as the final algorithm to merge classifier.

For testing, given an arbitrary Android application, our model first performs
static analysis on the application and then compares it with the threshold based
on the score given by the classifier. If the score is higher than the threshold,
the detection is ended, and the detection result is output. If the score is lower
than the threshold, we need to perform hybrid analysis, and finally, compare
the two classification results to determine whether the application is malicious.
The advantage of this scheme is the ability to ensure accuracy and reduce the
detection overhead.

4.2 Weight Distribution Algorithm

In order to improve the detection ability of our model, we adopt a strategy of
emphasizing the base classifiers with weight pairs. We focus on how to assign a
weight to different base classifiers. We know that different base classifiers have
different classification performance. We denote True Positive Rate (TPR) as the
detection accuracy of malicious samples by the fused classifier, which we named
as sensitivity. We denote True Negative Rate (TNR) as the detection accuracy of
benign samples by the fused classifier, which we named as specificity. Then, the
overall accuracy of the weighted classifier can refer to the following equations,
Poverall can be computed as:

Poverall =
NM · TPR + NB · TNR

NX
(1)

where NM and NB represent the number of malicious and benign applications
in the sample, respectively, and NX represents the number of samples. In order
to improve the overall generalization ability of the classifier to the sample, for a
specific sample set, we can only improve TNR and TPR according to Eq. (1).
By observing the performance of the classifier in a great number of malware
detection processes, the overall classification accuracy of the classifier is directly
proportional to its sensitivity and specificity, while both the sensitivity and the
specificity of the most typical classifier are rarely equal in value. If one classifier
has a higher specificity and sensitivity as well as a smaller difference between
each other, it may have higher overall accuracy and robustness. Based on this,
we propose four weight distribution algorithms, which can rank the classifier
according to the specificity and sensitivity while assigning weights. These four
algorithms are Ranking Algorithm Based on Sensitivity (RSen), Ranking Algo-
rithm Based on Specificity (RSpe), Ranking Algorithm Based on Sensitivity and
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Specificity Harmonic Mean (RHM), Ranking Algorithm Based on Sensitivity and
Specificity difference (RD).

RSen Algorithm. In order to maximize the accuracy of the model’s detection
of malware, the simplest idea is to give the greatest weight to the classifier with
the highest TPR. Thus, we design the first type of weight distribution algorithm.
We use R1 to represent RSen in this work.

Define ek as the TPR of classifier k, k ∈ {1, · · · , 5}. Make E ← ek, we first
rank each element of the set E in descending order and obtain Ē. We assign
weights of ek according to the following equation:

ωi = 6 − i, i ∈ {1, · · · , 5} (2)

For instance, the weight of the classifier with the highest TPR is set to 5. The
rules of subsequent algorithms are similar.

RSpe Algorithm. Similar to RSen algorithm, we set the maximum weight for
the classifier with the highest sensitivity TNR, and the method is the same as
the above, so we do not describe the detail. We use R2 to represent RSpe in this
work.

RHM Algorithm. We have known that the harmonic mean of two numbers
tends to approach the one with a smaller value. Therefore, when the harmonic
mean is large, and the two numbers are large. Classifier ranks are set to directly
proportional to the sensitivity and specificity in this algorithm. We use R3 to
represent RHM in this work.

Define mk as the harmonic mean of the sensitivity and specificity of classifier
k, we have the following equation.

mk =
2 · TPRk · TNRk

TPRk + TNRk
, k ∈ {1, · · · , 5} (3)

Make M ← mk, and we let a set M = {mk|k = {1, · · · , 5}} be the harmonic
mean of classification accuracy of five classifiers. Descending the set M , and the
symbol M̄ represents the ranked set. We assign the weight for each classifier
based on the element sequence in the set M̄ according to Eq. (2) and we obtain
the ωi. Finally, the ωi is going to be combined with classifier k and used to
reclassify the category label of instance x.

RD Algorithm. In this algorithm, the weight of the classifier is designed to be
inversely proportional to the absolute value of the difference between sensitivity
and specificity. As this is a binary classification problem, the smaller the dif-
ference between the accuracy of the same classifier for different categories, the
more stable the performance and the stronger the robustness. Such a classifier
can perform better even on a dataset where the two samples are not balanced.
We probably assign the weight to the classifier with stronger robustness by using
this algorithm. This time, we use R4 to represent this algorithm in this work.

Define dk as the absolute value of the sensitivity and specificity of classifier
k, we have:

dk = |TPRek − TNRk| , k ∈ {1, · · · , 5} (4)
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Make D ← dk, and we denote a set D = {dk|k = {1, · · · , 5}} as the difference
of classification accuracy of five classifiers. Unlike before, we ascend the set D
and the symbol D̄ represents the ranked set. Finally, we assign weights for each
classifier based on the previous strategy and reclassify instances.

After we assign weights to each classifier using these four weight distribution
algorithms, we use the combination of any two algorithms to weight the classifier
again to get the optimal weight combination scheme. For example, if R1 assigns
each classifier a weight set as {1, 2, 4, 5, 3} and R2 assigns each classifier a weight
set as {2, 3, 4, 1, 5}. Then the combined scheme R1R2 assigns each classifier a
final weight set as {3, 5, 8, 6, 8}. This weight set is used to reclassify the sample.
We will evaluate each scheme in the next section to find the optimal solution.

5 Evaluation

The purpose of our experiments is multifaceted. In this section, we analyze the
selection of parameters and evaluate the performance and overhead of our model.

5.1 Dataset and Setup

Environment. Our experiments are all done under Windows 10 Enterprise
Edition, and the PC is equipped with Intel (R) Core I5-4460 CPU@ 3.20 GHz.
We leverage androguard (v3.4.0) and python 3.6 to extract static features. For
dynamic feature extraction, we used Google Nexus 5 (Android 5.0, SDK 21)
based on the Xposed framework using Genymotion (v3.0.2). The MonkeyRunner
and the HierarchyViewer that come with Android are used for dynamic event
testing. In the feature engineering stage, we use python3 to implement the Relief
algorithm and use it for feature extraction and fusion.

Dataset. To perform an effective analysis, we select more than 25,000 samples
from multiple sources. It includes benign and malicious Android apps from 2015
to 2019. Table 1 lists all datasets used in our experiments. We describe data
set in alphanumeric format for simplicity. For example, samples from 2017 are
represented to Dataset-17 respectively. All benign applications were downloaded
from Google Play (GP) and confirmed by the Virus Total platform. We collected
applications in Google play using the third-party website apkCombo. We did not
pay attention to the category of the applications when collecting benign samples,
because we aim for a generic solution. Our malicious applications were collected
from VirusShare. After downloading malicious sample files from the platform,
we filter out those non-Android related malicious samples. In order to avoid the
biases of the unbalance of samples, the number of benign samples and malicious
samples in each dataset is roughly equal.

Metrics. We use common metrics in machine learning to evaluate the classifi-
cation performance. In our research, precision is expressed as the correct rate of
malware detection. The recall rate (TPR) reflects the sensitivity of our model
to malware. TNR is also this case for benign samples. F1-score (F1) represents
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Table 1. Datasets.

DATASET Benign apps Malicious apps Total

Source #App Source #App

Dataset-15 GP 2968 VS 2793 5761

Dataset-16 GP 2992 VS 2837 5829

Dataset-17 GP 2991 VS 2780 5771

Dataset-18 GP 2974 VS 2861 5835

Dataset-19 GP 2784 VS 2963 5747

a comprehensive evaluation indicator of the classifier performance on malware
detection. In addition, accuracy (ACC) is defined as the correct classification
rate of our model for both benign and malicious samples.

5.2 Results and Analysis

Optimal Combination of Weights Distribution Algorithm. We select
five base classifiers in this work, including SVM, Random Forest (RF), Clas-
sification and Regression Tree (CART), BAGGING, and K-Nearest Neighbor
(K-NN). These classifiers have shown good performance in malware detection,
so to demonstrate the effectiveness of our weight distribution algorithms, we still
use these base classifiers. We choose to use Dataset-17 to evaluate the five base
classifiers. For Dataset-17, we first test the performance of each base classifier
in static analysis and hybrid analysis. The results are shown in Table 2. Then,
we use four ranking algorithms to assign weights to the five base classifiers. The
results are shown in Table 3. Each column represents the weights assigned to the
classifier by each algorithm.

Table 2. Performance of base classifier on dataset-17 (%).

Classifier Static analysis Hybrid analysis

TPR TNR ACC TPR TNR ACC

RF 92.81 93.75 93.28 95.35 98.14 96.77

CART 89.87 95.39 92.62 91.47 97.03 94.31

BAG 91.50 92.43 91.97 93.41 96.65 95.07

K-NN 81.70 92.11 86.89 91.86 92.94 92.41

SVM 85.29 92.76 89.02 84.88 94.05 89.56

From Table 2 and Table 3, we can see that in the static analysis, RF is more
sensitive to malware, while CART has better performance in identifying benign
applications. In the hybrid analysis, the overall performance of RF is better, with
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Table 3. Each algorithm combination’s performance on dataset-17 (%).

Classifier Static analysis Hybrid analysis

RSen RSpe RHM RD Rsen RSpe RHM RD

RF 5 4 5 4 5 5 5 3

CART 3 5 4 3 2 4 3 2

BAG 4 2 3 5 4 3 4 4

K-NN 1 1 1 1 3 1 2 5

SVM 2 3 2 2 1 2 1 1

an accuracy rate of 96.77%. The difference between KNN’s TRP and TNR is
the smallest, only 1.08%, indicating that the classifier is relatively stable. Over-
all, the classification performance of SVM and KNN is not good, hence a low
weight is assigned when the classifiers are fused. There are performance differ-
ences between each classifier, but at the same time, each has its own advantages.
Finally, we use a dual weight distribution strategy to combine different algo-
rithms and fuse the classifiers. The results are shown in Table 4 and Table 5,
respectively.

Table 4. Each algorithm combination’s performance on dataset-17 in the static anal-
ysis (%).

Combination TPR TNR F1-score ACC

R1R2 90.85 95.39 95.17 93.11

R1R3 92.48 94.74 94.62 93.61

R1R4 91.83 95.07 94.90 93.44

R2R3 93.02 95.73 95.61 94.35

R2R4 90.85 95.39 95.17 93.11

R3R4 93.27 94.97 94.88 94.10

From the data in Table 4 and Table 5, specifically, in the static analysis,
the ACC of the optimal algorithm combination R2R3 reaches 94.35%, which is
1.07% higher than the best base classifier RF. After the detection of classifier
fusion and hybrid analysis, it can achieve 97.15% accuracy and 98.83% F1-score.
Overall, no matter it is static analysis or hybrid analysis, most of the dual weight
distribution combinations have played a positive role, indicating the effectiveness
of our weight distribution algorithm. For static analysis and hybrid analysis, we
selected the optimal algorithm combination that is suitable for each detection
method and displayed it in bold in the table.

The Threshold for Static Analysis. In order to achieve a better detection
effect with less time overhead, we set a threshold for static analysis. Firstly,
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Table 5. Each algorithm combination’s performance on dataset-17 in the hybrid anal-
ysis (%).

Combination TPR TNR F1-score ACC

R1R2 95.34 98.88 98.83 97.15

R1R3 93.80 98.88 98.82 96.39

R1R4 93.80 98.88 98.82 96.39

R2R3 94.95 96.29 96.24 95.63

R2R4 93.41 98.88 98.82 96.20

R3R4 94.17 96.29 96.21 95.25

the static analysis of the application is performed. If the probability that the
model detects the sample as malicious is less than the preset threshold, then the
application will be subjected to mixed analysis; otherwise, the detection will be
ended. Such a detection method can reduce the overall internal overhead of the
model, and at the same time can obtain a higher detection accuracy.

The key issue is how to determine this threshold according to our needs. We
noticed using the ROC curve to help us solve the problem. In machine learning,
the AUC calculated by the ROC curve is an indicator for evaluating different
classifiers. The ROC curve of each base classifier and the fused model during
static analysis is shown in Fig. 5. The label in the figure represents the AUC
value corresponding to each classifier. It can be seen from the figure that the
fused classifier performs better than the base classifier. At the same time, we
can calculate the point closest to (0, 1) in the coordinate system, which has a
value of 94.83%, and we mark it with an arrow. This point means that when this
probability threshold is used to judge as malware, it can make a lower FPR and
a higher TPR. At this time, it has the best performance for the entire model,
which can reduce the model overhead.

Fig. 5. ROC curve of each classifier.
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Performance Evaluation. We evaluate the model performance in terms of
execution time. We set up two sets of experiments to count the average detection
time of samples that only require static analysis and the average detection time
of samples that require static and dynamic analysis. The results are shown in
Table 6. We select apk files with a size of 5 to 25 MB from the original sample
set for evaluation. Due to the large differences between each apk, we count the
average detection time. As can be seen from the table, for a small sample size (5
to 10 MB), our model only needs to perform static analysis to detect malware,
the average time cost is 103.08 s. For small samples that require further dynamic
analysis, the average detection increases to 223.33 s. The main time consumed
in the process of dynamic analysis consists of two parts, including dynamic test
time and feature extraction time. No matter for large samples or small samples,
compared to dynamic analysis, the static analysis only needs to perform feature
extraction and sample prediction, which can save the detection time.

Table 6. Application’s average detection time.

Method Sample size App size (MB) Average detection time (s) Total (s)

Testing Extraction Prediction

Static 200 5–10 – 103.08 0.9 × 10−3 103.08

Static 200 10–25 – 199.86 0.37 × 10−3 199.86

Hybrid 200 5–10 116 107.33 0.44 × 10−3 223.33

Hybrid 200 10–25 252 202.27 0.35 × 10−3 454.27

Model Robustness. In order to verify the robustness of MFF-AMD, we tested
different datasets and the results are shown in Table 7. The experimental results
show that our model performs well for other datasets. This means that our
model can handle almost all Android applications without considering whether
the application is up to date. It is worth noting that the accuracy of our model
for dataset-15 and dataset-19 is higher than 96%, indicating that our features
have a better prevalence. Meanwhile, our average precision and FRP are 97.12%

Table 7. Performance in each dataset (%).

Dataset TPR TNR Precision ACC F1

Dataset-15 95.44 97.22 97.16 96.33 96.30

Dataset-16 94.17 96.47 96.23 95.35 95.19

Dataset-17 94.56 96.47 96.24 95.54 95.37

Dataset-18 94.96 98.14 98.00 96.58 96.46

Dataset-19 94.18 98.14 97.98 96.20 96.04
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and 2.72%, respectively, indicating that the detection results of our model have
a high degree of confidence.

Comparison with Related Work. We selected 5 related studies that have
similar features or similar analytical methods. The results are shown in Table 8.
The work in the table may use a static method [5], the dynamic method [9,20], or
hybrid method [21,22]. We found that static and hybrid methods select features
related to permissions and sensitive APIs as their static features, which indicates
the prevalence of such features for static Android malware detection. While the
difference is that we have added some features such as component features,
certificates, etc. At the same time, for some samples, our method can perform
dynamic analysis based on static analysis. Most of the dynamic methods are
based on dynamic behavior monitoring, by building feature sets from different
aspects. Some of these scores in the table look slightly better than us. That is
because they were tested in different datasets (our samples are more abundant),
which is explained in the following to prove the superiority of our method.

Table 8. Comparison with other approaches (%).

Method Type Feature ACC/F1

St Dy P A M C N O E

Droidmat � – � � � – – – – 97.87
91.83

Andromaly – � – – – – � � � 91.13
–

Afonso – � – � – – � � – 96.82
96.79

M. Su � � � � – � � � – 97.4
–

stormDroid � � � � – – � � – 93.80
93.80

MFF-AMD � � � � � � � � � 96.00
95.87

St: static method, Dy: dynamic method, P: permission-based feature, A:
API-based feature, M: meta-information-based feature, including com-
ponent information, intent, package information, file md5, file size,
certificate, etc., C: code-feature-based feature, including java reflec-
tion, dynamic loading, etc., N: network- information-based feature, O:
sensitive-file-based or database-operation-based feature, E: shell-based or
command-based feature.

Each accuracy in Table 8 is obtained from its own dataset, because we didn’t
get all their source code, and some of their datasets are not such comprehen-
sive. Compared with the dataset size of the three works of Andromaly (10800),
Afonso (7520), and StormDroid (7970), our dataset samples are more abundant.
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Therefore, experiment results show that the advantages exist in comparison with
other schemes. The Droidmat’s datasets (1738) and M. Su’s datasets (1200)
have a smaller size, and the obtained accuracy rates are 97.87% and 97.4%,
respectively. We also test our scheme on their dataset (Contagio Mobile dataset)
separately. In the case of the same sample, our method has an advantage in accu-
racy, and the detection accuracy reaches 98.37% and 98.34%, which is superior
to these two schemes.

6 Conclusion and Future Work

We proposed a high accuracy-oriented detection model of Android malware
- MFF-AMD, based on multiscale feature extraction and classifier fusion. It
extracts dynamic and static features and is proved to be effective in distin-
guishing between benign applications and malicious applications. We balanced
the contradiction between overhead and accuracy in hybrid analysis via selec-
tive dynamic analysis. Our research shows that by using our designed weight
distribution algorithm to fuse base classifiers, we can make up the unreliable
performance of base classifiers, and effectively improve the overall accuracy of
the model. Finally, MFF-AMD performs a better detection rate and robustness
based on our data from the past five years. Our work can provide a solid solution
to complement current malware detection.

There are some interesting works following this line of research. The process
of extracting dynamic features is still costly. Despite we use UI views for dynamic
analysis, it may be not able to perform code-level analysis, which may result in
the failure to trigger a logical relationship and deeper malicious behavior. One
possible solution is to use semantic analysis to enhance our model, which we will
study in future work.
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