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Summary

This paper is concerned with capillary-gravity waves travelling on the interface of a
dielectric gas and a conducting fluid under the effect of a vertical electric field. A
boundary integral equation method is employed to compute fully nonlinear steady
travelling wave solutions. The global bifurcation diagram of periodic waves, solitary
waves, generalised solitary waves and dark solitary waves is presented and discussed
in detail.

1. Introduction

Electrohydrodynamics (EHD) concerns the coupled motion of fluids and electric fields.
It enjoys numerous chemical and engineering applications as electric fields can be used to
manipulate fluid flows in desirable ways. For example, coating processes (1, 2), electrospray
technology (3) and cooling systems in high-performance electrical devices with the help of
conducting fluids (4) are among those important industrial applications. The readers are
referred to (5, 6) for a review.

In practice, an EHD problem is usually concerned with an interface between two fluids in
which gravity and surface tension are both considered. A good understanding of the fluid
dynamics from a mathematical perspective is significantly helpful to engineers in enhancing
and innovating the design of industrial products. Early works on EHD can be traced
back to (7), where normal electric fields were shown theoretically and experimentally to be
capable of destabilising an interface between a conducting fluid and a dielectric gas. Later
(8) performed a linear stability analysis on the interfacial flow under the effects of electric
fields imposed tangentially to the undisturbed interface, and discovered that waves with
short wavelengths may be regularised. These two early works were followed by numerous
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extensions regarding fluid instabilities, e.g. (9, 10, 11). The former two papers utilised
reduced model equations whereas the latter one used direct numerical simulations.
Studying travelling waves propagating on the interface is equally important in

understanding the nature of the fluid dynamics. In the absence of the electric fields, the
problem is reduced to the classic capillary-gravity flow. Fully nonlinear solutions to the
Euler equations were computed by (12, 13, 14, 15) for solitary waves, (16) for generalised
solitary waves, (17) for asymmetric solitary waves (18) for asymmetric generalised solitary
waves, and a complete bifurcation diagram of the solitary waves was presented in (19). In
the presence of normal electric fields, weakly nonlinear model equations were derived for
analysis and simulation under the assumption of small wave amplitude, e.g. Boussinesq-
type equations by (28), and a Benjamin equation by (20) later generalised to a two-
dimensional model by (21). Furthermore, by truncating Dirichlet-to-Neumann operators,
(23) derived a Hamiltonian model accurate up to fifth-order in the amplitude parameter. A
detailed summary was written by (22) where various models were derived. Fully nonlinear
computations were achieved by a boundary integral equation method or equivalent in
(29, 30, 31, 32). In particular, the work by (32) studied the general setting in which
both the gas and fluid are dielectrics.
The bifurcation of solitary waves at small amplitude can oftentimes be investigated by

weakly nonlinear models. Such a bifurcation can occur at the global extremum of the
linear dispersion relation, and when such a point occurs for finite wavenumber, the local
bifurcation structure is predicted by the Nonlinear Schrödinger (NLS) Equation (33). In
the absence of electric fields, the associated NLS is of the focussing type which predicts the
existence of solitary wavepacket whose wave phase speed and group speed are identical. As
shown by (22), for a certain range of strength of the electric field, the NLS changes to the
defocussing type whose only solitary wave solutions are the so-called dark solitary waves
(a decaying centre and non-decaying oscillatory far-field). The local bifurcation structure
was found to higher orders of accuracy (i.e. higher nonlinearity) by (23). We note that a
similar local bifurcation was found in the context of interfacial gravity-capillary waves with
uniform background flows under the effect of horizontal electric fields in a recent work (34).

In this paper, we will explore the complete bifurcation structure of solitary waves to the
fully nonlinear system, and contrast it with that of the reduced NLS model. It is achieved
by numerically computing fully nonlinear travelling wave solutions via a boundary integral
equation method, in which no smallness assumption on the amplitude is required, to extend
the results from (23) where the local bifurcations were studied. The rest of the article is
organised as follows. In section 2, the detailed formulation of the problem is demonstrated.
The numerical scheme is explained in section 3. The numerical results are presented and
discussed in section 4. Concluding remarks are made in section 5.

2. Formulation

An irrotational flow of an inviscid and incompressible fluid of density ρ is considered in a
two-dimensional space under the effect of gravitational force, surface tension and a vertical
electric field. The fluid is bounded above by a gas layer. We assume both regions to be
of infinite depth. This assumption implies that the wave lengthscale is significantly shorter
than the depth of both the fluid and gas layers. Due to the presence of capillarity, the
wave lengthscale is of millimeters. Furthermore, the fluid is usually treated as a perfect
conductor whereas the gas is a dielectric since the conductivity of the former is much larger



electrified capillary-gravity waves 3

E

y = 0

∇2v = 0

∇2ϕ = 0, v = 0.
Conductor

Permittivity ϵ0

Dielectric

y = ζ(x)

g

y

x

Fig. 1 Configuration of the problem. The gravity acts in the negative y-direction. We denote the
equation of the unknown free surface by y = ζ(x).

than that of the latter. We adopt such a setting, and denote the permittivity of the gas by
ϵ0. The gravitational constant and the surface tension coefficient are denoted by g and σ
respectively. We introduce a Cartesian x–y coordinate system in which the gravity points
in the negative y-direction. All the waves are assumed to propagate with constant speed in
the positive x-direction. A reference frame moving with the wave is chosen such that the
solution becomes steady, and hence no time derivative is concerned. A voltage potential
v induced by the vertical electric field has asymptotic behaviour v ∼ V0y as y → ∞. The
interface between the fluid and the gas is denoted by y = ζ(x) whose mean level is fixed at
y = 0. Due to the incompressible assumption, the velocity vector can be expressed in terms
of the gradient of a scalar (velocity) potential ϕ. The system of equations then becomes

∇2ϕ = 0 , for y < ζ(x) , (2.1)

∇2v = 0 , for y > ζ(x) , (2.2)

ϕy = ϕxζx , on y = ζ(x) , (2.3)

v = 0 , on y = ζ(x) , (2.4)

vy → 1 , as y → ∞ , (2.5)

ϕy → 0 , as y → −∞ , (2.6)

and

|∇ϕ|2+y− ζxx
(1 + ζ2x)

3/2
− Eb
2(1 + ζ2x)

[
(1− ζ2x)(v

2
x − v2y) + 4ζxvxvy

]
= 0 , on y = ζ(x) , (2.7)

where we have chosen (
σ

ρg

) 1
2

,

(
σ

ρg3

) 1
4

, V0 , (2.8)
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as the reference length, time and voltage potential. The subscripts denote partial
derivatives. A schematic of the flow configuration is depicted in Fig. 1. The non-dimensional
electric parameter Eb is given by

Eb = ϵ0V
2
0

√
ρg/σ3. (2.9)

It is a measure of the ratio of electric forces over the forces due to gravity or capillarity.
Equation (2.6) is the zero flow condition at infinity. Equation (2.3) and (2.7) are the
kinematic and the dynamic boundary condition respectively. Condition (2.4), obtained
from the conducting nature of the fluid, implies

vx = −vyζx , on y = ζ(x) , (2.10)

which simplifies (2.7) as∣∣∇ϕ∣∣2 + y − ζxx
(1 + ζ2x)

3/2
− Eb

2

∣∣∇v∣∣2 = 0 , on y = ζ(x) . (2.11)

Upon linearising the system and seeking perturbations of phase speed cp and wavenumber
k, one recovers a linear dispersion relation of the form

c2p =
ω2

k2
=

1

k
+ k − Eb , (2.12)

Linear stability is given by the sign of cp: when it is positive (negative), the system is
linearly stable (unstable). It can be seen that for Eb < 2, the flow is always linearly stable,
and there exists a phase speed minimum at k = kc = 1 regardless the value of Eb. However,
when Eb > 2, a flow destabilisation takes place for k in a certain range in which c2p turns
to be negative. An illustrating graph is plotted in Fig. 2.
Due to the assumption that waves travel with constant speed, one can still recover periodic

solutions with wavenumber k when the system is unstable, given cp(k) is real. Such solutions
are of course linearly unstable. For solitary waves, there are two candidates for bifurcation
along the dispersion relation: the long-wave speed (k = 0), and the minimum (k = 1). At
k = 0, one expects to find generalised solitary waves, due to the resonance with a finite
wavelength linear wave with the same speed (for example, see (13, 16) for such solutions
with Eb = 0). On the other hand, at the minimum, one expects to find solitary wave
packets, described at small amplitude by the NLS equation (see below). In this paper, we
focus on solutions which bifurcate from the minimum. Hence, we restrict our attention to
Eb < 2.

2.1 Weakly nonlinear theory

Solitary wavepacket solutions are known to bifurcate from the minimum of the dispersion
relation, such as in the numerical solutions found in (36) for Eb = 0 . It was shown in (33)
that such a bifurcation is predicted by the Nonlinear Schrödinger (NLS) equation. The
associated NLS for the system (2.1)-(2.7) was derived via normal form analysis by (22, 23)
by writing ϕ and ζ as a series in powers of ϵ which is a small parameter as follows

ζ = ϵA(X, τ)ei(kx−ωt) + c.c. + ϵ2ζ2 + ϵ3ζ3 + ... , (2.13)

ϕ = ϵB(X, τ)ei(kx−ωt) + c.c. + ϵ2ϕ2 + ϵ3ϕ3 + ... , (2.14)
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Fig. 2 Plot of cp versus k as in (2.12) for Eb = 0, 0.6, 1.2 and 2.4. The critical wavenumber kc is
also displayed.

where k is the wavenumber, ω is the angular frequency, X = ϵ(x − cgt), τ = ϵ2t, A is the
amplitude of the wave envelope and cg is the group speed. Here we omit the derivation and
only show the major results. The reader may refer to (22, 23) for more details.

At the linear order O(ϵ), as expected, one recovers the linear dispersion relation (2.12).
At the quadratic order O(ϵ2), the explicit form of the group speed cg is obtained

cg =
dω

dk
=

1 + 3k2 − 2Ebk

2ω
. (2.15)

It is equal to the phase speed cp at the wavenumber k = kc where cp attains its minimum
denoted by cmin. As already mentioned, such a critical point is a candidate bifurcation
point of solitary wavepackets. The type of solitary waves found can be predicted by the
type of the associated Nonlinear Schrödinger Equation, given by

iAτ + βAXX + µ
∣∣A∣∣2A = 0 , (2.16)

The coefficients are recovered at cubic order O(ϵ3), and were found by (22, 23) to be

β =
1

2
√
2− Eb

and µ =

[
4(Eb − 1)2 − 5

4

]
√
2− Eb

, at k = kc , (2.17)

From (2.17), it can be deduced that

1. when 0 ⩽ Eb < 1 −
√
5/4 or 1 +

√
5/4 < Eb < 2, the NLS is of focussing type and

predicts the existence of bright solitons.
2. when 1 −

√
5/4 < Eb < 1 +

√
5/4, the NLS is of defocussing type and predicts the

existence of dark solitons.

In the former case, which includes the classical capillary-gravity waves (EB = 0), the NLS



6 A. Doak ET AL.

equation has explicit bright solitary wave solutions given by

A(X, τ) =

√
2α

µ
sech

(√α

λ
X
)
eiατ , (2.18)

ζ = 2ϵ

√
2α

µ
sech

(√α

λ
ϵ(x− cgt)

)
cos

(
k(x− cpt) + αϵ2t

)
+O(ϵ2) , (2.19)

with a speed-amplitude relation given by

a =

√
8kc∆c

µ
+O(∆c) , (2.20)

where ∆c = c− cmin and a is the wave amplitude defined by (max ζ −min ζ)
/
2. It is found

that fully nonlinear solitary wavepackets bifurcating from infinitesimal periodic waves at
c = cmin are well approximated at small amplitudes (up to O(ϵ2)) by the NLS solution.
For the defocussing case, which for this problem requires the inclusion of the electric field,
(23) studied the local bifurcation by a reduced model which approximates (2.1)-(2.7). They
found that solitary wave solutions about the bifurcation point cmin are dark solitary waves,
whose speeds c satisfy c > cmin. As the amplitude increases, the solution branches turn in
the amplitude-speed parameter space, and eventually the solution branch exits the linear
spectrum (i.e. c decreases below cmin). Upon doing so, truly localised solitary wavepackets
are found. Their major result can be summarised as in Fig. 3 from (24). As with the
focussing case, the bifurcation structure for small amplitudes is predicted by the NLS
equation, which has explicit dark solitary wave solutions, given by

A(X, τ) = α tanh

(
α

√
µ

2λ
X

)
e−iµα2τ , (2.21)

where α is an arbitrary parameter. Combining (2.13) and (2.21) yields the first-order
approximation of the solution to the full Euler equations

ζ = 2ϵα tanh

(
α

√
µ

2λ
ϵ(x− cgt)

)
cos

(
k(x− cpt− µα2ϵ2t) + φ

)
+O(ϵ2) , (2.22)

in which φ is the phase. In particular, for dark solitary waves of small amplitude that
are symmetric about x = 0, it is required that k = kc, cp = cg = cmin, and φ = π/2 or
3π/2 corresponding to two different families. Dark solitons possess Stokes-like non-decaying
oscillations in the far field and travel with speed c > cmin. By (25), the speed-amplitude
dependence to the leading-order accuracy for Stokes waves or dark solitary waves is given
by

a =

√
4kc∆c

µ
+O(∆c) . (2.23)

It is noted that (2.23) is obtained by solving the associated elliptic eigenvalue problem (see
(27) for more details).
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Fig. 3 Schematic of local bifurcation diagram in the case of defocussing NLS. The horizontal scale
is exaggerated for a better display. SW, GSW, DSW stand for solitary waves, generalised solitary
waves and dark solitary waves respectively.

It is worth mentioning that the existence of solitary wave which bifurcate at finite
amplitude does not violate the NLS theory that is only valid for waves of small amplitude.
We choose the parameter Eb such that the region of parameter space in which dark solitary
waves (DSW) and generalised solitary waves (GSW) is not narrow, and the amplitude of
the solitary waves (SW) is not large. This is dependent on the parameter µ from (2.17), as
shown in Fig. 3. To this end, we consider the defocussing case with Eb = 0.6 in the rest of
the paper.
To investigate the global bifurcation, we compute for the fully nonlinear dark solitary

waves with the help of the approximated solutions (2.22) as an initial guess in an iterative
scheme. The computations are achieved by a boundary integral method that will be
presented in the following section.

3. Numerical scheme

To solve for the fully nonlinear system shown in section 2, we follow previous authors
(29, 30, 32) and exploit the theory of complex analysis to express unknowns in terms of
values on the boundary, and hence reduce the dimension of the problem. We introduce the
streamfunction ψ, which is the complex conjugates of ϕ, and hence they satisfy the Cauchy
Riemann equations, given by

ϕx = ψy, ϕy = −ψx. (3.1)
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We also introduce a real function w, such that v is the complex conjugate of w. This gives
us that

wx = vy, wy = −vx. (3.2)

We denote by F and G the complex fluid and electric potentials. That is, F = ϕ+ iψ, and
G = w + iv, are both analytic functions of the complex displacement z = x + iy. Instead
of seeking the potentials in the physical space, we solve for physical variables in the two
potential spaces. One does this by taking ϕ and ψ as independent variables, and in the
fluid region seek x and y as functions of ϕ and ψ. Meanwhile, in the gas, we seek x and y
as functions of the independent variables w and v. The advantage of solving the system in
the potential space, rather than the physical space, is that the unknown free boundary is
given by equipotentials of both ψ and v.

We seek a steady periodic disturbance of non-dimensional wavelength λ, which is chosen to
be large, since we are approximating solitary waves as long periodic waves. When computing
dark solitary waves near the bifurcation point predicted by the NLS theory, one must be
careful with the choice of λ. The wavelength of the carrier wave in equation (2.22) is 2π,
and combined with the phase-shift of π, we must choose λ ≈ (2n + 1)π, with n an integer
(see, for example, (25)).
Equations (2.3) and (2.5) imply that the fluid and gaseous regions are conformally mapped

to Ωf and Ωg respectively, where

Ωf = {(ϕ, ψ); ψ < 0, −cλ/2 ⩽ ϕ < cλ/2} , (3.3)

Ωg = {(w, v); v > 0, −λ/2 ⩽ w < λ/2} . (3.4)

We conformally map Ωf and Ωg to unit circles in the s and t planes respectively. This is
done via

s = exp

(
kF

c

)
, t = exp (kG) . (3.5)

We introduce two complex analytic functions Γ and Λ, defined by

Γ = xϕ −
1

c
+ iyϕ, (3.6)

Λ = xw − 1 + iyw. (3.7)

We capitalize functions evaluated on the free boundary, for example x(ϕ, ψ)|ψ=0= Xϕ(ϕ).
We apply Cauchy’s integral theorem to the function Γ on the unit disc traversed in an
anti-clockwise direction in the s-plane. Taking the real parts, and after application of the
chain rule (see e.g. (26)), one finds that

Xϕ(ϕ0) =
1

c
+

1

2cλ
PV

∫ cλ/2

−cλ/2
cot

(
k

c
(ϕ− ϕ0)

)
Yϕ dϕ, (3.8)

where ϕ0 is any value of ϕ0 ∈ [−cλ/2, cλ/2), and ‘PV’ stands for Cauchy Principal Value.
To handle interpolation between the fluid and gaseous regions on the free boundary, we
introduce a function w = h(ϕ) which must be found as part of the solution. Applying
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Cauchy’s integral theorem to the function Λ on the unit disc traversed in an anti-clockwise
direction in the t-plane gives, after some algebra,

Yϕ(ϕ0)

hϕ(ϕ0)
= 1− 1

2λ
PV

∫ cλ/2

−λ/2
cot

(
k

c
(h(ϕ)− h(ϕ0))

)
Yϕ dϕ. (3.9)

Equations (3.8) and (3.9) express unknowns on the boundary in terms of an integral equation
involving boundary values. We exploit the assumed symmetry about x = 0 to reduce the
integrals in equations (3.8) and (3.9) to integrals from ϕ = 0 to ϕ = cλ/2. We discretise ϕ
into N equally spaced mesh points ϕI , given by

ϕI =
cλ

2

I − 1

N − 1
, I = 1, 2, · · · , N. (3.10)

We decompose Y and hϕ into Fourier modes:

Y = a0 +

N−2∑
n=1

an cos

(
kn

c
ϕ

)
, (3.11)

hϕ =
1

c
+

N−2∑
n=1

bn cos

(
kn

c
ϕ

)
. (3.12)

Hence, fixing a property of the wave, such as an amplitude parameter A = Y (0), the
resulting numerical problem has 2N − 2 unknowns: an, bn, c, and the Bernoulli constant
B. The coefficient a0 can be taken to be any value, since it only enters the equation via the
dynamic boundary condition, and can be absorbed by the Bernoulli constant (B → B+a0).
We choose a0 such that the mean depth of the interface displacement is zero. Derivatives
of Y can be found by differentiation (3.11). Given Yϕ, one can recover Xϕ by ensuring
equation (3.8) is satisfied. The integral is evaluated at midpoints ϕMI using the trapezoidal
rule, where

ϕMI =
ϕI+1 + ϕI

2
, I = 1, 2, ..., N − 1 . (3.13)

Values of Xϕ can be recovered at the meshpoints ϕI using four-point interpolation formulae.
We rewrite the Bernoulli equation in terms of our unknowns:

1

2

(
X2
ϕ + Y 2

ϕ

)−1 (
1− E2

bh
2
ϕ

)
− YϕϕXϕ −XϕϕYϕ(

X2
ϕ + Y 2

ϕ

)3/2
+ Y −B = 0. (3.14)

We satisfy equation (3.14) at the N − 1 midpoints. Furthermore, we satisfy the integral
equation (3.9) at the first N − 2 midpoints. Finally, we fix the amplitude of the wave,
or some other property such as the speed c, to close the system of 2N − 2 equations with
2N−2 unknowns. We solve this numerical system using Newton-Raphson method, stopping
iterations once the residuals are of the order 10−11. The Jacobian matrix is approximated
numerically. The method typically converges within five or less iterations. It is checked
throughout the calculations that (3.9) is also satisfied at the last midpoint with the same
accuracy as at the other mesh points. Using the solutions (2.22) as an initial guess, one can



10 A. Doak ET AL.

Fig. 4 A local bifurcation diagram for Eb = 0.6 and λ = 81π. There is an elevation branch and
depression branch, bifurcating from infinitesimal periodic waves. The dashed curves are the NLS
prediction, the dotted curve is c = cmin, and the triangle and star are used for reference in Fig. 5
and 7. Solutions (a)-(f) are shown in the right-hand panels. The amplitude of the elevation branch
is given by 1

2
(max(Y )−min(Y )). For the depression branch, we use the negative of this value, to

distinguish them clearly on the figure.

find new solutions via the method of continuation. We also note that the complexity of the
numerical scheme is of O(N3).
The above numerical method allows us to explore the fully nonlinear bifurcation diagram

of the model presented in section 2. In the following section, we describe the solution
space recovered via the fully nonlinear numerical scheme. The accuracy of the numerical
procedure is discussed in detail in Appendix A.

4. Fully nonlinear computations

The analysis from section 2 indicated that for small amplitudes, one expects to find two
branches of dark solitary waves bifurcating from c = cmin. This is indeed the case, and a
local bifurcation diagram for Eb = 0.6 and λ = 81π is shown in Fig. 4. Some solutions,
denoted (a)-(f) on the branches, are shown in the right-hand panels. The solution branches
are completed by a continuation method as presented in the left-hand panels of Fig. 4.
The dashed curves are the NLS solution branches, while the solid curves are fully nonlinear
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computations. We can see from the NLS solution (2.22) that ζ at x = 0 is either a peak
(local maximum) or a trough (local minimum). The solutions that have a peak at the
point of symmetry are referred to as elevation waves, while those that have a trough are
called depression waves. As one moves further along the branch, the profile at x = 0 can
change from a peak to a trough or vice versa. Nonetheless, we shall refer to the solutions
which evolve smoothly from initial elevation waves as the elevation branch as presented in
the upper-half of the left panel from Fig. 4. The depression branch is defined similarly
and depicted in the lower-half of the left panel from Fig. 4. It can also be seen that for
small amplitudes the NLS theory is a very good approximation of the full Euler system.
In particular, for solutions (a) and (d) in the figure, the predicted amplitude of the wave-
packet is shown by the dashed curves, and is seen to be in very good agreement with the
fully nonlinear solutions. However, as the weakly nonlinear assumption becomes further
invalidated, the solution branch begins to deviate from the NLS theory. It is found that,
like with the model derived in (23), the solution branches turn such that the value of c
begins to decrease again towards c = cmin. During this process, two depression solitary
wave packets form on either side of the point of symmetry x = 0 (see solutions (b) and (e)).
These are generalised solitary waves: since their speeds are within the linear spectrum of
the system, there exists a resonant oscillatory tail. As the solutions cross c = cmin, they
leave the linear spectrum, and the solutions become localised structures known as bright
solitary wavepackets. Solutions (c) and (f) show that they take the form of two depression
solitary wavepackets joined together. They are referred to in the literature as multi-packet
bright solitary waves. The local bifurcation structure described above is the same as that
obtained for the truncated Hamiltonian model in (23).

Next, we explore the global bifurcation structure. In other words, we want to find out
what happens to the solitary waves as one continues further along the branches. First,
we consider the elevation branch, which is shown in Fig. 5. The branch is shown in
a three-dimensional parameter space, starting from the triangle shown in Fig. 4. The
parameter ŷ is the value of ζ at x = 0. The speed is the value c, and the plane c = cmin

is given by the grey shaded region. The parameter S is an artificial parameter not related
to any physical parameter of the solutions: it is the total arclength of the solution branch
itself. We introduce it for aesthetic reasons, allowing us to ‘unfold’ a solution branch which
otherwise crosses itself many times. As shown previously, solution (c) in Fig. 4 is a bright
multi-packet solitary wave, formed of two depression solitary waves joined together. As
one follows the branch, the speed decreases until a point where it turns such that the speed
begins to increase again. During this process, the solution at the point of symmetry changes
from a peak to a trough, and one oscillation is lost between the two solitary packets. For
example, Fig. 6 shows a half wavelength of solutions (c) and (i), given by the solid and
dashed curves respectively. It can be seen in the left-hand panel that the depression packet
is closer to x = 0 for the solution (i). The right-hand panel shows a blow up of the solution
near x = 0, showing the change at x = 0 as it goes from a peak to a trough. Following
the branch further, it again crosses c = cmin, such that the solutions become generalised
solitary waves. The branch again turns, and in the process the two depression packets
become elevation packets, as seen in the solution denoted (iii). The branch proceeds to exit
and enter the linear spectrum two more times. Each time the branch turns with c < cmin,
the nature of the solution at x = 0 changes from a peak to a trough (or vice versa), and
an oscillation is lost between the two packets. For example, this occurs between solutions
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Fig. 5 Global bifurcation diagram of the elevation branch with Eb = 0.6 and λ = 81π. The
triangle corresponds to the triangle seen in Fig. 4. The grey plane is given by c = cmin. Asterisks
correspond to points where the solution branch crosses c = cmin. The parameter ŷ is ζ at x = 0,
and the parameter S is the arclength of the solution branch itself.

Fig. 6 Solutions (c) and (i) are given by the solid and dashed curves respectively. The left-hand
panel shows the solutions over a half wavelength. The right-hand panel is a blow up of the solution
at x = 0.
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mm

Fig. 7 Global bifurcation diagram of the depression branch with Eb = 0.6 and λ = 81π. The star
corresponds to the star seen in Fig. 4. The grey plane is given by c = cmin. Asterisks correspond
to points where the solution branch crosses c = cmin. The parameter ŷ is ζ at x = 0, and the
parameter S is the arclength of the solution branch itself.

(iv) and (v). When the branch turns in the region c > cmin, the nature of the packets
changes. For example, between solution (ii) and (iii), the packets go from depression to
elevation. Between solutions (v) and (vi), they revert back from elevation to depression.
The final time they re-enter the linear spectrum, the two solitary waves structures are close
together (solution (viii)). The solution branch does not turn again, but joins the branch of
Stokes wave. Hence, the bifurcation structure is an exotic path through parameter space,
connecting an NLS-like dark solitary wave bifurcation about c = cmin to a bifurcation point
along the branch of Stokes’s waves with periodic 2π.

Next, we consider the depression branch, shown in Fig. 7. The star in the figure is the
one previously shown in the local bifurcation diagram in Fig. 4. As with the elevation
branch, after crossing c = cmin for the first time, the solution has become a multi-packet
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Fig. 8 A solution branch containing single elevation packets, with Eb = 0.6 and λ = 81π. The
branch is presented in three-dimensional parameter space, where ŷ and S are as given in Fig. 5
and 7. The grey plane is c = cmin, and the stars correspond to the points where the branch crosses
the grey plane. Solutions (I)-(VI) are shown in the right-hand panels.

bright solitary wave, where both packets are of depression, such as solution (f). The branch
again turns, and passes back through c = cmin, where, like the elevation branch from Fig.
5, an oscillation has been lost between the two packets as the branch turns. The solution
branch then proceeds to re-enter and exit the linear spectrum three more times. Unlike the
elevation branch, upon re-entering and exiting for the first time, the solution does not change
from two depression packets to two elevation packets, but rather becomes four depression
packets! This can be seen in the evolution of the solution branch between solutions (2)
to (4) in Fig. 7. The second time it enters and exits, the two depression packets nearest
to each other are lost, seen in solutions (5) and (6). The final time it enters and exits,
the two depression packets become elevation packets (see solutions (7) to (10)). The two
elevation waves observed in solution (10) are far apart. Computing solutions beyond this
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Fig. 9 A solution branch containing single depression packets, with Eb = 0.6 and λ = 81π.
Solutions (VII)-(XI) are shown in the right-hand panels. Solutions (VII)-(VIII) are shown with a
shorter x scale than (IX)-(XI), to make the features of the wave more visible. The grey plane is
c = cmin, and the stars correspond to the points where the branch crosses the grey plane.

point becomes impractical, due to the large computational domain required, and instead
we explore the solution branch for a single elevation packet in the paragraph below. We
recomputed the above branch with λ = 101π, to ensure that domain size did not affect the
number of solitary packets that formed, such as the four packets in solution (4). The results
were in agreement.
The solutions as seen thus far have followed from the global bifurcation of dark solitary

waves. We saw that solutions became multi-packet solitary waves. It was shown by (23) that
single wave packets could also be found in a defocussing regime, but that they bifurcated at
finite amplitude. Further evidence to support this is solution (10) from Fig. 7, where the
two elevation packets are very far apart. In Fig. 8 and 9, we present a branch of solutions
containing a single elevation and a single depression wavepacket solution respectively. We
begin by discussing the branch containing an elevation wavepacket, such as solution (III).
Like in (23), it is found that a single elevation solitary wave packet emerges from a branch
of generalised solitary waves, e.g. solution (II), which in turn bifurcated from a Stokes
wave, shown by solution (I). If we instead follow the solution branch the other way, more
single packet elevation solutions, such as (IV), are discovered. The branch enters c > cmin,
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where one finds that the solution becomes a multi-packet generalised solitary wave, as shown
by solution (V). This solution then again leaves the linear spectrum, resulting in a multi-
packet solitary wave (VI). We cease our computations here: it has already been seen that
multi-packet solutions form long winding paths in parameter space, with the emergence
and disappearance of additional packets. Next, consider the branch from Fig. 9. Starting
from a depression wavepacket, given by solution (VIII), the amplitude increases one way
along the branch. Solution (VII) is as far along the branch as we were able to compute.
Past this point, the numerical method becomes stiff, and the iterative procedure fails to
achieve satisfactory convergence. The limiting configuration of such a branch remains an
open problem. For the case of gravity-capillary surface waves, it is known depression solitary
wavepackets in infinite depth water overturn and form a trapped bubble (36). However, due
to the presence of the electric field in this model, one cannot smoothly follow the solution
branch to the point of a trapped bubble. Going the other way along the branch, the solution
enters the linear spectrum resulting in generalised solitary waves as shown in (IX) due to
the resonance with periodic waves. Then the solution forms a multi-packet structure, given
by solution (X). We compute the branch as far as solution (XI), where the branch again
exits the linear spectrum, and becomes three depression packets.

5. Conclusion

In conclusion, we have presented the global bifurcation structure of EHD solitary waves
travelling on the interface between a conducting fluid and a dielectric gas. The results are
an extension of the work of (23), where the new fully nonlinear computations presented
here allow us to explore the solitary wave branches into strongly nonlinear regimes. The
inclusion of the electric field allows for the associated NLS equation to be of the defocussing
type at the minimum of the dispersion relation. This occurs for the parameter range
1 −

√
5/4 < Eb < 1 +

√
5/4, motivating the choice Eb = 0.6 as the parameter for which

we presented solution branches. Two branches of dark solitary waves bifurcate at zero
amplitude about the minimum of the dispersion relation (2.12). The branches were then
found to enter and exit the linear spectrum of the system a number of times. The solutions
observed along the branch are rather exotic, where multi-packet solitary waves are formed
via the appearance and disappearance of additional wavepackets as the solution branches
turn in the linear spectrum. The results presented here are the first to show the global
bifurcation structure of a fully nonlinear water wave system which is approximated by a
defocussing NLS for small amplitude. Previously, this was attempted for flexural-gravity
waves by (25), but higher order derivatives in the boundary condition made the numerical
method too stiff to follow the branches very far. We also found that the single packet
solutions found in a defocussing regime exist on branches that pass through c = cmin, and
along which more multi-packet solutions are found.
A very recent work (37) by Wang proposed a novel Whitham-type model equation

that can capture the essential features of a bifurcation mechanism in the defocussing NLS
framework for the problem of hydroelastic waves. Such model is also valid for investigating
the present problem in electrodynamics. This will be left for future work.
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APPENDIX A



electrified capillary-gravity waves 19

N (a) (b) (c) speed of one iteration (in seconds)
200 −0.00826 −0.00320 0.00188 ∼ 0.1
400 −0.00934 −0.00456 0.00176 ∼ 1
800 −0.00944 −0.00469 0.00175 ∼ 8
1600 −0.00945 −0.00470 0.00175 ∼ 60

Table A Values of a1 obtained for different N for solutions (a)− (c) shown in Fig. 4. A
typical time for one iteration is also presented.

Fig. A Solution with c = cmin − 10−5 for λ = 81π (solid curve) and λ = 101π (dotted curve).
Only half a wavelength in shown. Since neither solution has yet decayed to a flat far-field, they are
periodic solutions, rather than bright solitary waves.

In this appendix, we discuss the accuracy and the efficiency of the numerical procedures. Consider
first the consequence of varying the number of mesh points used. We computed solutions (a)− (c)
from Fig. 4 for different values of N . We fix the speed c, and present the first Fourier mode a1

from equation (3.11) in Table A. The table demonstrates the convergence of the numerical method
as N increases. The computational times confirm the O(N3)-complexity. One can also check the
order of magnitude of the coefficients an. For solution (c), we find that a100 ∼ 10−4, a200 ∼ 10−7,
a400 ∼ 10−10, and a600 ∼ 10−13. Most solutions presented in this paper are computed with
N = 800, which we found to be a good compromise between accuracy and speed of computation.

In this paper, we explored solitary waves and generalised solitary waves. However, it was found
that for solutions close to c = cmin, the decay of the solitary wave packet is very slow. This is
predicted at small amplitude by the NLS theory. When the NLS is focussing, bright solitary waves
are given by (2.18), with speed given by (2.20). As c → cmin, the coefficient α → 0, resulting in
a slow decay in the wavepacket solution (2.18). Likewise, the same behaviour is observed for the
dark solitary waves of the defocussing NLS, as seen in equations (2.22) and (2.23) . This slowly
decaying behaviour near c = cmin persists into strongly nonlinear regimes. For example, in Fig.
A, we present a solution from the elevation branch in Fig. 4 with a speed c = cmin − 10−5 for
two different values of λ. It can be seen that for both λ = 81π and λ = 101π, the oscillations in
the tail have yet to fully decay. Despite this, the solutions are in good agreement up to where the
λ = 81π solution ends. As one computes solutions with yet larger values of L, the amplitude of
the oscillations will eventually decay to zero. However, this presents computational impracticality,
requiring very large λ for solutions near cmin. Instead, we choose to fix λ (typically λ = 81π, unless
stated otherwise), and solutions with c < cmin computed in a region near c = cmin in this paper are
not solitary waves, but rather a long periodic wave, which tends to a solitary wave as λ → ∞.

As we have already seen, solutions with c > cmin have oscillatory tails. As explained in section

2, to obtain dark solitary waves near the zero amplitude bifurcation point in Fig. 4, one requires

λ ≈ (2n+ 1)π. As one moves further along the branch, the solutions are no longer well predicted
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Fig. B Solution (a) and (b) from Fig. 4 for λ = 81π (solid curve) and λ = 101π (dotted curve).
Only half a wavelength in shown.

the NLS solution (2.22), and the solutions become multi-packet generalised solitary waves, like

solutions (b) and (e). Unlike localised structures, generalised solitary waves are known to have

dependence on the wavelength of the solution (e.g. (35)). Varying the wavelength affects the

wavelength of the oscillatory tail. Since we wish for our solution branches to extend from the dark

solitary waves, we choose to fix λ = 81π for computations along the entirety of the branch. For

the generalised solitary waves computed in Fig. 4, varying λ by integers of 2π results in almost

overlapping profiles, where the solution with larger λ has additional oscillations of a wavelength of

approximately 2π in the tail. This is shown in Fig. B for solutions (a) and (b) from Fig. 4 where

the profiles for λ = 81π and λ = 101π are shown to be in almost perfect agreement. However,

as we explore the global bifurcation structure, multi-packet generalised solitary waves computed

further along the branch may not have a resonant tail with a wavelength of approximately 2π. This

is because strongly nonlinear wavepackets, unlike weakly nonlinear NLS wavepackets (2.22) and

(2.18), do not have decoupled packet amplitude and carrier wave. Nonetheless, one can find, for

any generalised solitary wave solution computed in this paper, another generalised solitary wave

with a larger wavelength such that the solutions overlap, where the longer solution has additional

oscillations in the tail. The dependence of the computational domain for the generalised solitary

wave can affect the multi-packet bright solitary wave that emerges as the branch exits the linear

spectrum: there can be one extra or one less oscillation between the packets of the solution. All

solutions computed retain good convergence as N is increased. In this sense, we believe all of these

numerical solutions to be solutions to the original system: multi-packet solutions can be found with

different distances between the packets (38).


