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Abstract—The rise of the Internet of Things (IoT) and 

Industrial IoT (IIoT), over the past few years, has been 

beneficial for the citizens, societies and industry. However, their 

resource-constrained and heterogenous nature renders them 

vulnerable to a wide range of threats. Therefore, novel security 

mechanisms, such as accurate and efficient anomaly-based 

intrusion detection systems (AIDSs), are required to be 

developed before IoT/IIoT networks reach their full potential in 

the market. However, there is a lack of up-to-date, 

representative and well-structured IoT/IIoT-specific datasets 

that are publicly available to the research community and 

constitute benchmark datasets for effective training and 

evaluation of Machine Learning models suitable for AIDSs in 

IoT/IIoT networks. Contribution to filling this research gap is 

of utmost importance and toward this direction the novel 

“TON_IoT Telemetry” dataset was recently published. Taking 

the opportunity to explore further this dataset, we targeted at its 

network-related part so as to generate IoT edge network specific 

datasets for effective development of more accurate and efficient 

IoT/IIoT-specific AIDSs. Therefore, in this paper, we present 

the methodology we followed to generate a set of IoT edge 

network specific datasets based on the  “ToN_IoT Telemetry” 

dataset.   
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I. INTRODUCTION 

Over the past few years, Internet of things (IoT) and 
Industrial IoT (IIoT) networks have been bringing significant 
benefits to citizens, society and industry [1], [2]. However, the 
wide range of different communication technologies (e.g., 
WLANs, Bluetooth, Zigbee) and types of nodes/devices (e.g., 
sensors), incorporated in IoT/IIoT edge networks, are 
vulnerable to various types of security threats [3], [4], . In turn, 
this fact raises many security and privacy challenges for such 
networks as well as for the systems relying on these networks 
[2], [5], [6]. For instance, an attacker may compromise 

IoT/IIoT networks in order to manipulate sensing data (e.g., 
by injecting fake data) and cause malfunction to the IoT/IIoT-
based systems that rely on the compromised IoT/IIoT 
networks. Thus, security solutions protecting IoT/IIoT 
networks from attackers are essential for the acceptance and 
wide adoption of such networks in the coming next years. 

However, the high resource requirements of complex and 
heavyweight conventional security mechanisms cannot be 
afforded by (i) the resource-constrained IoT/IIoT nodes (e.g., 
sensors) with limited processing power, storage capacity, and 
battery life; and/or (ii) the constrained environment in which 
the IoT/IIoT nodes are deployed and interconnected using 
lightweight communication protocols [7]. Therefore, novel 
security mechanisms, such as accurate and efficient anomaly-
based intrusion detection systems (AIDSs) adapted to the 
resource-constrained characteristics of IoT/IIoT networks, are 
necessary to be developed in order to address the pressing 
security challenges of IoT/IIoT networks with reasonable cost, 
in terms of processing and energy, before IoT/IIoT networks 
gain the trust of all involved stakeholders and reach their full 
potential in the market [1] , [2], [5]. 

AIDSs use Machine learning (ML) models and require 
appropriate benchmark datasets in order to be trained and 
evaluated [8], [9]. Nevertheless, there is a lack of up-to-date, 
representative and comprehensive IoT/IIoT-specific datasets 
that are publicly available to the research community and 
considered as benchmark datasets for effective training and 
evaluation of ML models suitable for AIDSs in IoT/IIoT 
networks. This lack of benchmark IoT/IIoT datasets 
constitutes a significant research challenge that should be 
addressed so as to develop more accurate and efficient 
IoT/IIoT-specific AIDS. Toward this direction, the authors in 
[10] have proposed, for the first time, to the best of our 
knowledge, a new dataset, called “TON_IoT Telemetry”, 
which can be considered as a significant step toward a 
benchmark IoT/IIoT dataset, publicly available, for accurate 
design and evaluation of AIDSs as it includes events of a 
variety of IoT-related attacks and legitimate scenarios, IoT 
telemetry data collected from heterogeneous IoT/IIoT data 
sources, network traffic of IoT/IIoT network, and audit traces 
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of operating systems. Taking the opportunity to explore 
further the “TON_IoT Telemetry” dataset, we focused on the 
network-related part of this dataset in order to generate IoT 
edge network specific datasets for effective development of 
more accurate and efficient IoT/IIoT-specific AIDSs.   

Therefore, in this paper, the main objective is the 
generation of a set of IoT edge network specific datasets based 
on the “Processed Network” datasets of the “ToN_IoT 
Telemetry” dataset [10]. In particular, from the network part 
of the “ToN_IoT Telemetry” dataset, we specifically filtered 
the records related to the “edge” network, as these records are 
the most appropriate for training and testing of ML models for 
AIDSs protecting IoT/IIoT networks, and generated a dataset, 
called “IoT Edge Network_Initial”. However, the initially 
generated dataset (i.e., “IoT Edge Network_Initial”) suffered 
from imbalances derived from the values of the “type” and 
“label” features. Therefore, we proposed a novel records 
selection algorithm in order to sub-sample the “IoT Edge 
Network_Initial” dataset and generate a new set of IoT edge 
network specific datasets where the imbalances of the initial 
generated dataset (i.e., “IoT Edge Network_Initial”) were 
reduced. 

Following the introduction, this paper is organized as 
follows. Section II reviews the testbed and the created 
“ToN_IoT Telemetry” datasets files. Section III presents the 
methodology followed to generate the set of IoT edge network 
specific datasets based on the “Processed Network” datasets 
of the “ToN_IoT Telemetry” dataset. Finally, Section IV 
concludes this paper and provides some hints for future work. 

II. TON_IOT TELEMETRY DATASET 

In this subsection, the “TON_IoT Telemetry dataset” [10]  
is described. For the purposes of generation and collection of 
the TON_IoT Telemetry dataset [11], the authors in [10]  
developed a testbed integrating IoT sensors (e.g., weather and 
Modbus sensors), physical network components (e.g., 
switches, routers), several virtual machines (e.g., VMs of 
Offensive Kali systems, VMs of Windows client systems), 
hacking platforms, cloud and fog platforms and the devices 
were organized into the three layers of “Edge”, “Fog” and 
“Cloud”. Moreover, Software-defined Network (SDN) and 
Network Function Virtualisation (NFV) were employed 
through the NSX-VMware platform [12] in order to: 

• establish both a virtualized “Fog” layer and a 
virtualized “Cloud” layer that simultaneously operate 
to offer the IoT/IIoT and network services; 

• emulate and control multiple virtual machines (VMs) 
in the testbed for both hacking and normal operations; 
and 

• manage the interaction between the three layers. 

A. “Edge” layer of the Testbed 

The “Edge” layer is fundamental in IoT/IIoT applications 
because its devices measure real-world physical conditions 
and transmit the collected information to the Fog or Cloud for 
further analysis [13]. The “Edge” layer of the testbed contains 
various IoT/IIoT devices, smartphones and smart TVs, 
physical gateways to the Internet as well as host systems. 
Additionally, the “Edge” layer incudes the physical host 
systems “NSX-VMware Server” and “vSphere System” 
which are used to deploy the fog layer and cloud layer, 
respectively, by means of virtualization through the NSX-

VMware platform [12] and the NSX-VMware hypervisor 
platform respectively. 

B. “Fog” layer of the Testbed  

The purpose of the “Fog” layer is to extend the Cloud 
computing and services to the “Edge” layer of the network to 
provide limited computing capacity and storage near to the 
data sources [13]. The “Fog” layer of the testbed consists of 
VMs and the appropriate virtualization technology that 
manages the VMs and their services using the NSX-VMware 
platform. The included VMs and their roles are as follows: 

• VMs where the Offensive Kali systems [14] are 
installed and include the scripts to simulate various 
attack scenarios; 

• VMs (i.e., Metaspoitable3, OWASP security 
Shepherd, and Damn Vulnerable Web App (DVWA)) 
which offer vulnerabilities that can be exploited by the 
Offensive Kali systems [14]; 

• VMs of client systems (i.e., Windows 7 and 10); 

• an Ubuntu 18.04 Middleware server where the Node-
Red [15] and Mosquitee MQTT broker tools were 
deployed to manage the IoT/IIoT services and to 
operate seven IoT/IIoT sensors: weather, smart garage 
door, smart fridge, smart TCP/IP Modbus, GPS 
tracker, motion-enabled light, and smart thermostat; 

• an Ubuntu 14.04 LTS orchestrated server that offered 
network services, including DNS (i.e., mydns.com), 
HTTP(s), DHCP, email server (i.e., Zimbra), 
Kerberos, and FTP, and generated network traffic 
between VMs; and 

• a VM with the Security Onion tool that is used to log 
the network data of all the active systems in the 
testbed. 

C. “Cloud” layer of the Testbed  

The general purpose of the “Cloud” layer is to host large-
size data centers with significant capacity for both 
computation power and storage to support IoT/IIoT 
applications and meet the resource requirements for big data 
analysis. The “Cloud” layer of the testbed includes: 

• a Hive-MQTT broker [16] that is used to publish and 
subscribe the sensing data of the IoT/IIoT services 
using the Node-Red tool; 

• a vulnerable PHP website [17] used to execute 
injection attacking events; and 

• Cloud centers services (e.g., Microsoft Azure IoT 
Hub [18] and Amazon Web Services Lambda [19]) 
that were configured to subscribe and publish 
IoT/IIoT topics between them and the VMs of the 
“Fog” layer through the MQTT protocol. 

D. ToN_IoT Dataset files 

The authors in [10] simulated several different types of attack 
scenarios (i.e., Scanning, DoS, DDoS, ransomware, backdoor, 
data injection, Cross-site Scripting (XSS), password cracking 
and Man-in-The-Middle (MITM)) on their testbed and 
collected data from the different components of their testbed 
in dataset files. All the datasets are provided in files that follow 
the “csv” (comma separated vector) format. The datasets files 



 

Fig. 1. ToN_IoT Telemetry datasets structure. 

are split into two main folders: i) the “Processed” datasets 
folder, and ii) the “Train_Test” datasets folder. The 
“Processed” datasets contain a processed and filtered version 
of the datasets with: a) their standard features, b) a label 
feature (i.e., indicating whether an observation is normal or 
malicious), and c) a type feature (i.e., indicating the attacks 
sub-classes for multi-class classification problems) [10]. On 
the other hand, the “Train_Test” datasets contain selected 
records of the “Processed” datasets that were used by the 
authors in  [10] as training and testing datasets for training and 
evaluating the accuracy and efficiency of various ML 
algorithms. 

Both the “Processed” datasets and the “Train_Test” 
datasets consist of four types of dataset files (i.e., “Network”, 
“IoT”. “Linux”, “Windows”) with each referring to either the 
network traffic or a specific type of device (e.g., sensor, 
server, desktop) of the testbed, as it is also demonstrated in 
Figure 1. In particular, the “Network” datasets contain the 
traffic data that passed through the entire testbed and were 
captured during the simulations. The “IoT” datasets contain 
the data relating to each of the seven IoT/IIoT sensors that 
were simulated in the testbed. Finally, the “Linux” datasets 
and the “Windows” datasets contain the data relating to the 
two Ubuntu systems and the two Windows systems in the 
testbed, respectively. 

III. “IOT EDGE NETWORK” DATASETS 

A. “IoT Edge Network_Initial” Dataset Generation 

In this work, the main objective is the generation of a set 
of IoT edge network specific datasets based on the “Processed 
Network” datasets of the “ToN_IoT Telemetry” dataset [10]. 
To this end, initially, we filtered the “Processed Network” 
datasets (i.e., csv files) and kept only the network records 
associated with the IoT edge layer of the testbed where the IoT 
devices are deployed. The filtering process was performed 
based on the sender node and the destination node of each 
record. Namely, a record was selected only if the sender node 
or the destination node existed in the edge layer. The created 
IoT edge network dataset was called as the “IoT Edge 
Network_Initial” dataset and was processed further, as 
described in section III.C, in order to create a set of specific 
and balanced “IoT Edge Network” datasets. Figure 2 
summarizes the steps followed to generate a set of “IoT Edge 
Network” datasets based on the “Processed Network” datasets 
of the “ToN_IoT Telemetry” dataset. 

 

Fig. 2. Overiew of the steps followed to generate a set of “IoT Edge 
Network” datasets based on the “ToN_IoT Telemetry” dataset. 

B.  “IoT Edge Network Initial” Dataset Analysis 

A statistical analysis is performed based on the “label” 
feature of the records on the “IoT Edge Network_Initial” 
dataset. The values of the “label” feature are “0” and “1” and 
indicate whether a record is categorized as normal or attack 
and thus, the values of the “label” feature correspond to a 
binary classification problem. Figure 3 shows the percentages 
of normal and attack records based on the total number of 
records in the “IoT Edge Network_Initial” dataset. An 
imbalance can be observed regarding the large amount of 
attack records compared to the normal records.  

 

Fig. 3. Percentages of normal records and attacks records based on the total 
amount of records regarding the “IoT Edge Network_Initial” dataset. 



Furthermore, we performed a statistical analysis based on 
the “type” feature of the records in the “IoT Edge 
Network_Initial” dataset. The unique values of the “type” 
feature in the “IoT Edge Network_Initial” dataset are 9 in total 
and they correspond to a classification problem with multiple 
classes. One of these values refers to the “normal” class and 
each of the remaining 8 values refers to a class related to a 
specific type of attack (Scanning, DoS, data injection, DDoS, 
password cracking, XSS, backdoor, MITM). Table I and 
Figure 4 shows the numbers and corresponding percentages of 
records belonging to the various classes of the dataset. It can 
be clearly seen that the records belonging to some attack 
classes (e.g., data injection, password, backdoor, MITM) are 
really few compared to the records related to other attack 
classes (e.g., Scanning, DDoS, XSS). 

 

TABLE I.  NUMBERS OF RECORDS REGARDING THE VARIOUS CLASSES 

OF THE “IOT EDGE NETWORK_INITIAL” DATASET. 

Normal or Type of Attack Number of records 

Normal 203,277 

Scanning 1,893,731 

DoS 86,721 

Data Injection 12,902 

DDoS 630,141 

Password Cracking 2,889 

XSS 604,815 

Backdoor 24 

MITM 584 

Total 3,435,084 

 

 

 

Fig. 4. Percentages of records regarding the various classes of the “IoT 
Edge Network_Initial” dataset. 

 

 

C. “IoT Edge Network” Datasets Generation 

Due to the imbalances related to the “label” feature and the 
“type” feature in the “IoT Edge Network_Initial” dataset, it is 
crucial to make use of an appropriate records selection 
algorithm (i.e., sub-sampling algorithm) in order to create a 
set of “IoT Edge Network” datasets, without the above 
mentioned imbalances, for effective training and evaluation of 
AIDSs suitable for IoT/IIoT networks. 

We employed two different records selection algorithms 
and generated two types of training and testing datasets. 
Firstly, we followed a purely random sub-sampling algorithm 
and generated “random” training and testing datasets from the 
“IoT Edge Network_Initial” dataset. As it is also shown in 
Table II, in regards to the value of the “type” feature, the 
records of a created “random” dataset follow a value 
distribution similar to the “IoT Edge Network_Initial” dataset. 
This means that the percentage of the records belonging to a 
specific class in the “IoT Edge Network_Initial” dataset is 
almost equal to the percentage of the records belonging to the 
same class in the generated “random” dataset. At this point, it 
is essential to observe that only one record related to the 
“backdoor” class is included in the “random” dataset. This one 
record cannot be sufficient to train or test the performance of 
ML algorithms and thus, a purely random sub-sampling 
algorithm should not be considered as an appropriate 
algorithm in order to generate training and testing datasets 
from the “IoT Edge Network_Initial” dataset. 

TABLE II.  NUMBERS AND PERCENTAGES OF RECORDS REGARDING 

THE VARIOUS CLASSES OF THE FILTERED “IOT EDGE NETWORK_INITIAL” 

DATASET AND A GENERATED “RANDOM” SUBSET. 

 
"IoT Edge 

Network_Initial" dataset 
"random" subset 

Value of 

“type” feature 

Number of 

records 

Percentage 

of records 

Number 

of records 

Percentage 

of records 

Normal 203,277 5.918% 4,734 5.918% 

Scanning 1,893,731 55.129% 44,103 55.129% 

DoS 86,721 2.525% 2,020 2.525% 

Data Injection 12,902 0.376% 300 0.375% 

DDoS 630,141 18.344% 14,675 18.344% 

Password 
Cracking 

2,889 0.084% 67 0.084% 

XSS 604,815 17.607% 14,086 17.608% 

Backdoor 24 0.001% 1 0.001% 

MITM 584 0.017% 14 0.018% 

Total 3,435,084 100.000% 80,000 100.000% 

 

Therefore, we propose a novel algorithm for records 
selection to reduce the above mentioned imbalances. The 
proposed algorithm has the following two objectives: (i) each 
attack class should have a similar amount of records to other 
attack classes, and (ii) the normal class should possess an 
amount of records that is similar to the total amount of attack 
records. The first objective focuses on balancing the records 
distributed among the attack classes, namely balancing the 
distribution of the “type” feature of the “IoT Edge 
Network_Initial” dataset, while the second objective focuses 
on balancing the records between the normal class and the 
attack classes and thus, the distribution of the “label” feature 



of the “IoT Edge Network_Initial” dataset is balanced. The 
proposed algorithm is described below: 

 

Algorithm: Records Selection 

Input: Dataset, number of records to be selected (Nrecords), 
number of “attack” classes (NattackClasses) 

Output: “IoT Edge Network” dataset (out_dataset) 

 1. numNormalClasses ← 1 

 2. classDiv ← numNormalClasses * NattackClasses + 

NattackClasses 

 3. idealNumRecordsPerAttClass ← round(Nrecords / classDiv) 

 4. For every class_i in (NattackClasses + numNormalClasses): 

 5.      recordsIndexes_i ← empty array 

 6.      selectedRecordsIndexes_i ← empty array 

 7. For every record in Dataset: 

 8.      indexInDataset ← record.index() 

 9.      class_i ← record.class() 

10.     insert indexInDataset to the appropriate recordsIndexes_i 
array 

11. remClasses ← classDiv 

12. remNumRecords ← Nrecords 

13. For every class_i in (NattackClasses + numNormalClasses): 

14.      If class_i is a “normal” class: 

15.           If length(recordsIndexes_i) ≤ NattackClasses * 
idealNumRecordsPerAttClass: 

16.                remClasses ← remClasses - NattackClasses 

17.                remNumRecords ← remNumRecords – 
length(recordsIndexes_i) 

18.      Else:  

19.           If length(recordsIndexes_i) ≤ 
idealNumRecordsPerAttClass: 

20.                remClasses ← remClasses - 1 

21.                remNumRecords ← remNumRecords – 
length(recordsIndexes_i) 
22. numRecordsPerAttClass ← round(remNumRecords / 
remClasses) 

23. For every class_i in (NattackClasses + numNormalClasses): 

24.      If class_i is a “normal” class: 

25.           If length(recordsIndexes_i) ≤ NattackClasses * 
numRecordsPerAttClass: 

26.                selectedRecordsIndexes_i ← recordsIndexes_i 

27.           Else:  

28.                selectedRecordsIndexes_i ← random selection of 
NattackClasses * numRecordsPerAttClass records from the array 
recordsIndexes_i 

29.      Else:  

30.           If length(recordsIndexes_i) ≤ numRecordsPerAttClass: 

31.                selectedRecordsIndexes_i ← recordsIndexes_i 

32.           Else:  

33.                selectedRecordsIndexes_i ← random selection of 
numRecordsPerAttClass records from the array recordsIndexes_i 

34. datasetIndexes ← empty array 

35. For every class_i in (NattackClasses + numNormalClasses): 

36.      append selectedRecordsIndexes_i to array datasetIndexes 

37. Sort(datasetIndexes) 

38. out_dataset ← empty array 

39. For every index in datasetIndexes: 

40.      record_temp ← Dataset[index] 

41.      insert record_temp to the out_dataset array 

42. Return out_dataset 

 

The proposed records selection algorithm is capable of 
creating a set of “IoT Edge Network” datasets from the 
“IoT Edge Network_Initial” dataset. Table III and Figure 
5 show the numbers and corresponding percentages of 
records belonging to the various classes of a generated 
“IoT Edge Network” dataset. The records of the created 
dataset follow a more balanced value distribution, in terms 
of the “type” feature, compared to the “IoT Edge 
Network_Initial” dataset, shown in Figure 4. 

TABLE III.  NUMBERS OF RECORDS REGARDING THE VARIOUS CLASSES 

OF A GENERATED “IOT EDGE NETWORK” DATASET. 

Normal or Type of Attack Number of records 

Normal 47,080 

Scanning 5,885 

DoS 5,885 

Data Injection 5,885 

DDoS 5,885 

Password Cracking 2,889 

XSS 5,885 

Backdoor 24 

MITM 584 

Total 80,002 

 

 

Fig. 5. Percentages of records regarding the various classes of a generated 
“IoT Edge Network” dataset. 

 



IV. CONCLUSION 

In this paper, we presented the methodology we followed 
to generate a set of IoT edge network specific datasets based 
on the “Processed Network” datasets of the “ToN_IoT 
Telemetry” dataset. In particular, as first step, we filtered the 
edge network part of the “ToN_IoT Telemetry” dataset and 
generated the “IoT Edge Network_Initial” dataset. However, 
we observed that the created dataset presented imbalances 
derived from the values of the “type” and “label” features. 
Therefore, we proposed a novel records selection algorithm in 
order to sub-sample the “IoT Edge Network_Initial” dataset 
and generate a new set of IoT edge network specific datasets 
where the imbalances of the initial generated dataset (i.e., “IoT 
Edge Network_Initial”) were reduced. As future work, we 
plan to generate even more balanced and concise training and 
testing datasets from the edge network part of the “ToN_IoT 
Telemetry” dataset. Therefore, another algorithm that 
employs over-sampling techniques for the records of the 
classes with really few records will be designed and 
developed. Moreover, the importance of the features of the 
“IoT Edge Network_Initial” dataset should also be measured, 
using various ranking criteria, in order to generate more 
concise datsets using the proposed sub-sampling algorithm in 
this paper as well as the over-sampling algorithm planned as 
future work.  
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