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Abstract 41 

Wild bee populations are declining due to human activities, such as land use, which 42 

strongly affect the composition and diversity of available plants and food sources. The 43 

chemical composition of food (i.e. nutrition), in turn, determines health, resilience and 44 

fitness of bees. However, for pollinators, the term health is recent and subject to debate 45 

as is the interaction between nutrition and wild bee health. 46 

We define bee health as a multidimensional concept in a novel integrative framework 47 

linking bee biological traits (physiology, stoichiometry and disease) and environmental 48 

factors (floral diversity, nutritional landscapes). Linking information on tolerated nutritional 49 

niches and health in different bee species will allow us to better predict their distribution 50 

and responses to environmental change and thus support wild pollinator conservation.  51 

 52 

Keywords: Hymenoptera, biodiversity loss, plant-insect interactions, conservation, 53 

physiology, pollination, pollinators, ecosystem services 54 

  55 



3 
 

Bees decline because their food sources disappear 56 

Animals pollinate more than 85 % of flowering plants and 75 % of the leading crops 57 

worldwide [1], which provide food and medicines for other animals and humankind. They 58 

also support natural habitats and play a key role for plant productivity, food webs and 59 

ultimately for human well-being [1–3]. Bees (Apidae) are the most important group of 60 

pollinators with the vast majority of species represented by wild species (~20,000 species) 61 

[4]. 62 

Alarmingly, many wild bee populations are declining due to the impact of different biotic 63 

and abiotic stressors caused by human activities and acting alone or in combination, such 64 

as pesticides, invasive species, pathogens, intensive land-use and climate change [5–65 

11]. In particular agricultural intensification appears to negatively impact wild bee 66 

communities [12,13]. In fact, overall biodiversity typically decreases with increasing land-67 

use intensity [14,15], which directly or indirectly leads to the loss of floral diversity and 68 

nesting sites [10,16] and may alter pathogen prevalence [17–19]. Declining floral diversity 69 

in turn decreases the spectrum of flowering plants available as food sources and therefore 70 

restricts the nutritional landscape accessible to bees [20–23].  71 

 72 

Nutritional landscapes of bees 73 

As nutritional intake and thus the nutrient composition (henceforth referred to as 74 

nutritional quality) of food strongly determine health, resilience to pathogens and fitness 75 

of animals [24], access to food resources enabling a diverse and balanced nutrition is one 76 

key driver of population stability [21]. In this context, we consider as nutrient any chemical 77 

compound, i.e., from chemical elements, through phospholipids, amino acids to "group 78 
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components" like proteins, that are part of the food/nutrition of bees. Bees obtain most 79 

nutrients and several potentially medical active plant secondary metabolites from 80 

flowering plants through consuming mostly nectar and pollen [20,25,26]. Nectar primarily 81 

provides carbohydrates needed to maintain energetic and metabolic processes, while 82 

pollen is the main source of all other macro-nutrients (i.e., protein and fat) and micro-83 

nutrients (e.g., vitamins, sterols) required for metabolic processes, tissue homeostasis 84 

and development (e.g., ovary development) as well as larval growth [27–29]. Ideally, floral 85 

communities provide food resources of both sufficient quality and quantity. The quantity 86 

of food resources is determined by the abundance of flowers present in the landscape, 87 

i.e., the number of plants/flowers present per species and the overall amount of flowering 88 

species [30]. The quality of food resources depends on the composition of different 89 

flowering plant species as each plant species provides pollen and/or nectar with a specific 90 

nutrient profile [31]. In fact, the nutritional profiles of pollen and nectar vary greatly among 91 

different plant species [32–35] and even among plant individuals of the same species 92 

growing in different plant communities [36]. Floral communities, which are characterized 93 

by a specific composition and diversity of flowering plant species, consequently determine 94 

resource availability and diversity and thus the nutritional landscape in which bees are 95 

foraging [21]. For more details on variation in nutritional quality in pollen and nectar, the 96 

effect of different diets on bee performance and fitness as well as on differences in 97 

foraging preferences among bees, see Vaudo et al. [21]. 98 

While much less understood, the nutritional needs of bee species are also expected to 99 

vary substantially between bee species [21]. The sustainability of bee populations thus 100 

depends on flowering plant communities that provide sufficient amounts and the different 101 
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nutrients required, because the quality of food and in particular of pollen directly 102 

determines offspring survival and development and can therefore influence the entire 103 

population [21,37,38].  104 

Surprisingly, the interaction between flowering plant communities, the nutritional 105 

landscape available and the health status of different wild bee species has hitherto 106 

received little attention (but see [21,34]). This knowledge is, however, crucial for 107 

determining how floral communities and respective conservation measures can support 108 

wild bee populations. We therefore propose a conceptual framework of how 109 

anthropogenic changes in flowering plant communities can affect bee communities by 110 

altering the nutritional landscape and thus niches available to support healthy wild bee 111 

populations.  112 

 113 

Measuring wild bee health 114 

While human health is understood as the physical, mental and social well-being of an 115 

individual or population, the health of wildlife has generally been understood as the 116 

absence of disease [39]. For pollinator communities, the term health only recently 117 

appeared in the literature and its precise definition is still subject to debate [40]. López-118 

Uribe et al. suggested a multilevel approach and the use of various parameters to 119 

measure bee health at the individual, colony and population level [40]. The population’s 120 

health status should then be a direct consequence of the average health status of 121 

individuals, with population size likely being positively correlated with average individual 122 

health.  123 
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We propose to apply a multidimensional concept of bee health to wild bees defined as 124 

the status of well-being of each individual as a result of their interaction with the local 125 

environment (Fig.1). We suggest recording and integrating all or several of the following 126 

physiological parameters to comprehensively capture individual bee health: composition 127 

and amount of stored nutrients in bee bodies (such as proteins, lipids, glycogen, chemical 128 

elements), body size [41], pathogen load, beneficial microbiota [42], immunocompetence 129 

[43] and fertility [44].  130 

Physiological parameters were shown to be important for understanding species’ 131 

sensitivity to environmental modifications [45], because the physiology of individuals 132 

responds before changes in populations become visible [46]. For instance, diet quality 133 

correlates with increased levels of the storage protein and antioxidant vitellogenin in 134 

individual honey bees, which correlates with higher overwintering survival of the entire 135 

colony [19,47]. Energy storage is critical to bee survival. The main categories of 136 

macronutrients used for energy storage in insects (glycogen, lipids and proteins) affect 137 

several life-history traits such as dispersal capacities, reproduction, diapause and survival 138 

[48]. Moreover, both macro- and micronutrients are acquired through the consumption of 139 

pollen and nectar and thus are at the interface between bees and floral resources. 140 

Variations in floral resource availability will therefore influence the energy budget and 141 

ultimately the health of bees.  142 

Additional physiological health parameters sensu lato include morphometrics, 143 

stoichiometry, microbial communities or pathogen loads. For example, wing morphometry 144 

and wing fluctuating asymmetry were found to correlate with different stressors [49–51]. 145 

Also, floral composition and diversity are known to shape the bee microbiome 146 
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composition, particularly in solitary bees, with consequences on nutrient uptake, 147 

detoxification, immunity and health [44,52–54]. By defining stoichiometric phenotypes 148 

(i.e., the elemental composition of bee bodies) [55] deviations from optimal phenotypes, 149 

as expected in nutritionally impoverished landscapes and for declining populations, can 150 

be revealed, which can then also indicate reduced health.  151 

All physiological health parameters mentioned above are likely affected by multiple 152 

environmental parameters related to variation in floral resource diversity, abundance and 153 

quality, but also environmental pollutants (e.g., pesticides, antibiotics, heavy metals) and 154 

pathogens (Fig. 1). Measurement of multiple variables can therefore provide a more 155 

complete picture of pollinator health status than focus on a single one. 156 

 157 

 158 

Fig. 1: The multifaceted nature of bee health. The main landscape-scale environmental 159 

factors, their effects on the floral community and thus nutritional landscape and bee diets, 160 

and consequences for bee nutrition and health. These can be observed by recording and 161 

integrating different parameters (right column). Bee health based on the physiology of 162 

individual bees can then be related to additional parameters, such as population density 163 

(i.e. the number of bees caught per plot for a given species and time period) or variation 164 

in population dynamics over time, ideally obtained for multiple seasons to infer changes 165 

in population densities across years. 166 

 167 

 168 
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Floral diversity as environmental driver of bee health 169 

Floral diversity, abundance and community composition correlate with the abundance and 170 

diversity of wild bee species [56,57] through food availability [58], nutritional quality or 171 

content [21,27,59,60] and resource phenology [23,58,61]. Bees thrive in environments 172 

where plant species diversity is high [12,62,63] and so is the diversity and quantity of 173 

available food resources [23,64,65]. Moreover, resource diversity increases the 174 

opportunities for specialist (oligolectic) bee species with restricted pollen host plants to 175 

find suitable food resources. In generalist (polylectic) species, access to a diverse 176 

spectrum of resources supports immunity, health, performance and survival (Table 1), 177 

likely due to access to adequate nutrition and beneficial plant secondary metabolites. In 178 

contrast, chronic intake of monotonous, non-suitable, low quality or toxic food reduces 179 

the immune-competence and vitellogenin levels of bees, thus affecting bee health, 180 

through “nutritional stress” [47,66]. Poor nutrition can also lead to higher susceptibility to 181 

disease [67] and pesticides [68]. In fact, nutritional stress as a consequence of restricted 182 

access to adequate floral resources is considered one of the main drivers of bee pollinator 183 

decline [21,69,70]. While floral diversity may not provide an added value per se or 184 

automatically yield beneficial synergistic effects as compared to higher quality monofloral 185 

diets [34,71,72] it can clearly mitigate negative effects of poor diets and provide overall 186 

more choices to various bee species (Table 1).  187 

 188 

Table 1: Effect of floral diet on bee health. Key studies on effects of monofloral and 189 

polyfloral diets on health and performance in different generalist (i.e. polylectic) bee 190 

species under both lab and field conditions.  191 

 192 
Experiment Bee species Effects Response variable Citation 
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Landscapes, enriched 

or not with 

melliferous catch 

crops, effect on 

colony overwintering 

Honeybee 

(Apis 

mellifera)  

Access to more diverse 

floral resources was 

linked to a higher bee 

vitality (vitellogenin 

expression level) 

Bee health 

(vitellogenin 

expression level) 

Alaux et al., 2017 

[47] 

Monofloral diet 

combined with 

pesticides, effects on 

colony performance 

Buff tailed 

bumblebee 

(Bombus 

terrestris) 

Additive negative 

effects of monofloral 

diet and pesticides on 

colony growth, drone 

size and reproductive 

effort 

Worker mortality, 

worker weight, 

colony weight gain, 

number of males, 

food uptake 

Dance et al., 2017 

[73] 

Monofloral vs. 

polyfloral pollen diets  

Honeybee 

(Apis 

mellifera)  

When parasitized, bees 

fed with the polyfloral 

blend lived longer than 

bees fed with 

monofloral pollens 

Longevity of adults Di Pasquale et al., 

2013 [74] 

Diets with varying 

proportions of 

Ranunculus and 

Sinapsis  

European 

orchard bee 

(Osmia 

cornuta) 

Monofloral diets of 

Ranunculus are 

detrimental for larval 

performance 

Larval performance Eckhardt et al., 

2014 [75] 

Royal jelly 

supplemented with 

mono- or polyfloral 

pollen diets  

Honeybee 

(Apis 

mellifera 

Larval resistance to 

disease was enhanced 

on a diet 

supplemented with 

either dandelion or 

polyfloral pollen 

Larval resistance to 

disease 

Foley et al., 2012 

[76] 

Landscapes differing 

in floral resource 

diversity, effect on 

colony performance 

and reproduction 

Sugarbag bee 

(Tetragonula 

carbonaria)  

Colony performance 

and reproduction was 

positively correlated 

with floral diversity in 

the landscape 

Colony performance 

and reproduction 

(brood) 

Kaluza et al., 2017 

[64] 

Wild plant diversity 

gradient diet 

(including oilseed 

rape treated with a 

neonicotinoid)  

 

Red mason 

bee (Osmia 

bicornis) 

Resource diversity 

offset the effects of 

insecticides 

(interactive effects) 

and increased 

reproduction 

parameters 

 

Brood cell 

production, bee 

reproduction, larval 

to adult development 

 

Klaus et al. 2021 

[71] 

Monofloral and 

mixed diets combined 

with pesticide in 

nectar, effect on 

nesting success 

Common 
eastern 
bumblebee 
(Bombus 
impatiens) 

Exposure to pesticides 

reduces survival and 

activity and brood size, 

effect increased on 

monofloral diet 

Nesting success, 

queen mortality and 

activity levels, queen 

nectar consumption, 

colony development 

(brood) 

Leza et al. 2018 

[77] 
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Mixture of pollen in 

diet, effect on 

lifespan  

 

Common 

eastern 

bumblebee 

(Bombus 

impatiens) 

Survival of bees fed a 

pollen mixture with 

50% unfavourable 

pollen (Helianthus 

annuus, Asteraceae) 

was as good as on a 

high quality monofloral 

diet 

Lifespan of bees in 

captivity 

McAulay et al., 

2019 [78] 

Mono‐, di‐ and 

trifloral diets, effect 

on colony 

development 

Buff tailed 

bumblebee 

(Bombus 

terrestris) 

Colonies developed 

best on mixed pollen 

diets or high quality 

monofloral pollen diets 

Colony development 

(brood) 

Moerman et al., 

2017 [38] 

High pollen diversity 

and protein vs. low 

pollen diversity and 

protein diets 

combined with 

pesticide, effect on 

development of 

hypopharyngeal 

glands   

Honeybee 

(Apis 

mellifera 

Size and shape of 

hypopharyngeal acini 

was affected by 

pesticide and diet, 

while protein content 

in bee head was 

affected only by 

pesticide. 

Physiological 

development  

Renzi et al., 2016 

[79] 

Landscape gradient in 

floral resource 

abundance and 

diversity  

Honeybee 

(Apis 

mellifera 

Decline in pollen 

availability in summer 

led to decrease in 

pollen harvest, colony 

performance and to 

overwintering failure 

Colony performance 

(brood, adult 

population size, 

honey reserve) and 

overwintering 

Requier et al., 2017 

[80] 

Landscape gradient of 

semi-natural habitats 

Buff tailed 

bumblebee 

(Bombus 

terrestris) 

Higher abundance of 

seminatural habitats 

improved reproductive 

performance  

Colony growth and 

reproductive 

performance 

(number of new 

queens produced)  

Requier et al., 2020 

[35] 

Food resource 

limitation and 

pesticide exposure  

Orchard 
mason bee or 
blue orchard 
bee (Osmia 
lignaria) 

Pesticides and food 

limitation had additive 

effects and reduced 

reproduction 

Survival, nesting, and 

reproduction  

 

Stuligross and 

Williams 2020 [72] 

Diets differing in floral 

composition, effect 

on resilience to heat 

stress 

Buff tailed 

bumblebee 

(Bombus 

terrestris) 

Colonies were less 

susceptible to heat 

stress when fed 

suitable/high quality 

diets 

Colony resistance to 

stress 

Vanderplanck et al., 

2019 [81] 

 193 

However, how floral resource diversity and nutritional quality interact and affect bee health 194 

is still largely unclear. This is particularly true for wild bees considered less resilient to 195 
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environmental changes and more difficult to study than managed honeybees [72,82]. For 196 

example, it is little understood how different nutrients or nutrient groups contribute to bee 197 

health, and if bee species differ in their tolerance towards deviations from optimal 198 

nutritional profiles and thus available nutritional landscapes. Understanding these links 199 

will shed light on the mechanisms underlying the observed positive effects of, for 200 

example, polyfloral diets on bee performance (Table 1). This knowledge will also enable 201 

better strategies for conservation or restoration of biodiversity for pollinators and thus 202 

contribute to combat ongoing bee declines (see below). We therefore propose to link floral 203 

communities, nutritional landscapes and bee health and diversity through assessing bee 204 

species-specific nutritional niches.  205 

 206 

Nutritional niches of bees 207 

The ecological niche of a species describes a range of environmental conditions and 208 

resources required for its persistence; it positions each species in relation to others in 209 

ecosystem space [83], taking into account physical conditions, such as climate, and food 210 

resources[84]. The nutritional niche is nested within the ecological niche and describes a 211 

specific proportion and ratio of nutrients, which enable maximum growth, development, 212 

performance and fitness (Fig. 2a) [85–87]. Notably, precise values of the optimal niche 213 

can change with an animal’s internal state (e.g., larva vs. adult) and with changing 214 

environmental conditions [87]. The nutritional niche can consequently be described by a 215 

multidimensional geometric space defined by food chemistry, where each axis represents 216 

a nutrient (e.g., specific amino acids, chemical elements or group of components) 217 

functionally relevant to a species, i.e. required for development, survival and reproduction 218 
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[37,87,88] (Fig 2). Within this space, some combinations of nutrients are more important 219 

for performance and fitness than others. If they are limited in the environment this can 220 

result in a discrepancy between the consumer’s optimal nutritional niche and the niche 221 

provided by the environment as suggested by ecological stoichiometry (stoichiometric 222 

mismatch) [89]. Such important nutrients are often regulated by animals, as revealed by 223 

the Geometric Framework of Nutrition (GFN) [85,90]. For instance, honey bees (Apis 224 

mellifera), bumble bees (Bombus spp.) and mason bees (Osmia bicornis) regulate 225 

protein, lipid and/or carbohydrate intake depending on their age and the presence of 226 

brood [91,92]. For such important nutrients, species likely show little tolerance to 227 

deviations from those concentrations which best support their performance/fitness, while 228 

they are likely more tolerant to deviations from concentrations that are less 229 

important/regulated for performance/fitness (as shown for B. terrestris [93]).  230 

Such differences in tolerance to deviations is captured by the tolerated nutritional niche 231 

which is a deviant of the optimal niche and captures the range that is still physiologically 232 

manageable by organisms and results in a positive growth, development and fitness[87]. 233 

If the realized nutritional niche as offered by the available nutritional landscape deviates 234 

too far from the tolerated nutritional niche, individuals will fail to achieve successful 235 

growth, development or reproduction [87]. The degree of variation in niche space 236 

tolerated, in turn, denotes the tolerance of a specific animal for suboptimal diets. Different 237 

species likely vary not only in the position of their optimal niche (i.e., the specific 238 

proportions and ratios required), but also their tolerance for deviations from the optimum, 239 

resulting in species-specific nutritional niche shapes and sizes (Fig. 2b). Determining the 240 

tolerated nutritional niche of species can thus provide valuable information to predict the 241 
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spatial and temporal distribution of that species and its responses to environmental 242 

change [87,94]. 243 

 244 

 245 

Fig. 2: Nutritional niches of bee species in a multidimensional nutritional space.  246 

The optimal niche space (shaded) and the tolerated niche space (lighter color) of a 247 

species (Sp) and species-specific nutritional niches. Each shaded space represents the 248 

combinations and concentration ranges of nutrients tolerated and therefore supporting a 249 

species´ growth, development, performance and fitness. Strong deviations from the 250 

nutritional niche over extended time periods will likely lead to negative impacts on health. 251 

 252 

As a consequence of the complex and variable chemistry encountered in different plant 253 

species, animals need to perform nutrient selective foraging in order to ensure healthy 254 

offspring development [95]. In the case of bees, this means that they should choose pollen 255 

with nutritional composition that match their nutritional needs, as shown for several 256 

bumble bee species that thrive on pollen with high protein to lipid (P:L) ratios and low lipid 257 

content [21,96] or bee larvae of O. bicornis that prefer high carbohydrate content diets 258 

[91]. The chemical profile of pollen jointly collected by individual (female) bees of a 259 

population can therefore be considered a proxy for their species-specific nutritional niche.  260 
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Recent advances in analytical methods facilitate the accurate quantitative chemical 261 

analysis of pollen, including fatty acids and protein-bound and free amino acids [97], 262 

sterols [98–100], plant secondary metabolites [101] and atoms of chemical elements [89]. 263 

The chemical/nutritional profile of the overall pollen diet composed by a bee individual 264 

can thus be calculated through integrating information on the proportional contribution of 265 

nutritional profiles of pollen of all plant species visited for pollen collection (e.g., obtained 266 

through metabarcoding or palynological studies). Notably, this approach does not allow 267 

to determine the optimal nutritional niches of species, which would require cage (semi-268 

field) experiments with manipulated artificial diets. However, through linking measured 269 

(realized) nutritional niches and animal health the nutritional niches measured at sites 270 

where populations show a generally good health status and high population density can 271 

be a good proxy for the species’ tolerated nutritional niches. 272 

 273 

Dietary vs. nutritional generalists and specialists in bees 274 

The degree of dietary specialization of a species is determined by its physiological (e.g., 275 

ability to break down/tolerate specific plant compounds), sensory (e.g., intrinsic bias 276 

towards specific flowers/plants) and morphological (e.g., proboscis length and wing 277 

morphology) characteristics. It is typically described by the range of plant taxa used for 278 

pollen collection (i.e., pollen hosts) [102,103]. In bees, the full spectrum of flower 279 

specialization - sometimes referred to as dietary breadth [53,104] - ranges from species 280 

that collect floral pollen from a single plant species or genus only (monolecty, oligolecty) 281 

to generalists that do not appear to have distinct flower preferences (polylecty) [20]. 282 

However, even generalists, including many social bees, forage pollen from a limited range 283 
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of flowering species [105–107]. A classification of floral specificity of pollen collection in 284 

bees covering all levels of specialization was suggested by Cane & Sipes [108] and Müller 285 

& Kuhlmann [105]. This classification, however, does not consider pollen nutrients, thus 286 

is not based on the species’ nutritional niches [105,108].  287 

We propose that bee species differ not only in the specific nutrient amounts and ratios 288 

required for optimal survival and reproduction (see above), but also in the degree of 289 

variation in nutrient space tolerated, i.e., the tolerated nutritional niche, and thus in the 290 

nutritional landscape in which they can thrive. Nutritional specialists are thus species with 291 

comparatively narrow nutritional niches, and generalists are species with a comparatively 292 

wide nutritional niche (Fig. 3). Nutritional niche breadth and dietary breadth can be, but 293 

do not necessarily have to be correlated. While it is likely that dietary specialists also show 294 

a narrow nutritional niche, some dietary specialists may have a broader nutritional niche 295 

than some generalists. For example, some bees may visit a broad spectrum of plant 296 

species with chemically similar pollen profiles, e.g., bee species collecting pollen from 297 

Asteraceae. These are mostly specialized bees foraging on many different Asteraceae 298 

species, while generalist bee species avoid Asteraceae pollen despite the ubiquitous 299 

distribution of this plant family and the substantial amount of pollen provision (known as 300 

the Asteraceae paradox [105]). While the reasons for this Asteraceae paradox remain 301 

unresolved, the abundance of specific chemical compounds, e.g. Δ7-sterols, found in 302 

pollen of Asteraceae species may offer an explanation [100]. 303 

 304 
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Linking bee health, floral diversity and nutritional niches 305 

Some generalist bees have been shown to mix pollen from different plant sources, either 306 

during one or several foraging trips, likely to achieve a nutritional balance and/or to dilute 307 

toxic compounds [72,75], indicating that nutritional generalists may even specifically 308 

target and clearly benefit from diverse pollen sources in florally diverse environments 309 

(Table 1). Nutritional specialists, on the other hand, depend on the presence of specific 310 

plant species which provide pollen with nutrient profiles that are close to their nutritional 311 

niches. Access to a nutritionally diverse landscape as typically provided in florally diverse 312 

environments would ensure that different species-specific macro- and micro-nutrient 313 

requirements can be met [24,109]. We therefore predict that nutritional specialists with a 314 

comparatively small nutritional niche are more common in florally diverse habitats and 315 

thus nutritionally diverse landscape, where they have access to a broader spectrum of 316 

resources and thus of potential nutritional niches, including their own [110] (Fig. 3). 317 

 318 
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 319 
 320 

Fig. 3: Link between floral diversity, nutritional landscapes and nutritional niches. 321 

Bee species (Sp) with narrow nutritional niches (nutritional specialists, green dotted 322 

marked bees) and thus little tolerance for changes in the nutritional space (purple area in 323 

nutritional space) are likely to be more susceptible to changes in the floral diversity than 324 

bee species with broad nutritional niches (nutritional generalists, red dotted marked bees) 325 

and a higher tolerance (brown area in nutritional space). The nutritional landscape of each 326 

environment is reflected by different colours of nutrients (bars in the centre). It is more 327 

diverse, balanced and thus provides more nutritional niches in florally diverse 328 

environments (left) compared to environments with reduced floral diversity (right). Florally 329 

diverse environments also enable bees to dilute toxic compounds (e.g., harmful plant 330 

secondary metabolites or pesticides) exposing them to overall less harmful compounds 331 

than environments with reduced floral diversity. 332 

 333 

Both nutritional generalists and nutritional specialists should therefore thrive in 334 

nutritionally diverse landscapes, which are expected to provide more nutritional niches 335 
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than nutritionally poor landscapes (Fig. 3). Bees in nutritionally diverse landscapes will 336 

more likely encounter their (potentially even optimal) nutritional niche. As a consequence, 337 

they should be better nourished and therefore be healthier than bees in nutritionally poor 338 

landscapes. 339 

 340 

Notably, bees in more biodiverse environments may also harbour more diverse 341 

pathogens and parasites [44,67,111,112]. However, access to (nutritionally) diverse 342 

resources may render them more tolerant and resilient to pathogens and parasite 343 

virulence factors (through optimal physiology) and/or more resistant to associated 344 

infection risks (through optimal immunity) [10,74,81,113]. They may also more easily 345 

adjust their diet to combat infection, e.g., through increasing the proportion of protein in 346 

diets [114,115] or collecting resources with antimicrobial plant secondary metabolites 347 

[25,33,116]. In fact, the bees’ resilience to diseases, but also other stressors (e.g., climatic 348 

or weather extremes), varies with floral/nutritional quality [81,117]. We therefore do not 349 

expect that more stressors are necessarily linked with decreased health, but rather predict 350 

a three-way-interaction between nutrition, health and stressors, such as pathogen loads, 351 

which may result in different scenarios, such as linear and non-linear shifts in nutritional 352 

niches (Fig. 4). For example, protein-rich diets improve the immune-competence of 353 

bumble bees (B. terrestris) exposed to a parasite [66] and lipid-rich diets increase survival 354 

in honey bees (A. mellifera) exposed to an organophosphate insecticide [117]. These 355 

studies indicate that bees can adjust their diets to compensate different stressors, which 356 

will result in altered nutritional niche spaces (Fig. 4). Consequently, floral/nutritional 357 

diversity may convey health benefits to generalist and specialist bee species through 358 
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providing a variety of nutritional niches, which can increase nutritional flexibility and 359 

resilience when facing additional stressors. 360 

 361 

 362 
 363 
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Fig 4: Interaction between nutrition, health and stressors altered in addition to 364 

florally impoverished landscapes. Hypothetical scenarios depict linear and non-linear 365 

changes in nutritional niches of nutritional specialists (purple area) and generalists (brown 366 

area) following loss of floral diversity plus additional stressors (e.g. increased pathogen 367 

prevalence). Stressors may simply decrease the bees’ tolerated nutritional niche space 368 

without affecting their optimal nutritional niches (scenario 1). Alternatively, it may result in 369 

a non-linear change in overall nutritional niches (including both the optimal and tolerated 370 

niche space). Moreover, the magnitude and direction of ecological niche shifts under 371 

stressed scenarios is known to differ among taxonomic groups [118], demonstrating 372 

highly species-specific responses. Likewise, the nutritional niche of one species may be 373 

strongly decreased, while the optimal and tolerated nutritional niche of another species 374 

may remain unaffected in the presence of additional stressors (scenario 2). This may in 375 

turn result in a species-specific likeliness of becoming (locally) extinct under stressed 376 

conditions. To our knowledge there is hitherto no study that assessed nutritional niche 377 

shifts in different bee species exposed to different stressors. 378 

 379 

Concluding Remarks and Outstanding Questions 380 

Through integrating different physiological health measures and nutritional niches with 381 

floral diversity and composition, we can reveal meaningful interactions between nutritional 382 

landscapes and bee health (Fig. 3, Fig. 4). We can also investigate hitherto unknown 383 

interactive effects between different physiological health parameters, such as 384 

stoichiometry, physiology and disease loads.  385 

This integrative approach will enable better tailored management recommendations for 386 

bee conservation. Until now, most conservation measures implicitly assumed that wild 387 

bee populations can be enhanced by increasing floral diversity [8]. This can however lead 388 

to shortages in types, amounts and proportions of specific nutrients and thus in a lack of 389 

the nutritional niches required by different bees, in particular by nutritional specialists. 390 

Such shortages can be elucidated e.g. by comparing bee and pollen stoichiometry to 391 

reveal stoichiometric mismatches [89]. Similarly, bee-nutrient networks and ordination 392 

analyses could reveal differences in link strength between specific nutrients or nutrient 393 

ratios and specific bee species, with strong links indicating important nutrients, nutrient 394 
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groups or nutrient ratios and the plant species providing them. This information can then 395 

be used to improve flower seed mixes or support the conservation of key plant species 396 

and their habitats.  397 

Notably, the quantity and quality of available floral resources can be modulated by 398 

environmental conditions, such as water availability [119], rendering nutritional 399 

landscapes and bee foraging highly sensitive to global change [120]. For example, global 400 

change will likely affect the functional complementarity of bee-plant interactions, e.g. 401 

through advancing seasonal flowering events. It remains open which bee species are 402 

sufficiently plastic in their phenology and/or resource requirements to maintain their floral 403 

associations and pollination service [121,122]. It is also little understood how such global 404 

change induced shifts in phenology or resource use interact with bee health. Can we use 405 

knowledge on links between species-specific nutritional niches (breadth) and health to 406 

predict which bees will be able to forage in specific landscapes? How can we adjust floral 407 

enhancement schemes to take into consideration additional factors besides bee nutrition, 408 

such as edaphic conditions, climate sensitivity, interactions with other plants within 409 

communities and stakeholder interests? Understanding how global change affects the 410 

physiology and adaptability of both bees and plants and thus (nutritional) niche shifts and 411 

health requirements across species is one of the biggest challenges of ongoing and future 412 

research.  413 
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