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Abstract 

Both theoretical and empirical work reports contingent and conflicting findings on how 

intellectual property (IP) protection affects related outcomes such as innovation, technology 

diffusion, productivity, or growth. To establish where the balance of the evidence lies, we 

conduct a multi-outcome meta-regression analysis to synthesize findings form 91 primary 

studies that report 1,626 effect-size estimates for one or more outcomes. Controlling for 

unobserved heterogeneity and selection bias only, we find that the effect on innovation, 

technology diffusion, productivity, and economic growth is statistically or practically 

insignificant. The effect remains insignificant when we control for observed sources of 

heterogeneity and estimate meta-effects based on different scenarios for ‘best-practice’ 

research. Our work contributes to the existing research effort by extending the application of 

the multi-outcome meta-regression analysis into evidence synthesis in economics. It also 

provides verifiable/replicable evidence indicating that the sanguine claims about the  economic 

benefits of IP protection voiced in some legal studies and the advocacy literature are 

misleading. 
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1. Introduction 

In line with the empirical studies included in this meta-analysis and the theoretical models that 

underpin the empirical research effort, we subscribe to a definition of intellectual property (IP) 

that emphasizes the existence of an exclusive right to own and market an invention for a fixed 

time period (Gallini and Scotchmer, 2002). Hence, intellectual property protection (IP 

protection) refers to protection of the fixed-term but exclusive right through copy rights, 

patents, licences, trademarks or other of protection (Gallini and Scotchmer, 2002; Scotchmer, 

2004; Granstrand, 1999). From the perspective of the theory incentives, IP protection is one of 

several incentive-correcting mechanisms for tackling three potential sources of market failure 

in knowledge production: (i) uncertainties about the outcomes of the research process; (ii) 

positive externalities associated with produced knowledge; and (iii) near-zero marginal cost of 

imitation.1 The policy objective is to maximize social welfare by minimising the gap between 

socially and privately optimal levels of innovation.  

Yet, even in a static setting, IP protection entails a trade-off between the market power 

associated with the protection of the time-limited exclusive right and the correction of the 

incentive for innovation (Hall & Harhoff, 2012). In a dynamic setting, the trade-off becomes 

even more complex. Here, the effect is contingent on whether IP protection increases the cost 

of subsequent and complementary innovations (Bessen & Maskin, 2009) and whether the 

quality of the inventive activity falls due to patent races (Dasgupta & Stiglitz, 1980, 1988). The 

economic consequences of IP protection become even more difficult to ascertain if innovators 

choose to frustrate the objective of the policy by using the intellectual property rights (IPR) 

instruments strategically (Hall & Harhoff, 2012).  

These theoretical sources contingency notwithstanding, there has been a staggering increase in 

the number of IPR instruments and in the volume of research investigating their economic 

implications. A Google Scholar search using the “intellectual property rights protection” as a 

search term yields 5,640 studies published in 1990, with the number increasing at 10% annually 

 
1 Other incentive-correcting mechanisms include direct and indirect public support for private investment in 
innovation, government investment in basic research,  and public procurement and/or outsourcing policies that 
create predictable demand for private innovation outputs. For reviews of the literature on these mechanisms, see 
Becker (2015) on public support for business research and development (R&D) investment; Salter and Martin 
(2001) on publicly funded research; and Chicot and Matt (2018) on public procurement and innovation. 
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to reach 42,600 studies in 2018. Furthermore, the number of patents and trademarks in 2018 

stood at 14 million and 49 million, respectively. The stock in 2018 has been underpinned by 

respective annual growth rates of 5.2% and 15.5% since 2013, with China and India emerging 

as major contributors to the growth in patent and trademark registrations.2  

Against this background, we observe a stark discrepancy between the pessimistic/cautious 

conclusions derived in most narrative reviews by economists (Boldrin & Levine, 2013; Chang, 

2001; De Beer, 2016; Gallini, 2002; Hall & Harhoff, 2012) and the optimistic/sanguine claims 

about the benefits of IP protection encountered in some work by legal scholars (e.g., Acri, 

2016; Haber, 2016; Lehman, 1996) or in reviews/reports sponsored by business interest groups 

or official IP bodies (e.g., Dixon, 2011; OECD, 2015; WIPO, 2015). Whereas work in the 

former category draws attention to the trade-off between the incentive-correction and 

monopoly-power effects of IP protection; work in the latter category tends to emphasize the 

incentive-correction effects and conclude that IP protection is a significant driver of innovation, 

knowledge diffusion, and economic growth.  

We acknowledge the valuable contribution that narrative reviews make to the research field by 

identifying the current state of the art and deriving implications for future research. However, 

the tools available for narrative reviewers (summary measures, tabulations, etc.) are inadequate 

for settling the conflicting claims in the field, where the reported effect-size estimates are 

heterogenous and may reflect publication selection. Hence, one aim of this study is to propose 

and implement a multi-outcome meta-regression model that allows for obtaining 

verifiable/replicable effect-size estimates for the effects of IP protection on four closely related 

economic outcomes (innovation, technology diffusion, productivity, and economic growth) 

after taking account of heterogeneity, publication selection bias, and data dependence. The 

second aim is to inform evidence-based policy debate by establishing whether a true effect 

exists and how the effect varies by outcome, by sampling and estimation choices, and by 

differences in the IP protection environment.  

To the best of our knowledge, most meta-analysis studies in economics have so far addressed 

within-study dependence and between-study heterogeneity through clustered standard errors 

(e.g., Alptekin & Levine, 2012; Awaworyi Churchill & Yew, 2018; Lichter et al., 2015) or 

two-level hierarchical meta-regression models (e.g., Awaworyi Churchill et al., 2017a; Balima 

 
2 See, https://www.wipo.int/about-ip/en/.  

https://www.wipo.int/about-ip/en/
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et al., 2020; Ugur et al., 2018; Ugur et al., 2020). Nevertheless, issues of dependence and 

heterogeneity that may arise at higher levels have not been addressed. This is particularly the 

case with respect to the economic benefits of IP protection, which are estimated in the context 

of different but related outcomes such as innovation, technology diffusion, productivity, and 

growth. Hence, the third aim of this study is to address higher levels of dependence and 

heterogeneity at the outcome level, which occur when primary studies report evidence on one 

or more outcomes and the outcome-level effects may be correlated. To achieve this aim, we 

draw on recent developments in meta-analysis methodology in education, psychology, and 

healthcare where researchers synthesize the effect-size estimates for multiple but related 

outcomes of a given intervention (Dessie et al., 2020; Moeyaert et al., 2017; Van den Noortgate 

et al., 2015). The resulting multi-outcome meta-regression model is a multi-level model where 

effect-size estimates (level-1) are nested within primary studies (level-2) that, in turn, are 

nested within one or more of the four IP protection outcomes they investigate (level-3).  

The proposed method offers two advantages: (i) it takes account of correlation between related 

outcomes; and (ii) makes use of the sampling covariances information even if the latter is not 

reported by primary studies (Van den Noortgate et al., 2015). A third advantage is that the 

effect-size estimate for a particular outcome ‘borrows strength’ from observed effect sizes 

for other outcomes, resulting in more accurate and precise effect-size estimates (Jackson 

et al., 2011).  

The rest of the paper is organised in four sections. In section 2, we first provide a summary 

of the theoretical models that analyse the effects of IP protection on the four economic 

outcomes stated above. We then discuss the measurement and estimations issues faced by 

the empirical studies and the way in which we model them in this meta-analysis. Finally, 

we highlight the contested nature of the IP protection and the need for verifiable/replicable 

evidence synthesis.  

In section 3, we describe the search strategy and the inclusion/exclusion criteria we used 

to identify the eligible studies. Here, we also explain the extraction and coding procedures 

we followed in constructing the meta-analysis dataset, and provide a detailed overview of 

the evidence base, including visual and econometric evidence on the extent of 

heterogeneity and publication selection. This is followed by the discussion of the meta-

analysis methodology in section 4, where we introduce the rationale for and advantages 
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of the multi-outcome meta-regression approach. As a sensitivity check, we also provide 

evidence from separate meta-analyses of the individual outcomes.  

Section 5 presents our findings. The first set of results takes account of between-outcome 

dependence, publication selection and unobserved heterogeneity. They indicate that IP 

protection has no significant effect on innovation, productivity, or economic growth. The 

effect on technology diffusion is positive but small, ranging from 0.044 to 0.049. In the 

second set of results, we take account of observed sources of heterogeneity such as 

publication type, sample characteristics, data characteristics, estimation methods, etc. 

Once these observable sources of heterogeneity are considered, the meta-effect based on 

different scenarios for ‘best practice’ in the research field indicates that IP protection has 

no significant effect on any of the four economic outcomes considered in this study. We 

conclude by summarising the main findings and discussing their implications for policy 

and future research. 

2. The theory and empirics of IP protection and its economic consequences 

The theoretical work on economic consequences of IP protection builds on early contributions 

to the economics of innovation, which have highlighted three characteristics of the inventive 

activity: (i) high degree of uncertainty concerning the outcome of knowledge production; (ii) 

in-appropriability of the innovation outcomes; and (iii) near-zero marginal cost of imitation or 

knowledge spillovers (Arrow, 1962; Jewkes et al., 1962). Nordhaus (1969) is the first attempt 

at incorporating the insights from this early work into a neo-classical growth model augmented 

with patent life, patent value and other dimensions of the intellectual property rights protection. 

Focusing on patent protection for a single  invention, Nordhaus (1969) demonstrates that 

stronger intellectual property protection induces more investment in innovation; and 

consequently higher levels of output and productivity growth.  

Later work extended the initial model in several directions. Some studies have considered 

innovation as a cumulative process that requires attention to how IP protection affects follow-

up innovation. As indicated in an extensive review by Gallini (2002), the dynamic approach to 

IP protection qualifies the predictions of the Nordhaus (1969) model in two ways. If the patent 

provides sufficiently strong protection, the patent holder can “hold up” future innovations by 

threatening litigation. In addition, the patent holder could also be held up by previous 

innovators.  Therefore, the  effect of IP protection on future innovation is ambiguous: it depends 
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on the balance between the incentive and deterrence effects of protection (Merges & Nelson, 

1990).  

Others have considered the implications of entry. For instance, longer patent protection may 

increase an entrant’s incentives to imitate and hence reduce the value of the protective patent 

as an incentive-correcting instrument (Gallini, 1992). Even if imitation occurs only after the 

patent expires, the relationship between patent life and the rate of innovation will have an 

inverted-U shape (Horowitz & Edwin, 1996). The hump-shaped relationship is due to opposing 

effects of patent life. On the one hand, a longer patent life induces the patent holder to develop 

larger (more prominent) inventions. On the other hand, the frequency of innovation falls as 

patent life increases. If the low-frequency effect dominates (is dominated by) the size effect, 

the rate of innovation declines (increases) in patent life.   

Another strand of research investigated the extent to which licensing can mitigate or correct 

for the adverse effects of IP protection on innovation. For example, Green and Scotchmer 

(1995) demonstrate that the innovation incentives of both licensors and licensees would 

increase if an inventor could license the use of their innovation for a fee, which emerges as a 

market solution that resolves the incentive problem by compensating the pioneer with a share 

of the rents associated with the follow-on discovery. Nevertheless, licensing contracts may 

remain sub-optimal because it is difficult to identify the subsequent innovators. Secondly, 

subsequent innovators must invest in innovation before they can commit to conclude a 

licensing contract. Third, the licensor and the licensee may have diverging expectations about 

the value of the invention, leading to inefficient bargaining on the license fee. Finally, 

transaction costs of negotiating contracts may be high, particularly when the follow-on 

innovation draws on multiple patents (Gallini, 2002). 

As can be seen from the summary above, the effect of patent protection on subsequent 

innovation is ambiguous at best. The ambiguity is placed in sharper relief by Heller and 

Eisenberg (1998), who draw attention to a possible ‘anti-commons tragedy’ under the 

conditions of strong patent protection. The authors highlight the complex obstacles that arise 

in biomedical research, where a downstream innovator needs access to multiple patented inputs 

to create a single useful product. Because each upstream patent allows their owners to restrict 

access, the cost of downstream innovation increases and hence the pace of innovation 

decreases.  
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A similar conclusion is obtained when the effect on technology diffusion is considered. On the 

one hand, stronger patent protection may encourage technology diffusion through vertical 

specialization. In this setting, some innovators specialise in large inventions with multiple 

patentable inventions whilst subsequent innovators purchase the patentable inventions instead 

of undertaking costly investment in innovation. Hall and Ziedonis (2001) demonstrate that 

vertical specialisation has been associated with technology transfer/diffusion in the semi-

conductor industry. Nevertheless, licensing agreements under vertical specialisation can 

exacerbate the adverse effects of market power associated with patent protection. For example, 

technology-dominant firms may set transfer terms that maximise rent extraction instead of 

technology diffusion. Overall, the effect on technology diffusion depends on the extent to 

which competition policy is effective in monitoring transfer agreements and reducing their 

adverse effects on competition in innovative activity (Gallini, 2002). 

The sources of ambiguity discussed above notwithstanding, Acemoglu and Akcigit (2012) 

demonstrate that the effect of IP protection on innovation and technology diffusion also depend 

on the distance to the technology frontier. The authors develop a dynamic model of interactions 

between IP protection and competition, where industries and firms undertake step-by-step 

innovation. They demonstrate that full patent protection for all innovators is sub-optimal. In 

contrast, IP protection encourages subsequent innovation when it protects only the innovations 

of technology leaders near or at the technology frontier. These findings are similar to what has 

been reported by Cornelli and Schankerman (1999), who demonstrate that, under moral hazard 

and information asymmetry, a uniform IP protection provision for firms with different R&D 

productivities may be welfare-reducing. This is because the uniform patent protection provides 

too much R&D incentive to low-productivity firms and too little to high-productivity ones.3  

The third strand of theoretical work examines the effects of IP protection on productivity and 

economic growth. In this line of research, IP protection affects the level of productivity or 

economic growth through its effects on innovation and technology diffusion. For example, 

 
3 The case for variable IP protection instruments and provision has also been discussed from legal, regional 
development and international cooperation perspectives. For example, Carroll (2009) is in favour of a uniform 
regime but the legal instruments can/should be revised depending on changes in innovator incentives and 
availability of alternative appropriability mechanisms among other factors.  Tödtling and Trippl (2005) investigate 
innovation policy at the regional level and conclude that a “one-size-fits-all model” is unfeasible given the 
differences in the innovation activities of central, peripheral and old industrial areas. Finally, Maskus (2010) 
discusses the existing IP protection arrangement in the context of environmentally sound technologies and 
concludes that there is a case for variable provisions that involve linking patent terms with licensing commitments, 
investing in patent transparency, and facilitating voluntary patent pools. 
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Segerstrom et al. (1990) develop a dynamic general equilibrium model of ‘North-South’ trade.4 

In the model, innovation in the ‘North’ is an outcome of research and development (R&D) 

races, in which the probability of winning the race is proportional to R&D resources. The 

winner of each R&D race earns monopoly profits during the patent life, after which perfect 

competition prevails. If wages in the ‘North’ and ‘South’ are equal, patent protection increases 

productivity and output in the ‘North’. This is achieved through higher levels of employment 

in R&D activities and higher probability of innovation. However, patent protection is 

detrimental for productivity and output growth if wages in the ‘North’ are higher than the 

‘South’. In this scenario, stricter patent protection reduces the steady-state level of employment 

in R&D activities and increase the steady-state number of monopolistic firms.  

Helpman (1993) also develops a ‘North-South’ model of IPR enforcement, where the ‘North’ 

invents new products and the ‘South’ imitates them. Taking into account the endogenous nature 

of innovation, Helpman (1993) demonstrates that the ‘South’ loses form tighter IP protection. 

This is because the increase in world output that follows from the temporary increase in 

innovation due to tighter IP protection in the ‘North’ is not sufficient to compensate the ‘South’ 

for its losses. The effect on the ‘North’ is also negative: tighter IP protection raises the ‘North’s 

welfare through increase in savings and R&D investment rates, but this welfare gain is smaller 

than the welfare loss caused by the shift in the time profile of available products, including 

products imported from the ‘South’.  

Nevertheless, Dinopoulos and Segerstrom (2010) arrive at opposite conclusions when they 

introduce multinational firms (MNFs) into a model of ‘North-South’ trade. In the model, 

Northern firms are innovative and produce higher-quality products, multinational firms transfer 

technology through foreign direct investment (FDI) in the South, and the Southern firms imitate 

products produced by local affiliates of the multinational firms. The authors demonstrate that 

stronger IP protection in the South leads to a permanent increase in the rate of technology 

transfer to the South, a permanent increase in R&D employment by Southern affiliates of the 

Northern MNFs, and a temporary increase in the Northern innovation rate. As a result, IP 

protection in the South is a source of productivity gains and output growth – provided that the 

 
4 We thank one of our anonymous reviewers for drawing attention to the change in the terminology used to 
differentiate between developed and developing countries over time. To strike a balance between the evolving 
terminology and the terminology used in the reviewed sources, we have decided to state the North-South 
descriptor in inverted commas – to suggest that the description is generic.  
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MNFs transfer technology from the North to the South. The proviso, however, is difficult to 

ascertain due to difficulties in measuring the level and quality of the technology transfer.  

It must be acknowledged here that the brief review we provide is not extensive enough to reflect 

all theoretical contributions in the research field. For a more complete evaluation of the 

theoretical work, we refer the reader to consult the narrative reviews by Gallini (2002), Hall 

and Harhoff (2012), Maskus (2012) and Rockett (2010). It must also be indicated that the 

earlier theoretical work on the economic implications of IP protection have been overtaken by 

a new strand of work that focuses on intellectual property analytics (IPA).5  

Nonetheless, the theoretical work reviewed above has informed a substantial empirical effort 

aimed at estimating the effects of IP protection on related outcomes such as innovation, 

technology diffusion/transfer, productivity, and economic growth. In the meta dataset we have 

constructed, most primary studies estimate the effect of IP protection on one or more of the 

outcomes at the country or within-country regional level (59%), followed by firm-level (28%) 

and industry-level (13%) estimates.  In terms of data period, 50% of the studies utilise data 

ending in 2004, 25% utilise data ending in 2008, and 5% utilise data ending in 2011. 

Furthermore, 54% of studies haven published in the last decade from 2010-2019 compared to 

46% published in the previous two decades from 1900-2009. Hence, the primary study sample 

can be considered as representative in terms of publication date and time dimension of the data 

used. In what follows below, we provide a summary of the typical empirical models estimated 

in the included primary studies. 

Studies that investigate the effect of IP protection on innovation estimate either a patent flow 

model based on a knowledge production function or an R&D intensity model where R&D 

investment is a function of income (or firm/industry sales) and R&D productivity. Both models 

are augmented with a measure of IP protection, which enters the models as a determinant of 

the unobserved knowledge efficiency in the patent flow model or R&D productivity in the R&D 

intensity model. The hypothesis is that IP protection, through its effects on the productivity of 

patentable knowledge or R&D investment, affects innovation at the firm, industry, or country 

 
5The IPA literature utilizes big data availability to analyse the trends, patterns and relationships in IP protection 
activity. This literature is reviewed in Aristodemou and Tietze (2017), who identify four focus areas for the 
emerging literature: knowledge management, technology management, economic value of information, and the 
extraction and effective management of information. 
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level. The patent flow and R&D investment models are stated formally in (1) and (2) below, 

respectively.  

𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖𝑖𝑖 =  𝛼𝛼10 + 𝛽𝛽11𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖𝑖𝑖−1 + 𝛽𝛽12𝑙𝑙𝑙𝑙𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 + 𝛽𝛽13𝑙𝑙𝑙𝑙𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 + 𝛾𝛾1𝑙𝑙𝑙𝑙𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 + 𝑣𝑣1𝑖𝑖 + 𝛿𝛿1𝑡𝑡 + 𝜀𝜀1𝑖𝑖𝑖𝑖 (1) 

𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 =  𝛼𝛼20 + 𝛽𝛽21𝑌𝑌𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑘𝑘 ∑ 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾
𝑘𝑘=2 + 𝛾𝛾2𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 + 𝑣𝑣2𝑖𝑖 + 𝛿𝛿2𝑡𝑡 + 𝜀𝜀2𝑖𝑖𝑖𝑖   (2) 

Here, i is the unit of analysis (firm, industry, or country), t is time, v is unit-specific 

heterogeneity, 𝛿𝛿 represents time effects, 𝜀𝜀 is the idiosyncratic error term. Of the dependent 

variables, P is patent flow and RD is the level of R&D expenditures. The numerical subscripts 

reflect the model number at hand. In the patent flow model, the coefficient of interest is 𝛾𝛾1, 

which measures the effect of IP protection on innovation after controlling for previous 

knowledge (𝑃𝑃𝑖𝑖𝑖𝑖−1), R&D investment (RD), and human capital (HC). In model 2, the coefficient 

of interest is 𝛾𝛾2, which measures the effect of IP protection on innovation after controlling for 

sales/income and a set of control variables denoted by CVk. 

The primary studies that estimate the effect on diffusion estimate either a foreign direct 

investment (FDI) or a royalty payments model. In these studies, FDI or royalties are used as 

proxies for technology diffusion/transfer, which remains unobservable for the researcher. 

Studies that estimate the effect on FDI flows usually draw on a gravity model of FDI, whereas 

others that estimates a royalty payments model usually draw on a model proposed by 

Branstetter et al. (2004). Typical empirical models estimated in this area of research can be 

stated as follows: 

𝑙𝑙𝑙𝑙𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛼𝛼30 + 𝛽𝛽31𝑙𝑙𝑙𝑙𝑌𝑌𝑖𝑖𝑖𝑖 + 𝛽𝛽32𝑙𝑙𝑙𝑙𝑌𝑌𝑗𝑗𝑗𝑗 + 𝛽𝛽3𝑘𝑘 ∑ 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾
𝑘𝑘=3 + 𝛾𝛾3𝑙𝑙𝑙𝑙𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗 + 𝜀𝜀3𝑖𝑖𝑖𝑖𝑖𝑖   (3) 

𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛼𝛼40 + 𝛽𝛽41𝑦𝑦𝑖𝑖𝑖𝑖 + 𝛽𝛽42𝑘𝑘 ∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾
𝑘𝑘=1 +  𝛽𝛽43𝑘𝑘 ∑ 𝐻𝐻𝑗𝑗𝑗𝑗𝑗𝑗𝐾𝐾

𝑘𝑘=1 +  𝛽𝛽44𝑘𝑘 ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾
𝑘𝑘=1 + 𝛾𝛾4𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 +

 𝜀𝜀4𝑖𝑖𝑖𝑖𝑖𝑖            (4) 

In (3), i and j denote the home and host countries of FDI, Yi and Yj are home and host country 

GDP, and CVi is a set of control variables that affect inward FDI investment. The coefficient 

of interest, 𝛾𝛾3, measure the effect of IP protection on FDI flows into the host country after 

controlling for other determinants of inward FDI investment. In (4), the dependent variable is 

royalty payments (RP) from affiliate l to its parent company i. Of the remaining variables, y is 

a vector of country-specific time trends, and P, H and A are parent, host, and affiliate 
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characteristics, respectively. The coefficient of interest, 𝛾𝛾4, measures the effect of IP protection 

in the host country on royalty payments from the affiliate in the host country to its parent 

company abroad.  

The empirical productivity and growth models share a common ground in that they are based 

on a Cobb-Douglas production function where IP protection is the determinant of unobserved 

technological change. Typical productivity and growth models for estimation can be stated as 

follows: 

𝑙𝑙𝑙𝑙𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛼𝛼50 + 𝛽𝛽51𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 + 𝛽𝛽52𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 + 𝛾𝛾5𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 + 𝑣𝑣5𝑖𝑖 + 𝛿𝛿5𝑡𝑡 + 𝜀𝜀5𝑖𝑖𝑖𝑖     (5)6 

∆(𝑌𝑌
𝑁𝑁

)𝑖𝑖𝑖𝑖 = 𝛼𝛼60 + 𝛽𝛽1(𝑌𝑌
𝑁𝑁

)𝑖𝑖0 + ∑ 𝛽𝛽𝑘𝑘𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾
𝑘𝑘=2 + 𝛾𝛾6𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 + 𝑣𝑣6𝑖𝑖 + 𝛿𝛿6𝑡𝑡 + 𝜀𝜀6𝑖𝑖𝑖𝑖   (6) 

In (5), Y is real output, produced utilizing capital input K and labour input L, with coefficients 

𝛽𝛽51and 𝛽𝛽52 as factor shares that reflect the marginal products of capital and labour. The 

coefficient on IPP (𝛾𝛾5) is the contribution of IP protection to output, after controlling for 

contributions of the conventional inputs. In (6), the dependent variable ∆(Y/N) is the growth of 

per-capita GDP, which depends on the initial level of income, (Y/N)0, and the set of regressors 

usually included in growth models, which include share of capital, share of human capital, 

population growth, institutions or financial development, etc. IPP enters both models due to 

its effect on technical change that, in turn, enables countries or firms/industries to produce a 

higher level of output or achieve faster growth rates at given levels of conventional inputs.  

There are several measurement and estimation issues that arise from the representative models 

introduced above. Foremost among these is the measurement of IP protection, which consists 

of qualitative legal instruments. Four different measures are utilised to convert the latter into a 

quantitative indicator: (i)  the Ginarte and Park (1997) index of patent protection strength 

(45%); (ii) other IP protection indexes based on legal provisions and expert opinion surveys 

(25%); indicator variables reflecting domestic and/or international regime change in favour of 

stronger IP protection (12%); and patent count or intensity measures (17%).  

 
6 The dependent variable in the productivity model can also be total factor productivity (TFP), which is estimated 
from the Cobb-Douglas production function with conventional inputs, excluding IP protection. In this case, TFP 
is regressed on IP protection. The estimate of the IP protection effect should be the same in both specifications if 
the assumptions of perfect competition and constant returns to scale hold.  



 
 

12 
 
 

 

The most commonly-used measure, the Ginarte and Park (1997) index, is constructed 

quinquennially by coding information about the national patent laws. It considers the extent of 

coverage, membership in international patent agreements, provisions for loss of protection, 

enforcement mechanisms, and patent life (duration of the protection). Each of these features is 

assigned a value that ranges between 0 and 1; and the index is calculated as the unweighted 

sum of the five scores. Hence, the index ranges from zero (no protection) to 5 (maximum 

protection). Other IP protection indexes follow a similar scoring methodology, but they also 

include information about patenting activity and/or survey information reflecting the 

assessment of the business managers about the strength of IPR regime in the country. Of the 

remaining two, the IPR regime change indicators are usually dummy variables indicating 

participation in international IPR agreements or the introduction of domestic legislation or 

both. Finally, the patent-related measures usually reflect one or a combination of the following: 

patents registered, patents in force, or the ratio of granted patents to the total number of patent 

applications.  

The multiplicity of IP protection measures raises the question of whether it is 

feasible/permissible to pool estimation results based on different measures of the explanatory 

(intervention) variable. To address this question, we draw on Lesser (2011) who reports that 

the correlation between the most-commonly used Ginarte and Park (1997) index and other 

indexes that measure the strength of trademarks and copyright protection ranges from 0.6 to 

0.8.  Therefore, Lesser (2011) concludes that alternative indexes can be used for evaluating 

trends over time, but they should be used for cross-section comparisons with caution. There is 

no comparative assessment of the correlation between regime change indicators and IP 

protection indexes. However, the two can be expected to convey correlated information as 

regime change feeds into the IP protection indexes through construction.  

Our conclusion is that the existing measures may be heterogenous but provide overlapping 

information about the extent of IP protection strength they reflect. Hence, we pool evidence 

based on different measures and address the issue of heterogeneity by defining a categorical 

variable of IP protection strength, which takes values from 1 to 4, with 1 corresponding to IPR 

regime change that reflects the lowest protection strength; 2 corresponding to measures based 

on patenting activity; 3 corresponding to the Ginarte and Park (1997) index and other indexes; 

and 4 corresponding to IP protection indexes augmented by enforcement quality indicators 

such as rule of law or quality of judiciary. We utilise this categorical variable to ascertain if 
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the effect on economic outcomes differs between low (category 1 and 2) and high IP protection 

strength (category 3 and 4).  

Another measurement issue arises from the difference between the log-log and log-linear 

specifications in models 1-6 above. In some models, the effect-size estimate of interest, 𝛾𝛾,  is 

based on a log-log specification in models 1, 3 and 5, but on a log-linear specification in 2, 4 

and 6. Furthermore, even when the underlying specification is log-log, primary studies tend to 

use an IP protection measure in levels. Overall, unit of measurement emerges as another source 

of heterogeneity that must be tackled before the effect-size estimates can be pooled for meta-

analysis. To address this issue, we standardise the effect-size estimates by obtaining a partial 

correlation coefficient (PCC) and a Fisher’s Z transformation of the latter – both of which 

reflect the strength of the correlation between IP protection and economic outcomes after 

controlling for other determinants. This is a common practice in meta-analysis (e.g., Stanley 

et al., 2018; Awaworyi Churchill et al., 2017b; Wang & Shailer, 2015), exercised at the cost 

of having to rely on a correlation measure instead of a causal effect size.   

The third measurement issue relates to the dependent (outcome) variable. As indicated above, 

the primary studies investigate the effects of IP protection on four related economic outcomes: 

innovation, technology diffusion, productivity, and output growth. The measurement of the 

dependent variable in the latter two clusters is straightforward: the logarithm of real output in 

the productivity cluster and the growth rate per-capita GDP/output in the growth cluster. 

Therefore, a standardised effect-size measure is comparable within or between studies.  

However, the measures used for innovation and technology diffusion differ between studies. 

Studies investigating the effect of IP protection on innovation utilise five types of innovation 

measures: (i) level or intensity of R&D expenditures as measures of innovation inputs (24%); 

(ii) other innovation input measures such as innovation investment dummy or probability 

(2%); (iii) patenting activity as a measure of innovation outputs (47%); (iv) other innovation 

output measures such as forward patent citations, follow-on innovations or product innovation 

(21%); and (v) economic complexity index that measures the countries’ productive capabilities 

(6%). In the case of technology diffusion, the outcome is measured as FDI inflows (45%), 

royalty payments (15%) or international licensing probability or bilateral trade (40%). 

This heterogeneity reflects the difficulty in measuring innovation and technology diffusion; 

and the lack of consensus on which measure is preferable/appropriate. As stated by Nelson et 
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al. (2014), the variation in the measures does not necessarily call into question the empirical 

efforts. It does, however, indicate that further research on the measurement of innovation and 

diffusion is necessary – at least to develop a ranking of the competing measures with respect 

to their informational content. More to the point, however, it also indicates the need for 

appropriate modelling and coding of the evidence base. To address this requirement, we rely 

on multi-level models that allow for both dependence and heterogeneity within outcomes; and 

control for input and output measures of innovation as one of the outcome variables.  

3. Identifying eligible studies and overview of the evidence base 

Our search for eligible studies, inclusion and exclusion decisions, and data extraction protocols 

all follow the best-practice recommendations in Stanley et al. (2013). We began with finding 

primary studies from existing narrative reviews. This sample was then augmented through 

electronic search in Scopus, Google Scholar, the Science & Technology Management 

Bibliography (STMB) and EBSCO Information Services (EBSCO). We used a pre-specified 

list of keywords, including: “intellectual property rights”, “intellectual property protection”, 

“property right protection”, “patent protection”, “trademarks” combined with “economic 

growth”, “economic development”, “productivity”, “innovation”, “technology diffusion”, and 

“technology transfer”. The search produced 1,187  studies published between 1990 and 2019 

(see, the PRISMA flow diagram in Figure 1A in the Appendix).  

Screening the title/abstract information, we have identified 311 studies for critical evaluation 

based on full-text information. We excluded all theoretical papers or papers with no empirical 

estimates (e.g., Chu & Peng, 2011; Keely, 2001), studies with non-tractable empirical models 

(e.g., Bielig, 2015), and studies that report starred coefficients without standard errors or t-

values (Allred & Park, 2007; Gold et al., 2019).  

At the end of the full-text evaluation, we obtained a sample of 91 primary studies that reported 

1,626 estimates for the effects of IP protection on at least one of the four economic outcomes 

(economic growth, productivity, innovation, and technology diffusion). Of these, 10 studies 

report multiple effect-size estimates for more than one economic outcome. For instance, Cho 

et al. (2015) and Falvey et al. (2006) provide estimates on both growth and innovation; 

Branstetter et al. (2007) on productivity and diffusion; and Hall and Sena (2017) on 

productivity and innovation. Hence the total number of study IDs for nesting at level 2 of the 
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multi-level model is 101. Finally, the primary studies report multiple effect-size estimates,  

which range from 2 in Varsakelis (2001) to 69 in Sakakibara and Branstetter (2001).  

We have extracted all reported effect-size estimates to ensure complete use of existing 

information and avoid the risk of reviewer-induced selection bias. In order to control for 

observed sources of heterogeneity, we coded each estimate with several indicators that capture 

the following dimensions of the research field: (i) publication type and characteristics (journal 

article or working paper or book chapter, journal quality, multi-authors publication, funded 

research, etc.); (ii) publication date; (iii) model specification (underlying theoretical model, 

modeling for linear or interaction effects, use of time or , industry/country dummies, etc.); (iv) 

data and sample characteristics (whether the unit of analysis is firm, industry or country; the 

country origin of the data, midpoint of the data’s time dimension, etc.); (v) estimation methods 

(fixed/random effect estimators, GMM, 2SLS, OLS, non-linear probability estimators, etc.); 

(vi) the economic outcome to which the effect-size estimates pertain (growth, productivity, 

innovation and technology diffusion); and (vii) IP protection strength measures (patent-based  

measures; Ginarte and Park (1997) index or equivalent, domestic regime change dummies or 

international regime change dummies such adoption of the Trade-Related Intellectual Property 

Rights -TRIPS- agreement, etc.).  

Tables A1 to A4 in the Appendix provide bibliographic and content information about included 

primary studies, including the number of cross-section units, data period, IP protection 

measure(s) used, estimation method, and the mean and median of the reported effect-size 

estimates and associated t-values. Most studies (82%) are journal articles. The remaining 

includes working papers and reports (14%), and book chapters and thesis (4%). Whilst the data 

is at the country level in 51 studies, 11 studies draw on industry-level data and 23 studies are 

based on firm or affiliate data. The rest include 1 study at region level and 5 studies using 

different innovation outcome units, such as citation of article or drug discovery. 
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Figure 1: Kernel densities of effect-size estimates and associated t-values 

 
Panel A: Evidence base for IP protection and per-capita GDP growth.  
Median PCC: 0.089; Median t-value: 1.590 
 

 
Panel B: Evidence base for IP protection and productivity.  
Median PCC: 0.049; Median t-value: 2.189 
 

      

 
Panel C: Evidence base for IP protection and innovation. 
Median PCC: 0.055; Median t-value: 1.796 
 

         

 
Panel D: Evidence base for IP protection and technology diffusion. 
Median PCC: 0.025; Median t-value: 1.448 
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Kernel densities of the effect-size estimates and associated t-values are displayed in Figure 1. 

Most effect-size estimates are positive, but their distribution has long tails, either to the right 

(for productivity and technology diffusion - Panel B and D), or to the left (for growth - Panel 

A). With regards to the t-values, the highest density is often around the value of 2 – near the 

cut-off point associated with the 5% level of significance. This might be a signal of publication 

selection, which is revealed as a sudden increase in the frequency of the reported effect-size 

estimates that just pass the 5% significance level.7 

Funnel plots in Figure 2 provide visual information about the extent of heterogeneity and the 

risk of publication selection bias. The graphs are based on four evidence pools for four 

economic outcomes of IP protection: growth, productivity, innovation, and technology 

diffusion. The standardised effect-size estimate consists of two measures: the partial correlation 

coefficient (PCCs) and the latter’s Fisher’s Z transformation.8 The vertical line indicates the 

fixed-effect weighted mean (FEWM), estimated with weights equal to the reciprocal of the 

squared standard error. Asymmetric distribution around the vertical line may be an indication 

of publication selection bias (Egger et al., 1997; Stanley & Doucouliagos, 2012). Effect-size 

estimates beyond the 95% pseudo confidence interval limits (dashed lines) reflect the degree 

of residual heterogeneity that cannot be explained by sampling variations (Harbord & Higgins, 

2008).9  

The funnel graphs suggest that the fixed-effects weighted means (FEWMs) of the effect sizes 

are usually positive but very close to 0. Besides, the extent of residual heterogeneity that cannot 

be explained by sampling variation is quite high in all four sub-samples (around 90%).10 

Finally, the distribution of the effect sizes around the FEWM is asymmetric across all four 

clusters, with evident concentration to the right.  This is an indication of publication selection 

bias, which needs to be verified further using meta-regression and other estimation methods.  

 
7 See Andrews and Kasy (2019), who consider the jumps in the density of the reported estimates around the cut-
off points for significance as potential indicators of selection bias. 
8 While the use of partial correlations has several advantages, its distribution might not be normal when its value 
gets close to +1 or -1. Fisher’s z-transformation is the most common method in dealing with this problem (Stanley 
et al., 2018). Thus, we presented the results for both partial correlation and Fisher’s z-transformation, in order to 
increase the robustness and reliability of our results.   
9 The funnel graphs are based on data that excludes outliers using the dfbeta routine in Stata. 
10 The residual heterogeneity statistic is the residual weighted sum of squares from the fixed-effects meta-
regression model and is the generalization of Cochran’s Q from meta-analysis to meta-regression (Harbord & 
Higgins, 2008).  
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Figure 2: Funnel graphs for effect-size distributions: PCC and Fisher’s Z 
 

 
Growth effects: PCC                 Growth effects: Fisher’s Z 

 
   Residual heterogeneity:      85.66%                          81.8% 

 
Productivity effects: PCC                  Productivity effects: Fisher’s Z 
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     Innovation effects: PCC      Innovation effects: Fisher’s Z 

 
  Residual heterogeneity:   92.97%                                      93.02%                                       

         
                 Diffusion effects: PCC                         Diffusion effects: Fisher’s Z 
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We begin exploring the presence of publication selection bias following Card and Krueger (1995), 

who regress the logarithm of the absolute t-value associated with each primary-study estimate on the 

corresponding logarithm of the square root of the degrees of freedom (LSRDF). The assumption here 

is that estimations based on larger samples should produce higher t-ratios (i.e. more precise 

estimates). The null hypothesis is that there is no potential publication selection if the coefficient on 

LSRDF is 1. Results are presented in Table 1, where the null hypothesis of β=1 is rejected strongly. 

 

Table 1: Card and Krueger (1995) test for publication selection bias  

Outcomes Coefficient (β) SE 
Wald test statistic  

H0: β=1  p-value 
Panel A: Estimations taking account of between-outcome dependence 

1. OLS estimation 

Growth 0.5603 0.0917 F(1,100)=  23.00 0.0000 

Productivity -0.0006 0.1563 F(1,100) =  41.00 0.0000 

Innovation 0.1611 0.0765 F(1,100) =  120.14 0.0000 

Diffusion -0.1777 0.0770 F(1,100) =  234.21 0.0000 

2. Multi-level model estimation with unstructured covariance 

Growth 0.4514 0.1180 chi2(1)=21.62 0.0000 

Productivity 0.1071 0.1120 chi2(1)=63.54 0.0000 

Innovation 0.1130 0.0806 chi2(1)=121.16 0.0000 

Diffusion -0.0805 0.0783 chi2(1)=190.59 0.0000 

Panel B: Estimation based on separate outcomes 
 
OLS estimation 

Growth 0.5603 0.0932 F(1,22)=  22.24 0.0001 

Productivity -0.0006 0.1602 F(1, 16) =  39.00 0.0000 

Innovation 0.1611 0.0771 F(1, 36) =  118.40 0.0000 

Diffusion -0.1970 0.0836 F(1, 23) =  204.82 0.0000 

Notes: The dependent variable is the logarithm of the absolute value of the t-ratio, and the explanatory variable is the 
logarithm of the square root of the degrees of freedom. Robust standard errors are clustered at the study level. Multi-level 
RIS3 where the random-effect covariances are independent provides similar results, which are not reported here to save 
space, but are available upon request.  

 

The findings in Table 1 suggest the t-ratio (i.e., the precision) of the reported effect-size estimates is 

not increasing with sample size. Although Card and Krueger (1995) indicate that the absence of a 

positive relationship between the t-ratio and the sample size is due to specification searching and 

publication selection bias, the test does not allow for direct verification of either. It just implies that, 
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when the null hypothesis is rejected, the distribution of the reported effects in a research field may be 

driven by specification searching and publication selection among other factors. To eliminate this 

ambiguity, the test for publication selection should establish whether the effect-size estimate is related 

to its standard error in such a way that it reveals preference for reporting statistically significant 

results. Publication selection in this sense implies that statistically significant effects would be 

reported with a higher probability compared to the probability to be expected when the effect-size 

estimates are distributed randomly. Despite its mainly suggestive nature, however, the Card and 

Kruger (1995) test indicates that the risk of publication selection should be taken seriously and 

addressed appropriately in the evidence base at hand. We address the issue in section 5, where test 

for publication selection bias formally utilising the funnel asymmetry test (FAT) proposed by Stanley 

(2005; 2008) and Stanley and Doucouliagos (2012).  

 

4. Meta-regression methodology 

We propose a multi-outcome meta-regression model where effect-size estimates (level-1) are nested 

within studies (level-2) that, in turn, are nested within one or more of the four outcomes they 

investigate (level-3). This multi-level setup allows for taking account of heterogeneity and data 

dependence at study and outcome levels (levels 2 and 3). It has been applied in meta-analysis studies 

in education, psychology, and healthcare (Baldwin et al., 2014; Dessie et al., 2020; Moeyaert et al., 

2017; Van den Noortgate et al., 2015). The model for estimation is based on three effect-size 

equations that reflect the 3-level nesting in the evidence base. Denoting the outcome pools by k, the 

primary studies by j, and the effect-size estimates by i, the three equations can be stated as follows: 

Level 1:  𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛽𝛽𝑗𝑗𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 , where 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖
2 )    (7) 

Level 2:  𝛽𝛽𝑗𝑗𝑗𝑗 =  𝜃𝜃𝑗𝑗𝑗𝑗 + 𝑢𝑢𝑗𝑗𝑗𝑗 , where 𝑢𝑢𝑗𝑗𝑗𝑗~𝑁𝑁(0,𝜎𝜎𝑢𝑢𝑗𝑗𝑗𝑗
2 )    (8) 

Level 3:  𝜃𝜃𝑗𝑗𝑗𝑗 =  𝛾𝛾𝑘𝑘 + 𝑣𝑣𝑘𝑘 , where 𝑣𝑣𝑘𝑘~𝑁𝑁(0,𝜎𝜎𝑣𝑣0𝑘𝑘
2 )    (9) 

Equation (7) states that the ith observation of the effect-size estimates reported by study j for outcome 

k is equal to the population estimate βjk plus a random residual 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖. The level-2 equation (eq. 8) states 

that the effect-size estimate for each outcome can be decomposed into a study-specific mean (θjk) and 

study-specific random residual (ujk). Finally, the equation for level 3 (eq. 9) states that the effect-size 

estimate for outcome k in study j is equal to the population mean for the outcome, 𝛾𝛾𝑘𝑘, which varies 
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randomly around a random error of 𝑣𝑣𝑘𝑘. All random residuals are assumed to be distributed normally 

with mean 0 and a variance of 𝜎𝜎𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖
2 , 𝜎𝜎𝑢𝑢𝑗𝑗𝑗𝑗

2  or 𝜎𝜎𝑣𝑣𝑘𝑘
2 , respectively.  Substituting equations (8) and (9) into 

(7), we can see that the observed effect-size estimates for an outcome, 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖, is equal to an outcome-

specific mean (𝛾𝛾𝑘𝑘), subject to an idiosyncratic error (𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖) and random variations between studies 

(𝑢𝑢𝑗𝑗𝑗𝑗) and between outcomes (𝑣𝑣0𝑘𝑘).  

𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛾𝛾𝑘𝑘 + 𝑢𝑢𝑗𝑗𝑗𝑗+ 𝑣𝑣𝑘𝑘  + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖       (10) 

This specification in (10) is valid only if publication selection bias is assumed away. This assumption, 

however, is not realistic given the preliminary evidence on publication selection presented above. To 

verify whether publication selection exists, we build on Egger et al. (1997) who postulate that 

researchers search across model specifications, econometric techniques and data samples to find 

sufficiently large (hence statistically-significant) effect-size estimates. If publication selection exists, 

the observed effect-size estimates reported in primary study j for outcome k (𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖) will deviate from 

the ‘true effect’ due to a random error (𝜔𝜔𝑖𝑖𝑖𝑖𝑖𝑖) and the confounding effect of the standard error – as 

stated in (11) below.  

𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛽𝛽𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑖𝑖𝑖𝑖𝑖𝑖        (11) 

Here 𝛽𝛽𝑘𝑘 is the outcome-specific estimate of the average effect over j studies, 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 is the standard 

error reported in the primary studies, and 𝜔𝜔𝑖𝑖𝑖𝑖𝑖𝑖 is the idiosyncratic error term. The test for publication 

selection has the null hypotheses that 𝛼𝛼𝑘𝑘 = 0. If the null hypothesis is rejected, we infer publication 

selection in that the reported effect-size estimates are correlated with the standard error. In other 

words, there is ground to conclude that the reported effect-size estimates become larger in magnitude 

as the standard error gets larger so that the effect is statistically significant. Model (11) can also be 

used to test for the average effect in each outcome by testing 𝛽𝛽𝑘𝑘 = 0. Nevertheless, the Egger et al. 

(1997) model suffers from heteroskedasticity as the variance of the error term is dependent on the 

standard error term, 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖. This inherent heteroskedasticity is addressed through a weighted least 

squares (WLS) estimator, using precision-squared (1/𝑆𝑆𝑆𝑆𝑖𝑖2) as analytical weight. This is equivalent to 

dividing both sides of (11) with the standard error (Stanley, 2008; Stanley & Doucouliagos, 2012; 

Stanley, 2005), leading to:  

𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑘𝑘 + 𝛽𝛽𝑘𝑘 �1
𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖� � + 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖       (12) 
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Here 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 is the t-value associated with the effect-size estimate i reported in primary study j for 

outcome k; 𝛽𝛽𝑘𝑘 is the outcome-specific average effect over j studies, and 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖 is the error term in (11) 

divided with the standard error. Testing for ‘true effect’ (H0: 𝛽𝛽 = 0) is referred to as precision-effect 

test (PET), whilst testing for (H0: 𝛼𝛼 = 0) is the funnel asymmetry test (FAT) for publication selection. 

According to Doucouliagos and Stanley (2013, p. 320), the selection bias is modest if  |𝛼𝛼| < 1; it is 

substantial if  1 ≤  |𝛼𝛼| ≤ 2; and severe if |𝛼𝛼| > 2.  

Most meta-analyses studies of economics research and related research fields focus only on a single 

outcome (e.g., Alptekin & Levine, 2012; Awaworyi Churchill & Mishra, 2018; Awaworyi Churchill 

& Yew, 2018; Doucouliagos & Ulubasoglu, 2008; Ugur et al., 2018). Hence within-outcome 

dependence and between-outcome heterogeneity does not arise as issues to be addressed. Moreover, 

most meta-analysis studies focusing on a single outcome either overlook the issue of within-study 

dependence or take account of the latter through clustered standard errors (e.g., Alptekin & Levine, 

2012). Although some meta-analysis studies take account of within-study dependence and between-

study heterogeneity through multi-level modelling (e.g., Awaworyi Churchill et al., 2017a; Ugur et 

al., 2018; Ugur et al., 2020; Ugur et al., 2016), the two-level meta-regression models in these studies 

are inadequate for synthesizing the evidence on the economic benefits of IP protection, where we 

have multiple effect-size estimates for multiple outcomes that are theoretically related. 

To address this issue, we augment the PET-FAT model in (12) with random-effect components that 

reflect the random variation and dependence between the effect sizes at the primary study and/or 

outcome levels. This is formalized in Model (13) below, where we have a three-level mixed-effect 

model specified in such a way as to allow for outcome-specific average (‘fixed’) estimates for 

publication selection (𝛼𝛼𝑘𝑘) and for the ‘true effect’ effect (𝛽𝛽𝑘𝑘). These ‘fixed’ estimates are obtained 

after study-specific and outcome-specific ‘random effects’ are estimated (see below). The three-level 

PET-FAT model for k outcomes can be stated as follows:  

𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛿𝛿𝑘𝑘′ 𝛼𝛼𝑘𝑘 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖′ 𝛽𝛽𝑘𝑘  +   𝑢𝑢0𝑘𝑘 +  𝑢𝑢1𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑢𝑢0𝑗𝑗𝑗𝑗 + 𝑢𝑢1𝑗𝑗𝑗𝑗𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜗𝜗𝑖𝑖𝑖𝑖𝑖𝑖  (13) 

In (13), 𝛿𝛿𝑘𝑘′ is a set of dummy variables that identify the four outcomes in the research field.  Of the 

random-effect components, 𝑢𝑢0𝑗𝑗𝑗𝑗 and 𝑢𝑢1𝑗𝑗𝑗𝑗 are random effects modelled as random intercepts and 

random slopes at the study level. Similarly, 𝑢𝑢0𝑘𝑘 and 𝑢𝑢1𝑘𝑘 are random effects modelled as random 

intercepts and random slopes at the outcome level. The random-effect components are distributed 

with zero mean and constant variances as follows: 
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 𝑢𝑢0𝑗𝑗𝑗𝑗~𝑁𝑁 �0,𝜎𝜎𝑢𝑢0𝑗𝑗𝑗𝑗
2 � ;  𝑢𝑢0𝑘𝑘~𝑁𝑁�0,𝜎𝜎𝑢𝑢0𝑘𝑘

2 �;𝑢𝑢1𝑗𝑗𝑗𝑗~𝑁𝑁�0,𝜎𝜎𝑢𝑢1𝑗𝑗𝑘𝑘
2 �;   𝑢𝑢1𝑘𝑘~𝑁𝑁�0,𝜎𝜎𝑢𝑢𝑢𝑢𝑘𝑘

2 �  

Of the coefficient estimates,  𝛼𝛼𝑘𝑘 is the ‘fixed’ estimate for publication selection bias in the evidence 

pool for outcome k;  and 𝛽𝛽𝑘𝑘 is the ‘fixed’ average effect-size estimate for outcome k. These ‘fixed’ 

parameters of interest are estimated by assuming that the outcome-specific and study-specific random 

effects are at their zero mean. On the other hand, the random-effect components are estimated 

separately and stored for the purpose of post estimation tests. One such test involves the best linear 

unbiased predictions (BLUPs) of the selection bias and/or effect-size estimate by outcome and/or by 

study. Such post-estimation exercises allow for establishing the extent to which the ‘fixed’ selection-

bias and effect-size estimates (𝛼𝛼𝑘𝑘 and/or 𝛽𝛽𝑘𝑘) vary by outcome and/or by study when the random 

effects are taken into account.  

This three-level hierarchical model is estimated without constant to obtain estimates for publication 

bias (𝛼𝛼𝑘𝑘) and average effect-size (𝛽𝛽𝑘𝑘) estimates for each outcome, taking account of the information 

on remaining outcomes. The proposed model minimizes the risk of Type I error (incorrect inference)  

by taking account of within-outcome dependence and between-outcome variation, which are ignored 

when meta-analysis is conducted with separate data for each outcome (Becker, 2000). 

The multi-level estimator allows for 4 different covariance structures between the random-effect 

components: independent, exchangeable, identity, and unstructured. The independent covariance 

structure allows for a distinct variance for each random effect and assumes that all covariances are 0. 

The exchangeable structure specifies one common variance for all random effects and one common 

pairwise covariance. In the case ‘identity’ structure, all variances are equal and all covariances are 0.  

Finally, in the ‘unstructured’ variance-covariance case, all variances and covariances are distinct. The 

choice of the covariance structure needs to be verified through likely-hood ratio (LR) tests, where the 

null hypothesis is that the ‘more restricted’ specifications such as ‘identity’  or ‘independent’ is nested 

within the less restricted specification such as ‘exchangeable’ or ‘unstructured’. Rejection of the null 

indicates preference for the less restrictive covariance structure.  

We also conduct likelihood ratio (LR) tests to verify whether random intercepts and random slopes 

are appropriate at the outcome or study level or both. The null hypothesis is whether the variances of 

all or part of the random-effect parameters (𝑢𝑢0𝑗𝑗𝑗𝑗, 𝑢𝑢0𝑘𝑘, 𝑢𝑢1𝑗𝑗𝑗𝑗, and 𝑢𝑢1𝑘𝑘) are significantly different than 



 
 

24 
 
 

 

zero. In other words, the LR tests allow for deciding whether random intercepts and slopes exist at 

the study or outcome-pool levels or both.11  

The proposed modeling strategy makes full use of the information with respect to four outcomes 

before estimating average effect sizes for each outcome pool separately. According to Van den 

Noortgate et al. (2013), one advantage of the multi-level meta-regression model we adopt in this study 

is the flexibility it allows for modeling more or fewer levels of nesting in the data.12 Secondly, the 

proposed approach allows for comparison between an intervention’s effects on separate but related 

outcomes. This comparability is ensured by taking account of all available information about the 

investigated outcomes. Third, the multi-level model does not require prior knowledge of the sampling 

covariance, in contrast to multi-variate or Bayesian meta-regression models that require prior 

knowledge (see, also Moeyaert et al., 2017).In addition, simulation work by Van den Noortgate et al. 

(2013) indicates that the multi-outcome meta-regression model provided the most accurate standard 

errors and interval estimates of treatment effects in two scenarios where the sampling covariance is 

zero or large. 

Nevertheless, the proposed model could yield biased estimates unless two sources of endogeneity are 

addressed. We conduct two tests to verify whether Type-1 and/or Type-2 endogeneity exists. Whereas 

Type-1 endogeneity may exist due to correlation between the random-effects at the study level (𝑢𝑢0𝑗𝑗𝑗𝑗 

or 𝑢𝑢1𝑗𝑗𝑗𝑗) and the regressor (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖); Type-2 endogeneity may exist if the idiosyncratic error 

(𝜗𝜗𝑖𝑖𝑖𝑖𝑖𝑖) is correlated with the regressor (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖).  To address Type-1 endogeneity, we followed 

Mundlak (1978) by augmenting the model with within-study means of the regressor.13 To address the 

Type-2 endogeneity, we instrumented 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 with the square-root of the sample size. When 

Type-2 endogeneity is established, i.e., when Precision is endogenous, we have used the predicted 

value (Precison_hat) obtained from the first stage of a two-stage least squares (2SLS) estimator.  

To uncover how observable sources of heterogeneity may influence the effect-size estimate, we 

augment the bivariate model in (13) with a set of M  binary moderating variables (Zm) multiplied with 

 
11 In the results section, we report that the LR tests indicate random intercepts at the study and outcome levels, but random 
slopes only at the study level only. 
12 For example, the proposed model can allow for four levels of nesting if the meta-analyst wishes to take account of 
dependence and heterogeneity that may be due to the country or institution or funding sources of the primary-study 
authors. 
13 In the results section, we report that Mundlak tests indicate no correlation between the study-level random effects and 
the regressor (Precision). Had correlation existed, correct estimation would have been obtained by including the within-
study mean of the regressor as an additional regressor in the model.  
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖. The coefficient (𝛾𝛾𝑚𝑚) on the interaction term (Zm*𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖), if significant, indicates 

the extent to which the dimension of the research field captured by moderating variable is associated 

with larger or smaller effect size compared to the average effect size. The resulting model is a multi-

outcome multi-variate meta-regression model (MO-MRM), which allows for potential dependence 

between related outcomes and can be stated as follows:  

𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛿𝛿𝑘𝑘′ 𝛼𝛼𝑘𝑘 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖′ 𝛽𝛽𝑘𝑘  + 𝑢𝑢0𝑗𝑗𝑗𝑗 +  𝑢𝑢1𝑗𝑗𝑗𝑗𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑢𝑢0𝑘𝑘 +  𝑢𝑢1𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 +
 ∑ 𝑍𝑍𝑚𝑚 ∗𝑚𝑚 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖′ 𝛾𝛾𝑘𝑘𝑘𝑘 +  𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖        (14) 

 

In (14), the moderating variables (𝑍𝑍𝑚𝑚) are binary indicators that indicate whether the underlying 

primary-study evidence is reported in a journal article or based on a specific IP protection measure 

or obtained through a particular estimation method (e.g., instrumental variable estimation). The 

coefficient on the interaction term (𝛾𝛾𝑘𝑘𝑘𝑘) is estimated for each outcome and each moderating variable. 

We have coded for 18 moderating variables, which capture different dimensions of the research field 

as described in Table A5 in the Appendix. The construction of the moderating variables, on the other 

hand, is explained in Box A1 in the Appendix.  

Given model uncertainty (i.e., lack of prior knowledge about which of the moderating variables 

should enter the MO-MRM) and the potential for high levels of multi-collinearity, we have adopted 

a model averaging routine based on weighted-average least squares (WALS) to identify the specific 

MO-MRM to be estimated. WALS is a combination of Bayesian and frequentist approaches to model 

selection (De Luca & Magnus, 2011; Havranek et al., 2017), where covariates are included in the 

specific MO-MRM if they are associated with absolute t-values of |1| or greater in the WALS 

estimation. As discussed in Ugur et al. (2020), WALS performs as well as the Bayesian model 

averaging (BMA) routine and requires much less computation time. In the model selection process, 

we use Precision as the focus regressor and allow for model uncertainty by treating all moderating 

variables as auxiliary regressors. For comparison purposes, however, we also report estimation results 

based on the general MO-MRM in Table A9 in the Appendix.  

After estimating the specific MO-MRM, we have explored several specifications for the random 

effects and their variance-covariance structures. Relying on likelihood ratio (LR) tests, we have 

chosen random intercepts at the study and outcome levels, combined with random slopes at the study 

level; and an unstructured variance-covariance structure as the preferred specifications. The 
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coefficient estimates from the MO-MRM are then used to obtain meta-effects under different 

scenarios for sources of heterogeneity and ‘best practice’ in the research field. The meta-effect for 

each outcome k is obtained in accordance with (15) below, where 𝑚𝑚 = 1, 2, 3, . .𝑀𝑀′ < 𝑀𝑀  is the sub-

set of moderating variables that delineate the sources of heterogeneity and/or best-practice scenario. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 =  𝜕𝜕𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 𝜕𝜕𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖� =  𝛽𝛽𝑘𝑘 + ∑ 𝛾𝛾𝑘𝑘𝑘𝑘𝑚𝑚 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚 = 1, 2, 3, . .𝑀𝑀′ < 𝑀𝑀   (15) 

We verify the significance of the meta-effect through a Wald test, where the null hypothesis is that 

the sum of the coefficient estimates is zero.  

 

5. Meta-regression results 

In this section, we first present the average effect-size estimates for four related outcomes (economic 

growth, productivity, innovation and technology diffusion), based on the bivariate multi-outcome 

meta-regression model (13). These estimates take account of publication selection bias, unobserved 

heterogeneity, and within-study as well as within-outcome correlation (dependence) between 

primary-study findings. This will be followed by evidence from the MO-MRM (eq. 14) that, in 

addition to the above, also takes account of observable sources of heterogeneity by controlling for 

the variations in study characteristics. Evidence from the MO-MRM allows for qualified (scenario-

specific) inference – i.e., it allows for addressing questions about what the effect size would be when 

certain dimensions of the research field are considered as observable sources of heterogeneity.  

5.a Bivariate meta-regression evidence 

Bivariate meta-regression model estimates for the effects of IP protection on economic growth, 

productivity, innovation and technology diffusion are presented in Table 2. Panel A reports average 

effect-size and publication selection bias estimates, using partial correlation coefficients (PCCs) as 

the standardised measure of the effect sizes reported in primary studies. Panel B reports the results 

based on Fisher’s Z transformation of the PCC. All results obtained from a 3-level hierarchical model 

with random intercepts at the outcome cluster level, and random intercepts and slopes at the study 

level – as justified by LR tests. In each panel, columns A1 and B1 report estimates based on an 

unstructured covariance matrix for the random effects, whereas in columns A2 and B2 the random-



 
 

27 
 
 

 

effect variance-covariance matrix is independent.14 The log likelihood statistics and other fit statistics 

such as AIC and BIC favour the estimates in panel B, where the underlying effect size is the Fisher’s 

Z transformation of the partial correlation coefficient (PCC).  

Table 2 – Effects of IP protection on growth, productivity, innovation, and technology diffusion:  
Bivariate estimates from the multi-outcome meta-regression model  

 
 

Dependent variable: t-value 
Panel A: PCCs  Panel B: Fisher’s Z 

(A1) (A2)  (B1) (B2) 
Effect-size estimate (𝛽𝛽) for:      

Growth (Nesting 23 study IDs that report 289 effect-size estimates) 0.0359 0.0365  0.0371 0.0370 
 (0.0241) (0.0240)  (0.0236) (0.0236) 

Productivity (Nesting 17 study IDs that report 279 effect-size estimates) 0.0161 0.0159  0.0142 0.0142 
 (0.0195) (0.0194)  (0.0191) (0.0191) 

Innovation (Nesting 38 study IDs that report 673 effect-size estimates) -0.0052 -0.0052  -0.0042 -0.0042 
 (0.0142) (0.0141)  (0.0141) (0.0141) 

Diffusion (Nesting 23 study IDs that report 381 effect-size estimates) 0.0444*** 0.0437***  0.0487*** 0.0488*** 
 (0.0166) (0.0165)  (0.0164) (0.0164) 

Publication bias estimate (α) for:      
Growth (Nesting 23 study IDs that report 289 effect-size estimates) 0.5571 0.5494  0.6411 0.6435 

 (0.8294) (0.8363)  (0.6989) (0.6975) 
Productivity (Nesting 17 study IDs that report 279 effect-size estimates) 2.4820** 2.4888**  2.7485*** 2.7478*** 

 (1.0916) (1.1009)  (0.9173) (0.9155) 
Innovation (Nesting 38 study IDs that report 673 effect-size estimates) 1.9853*** 1.9799***  1.9768*** 1.9776*** 

 (0.7163) (0.7207)  (0.6000) (0.5992) 
Diffusion (Nesting 23 study IDs that report 381 effect-size estimates) 2.2010*** 2.2200***  1.6127** 1.6097** 

 (0.8340) (0.8413)  (0.6958) (0.6943) 
      
Total observations  1622 1622  1622 1622 
Total studies (study IDs) 91(101)♣ 91(101)♣  91(101)♣ 91(101)♣ 
Log-likelihood (LL) -4100.2 -4100.2  -3965.2 -3965.2 
LR test: comp. mod. Preferred (p > chi2) 0.000 0.000  0.000 0.000 
AIC 8224.4 8224.5  7954.4 7954.4 
BIC 8289.1 8289.1  8019.1 8019.1 

Notes: All columns report estimates based on a 3-level hierarchical model with random intercepts at the outcome level 
(level 3) and random intercepts and slopes at the study level (level 2). The variance-covariance structure of the random 
effects is unstructured in columns (A1) and (B1), which are preferred by the likelihood ratio (LR) test. Columns (A2) and 
(B2) report results based on an independent variance-covariance structure as sensitivity checks. ♣The estimation sample 
is based on effect-size estimates reported by 91 individual studies, of which 10 studies report estimates for more than one 
outcome. Hence, the total number of study IDs is 101. The number of study IDs and effect-size estimates nested within 
each outcome cluster (growth, productivity, innovation and technology diffusion) are reported in column 1 next to each 
outcome. Robust standard errors are clustered at the study level. ***, **, * indicates significance at 1%, 5% and 10%, 
respectively.  

 

 
14 The preferred variance-covariance structure is unstructured (columns A1 and B1), but we also report estimates based 
on independent variance-covariance structure (columns A2 and B2). Unstructured covariance structure allows for distinct 
variances and covariances for all random effects. Independent covariance structure allows for distinct variances for but 0 
covariance between random effects.  
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Results in Table 2 indicate that publication selection bias (α) is substantial in the evidence pool on 

innovation; and severe in the productivity and technology diffusion pools (see, Doucouliagos and 

Stanley (2013, p. 320)). In contrast, publication selection is modest but statistically insignificant in 

the evidence pool concerning the effect of IP protection on per-capita GDP growth. We are of the 

view that the latter result may be due to low statistical power of the funnel asymmetry test (FAT) 

based on the bivariate meta-regression model, as indicated in Stanley (2008). Complementing the 

findings in Table 2 with visual evidence from the funnel graphs in Figure 2 and with suggestive 

evidence based on Card and Krueger (1995) tests in Table 1, we conclude that selection bias is a 

pervasive issue in this field of research. Therefore, summary measures or vote-counting exercises 

typically used in narrative/qualitative reviews or advocacy literature cannot be relied upon to establish 

the ‘true’ effect of IP protection on any of the related outcomes.15  

With respect to effect-size estimates (𝛽𝛽), Table 2 indicates that the effects on innovation, productivity 

and per-capita GDP growth are statistically insignificant after controlling for selection bias. The effect 

on technology diffusion, which ranges from 0.044 to 0.049, is statistically significant but too small 

to be practically significant.16  Hence our second conclusion is that, after controlling for selection 

bias, the existing evidence lends support to IP protection pessimism reflected in narrative reviews 

(Boldrin & Levine, 2013; Chang, 2001; De Beer, 2016; Gallini, 2002; Hall & Harhoff, 2012). It also 

indicates that the IP protection optimism reflected in the advocacy literature (e.g., Dixon, 2011; 

OECD, 2015; WIPO, 2015) is not warranted.  

Before controlling for moderating factors (i.e., before taking account of observable sources of 

heterogeneity) in accordance with model (14), we have investigated whether the small effect on 

technology diffusion varies between different samples that compare countries with respect to the level 

of development and patenting intensity. Our findings, reported in Table A6 in the Appendix, indicate 

that the positive effect on technology diffusion is driven by primary-study evidence based on data 

from non-OECD, developing and low-patenting-intensity countries.17 In contrast, the effect on 

technology diffusion is insignificant; and the effect on innovation is mostly negative when the 

 
15 It must be noted that the potential bias in summary measures does not decrease as the number of effect-size estimates 
evaluated increases (Stanley, 2008: 104). 
16 This evaluation is based on criteria proposed by Doucouliagos (2011), according to which IP protection explains less 
than one-fourth of one percent of the variance in technology diffusion after controlling for the latter’s other determinants.  
17 Country classification in terms of development is based on the United Nations classifications whereas classification in 
terms of patenting intensity is based on World Intellectual Property Indicators published annually by the World 
Intellectual Property Organization (WIPO) (WIPO, 2015). Effect-size estimates reported in primary studies are coded in 
accordance with the level of development or patenting intensity that holds in the year that corresponds to the mid-point 
of the time horizon in the primary-study data. 
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evidence relates to OECD countries, developed countries including OECD and non-OECD countries, 

and high patenting-intensity countries.  

We have also checked whether the full-information meta-regression results in Table 2 differ from 

separate-outcome estimations. Comparing Table 2 with Table A7 in the Appendix, we observe that 

the absence of significant effects remains the norm in both Tables. This is the case irrespective of 

whether the separate-outcome estimations are based on OLS, fixed effects or two-level hierarchical 

model estimators. Despite the similarity, we prefer the multi-outcome hierarchical model estimations 

in Table 2 as they are based on full information about four economic outcomes of IP protection and, 

in contrast to separate-outcome estimations, allow for comparison between effect-size estimates 

across outcomes.  

The evidence so far indicates that IP protection is not effective in spurring economic growth, 

productivity, or innovation. The effect is small in the case of technology diffusion, and this is driven 

by larger effects in non-OECD, low patent-intensity and developing countries. Furthermore, the 

informational value of the effect on technology diffusion is limited as the latter is proxied either by 

FDI flows that may or may not reflect ‘true’ technology diffusion (Eaton & Kortum, 1996).18 Hence, 

our conclusion is that IP protection delivers practically insignificant or no economic benefits after 

taking account of unobserved heterogeneity and selection bias in the evidence base. In what follows, 

we will investigate whether the meta-effect differs when we account for observable sources of 

heterogeneity explicitly through a multivariate meta-regression model. 

 

5b. Multivariate meta-regression evidence 

Multivariate meta-regression results are reported in Table 3, using the Fisher’s Z transformation of 

the partial correlation coefficient as the standardised effect size. While column (1) reports estimates 

based on an unstructured variance-covariance structure, estimates column (2) reports estimates based 

on an independent variance-covariance structure as sensitivity checks. The preferred results are in 

column (1), based on LR tests and better model fit in terms of log-likelihood, AIC, and BIC. However, 

we also take account of the findings in column (2) given that the model fit in column (1) is only 

 
18 Eaton and Kortum (1996: 401) draw attention to the following: “Inferring the pattern of international technology 
diffusion implied by the pattern of international patenting and other data requires a number of specific modeling 
assumptions about production technologies, market structure, and inventor behavior, none of which is easy to verify 
directly.” 
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fractionally better. Hence, we consider a research dimension to have a significant effect on the 

variation in effect-size estimates if the corresponding moderating variable is significant in both 

columns.  

 

Table 3: Three-level Multivariate Meta-regression Results based on Fisher’s Z 
 (1) (2) 
 Unstructured 

covariance 
structure 

Independent 
covariance 
structure 

Dependent variable: t-value   
Precision   

Growth cluster 0.0192 0.0196 
 (0.0991) (0.0990) 

Productivity cluster 0.0191 0.0161 
 (0.0345) (0.0356) 

Innovation cluster 0.00418 0.00373 
 (0.0162) (0.0168) 

Diffusion cluster 0.0757 0.0817 
 (0.0618) (0.0626) 

Publication bias   
Growth cluster -0.00604 0.00915 

 (0.929) (0.900) 
Productivity cluster 2.172** 2.231** 

 (1.000) (0.964) 
Innovation cluster 1.582** 1.616** 

 (0.713) (0.693) 
Diffusion cluster 0.737 0.741 

 (0.770) (0.742) 
Moderating variables   

Primary study is journal article   
Growth cluster 0.00636 0.00624 

 (0.0531) (0.0532) 
Productivity cluster -0.0114 -0.0103 

 (0.0269) (0.0278) 
Innovation cluster -0.00251 -0.00222 

 (0.0163) (0.0168) 
Diffusion cluster -0.0194 -0.0224 

 (0.0136) (0.0150) 
Funded research   

Growth cluster 0.00982 0.00878 
 (0.0652) (0.0648) 

Productivity cluster -0.0245 -0.0236 
 (0.0267) (0.0277) 

Innovation cluster -0.00184 -0.00520 
 (0.00862) (0.0102) 

Diffusion cluster 0.00632 -0.00485 
 (0.0576) (0.0586) 

Empirical model informed by theory   
Growth cluster -0.0208 -0.0213 

 (0.0535) (0.0535) 
Productivity cluster -0.00331 -0.00547 

 (0.0155) (0.0162) 
Innovation cluster -0.00119 -0.00695 

 (0.0186) (0.0199) 
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Diffusion cluster -0.0652 -0.0590 
 (0.0434) (0.0438) 

Innovation input measure   
Innovation cluster -0.0187** -0.0191** 

 (0.00883) (0.00889) 
Data mid-point after 1996   

Growth cluster -0.00478 -0.00507 
 (0.0260) (0.0260) 

Productivity cluster -0.0100 -0.00683 
 (0.0155) (0.0163) 

Innovation cluster -0.00220 -0.00183 
 (0.0143) (0.0148) 

Diffusion cluster -0.0160 -0.0170 
 (0.0173) (0.0185) 

Unit of analysis: country/region   
Growth cluster 0.0278 0.0288 

 (0.0413) (0.0407) 
Productivity cluster 0.109*** 0.110** 

 (0.0422) (0.0429) 
Innovation cluster 0.0795* 0.0758* 

 (0.0410) (0.0409) 
Diffusion cluster 0.200*** 0.196*** 

 (0.0260) (0.0265) 
Data averaging   
Growth cluster 0.0125 0.0119 

 (0.0531) (0.0532) 
Productivity cluster 0.0552 0.0528 

 (0.177) (0.175) 
Innovation cluster 0.0153 0.0127 

 (0.0305) (0.0311) 
Diffusion cluster 0.0124 0.0145 

 (0.0120) (0.0126) 
Geographic origin of data: China   

Productivity cluster 0.0299 0.0278 
 (0.0269) (0.0281) 

Innovation cluster 0.0283** 0.0277* 
 (0.0141) (0.0149) 

Diffusion cluster 0.119* 0.110* 
 (0.0634) (0.0639) 

Geographic origin of data: India   
Innovation cluster 0.0211 0.0204 

 (0.0143) (0.0149) 
Diffusion cluster -0.429** -0.429** 

 (0.201) (0.201) 
Stronger IP protection measure   

Growth cluster 0.0350 0.0339 
 (0.0459) (0.0460) 

Productivity cluster -0.000114 -0.000161 
 (0.00233) (0.00233) 

Innovation cluster -0.0270*** -0.0211** 
 (0.00881) (0.0105) 

Diffusion cluster -0.0613 -0.0659 
 (0.0574) (0.0576) 

Estimator: IV   
Growth cluster 0.00904 0.00911 

 (0.0176) (0.0176) 
Productivity cluster 0.000979 0.00101 

 (0.00325) (0.00325) 
Innovation cluster 0.00660 0.00667 
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 (0.0102) (0.0103) 
Diffusion cluster -0.0274 -0.0154 

 (0.116) (0.115) 
N 1619 1619 
Primary studies 91♣ 91♣ 
p-value 0.000 0.000 
Log-likelihood (LL) -3901.6 -3906.8 
AIC 7903.1 7913.6 
BIC 8172.6 8183.1 

Notes:  ***, **, * indicates significance at 1%, 5% and 10%, respectively. Table A8 in the Appendix presents sensitivity 
checks based on PCC. The number of study IDs and effect-size estimates in each cluster is the same as indicated in Table 
2 above.  

 

Following this rule, we report that a large majority of the moderating variables are statistically 

insignificant sources of heterogeneity in the evidence base. This remains to be the case when the 

estimations are based on PCC, as reported in Table A8 in the Appendix.19  Therefore, we report that 

observable moderating factors in this research field (i.e., variations in publication, data, estimation, 

and sample characteristics) are insignificant predictors of the residual heterogeneity observed in the 

funnel plots (Figure 2), which is high and ranging between 81-95 per cent. This contrasts with 

findings in other meta-analysis studies in economics, where observable research dimensions are 

reported to have some explanatory power (e.g., Alptekin & Levine, 2012; Awaworyi Churchill & 

Mishra, 2018; Awaworyi Churchill & Yew, 2018; Doucouliagos & Ulubasoglu, 2008; Ugur et al., 

2018). Given this contrast, we argue that residual heterogeneity in this research field is potentially 

due to other factors that have not been controlled for given the potentially limited set of moderating 

variables that are included in the specific model. Eaton and Kortum (1996) provide some insights as 

to what these other factors may be: differences in production technologies, market structure, and 

inventor behaviour that are difficult to trace and control for - both in primary studies and meta-

analysis studies. Our findings suggest that the effects of these unobservable factors can explain part 

of the residual heterogeneity.  

The statistically insignificant coefficients on the publication type suggest that journal articles are not 

associated with any systematic difference in effect sizes. Thus, we conclude that the ‘winner’s curse’ 

highlighted by Costa-Font et al., (2013) does not hold in this research field. Stated differently, there 

is no evidence to suggest that journal editors accommodate more selected findings in this research 

 
19 Observable sources of heterogeneity remain insignificant when the multivariate meta-regression model is estimated 
separately for each IP protection outcome on its own. Results from separate-outcome estimations of the multivariate meta-
regression model are not reported here to save space, but they are available on request. Results based on the general model 
are reported in Appendix Table A9 while Table A10 reports results for OLS and FE models for comparison only.  
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field by ‘exploiting’ the journals’ reputation as ‘research vetting’ institutions. Similarly, there is no 

statistically significant evidence to suggest that funded research is associated systematically different  

effect-size estimates in this research field. This is a ‘comforting’ finding because it indicates the 

absence of what we can describe as a ‘funded-research curse’, which may arise when researchers tend 

to report selected findings that reflect the expectations of funding institutions.  

We find that only a small number of moderating variables are significant in explaining effect-size 

heterogeneity. Of these, data at the country level, compared to data at the firm or industry level, is 

associated with larger IP protection effects on productivity, innovation, and diffusion. This finding 

raises the question of why the effects are larger when country-level is used for estimation.  We are of 

the view that this is due to the ‘small N problem’ in country-level panel data. In the evidence base, 

the median N is 47 in primary studies based on country-level data, as opposed to a median of 716 in 

studies based on firm/industry data. Furthermore, 73% of the country-level effect-size estimates are 

based on conventional panel-data estimators, which require large number of cross-section units (N) 

relative to the number of time periods (T).  

As demonstrated by Pesaran and Smith (1995), Eberhardt and Teal (2011) and Eberhardt et al. (2013), 

conventional panel data methods yield potentially inconsistent estimates in the presence of correlation 

between cross-sectional units. Eberhardt et al. (2013) also report that the productivity effects of 

knowledge capital are biased upward if cross-sectional correlation is not accounted for. Therefore, 

we conclude that the relatively larger IP protection effects at the country level may well be due to 

cross-sectional dependence, which remains unaddressed in the country-level studies that rely on 

panel-data methods better suited for micro-econometric evidence with large N relative to time periods 

(T). Therefore, the relatively larger effects associated with country-level data should be considered 

as a reflection of upward bias rather than genuinely larger IP protection effects.  

We also find some evidence indicating that the effects of IP protection on innovation is relatively 

larger when the underlying data is related to China as opposed to other countries in the sample. We 

interpret this finding as an indication of larger IP protection effects on innovation at lower levels of 

development. Furthermore, we find that primary studies using stronger measures of IP protection 

(composite indices or indices weighted by enforcement quality) tend to report smaller effects on 

innovation. These findings are in line with predictions from theoretical models, which indicate that 

economic benefits of IP protection are more likely when the initial levels of protection or development 

are low (Furukawa, 2010; Hudson & Minea, 2013). They are also in line with non-linear (quadratic) 
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effects reported in empirical studies by Kanwar and Evenson (2003), Papageorgiadis and Sharma 

(2016), and Qian (2007).  

Two further findings from Table 3 deserve some discussion.  One is the effect IP protection on 

technology diffusion, which is relatively larger when the underlying data is at the country level or 

when the data relates to China. These findings provide additional support to our conclusion stated 

earlier: IP protection is more likely to spur technology diffusion in developing countries and/or when 

the initial level of IP protection strength is low. However, they also indicate that the seemingly larger 

effects on technology diffusion may be just a reflection of the upward bias caused by the ‘small N 

problem’ in country-level panel data in general. Therefore, we probe the issue of diffusion and 

country-level data again in Table 4 below, where report meta-effects based on various research 

scenarios.  

The other (and final) findings we want to discuss in the context of Table 4 relates to the effect of IP 

protection on input measures of innovation such as R&D investment as opposed to output measures 

such as patents. We observe that the effect is smaller when innovation is measured with input 

measures. This finding is in line with theoretical predictions about patent races (Dasgupta & Stiglitz, 

1980, 1988) and indicates that IP protection is more likely to encourage patenting rather than 

additional investment in innovation – a practice that also raises questions about the quality of the 

registered patents.20  

 

‘Best-practice’ meta-effect estimates 

We obtain meta-effect estimates by taking the linear combination of the effect-size estimates as 

indicated in equation (15) above. To do this, we have defined a ‘best-practice’ research scenario 

where the effect-size estimates control for endogeneity through instrumental variable (IV) estimators, 

use relatively more recent data with data-mid-point in 1996 or after, and are reported in journals. We 

consider this combination as ‘best practice’ on the grounds that journal articles are subject to an 

external review process, data with mid-point in 1996 or after is more likely to be harmonised across 

countries after the TRIPS agreement, and IV methods are preferable when potential endogeneity may 

 
20 It is important to also note the potential limitations of measuring innovation. For instance, patents are recognized legal 
instruments and are increasingly identified as a strategic tool rather than an innovation tool. We are grateful to an 
anonymous reviewer for prompting us about this.  
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exist due to sample selection or simultaneity in the relationship between IP protection and estimated 

outcomes. Scenario (2) for ‘best-practice’ research augments scenario (1) with an additional criterion: 

primary-study estimations on based on data averaged over a period of five years or more. We consider  

Table 4 – Conditional meta effects 
 

 
‘Best practice’ research scenarios 1 to 4 

Conditional meta 
effect - PCC 

Conditional meta 
effect - Fisher’s Z 

1. Journal article, data mid-point in 1996 and 
after, instrumental variable (IV) estimation 

  

Meta IP protection effect on Growth  0.0217 
(0.1086) 

0.0298 
(0.0920) 

Meta IP protection effect on Productivity  -0.0014 
(0.0051) 

-0.0014 
(0.0046) 

Meta IP protection effect on Innovation  0.0112 
(0.0191) 

0.0061 
(0.0164) 

Meta IP protection effect on Diffusion  -0.1942 
(0.1373) 

0.0130 
(0.1217) 

2. Journal article, data mid-point in 1996 and 
after, IV estimation, and data is averaged 
over 5 years or more 

  

Meta IP protection effect on Growth  0.0462 
(0.0736) 

0.0423 
(0.0630) 

Meta IP protection effect on Productivity  0.0779 
(0.1971) 

0.0538 
(0.1776) 

Meta IP protection effect on Innovation  0.0299 
(0.0436) 

0.0214 
(0.0359) 

Meta IP protection effect on Diffusion  -0.1695 
(0.1382) 

0.0254 
(0.1219) 

3. Journal article, data mid-point in 1996 and 
after, IV estimation, data is averaged over 5 
years or more, and funded research 

  

Meta IP protection effect on Growth  0.0680 
(0.1026) 

0.0521 
(0.0871) 

Meta IP protection effect on Productivity  0.0536 
(0.1992) 

0.0293 
(0.1789) 

Meta IP protection effect on Innovation  0.0245 
(0.0454) 

0.0196 
(0.0375) 

Meta IP protection effect on Diffusion  -0.2075 
(0.1415) 

0.0317 
(0.1266) 

4. Journal article, data mid-point in 1996 and 
after, IV estimation, data is averaged over 5 
years or more, funded research, and 
theoretically informed model 

  

Meta IP protection effect on Growth  0.0444 
(0.0940) 

0.0313 
(0.0792) 

Meta IP protection effect on Productivity  0.0520 
(0.2014) 

0.0260 
(0.1807) 

Meta IP protection effect on Innovation  0.0140 
(0.0484) 

0.0184 
(0.0412) 

Meta IP protection effect on Diffusion  -0.2785** 
(0.1353) 

-0.0334 
(0.1212) 

5. ‘Best-practice research in scenario (4) + 
country-level data 

  

Meta IP protection effect on Growth  0.0675 
(0.0896) 

0.0592  
(0.0770) 
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Meta IP protection effect on Productivity  0.1715 
(0.2121) 

0.1354 
(0.1901) 

Meta IP protection effect on Innovation  0.1010 
(0.0632) 

0.0979* 
(0.0549) 

Meta IP protection effect on Diffusion  -0.0723 
(0.1404) 

0.1668 
(0.1260) 

 

this as an additional criterion for ‘best-practice’ research  because data averaging reduces business 

cycle noise and mitigates the ‘small N problem’ by increasing the ratio of cross-section units (N) to 

the time periods (T).  

In scenario (3), we add funded research as an additional criterion. We consider funded research 

findings as a potential contributor to ‘best practice’ on the grounds that most of the acknowledged 

funders in the primary studies are public funders or charities not directly connected with the national 

or international IP protection institutions. The assumption here is that research funders are motivated 

to secure good returns to their investment and use funding competitions as a filter to identify projects 

with better research design. In scenario (4), we add another criterion, which requires that the empirical 

model used for estimation is tractable and informed by the theoretical models discussed in section 2. 

In scenario (5), we apply the ‘best-practice’ research scenario (4) to country-level data to test whether 

the meta-effect differs as a result of relatively larger effect-size estimates reported by country-level 

studies.  

The conditional meta effects based on these scenarios are reported in Table 4. Using both PCC and 

the Fisher’s Z transformation of the latter as standardised effect-size measures, we find that IP 

protection has no statically significant effect on innovation, productivity, or growth under any of the 

four scenarios for ‘best-practice’ research. The only exception in scenarios 1 – 4 is the negative and 

significant meta-effect on technology diffusion in scenario 4. This contrasts with the positive effect 

in Table 2, where observed sources of heterogeneity are not accounted for. The contrast lends further 

support to our earlier conclusion that the effect of IP protection on technology diffusion is imprecise 

– most probably due to poor informational content of the proxies with which it is measured. In 

scenario 5, where we restrict the data to the country-level, the meta-effect for innovation is positive, 

but highly imprecise in terms of significance and consistency between PCC and Fisher’s Z measures 

of the effect size.  

Combining all the findings above, it is safe to argue that there is no empirical support for the sanguine 

claims about economic benefits of IP protection encountered in the advocacy literature. Our findings 

indicate that IP protection may be necessary to enable innovators to appropriate the benefits of private 
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innovation but is not sufficient to deliver higher levels of innovation, technology diffusion, 

productivity, or income growth.  

 

 

6. Conclusions 

The aim of this meta-analysis study was to establish whether IP protection delivers economic benefits 

by increasing innovation, technology diffusion, productivity, and economic growth as related 

outcomes. To achieve this aim, we extended the application of the multi-outcome multi-level meta-

regression model to evidence synthesis in economics. The proposed model allows for obtaining 

effect-size estimates that take account of publication selection, heterogeneity, and correlation between 

related outcomes. It also yields effect-size estimates that can be used to compare and/or rank the 

effects of a given intervention on multiple but related outcomes. Our findings can be summarised as 

follows: (i) the effect-size estimates reported in the primary studies are highly heterogenous and 

contaminated with publication selection bias; (ii) effect-size heterogeneity is mainly due to 

unobservable factors that remain beyond the range of publication, sampling and estimation 

characteristics usually controlled for in meta-analysis; (iii) both bivariate and multivariate meta-

regression estimates indicate that IP protection does not spur innovation, technology diffusion, 

productivity or income growth; and (iv) the sanguine claims about the economic benefits of IP 

protection voiced in the advocacy literature or some legal research are not supported by the existing 

evidence.  

In addition to establishing where the balance of the evidence lies with respect to economic benefits 

of IP protection, we distil three recommendations for future research and evidence-based policy 

debate in this field. With respect to evidence synthesis in economics, we recommend expanding the 

tool kit by adopting a multi-outcome and multi-level approach to meta-regression, particularly when 

the evidence relates to the effects of a given intervention on multiple but related outcomes. One 

property of the proposed approach is that it minimizes the risk of incorrect inference by taking account 

of dependence and heterogeneity that may exist at the outcome or study levels or both. Secondly, it 

yields more accurate and precise effect-size estimates for each outcome by ‘borrowing strength’ from 

the information about other outcomes. Finally, the outcome-specific effect-size estimates are 

comparable and can be used for ranking the effects of the intervention across related outcomes.  
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Our second recommendation relates to future empirical research on economic consequences of IP 

protection. Our study has demonstrated that the level of residual heterogeneity that cannot be 

explained by sampling, publication, and estimation characteristics of the primary studies is much 

higher compared to other empirical research fields. We are of the view that this is in large part due to 

two limitations in current research: (i) inadequate modeling of the trade-off between incentive-

correction and market-power effects of IP protection; and (ii) high levels of ‘noise’ in the 

informational content of the IP protection and technology diffusion measures used.  

As indicated in the introduction and section 2, the potential effect of IP protection on market power 

of the innovator is a central issue in theoretical models, but market power remains outside the 

empirical models in the research field. The omission of market power from the empirical models is a 

potential source of endogeneity and heterogeneity, both of which can be mitigated partly by 

augmenting the existing models with a quadratic market-power term, which reflects the non-

monotonic effects of market power on innovation in Schumpeterian models (Aghion et al., 2014; 

Aghion et al., 2005). Another augmentation entails interaction between market-power and IP 

protection measures. These ‘innovations’ that the relationship between IP protection and innovation, 

technology diffusion or growth is non-linear. Allowing for non-linearities reduces the scope for 

simple (but also simplistic) policy recommendations informed by evidence from mis-specified 

models.  From the perspective of research practice, however, the non-linear specifications enable 

researchers to provide more information about market power as a source of heterogeneity and 

contingency in the economic effects of IP protection.21   

It is also necessary to improve the informational contents of the existing IP protection measures – 

particularly the index measures that allow for further refinement. As indicated above, the existing 

indices are designed to reflect higher levels of protection the stronger are the provisions of the IPR 

regime in terms of coverage, compensation, patent duration, and compliance with international patent 

agreements.  For example, in the Ginarte and Park (1997) index, each of these dimensions of the IP 

protection regime is assigned a value between 0 to 1; and the index is calculated as the unweighted 

sum of the five scores.  

 
21 It is important to note here that existing rightsholders and innovators significantly derive benefits from the existence or 
expansion of IP systems. This is evident at various levels and has been shown to be the case even for bilateral and 
multilateral trade agreements such as those with the US which typically include provisions for IP expansions that benefit 
American firms. We are grateful to an anonymous reviewer for prompting us about this argument.  
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Although the IP protection indices are comparable between themselves, their effects on relevant 

outcomes may not be comparable between countries and over time due to variations in the ‘optimal’ 

level of protection for different countries and for different years within the same country. To ensure 

comparability, we suggest two refinements: (i) assigning variable weights to the constituent 

components; and (ii) augmenting the indices with information on other dimensions of the IPR regime 

such as disclosure and competition policy quality. The weights for the constituent components should 

be higher the more likely that the provision tilts the incentive-correction and market-power trade-off 

in favour of the former. Alternatively, the weights can be linked to the ‘effect’ of each component on 

research and development (R&D) investment relative to its effect on patenting activity. Combining a 

weighting scheme with evolving information on disclosure and competition policy ensure that the IP 

protection indices take account of the country-specific trade-off between the incentive-correcting and 

market-distorting effects of intellectual property protection. This suggestion is in line with the search 

for optimal patent terms in Roin (2013) and Williams (2017).  

The implication of our findings for evidence-based policy debate is that a ‘one size fits all’ IP 

protection policy is not optimal. This is because the effects of IP protection on related outcomes such 

as innovation, technology diffusion, productivity, or growth reflect a high degree of heterogeneity 

across countries, industries, or firms. Furthermore, positive effects in some industries, countries or 

time periods does not justify the sanguine claims about economic benefits of IP protection for two 

reasons. First, IP protection effects on related outcomes are highly heterogenous and the sources of 

heterogeneity are largely unobservable. Secondly, the overall effects on all outcomes are statistically 

or practically insignificant after controlling for unobserved or observable sources of heterogeneity. 

Therefore, we conclude with a call for evidence-based debate on policy reform, which should aim to 

introduce more flexibility and contingency in the design of the future IP protection policy.  
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