
electronics

Article

An Anomaly-Based Intrusion Detection System for Internet of
Medical Things Networks

Georgios Zachos 1,2,* , Ismael Essop 2, Georgios Mantas 1,2, Kyriakos Porfyrakis 2, José C. Ribeiro 1

and Jonathan Rodriguez 1,3

����������
�������

Citation: Zachos, G.; Essop, I.;

Mantas, G.; Porfyrakis, K.; Ribeiro,

J.C.; Rodriguez, J. An Anomaly-Based

Intrusion Detection System for

Internet of Medical Things Networks.

Electronics 2021, 10, 2562. https://

doi.org/10.3390/electronics10212562

Academic Editor:

Constantinos Kolias

Received: 18 September 2021

Accepted: 18 October 2021

Published: 20 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Instituto de Telecomunicações, 3810-193 Aveiro, Portugal; gimantas@av.it.pt (G.M.);
jcarlosvgr@av.it.pt (J.C.R.); jonathan@av.it.pt (J.R.)

2 Faculty of Engineering and Science, University of Greenwich, Chatham Maritime ME4 4TB, UK;
i.a.essop@greenwich.ac.uk (I.E.); k.porfyrakis@greenwich.ac.uk (K.P.)

3 Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, UK
* Correspondence: g.zachos@av.it.pt

Abstract: Over the past few years, the healthcare sector is being transformed due to the rise of the
Internet of Things (IoT) and the introduction of the Internet of Medical Things (IoMT) technology,
whose purpose is the improvement of the patient’s quality of life. Nevertheless, the heterogenous
and resource-constrained characteristics of IoMT networks make them vulnerable to a wide range of
threats. Thus, novel security mechanisms, such as accurate and efficient anomaly-based intrusion
detection systems (AIDSs), considering the inherent limitations of the IoMT networks, need to be
developed before IoMT networks reach their full potential in the market. Towards this direction, in
this paper, we propose an efficient and effective anomaly-based intrusion detection system (AIDS)
for IoMT networks. The proposed AIDS aims to leverage host-based and network-based techniques
to reliably collect log files from the IoMT devices and the gateway, as well as traffic from the IoMT
edge network, while taking into consideration the computational cost. The proposed AIDS is to
rely on machine learning (ML) techniques, considering the computation overhead, in order to detect
abnormalities in the collected data and thus identify malicious incidents in the IoMT network. A set
of six popular ML algorithms was tested and evaluated for anomaly detection in the proposed AIDS,
and the evaluation results showed which of them are the most suitable.

Keywords: Internet of Medical Things (IoMT); intrusion detection system (IDS); machine learning
algorithms; anomaly-based intrusion detection; IoT datasets

1. Introduction

The rise of the Internet of Things (IoT) is transforming the healthcare sector, intro-
ducing the Internet of Medical Things (IoMT) technology, whose aim is to improve the
patient’s quality of life by enabling personalized e-health services without limitations on
time and location [1–3]. However, the wide range of different communication technolo-
gies (e.g., WLANs, Bluetooth, Zigbee) and types of IoMT devices (e.g., medical sensors,
actuators) incorporated in IoMT edge networks are vulnerable to various types of security
threats, raising many security and privacy challenges for such networks, as well as for
the healthcare systems relying on these networks [4–6]. For instance, an adversary could
intrude into the IoMT network in order to intercept transmitted medical data and/or gain
unauthorized access to sensitive information [2]. In addition, attackers may compromise
IoT-based healthcare systems through their IoMT networks in order to manipulate the
sensing data (e.g., by injecting fake data) and cause malfunctions (e.g., by flooding the
resource-constrained IoMT network with a large amount of requests) to the compromised
IoT-based healthcare systems that, in turn, will jeopardize the integrity or the availability
of the healthcare services provided by these systems. Consequently, security solutions pro-

Electronics 2021, 10, 2562. https://doi.org/10.3390/electronics10212562 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9130-4605
https://orcid.org/0000-0002-6526-7334
https://doi.org/10.3390/electronics10212562
https://doi.org/10.3390/electronics10212562
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10212562
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10212562?type=check_update&version=2


Electronics 2021, 10, 2562 2 of 25

tecting IoMT networks from adversaries are critical for the acceptance and wide adoption
of such networks in the coming years.

Nevertheless, the high resource requirements of complex and heavyweight conven-
tional security mechanisms cannot be afforded by (a) the resource-constrained IoMT edge
devices with limited processing power, storage capacity, and battery life, and/or (b) the
constrained environment in which the IoMT edge devices are deployed and intercon-
nected using lightweight communication protocols [7]. Therefore, it is clear that there
is an urgent need for novel security mechanisms to address the pressing security chal-
lenges of IoMT networks in an effective and efficient manner, taking into consideration
their inherent limitations due to their resource-constrained characteristics, before IoMT
networks gain the trust of all involved stakeholders and reach their full potential in the
healthcare market [5,8–12]. Taking a step toward this direction, anomaly-based intrusion
detection is currently foreseen by the industry and research community as a promising
security solution that can play a significant role in protecting IoT networks, as long as
novel lightweight anomaly-based intrusion detection systems (AIDSs) are developed [13].
However, so far, and to the best of our knowledge, there is only one related work on AIDSs
for IoMT presented in [14], demonstrating the lack of proper works of AIDSs for IoMT
networks. Therefore, our aim is to fill this significant research gap by developing a novel
hybrid AIDS tailored to the resource-constrained characteristics of IoMT edge networks [7].
Thus, in this paper, we present the system architecture for a novel hybrid AIDS for IoMT
networks, leveraging host-based and network-based techniques to reliably monitor and
collect log files from the IoMT devices and the gateway, as well as traffic from the IoMT
edge network, while simultaneously considering the computational cost. The detection
process of the proposed AIDS is to be implemented by the detection engine running on
the gateway of the IoMT edge network and relying on machine learning (ML) techniques,
considering the computation overhead, in order to detect abnormalities in the collected
data and thus identify malicious incidents in the IoMT network. Besides that, in order
to evaluate potential detection ML algorithms and identify the most appropriate ones,
among the most popular ML algorithms (e.g., naïve Bayes, the decision tree (DT), random
forest (RF) and k-nearest neighbor (KNN)), for the proposed AIDS, we used (i) the network
part of the “TON_IoT Telemetry dataset” [15], as it is the most recent and representative
data-driven IoT/IIoT-based dataset, and (ii) the dataset that was produced according to the
approach of the authors in [7] and that includes information related to the behavior of the
IoT devices that is not included in the “TON_IoT Telemetry dataset” [15], but is very critical
for building effective ML-based detection models for AIDSs. We used these two datasets to
evaluate potential detection ML algorithms because, to the best of our knowledge, there
is no publicly available IoMT-specific dataset containing all of this useful information
other than the above mentioned two datasets. The evaluation results demonstrate that
the decision tree (DT), random forest (RF), and k-nearest neighbor (KNN) algorithms are
more suitable to be used as the core of the detection component. The proposed system
design and the evaluation results constitute the basis for the next step of our work, which
is the development of the proposed AIDS in an IoMT testbed consisting of a Raspberry Pi 4
device, playing the role of the gateway, and a set of MTM-CM5000-MSP sensors.

Following the introduction, this paper is organized as follows. Section 2 reviews
related work on existing AIDSs for IoMT and ML algorithms employed in AIDSs for IoT
networks. Section 3 gives the metrics for evaluating the performance of ML algorithms for
intrusion detection. Existing datasets used to perform training and evaluation of AIDSs for
IoMT networks are described in Section 4. Section 5 presents the scenario architecture (i.e.,
perception domain) where the proposed AIDS will be deployed. In Section 6, the proposed
AIDS is introduced, and its different components are presented. In Section 7, the results
of the performance evaluation of different ML algorithms (i.e., decision tree, naïve Bayes,
linear regression, random forest, k-nearest neighbor, and support vector machines) are
presented and discussed. In Section 8, challenges and future work are discussed. Finally,
Section 9 concludes the paper.



Electronics 2021, 10, 2562 3 of 25

2. Related Work

This section initially discusses existing IDSs for IoMT. Then, a set of the most popular
ML algorithms for IoT AIDS, tested and evaluated for anomaly detection in our case, are
presented, followed by the metrics based on which their performance is evaluated. Finally,
we discuss available IoT datasets and the datasets that we considered in our experiments.

2.1. Anomaly-Based Intrusion Detection Systems (AIDSs) for IoMT

To the best of our knowledge, the AIDS presented in [14] is the only existing AIDS
specifically designed for IoMT networks. The authors designed and developed a ML-
based intrusion detection solution utilizing mobile agent technology in order to protect the
network, which comprises connected medical IoT devices. The proposed attack detection
mechanism in connected medical devices is hierarchical and distributed using autonomous
mobile agents. Every node in the network acts as a computing node, while mobile agents
migrate, learn, and collaboratively perform attack detection. Three types of agents are
employed. The first type, named as a sensor agent (SA), is spawned by the cluster-head
(CH) of a WBAN cluster and traverses a set of sensor nodes specified by the CH (i.e.,
itinerary parameters) in order to locally detect a specific category of attack on sensor
nodes, based on the aggregated logs accumulated over a period of time, and generate
an alert based on the detection results. The second type, called the cluster-head agent
(CA) functions in a more distributed manner than the SAs and is responsible for detecting
anomalies among the CHs of multiple interconnected WBAN clusters. A CA may be static,
residing on only one CH and performing intrusion detection at regular intervals, or it
can be mobile, traversing several CHs, based on its specified itinerary parameters, and
performing intrusion detection on each CH. The third type, named as a detective agent
(DA), is spawned by a CH only in the case where the SA cannot classify the network
behavior as normal or malicious. Then, the DA traverses the entire cluster, collecting
network activity data, which are sent back to its CH. The CH utilizes the collected data by
the DA and employs a conflict resolution detection algorithm for the specific cluster. The
result of the conflict resolution detection algorithm triggers an appropriate alarm. In order
to detect network level intrusions, as well as anomalies in the sensor data, ML algorithms
and regression algorithms are employed, respectively. The authors simulated a hospital
network topology and experimented with several subsets of wireless body area networks
and connected medical devices. The performance of various ML algorithms (i.e., support
vector machines, decision trees, naïve Bayes, k-nearest neighbor, and random forests) was
evaluated in order to distinguish the best algorithm for network level intrusion detection.
Similarly, polynomials of various orders (i.e., regression algorithms) were evaluated in
order to find the optimal order value for the case of device intrusion detection. Their
simulation results demonstrate that the proposed IDS is able to achieve a high detection
accuracy with minimal energy consumption overhead. However, the datasets produced
and used by the authors in [14] do not include a wide variety of attacks and cannot be
easily considered as the most representative dataset reflecting the attacks targeting IoMT
networks.

2.2. Machine Learning Algorithms for IoT Intrusion Detection

In this section, we review the following most popular ML algorithms for IoT AIDS:
decision tree (DT), naïve Bayes (NB), linear regression (LR), random forest (RF), support
vector machines (SVM), and k-nearest neighbor (KNN). As mentioned in [13], each of these
ML algorithms has been frequently used in the design of various AIDS for IoT. The authors
in [15] also state that support vector machines (SVM), k-nearest neighbor (KNN), naïve
Bayes (NB), decision-tree-based methods (i.e., random forest (RF)), and logistics regression
(LR) are suitable ML algorithms for the design of an AIDS. Additionally, at the end of the
section, Table 1 presents a summary of the six ML algorithms, along with their advantages
and drawbacks when applied for anomaly detection and associated studies mentioned in
each of the subsections.



Electronics 2021, 10, 2562 4 of 25

Table 1. Summary of ML algorithms along with their advantages and drawbacks and associated
studies.

ML
Algorithm Advantages Drawbacks Studies

Decision Tree

Simple to use.
Performance is not different
for linearly and non-linearly

separated parameters.

Vulnerable to overfitting.
Unstable (i.e., small data

variation may result in the
construction of extremely

different DTs).

[16,17]

Random
Forest

Resistant to overfitting.
Feature selection is performed

inherently.Fewer inputs
required.

Fast only in the case of a small
number of trees.

May require large datasets.
[13,15,17–19]

Naïve Bayes

Can be used in both binary
and multi- class classification.

Simple to use.
Few samples required to train.

The assumption about
features independence can
lead to low classification

accuracy.
“Zero frequency” problem. In

the case where a class does
not appear during training, it
will be assigned a probability

of zero.

[13,20]

Logistic
Regression

Simple to use.
Easy to implement.

Difficult to perform
classification in case of

non-linearly separable classes.
[15,21,22]

Support
Vector

Machine

Better performance in datasets
with few classes and many

instances per class.
Scalable.

Reduced storage
requirements.

Finding the most appropriate
kernel function is a challenge. [13]

K-Nearest
Neighbor

Simple to use.
Easy to implement.

Difficult to find the optimal k.
The computational speed

decreases as the number of
the k variable, the number of
data points, or the number of

classes increases.

[13,15]

2.2.1. Decision Tree (DT)

A decision tree (DT) is a ML algorithm that functions by extracting features of the
instances of a training dataset and then constructing an ordered tree based on the values of
the extracted features. In a DT, a node corresponds to a feature and the branches of that
node correspond to the values of that feature. The construction of the DT starts from the
origin node of the tree. The feature, which will be the origin node of the tree, is selected
among those features that optimally split the tree in two. In order to identify the feature
that optimally divides the tree, various metrics are employed, including the Gini index and
information gain. DTs carry out the induction and inference processes [16].

The induction process involves the construction of a DT by combining unoccupied
nodes and branches. Initially, based on the information gain or other measures, the most
suitable feature is selected as the origin node of the DT. Then, the induction process
continues and, in each subsequent step, features are selected as tree nodes. The selection of
features is performed in such a way that the overlapping among the different classes of
the training dataset can be kept to a minimum. In the end, the leaves of each sub-DT are
identified and classified according to their corresponding classes.

The inference process occurs in a constructed DT. During this process, unknown
instances are classified through an iterative comparison with the created DT. The classifica-
tion process regarding the new sample is finished when a matching leaf node is found [16].



Electronics 2021, 10, 2562 5 of 25

In our experiments, the Gini index was used as a measure to select both the origin node of
the DT and the rest of the tree nodes. In addition, the minimum number of samples per
leaf node was set to 10 in order to end up with a pruned tree and to avoid overfitting, as it
is suggested in [17].

2.2.2. Random Forest (RF)

A random forest (RF) is a supervised ML algorithm consisting of multiple DTs that are
used to perform more accurate and error resistant classifications [18]. During the training
of the model, DTs are constructed randomly and are then are trained to classify instances
according to majority voting [18]. RFs are trained in a different way compared to DTs.
Whereas in a DT, a ruleset is created during training based on the training dataset, in a RF,
the various DTs are generated with every DT using randomly picked instances from the
training dataset as an input.

Due to the inherent randomness of the training process, the output of an RF model
becomes more robust and accurate, and the RF model is more resistant to overfitting.
Moreover, it requires significantly less inputs and does not require the process of feature
selection. The authors in [19] showed that a RF classifier can perform a better detection of
DDoS attacks in IoT networks than KNN, an artificial neural network (ANN), and SVM
classifiers [13].

As in the case of DTs, in our experiments, the Gini index was used to construct the DT
components, and the minimum number of samples per leaf node was set to 10 in order to
avoid over fitting, as suggested in [17]. The RF consists of 10 DTs based on the work in [15].

2.2.3. Naïve Bayes (NB)

This algorithm utilizes Bayes’ theorem to calculate the probability of occurrence of an
event (either normal or abnormal) according to previous observations of similar events [20].
The NB classifier operates on a strong feature independence assumption. In other words,
the NB model considers that the values of one feature do not affect the values of another
feature at all. In ML scenarios, this assumption can be made in order to classify normal
and abnormal behaviors, taking into account the previous observations in a supervised
learning mode. The NB classifier is a commonly employed supervised classifier known for
its simplicity and ease of implementation. It computes posterior probability and, based
on that, unlabeled instances can be classified as normal or abnormal. Its training does not
require many samples and it can be employed in both binary and multi-label classification
problems. Nevertheless, due to its feature independence assumption, the NB classifier fails
to perceive interdependencies among the features of a dataset, which can negatively impact
its accuracy [13]. In our experiments, the Gaussian variant of the naïve Bayes algorithm
was employed in particular, where the likelihood of the features is assumed to be Gaussian.

2.2.4. Logistic Regression (LR)

A logistic regression (LR) algorithm can estimate the probability of a particular in-
stance belonging to a specific class, and, for that reason, is frequently employed in clas-
sification problems regarding intrusion detection and spam filtering [21]. Furthermore,
the study in [22] designed and implemented a security solution based on a LR algorithm
and showed that it is possible to secure an IoT-based production line against DDoS attacks
by using ML algorithms and commonly available tools for network traffic analysis and
evaluation.

The LR algorithm utilizes a predetermined probability threshold in order to classify
the instances. For example, in the case of binary classification, a threshold of 50% would
mean that an instance is normal if its estimated probability is less than 50%. If the estimated
probability is greater than 50%, then the algorithm (i.e., LR classifier) will decide that this
is an attack instance. LR estimates the probability using the following equation:

hθ(x) = σ(θT × x) (1)



Electronics 2021, 10, 2562 6 of 25

where hθ is the hypothesis function, which outputs the estimated probability, x is the
feature vector of the instance, θ is the model’s parameter, θT is the transpose of θ, and σ(.)
is a sigmoid (i.e., logistic) function that defines the threshold. The equation of σ(.) is the
following:

σ(z) = 1/(1 + e(−z)) (2)

z = (θT × x) (3)

The sigmoid function outputs a number between 0 and 1. A value that is closer to 0
signifies a normal observation and a value closer to 1 indicates an attack observation. The
model’s parameter θ is calculated during the training phase [15].

2.2.5. Support Vector Machine (SVM)

The SVM algorithm functions by creating a hyperplane in the feature set of two
or more classes. This hyperplane splits the instances into groups and is determined by
calculating a maximum distance of the nearest data point of each compared class. The best
use case for SVMs is when the classification problem relates to classes with large feature
sets and fewer data instances [13].

Due to its simplicity, a SVM classifier is highly scalable. Moreover, it can perform
tasks such as anomaly-based intrusion detection in real-time, including real-time learning.
In addition, a SVM classifier does not require much storage or memory to implement. As
a result of their scalability and low requirements, SVMs are suitable for use in IDSs that
are implemented in a resource-constrained IoT system. However, when the data are not
linearly separable, it is crucial to carefully consider and select which kernel function the
SVM algorithm will use to split the data. When finding the best kernel function to achieve
a specific classification, its speed has always been a challenge [13]. In our experiments, a
SVM classifier with a Gaussian radial basis function (RBF) kernel was utilized.

2.2.6. K-Nearest Neighbor (KNN)

The K-nearest neighbor (KNN) algorithm is simple to use and utilizes a distance
function, which is typically the Euclidean distance function, in order to decide the class of
an object based on its distance from its closest neighbors. The parameter K refers to the
number of nearest neighbors that are used during the classification process. The value of K
may change the classification result. Therefore, it is necessary for the accuracy of the KNN
algorithm to find the optimal value of K. The value is found through testing, and this can
be extremely time-consuming in some cases [13]. In our experiments, the value of K was
set to 5, and the Euclidean distance was selected as the distance metric based on [15].

3. Evaluation Metrics

Various metrics are used to evaluate the performance of ML algorithms based on
testing datasets. In order to calculate the evaluation metrics, the first step is the calculation
of the values of the confusion matrix. The confusion matrix is generated when a trained
ML model is used to classify the instances of a testing dataset. The confusion matrix
compares values regarding the actual labels of the instances of the testing dataset and
the corresponding labels predicted by the ML model. Table 2 shows the 2-by-2 confusion
matrix regarding a classification problem with two classes (normal and attack).

Table 2. Confusion matrix for binary classification problems.

Predicted Label

Positive (Attack) Negative (Normal)

Actual Label
Positive (Attack) True Positive (TP) False Negative (FN)

Negative (Normal) False Positive (FP) True Negative (TN)



Electronics 2021, 10, 2562 7 of 25

The true positive (TP) and true negative (TN) relate to the correctly classified attack
instances and normal instances, respectively. The false positive (FP) and false negative (FN)
refer to the incorrectly classified normal instances and attacks instances, respectively. Based
on these values, it is possible to compute several evaluation metrics, as shown in [13,23–25].
In our case, the metrics of accuracy, precision, recall, and F1-score were used, and each
metric is shortly presented below, along with its equation.

• Accuracy: shows the overall success of the model by comparing the amount of the
correctly classified attack and normal instances to the total amount of instances.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (4)

• Precision: estimates the overall effectiveness of the model by calculating the percent-
age that an observation recognized as an attack is actually an attack observation.

Precision = TP/(TP + FP) (5)

• Recall: shows the overall success of the model by computing the percentage that an
actual attack observation is correctly classified.

Recall = TP/(TP + FN) (6)

• F1-score: is calculated by the precision and recall metrics as their harmonious mean.
It is a statistical function for estimating the accuracy of the model. As the precision
and recall of a model approach the value of 100%, the F1-score and accuracy are
maximized, and every instance is classified correctly.

F1-score = 2 × (Recall × Precision)/(Recall + Precision) (7)

4. Datasets for AIDS in IoT

In this subsection, the following six existing datasets for the training and evaluation of
IoT AIDSs are reviewed: (i) the LWSNDR dataset [26], (ii) the dataset presented in [27] for
classifying IoT devices using network traffic characteristics, (iii) the “Bot-IoT” dataset [28],
(iv) the dataset presented in [29] for detecting DoS attacks on IoT devices using network
traffic traces, (v) the “TON_IoT Telemetry” dataset [15], which is the most recent and
representative data-driven IoT/IIoT-based dataset [30], and (vi) the dataset generated as
described in [7], which includes information related to the behavior of the IoT devices and
the IoT network traffic based on a simulated benign scenario and a simulated malicious
scenario. In this work, we utilized a part of the “TON_IoT Telemetry” dataset [15] and a
part of the dataset generated as presented in [7] for the training and evaluation of the ML
algorithms.

4.1. LWSNDR Dataset

The authors in [26] created two wireless sensor networks (WSNs) in order to serve as
testbeds for the simulation of a single-hop sensor-data collection scenario and a multi-hop
sensor-data collection scenario, respectively. In both scenarios, Crossbow TelosB motes
were used as sensor nodes, and real humidity–temperature sensor data were collected.

In the single-hop scenario, four motes are used as sensor nodes and one mote as the
base station node. The four sensor nodes were split into two sets of two nodes, and the
first set of nodes collected indoor data, whereas the other set of nodes collected outdoor
data. Both sets of sensor nodes transmitted the gathered data to the base station node.
In addition, anomalies were introduced to one sensor node in each set (i.e., indoor and
outdoor) by utilizing a hot water kettle that alters both the temperature and the humidity
simultaneously.

In the multi-hop scenario, four motes are used as sensor nodes, two motes as router
nodes, and one mote as the base station node. The router nodes exist in the testbed because



Electronics 2021, 10, 2562 8 of 25

the sensor nodes are placed at a distance from where they cannot directly transmit their
data to the base station node. The sensor nodes and the router nodes are split in two sets.
In each set, two sensor nodes are connected to one router node, whereas the router node
connects to the base station node. The two sensor nodes collect humidity–temperature
data and send these data to the router node, which then transmits the data to the base
station node. The sensor nodes of the first set are responsible for gathering indoor sensor
readings, whereas the sensor nodes of the other set collect outdoor sensor readings. Similar
to the single-hop scenario, in the multi-hop scenario, anomalies were also introduced to
one sensor node in each set (i.e., indoor and outdoor) using a hot water kettle, which leads
to an increase in both the temperature and the humidity simultaneously.

In both the single-hop and multi-hop scenarios, real labeled data were generated and
were organized in a labelled dataset in order to be used for the purpose of evaluating
anomaly detection algorithms. However, the produced dataset (i.e., “LWSNDR” dataset)
contains only pure sensor telemetry data, and no information related to either the sensor
behavior (e.g., energy consumption) or the network traffic flowing through the WSN is
included. In addition, the given dataset does not include any specific attack scenarios, as
also mentioned in [15]. Finally, the “LWSNDR” dataset was created in 2010 and cannot
be easily considered as recent and representative regarding the current IoT devices or the
attacks targeting them.

4.2. A Dataset for Classifying IoT Devices Using Network Traffic Characteristics

The authors in [27] designed and developed a robust framework that performs the
classification of IoT devices separately, in addition to one class of non-IoT devices, with
high accuracy, utilizing statistical attributes derived from network traffic characteristics.
One of the authors’ contributions was the creation of a smart environment infrastructure
that served as a testbed in order to gather and synthesize traffic traces from several IoT
devices. The smart environment contains a wide range of IoT devices (i.e., 28 unique
IoT devices), non-IoT devices (e.g., smart phones, laptops) and a WiFi access point (i.e.,
TP-Link access point). The WiFi access point enables the IoT devices and non-IoT devices
to communicate with the Internet servers via a gateway [27]. The authors considered the
following types of IoT devices: cameras, controllers/hubs, energy management devices
(e.g., lights, plugs, motion sensors), appliances, and health-monitors.

Using the created smart environment, traffic traces were collected and synthesized for
a period of six months. The traffic traces were collected using the “tcpdump” tool and were
stored as “pcap” files on an external USB hard drive of 1 terabyte (TB) storage attached
to the gateway. The captured IoT traffic traces comprise (a) traffic produced by the IoT
devices without any human interaction (e.g., DNS, NTP), and (b) traffic produced because
of the users’ interaction with the IoT devices (e.g., motion sensors, lightbulb color change
upon user request). Next, the traffic traces were analyzed to gain insight on how to utilize
them in order to perform classification of the IoT devices. The analysis of the authors
showed that network traffic characteristics, such as activity cycles, port numbers, signaling
patterns, and cipher suites, can be exploited in order to properly classify each IoT device.

A subset of these traffic traces was made publicly available as a dataset in order to be
used by the scientific community. However, these traffic traces cannot be used to train and
evaluate anomaly-based intrusion detection mechanisms. They were not generated based
on a specific type of attack scenario, and, as a result, they are not representative regarding
the behavior of IoT devices or the traffic of IoT networks when under attack.

4.3. Bot-IoT Dataset

The authors in [28] generated a dataset, named as the “Bot-IoT” dataset, by incorporat-
ing simulated legitimate IoT network traffic, as well as IoT network traffic related to several
different types of attacks. In order to generate the “Bot-IoT” dataset, a realistic testbed
was developed, with the aim of being representative of an IoT network, and it comprises
three components: (i) the network platforms, (ii) the simulated IoT services, and (iii) the



Electronics 2021, 10, 2562 9 of 25

extracting features and forensics analytics. Initially, as far as the network platforms of the
testbed are concerned, both normal and attacking virtual machines (VMs) with additional
network devices (i.e., firewall, tap) were included. Furthermore, the Node-RED tool [31]
was employed in order to simulate certain IoT services (e.g., weather station, smart fridge).
Finally, regarding the extracting features and forensics analytics, after the authors gathered
the normal and attack traffic of the testbed in “pcap” files, they employed the Argus tool
in order to extract the flow data and used a MySQL database in order to further process
the extracted flow data. Then, statistical models were used in order to identify the most
important features for discriminating normal and abnormal instances, and ML techniques
were trained and evaluated so as to assess the value of the dataset in comparison to other
benchmark datasets [28]. The produced dataset contains both normal and attack network
traffic based on benign scenarios and botnet scenarios, respectively. The botnet scenarios
include probing, DoS, DDoS, data theft, and keylogging attacks.

The “Bot-IoT” dataset contains over 72 million records of network traffic, and a scaled-
down version of the dataset with roughly 3.6 million records is also provided by the authors
for evaluation purposes. However, the “Bot-IoT” dataset does not include a variety of attack
types (e.g., ransomware and XSS cross-site scripting), as mentioned in [15]. Additionally,
the “Bot-IoT” dataset was made available to the scientific community in 2018 and, thus,
cannot be easily considered as the most recent and representative dataset containing
information about normal or attack traffic of a current IoT network and information about
the behavior of IoT devices when they function under normal operation conditions, as well
as when they function under attack.

4.4. A Dataset for Detecting DoS Attacks on IoT Devices Using Network Traffic Traces

The authors in [29] created an IoT-based dataset by collecting both normal traffic
and traffic generated when various types of DoS attacks (e.g., TCP SYN flooding, Ping
of Death) are carried out. A testbed was designed and comprises (i) a TPLink gateway
with OpenWrt firmware, (ii) several IoT devices (e.g., WeMo motion sensor, Samsung
smart-camera, Philips Hue bulb), (iii) two attackers, and (iv) two victims. One attacker was
placed locally (inside the LAN) and the other attacker existed remotely (on the Internet).
Moreover, both attackers were capable of attacking both victims. In order to store the
network packet traces of all of the network traffic, a 1 TB external hard disk was attached
to the gateway. The packet traces were stored as “pcap” files using the “tcpdump” tool.

In addition, two types of attacks were implemented: (a) direct attacks (i.e., ARP
spoofing, TCP SYN flooding, UDP flooding, and Ping of Death), and (b) reflection attacks
(i.e., SNMP, SSDP, TCP SYN, and Smurf). All of the types of DoS attacks were performed
using different traffic rates (i.e., how many packets were sent to the victim). Furthermore,
the attacks originated from either one of the attackers or both of them and targeted either
one of the victims or both of them.

The authors made their dataset available to the community. The released dataset
refers to a one-month period of benign and attack traffic relating to ten IoT devices, and
annotations of those attacks are included. The dataset consists of 30 “pcap” files, and each
file corresponds to a trace collected over a day [29]. Nevertheless, this dataset does not
have a variety of attack types (e.g., ransomware and XSS cross-site scripting), as mentioned
in [15]. In addition, similarly to the “Bot-IoT” dataset mentioned in the previous subsection,
this dataset was made available to the community in 2018 and, therefore, cannot be easily
considered as the most recent and representative dataset containing information about
normal or attack traffic of a current IoT network and information about the behavior of
IoT devices when they function under normal operation conditions, as well as when they
function under attack.

4.5. ToN_IoT Telemetry Dataset

The “TON_IoT Telemetry” dataset includes events of a variety of IoT-related attacks
and legitimate scenarios, IoT telemetry data collected from heterogeneous IoT/IIoT data



Electronics 2021, 10, 2562 10 of 25

sources, network traffic of the IoT/IIoT network, and audit traces of operating systems.
Each of the classes of the “TON_IoT Telemetry” dataset describes either a normal record or
the related type of attack in the case of an attack record. In [15], the authors presented the
testbed that they developed in order to generate the “TON_IoT Telemetry” dataset [32]. The
authors developed a testbed integrating IoT sensors (e.g., weather and modbus sensors),
physical network components (e.g., switches, routers), several virtual machines (e.g., VMs
of offensive Kali systems, VMs of Windows client systems), hacking platforms, cloud
platforms, and fog platforms, and the testbed components were organized into the three
layers of “Edge”, “Fog”, and “Cloud”. In addition, the testbed employed a software-defined
network (SDN) and network function virtualization (NFV) through the NSX-VMware
platform [33]. The NSX-VMware platform enabled: (a) the establishment of a virtualized
“Fog” layer and a virtualized “Cloud” layer that simultaneously operated to offer the
IoT/IIoT and network services; (b) the emulation and control of multiple virtual machines
(VMs) in the testbed for both hacking and normal operations, and (c) the management of
the interaction between the three layers.

4.5.1. Testbed “Edge” Layer

The “Edge” layer is fundamental in IoT/IIoT applications because its devices measure
real-world physical conditions and transmit the collected information to the “Fog” or
“Cloud” for further analysis [34]. The “Edge” layer of the testbed contains various IoT/IIoT
devices (e.g., weather and light bulb sensors) and physical gateways (i.e., routers and
switches) to the Internet, as well as host systems. Besides, the “Edge” layer includes the
physical host systems “NSX-VMware Server” and “vSphere System” used to deploy the
“Fog” layer and the “Cloud” layer, respectively, by means of virtualization through the
NSX-VMware platform [33] and the NSX-VMware hypervisor platform, respectively. The
“Edge” layer of the testbed is linked to the “Fog” layer through the “vSwitch”.

4.5.2. Testbed “Fog” Layer

The purpose of the “Fog” layer is to extend the Cloud computing and services to the
“Edge” layer of the network in order to provide limited computing capacity and storage
near to the data sources [34]. The “Fog” layer of the testbed consists of the VMs and the
virtualization technology that manages the VMs and their services using the NSX-VMware
platform [15].

4.5.3. Testbed “Cloud” Layer

The general purpose of the “Cloud” layer is to host large-size data centers with a
significant capacity for both computation power and storage in order to support IoT/IIoT
applications and satisfy the resource requirements for big data analysis.

4.5.4. ToN_IoT Datasets

The authors in [15] simulated several different types of attack scenarios (i.e., scanning,
DoS, DDoS, ransomware, backdoor, data injection, cross-site scripting (XSS), password
cracking, and man-in-the-middle (MITM)) on their testbed, and collected data from the
different components of their testbed in dataset files. All of the datasets are provided in
files that follow the “csv” (comma separated vector) format. The datasets files are split
into two main folders: (i) the “Processed” datasets folder, and (ii) the “Train_Test” datasets
folder.

The “Processed” datasets contain a processed and filtered version of the datasets
with: (a) their standard features, (b) a label feature indicating whether an observation is
normal or malicious, and (c) a type feature indicating the attacks’ sub-classes for multi-class
classification problems [15]. On the other hand, the “Train_Test” datasets contain selected
records of the “Processed” datasets that were used by the authors in [15] as training and
testing datasets for training and evaluating the accuracy and efficiency of various ML
algorithms.



Electronics 2021, 10, 2562 11 of 25

Both the “Processed” datasets and the “Train_Test” datasets consist of four types of
dataset files (i.e., “Network”, “IoT”, “Linux”, “Windows”), with each referring to either the
network traffic or a specific type of device (e.g., sensor, server, desktop) of the testbed, as
also demonstrated in Figure 1. In particular, the “Network” datasets contain the traffic data
that passed through the entire testbed and were captured during the simulations, whereas
the “IoT” datasets contain the data related to each of the seven IoT/IIoT sensors that were
simulated in the testbed. Finally, the “Linux” datasets and the “Windows” datasets contain
the data relating to the two Ubuntu systems and the two Windows systems in the testbed,
respectively.

Figure 1. ToN_IoT Telemetry datasets hierarchy.

In our experiments, in order to train and evaluate the selected ML algorithms, we
focused on the “Train_Test Network” datasets containing files with network-related data.
In particular, the “Train_Test Network” datasets contain files with the traffic data that
passed through the entire testbed and were captured during the simulations. Table 3 shows
the 45 features of the “Train_Test Network” datasets along with their descriptions.

Table 3. Features and respective descriptions of the “Train_Test Network” datasets.

ID Feature Description

1 ts Timestamp of connection between flow identifiers
2 src_ip Source IP addresses that originate endpoints’ IP addresses
3 src_port Source ports that originate endpoint’s TCP/UDP ports

4 dst_ip Destination IP addresses that respond to endpoint’s IP
addresses

5 dst_port Destination ports that respond to endpoint’s TCP/UDP ports
6 proto Transport layer protocols of flow connections
7 service Dynamically detected protocols, such as DNS, HTTP, and SSL

8 duration
The time of the packet connections, which is estimated by

subtracting “time of last packet seen” and “time of first packet
seen”

9 src_bytes Source bytes that are originated from payload bytes of TCP
sequence numbers

10 dst_bytes Destination bytes that are responded payload bytes from TCP
sequence numbers



Electronics 2021, 10, 2562 12 of 25

Table 3. Cont.

ID Feature Description

11 conn_state
Various connection states, such as S0 (connection without
replay), S1 (connection established), and REJ (connection

rejected)
12 missed_bytes Number of missing bytes in content gaps

13 src_pkts Number of original packets that is estimated from source
systems

14 src_ip_bytes Number of original IP bytes that is the total length of IP header
field of source systems

15 dst_pkts Number of destination packets that is estimated from
destination systems

16 dst_ip_bytes Number of destination IP bytes that is the total length of IP
header field of destination systems

17 dns_query Domain name subjects of the DNS queries
18 dns_qclass Values that specify the DNS query classes
19 dns_qtype Value that specifies the DNS query types
20 dns_rcode Response code values in the DNS responses

21 dns_AA Authoritative answers of DNS, where T denotes server is
authoritative for query

22 dns_RD Recursion desired of DNS, where T denotes request recursive
lookup of query

23 dns_RA Recursion available of DNS, where T denotes server supports
recursive queries

24 dns_rejected DNS rejection, where the DNS queries are rejected by the server
25 ssl_version SSL version that is offered by the server
26 ssl_cipher SSL cipher suite that the server chose

27 ssl_resumed
SSL flag indicates the session that can be used to initiate new

connections, where T refers to the SSL connection being
initiated

28 ssl_established SSL flag indicates establishing connections between two
parties, where T refers to establishing the connection

29 ssl_subject Subject of the X.509 cert offered by the server

30 ssl_issuer Trusted owner/originator of SLL and digital certificate
(certificate authority)

31 http_trans_depth Pipelined depth into the HTTP connection
32 http_method HTTP request methods, such as GET, POST, and HEAD
33 http_uri URIs used in the HTTP request
34 http_version The HTTP versions utilized, such as V1.1

35 http_request_body_len Actual uncompressed content sizes of the data transferred from
the HTTP client

36 http_response_body_len Actual uncompressed content sizes of the data transferred from
the HTTP server

37 http_status_code Status codes returned by the HTTP server
38 http_user_agent Values of the User-Agent header in the HTTP protocol

39 http_orig_mime_types Ordered vectors of mime types from source system in the HTTP
protocol

40 http_resp_mime_types Ordered vectors of mime types from destination system in the
HTTP protocol

41 weird_name Names of anomalies/violations related to protocols that
happened

42 weird_addl Additional information is associated to protocol
anomalies/violations

43 weird_notice Indicates if the violation/anomaly was turned into a notice

44 label Tags normal and attack records, where 0 indicates normal and 1
indicates attacks

45 type Tags attack categories, such as normal, DoS, DDoS, and
backdoor attacks, and normal records



Electronics 2021, 10, 2562 13 of 25

4.6. IoT Device Behavior Datasets

Behavior datasets of IoT devices play a significant role in the deployment of a more
accurate and efficient AIDS for IoT networks. However, despite the recent efforts focused
on the generation of IoT-specific datasets, and also mentioned in the previous subsections,
the generated datasets are limited in terms of information related to the behavior of IoT
devices. Therefore, more efforts are required toward datasets including information about
the behavior of IoT devices when they function under normal operation conditions, as well
as when they function under attack. To this direction, and to the best of our knowledge, a
first step is the IoT device behavior datasets generated by the work in [7]. The IoT device
behavior datasets include information related to the behavior of the IoT devices based on a
simulated benign scenario and a simulated malicious scenario. The classes of the IoT device
behavior datasets are two (i.e., normal behavior, abnormal behavior) corresponding to the
case of a binary classification problem. The authors in [7] utilized the Cooja simulator of the
open source Contiki operating system (OS) [35] in order to simulate a benign IoT network
scenario and a malicious IoT network scenario, and generate corresponding benign and
malicious datasets. Each simulated scenario utilized five UDP-client motes and one UDP-
server mote. The type of each mote was the “Tmote Sky”, which is an ultralow power
wireless module for use in sensor networks, monitoring applications, and rapid application
prototyping [36].

The “benign” scenario utilized only “benign” motes and produced the “benign”
datasets, which include only normal events. The ”malicious” scenario utilized four “benign”
UDP-client motes, one “malicious” UDP-client mote, and one “benign” UDP-server mote,
and produced the “malicious” datasets, which contain both attack and normal events.
Both the “benign” datasets and the “malicious” datasets are further divided into their
respective “powertrace” datasets and “network traffic” datasets. The “powertrace” datasets
includes information collected every 2 s on the energy consumption (i.e., behavior-related
information) of the motes (i.e., IoT devices) of the simulated IoT network, whereas the
“network traffic” datasets contain records related to the IoT network traffic features, such as
the source/destination IPv6 address, packet size, and communication protocol [7]. In our
experiments, we needed IoT device behavior datasets so as to train and test ML algorithms
for the proposed AIDS, and, thus, we utilized both the “benign powertrace” dataset and
the “malicious powertrace” dataset. Table 4 shows the features of the “benign powertrace”
dataset and the “malicious powertrace” dataset, along with their descriptions.

Table 4. Features and respective descriptions of the “benign powertrace” dataset and the “malicious
powertrace” dataset.

Feature Description

sim time simulation time
clock_time() clock time (i.e., by default, 128 ticks/second)

ID Mote ID
P label

rimeaddr rime address
seqno sequence number

all_cpu accumulated CPU energy consumption during the simulation

all_lpm accumulated low power mode energy consumption during the
simulation

all_transmit accumulated transmission energy consumption during the simulation
all_listen accumulated listen energy consumption during the simulation

all_idle_transmit accumulated idle transmission energy consumption during the simulation
all_idle_listen accumulated idle listen energy consumption during the simulation

cpu CPU energy consumption for this cycle of 2 s
lpm LPM energy consumption for this cycle of 2 s

transmit transmission energy consumption for this cycle of 2 s
listen listen energy consumption for this cycle of 2 s

idle_transmit idle transmission energy consumption for this cycle of 2 s
idle_listen idle listen energy consumption for this cycle of 2 s



Electronics 2021, 10, 2562 14 of 25

5. Scenario Architecture

The proposed AIDS is designed for the IoMT edge network of IoT-based healthcare
systems, as shown in Figure 2. The IoMT edge network interacts with objects, such as
physical things (i.e., patient’s body and patient’s environment), through the IoMT devices
of the IoMT edge network. Specifically, the IoMT edge network integrates:

• “bio-sensors”, a type of IoMT sensor, whose purpose is to collect vital signs (e.g.,
blood pressure, body temperature) of the patient;

• “context-aware sensors”, another type of IoMT sensor, for gathering context informa-
tion (e.g., air pressure, humidity, or room temperature) from the patient environment;

• “IoMT actuators”, for supporting the real-time provisioning of medical treatment (e.g.,
an insulin pump, which may be controlled remotely to inject the patient with insulin).

Figure 2. IoT-based health monitoring system perception domain.

In other words, the main purpose of the IoMT edge network is to measure, collect,
and handle the information provided by the monitored physical things (i.e., patient’s body
and patient’s environment), as well as to transmit the collected information through the
IoMT gateway to the application layer, where the cloud-based healthcare platform of the
IoT-based healthcare system is located, for processing, analysis, storage, and decision
making. Furthermore, the IoMT edge network facilitates the reception of the appropriate
control commands from the application layer to the actuators again through the IoMT
gateway.

6. Proposed Anomaly-Based IDS
6.1. System Description

The purpose of the proposed AIDS is to protect the IoMT edge network and its IoMT
devices and gateway from internal and external threats that may exploit the inherent
security vulnerabilities of IoT technology, by taking into consideration not only all of the
current known IoT attack vectors but also unknown ones that may both appear in the
future at all four layers of the ITU-T IoT reference model [37] and target the IoMT edge
network, its IoMT devices, or the gateway. The proposed AIDS consists of (a) a set of
distributed monitoring and data acquisition (MDA) components (i.e., a monitoring and



Electronics 2021, 10, 2562 15 of 25

data acquisition component runs on each IoMT device deployed and interconnected in the
IoMT edge network), and (b) a central detection (CD) component (i.e., detection engine)
running on the gateway, as illustrated in Figure 3.

Figure 3. The MDA components and the CD component of the proposed AIDS in the IoMT edge
network.

At this point, it is important to mention the requirements that the gateway and the
IoMT devices have to meet in order to support the proposed AIDS. First of all, the gateway is
required to: (a) be capable of accessing behavior data about itself (e.g., energy consumption);
(b) be capable of capturing packets and network-related information regarding the IoMT
devices of the IoMT edge network; and (c) have enough resources (e.g., Raspberry Pi 4
Model B) to support both the standard operations as a relay node and the functions of the
CD component running on it. On the other hand, each IoMT device is essential to: (a) be
capable of accessing behavior data about themselves (e.g., energy consumption); and (b)
have enough resources to handle both its normal operation as a sensor or actuator and the
functions of the MDA component running on it.

6.2. Monitoring and Data Acquisition (MDA) Component

The monitoring and data acquisition (MDA) component runs on each IoMT device
(i.e., IoMT sensor and IoMT actuator) connected to the gateway. Its aim is to monitor the
behavior of the IoMT device hosting it and to collect relevant device behavior data, such
as the CPU energy consumption, during a specific MDA period (i.e., sampling period).
Furthermore, the MDA component is responsible for sending the collected data to the
gateway as an MDA report. The MDA component consists of the following modules,
whose relations are shown in Figure 4.



Electronics 2021, 10, 2562 16 of 25

Figure 4. The monitoring and data acquisition (MDA) component.

“Data Collection” module: Collects data on run-time for the set of features summa-
rized in Table 5, during the sampling period (i.e., a specific MDA period), and creates a
record in CSV format;

Table 5. Summary of features collected by the data collection module of the MDA component and
their descriptions.

Feature Description

CPU usage Amount/percentage of used CPU resources
CPU processes Amount of active CPU processes

MEM usage Amount/percentage of used internal memory resources
Disk usage Amount/percentage of used external storage resources
Wi-Fi usage Amount of bandwidth used by the Wi-Fi interface

Set of energy consumption
features

Set of features (e.g., “powertrace” features in [7]) regarding energy
consumption during the different modes of the IoMT device

“Data Recording” module: Writes the records created by the “data collection” module
in log files in CSV format. Each log file contains a specific number of records defined by
the maximum size of the log file;

“Data Reporting” module: Constructs reports including the log files created by the
“data recording” module. Each report can contain a specific number of log files defined by
the maximum number of log files for the given report. In principle, the “data reporting”
module accumulates the continuously produced log files by the “data recording” module,
and, when the number of the accumulated log files reach a certain value (i.e., maximum
number of log files for the given report), they are grouped into a report together with
the IoMT device ID. Finally, the report is transmitted to the gateway. To reduce the
required bandwidth for reports transmission, the “data reporting” module may perform
compression on the report if the host IoMT device has enough resources.

6.3. Central Detection (CD) Component

The central detection (CD) component runs on the gateway of the IoMT edge network.
The aim of the CD component is to:

• Monitor the behavior of the gateway hosting it and collect relevant behavior data, such
as the accumulated CPU energy consumption, during a specific monitoring period
(i.e., sampling period);



Electronics 2021, 10, 2562 17 of 25

• Monitor the network traffic passing through the gateway and gather relevant network
traffic data, such as source IP address, destination IP address, connection status
information, and packet content information, during a specific monitoring period (i.e.,
sampling period);

• Receive the reports transmitted by the MDA components running on the IoMT devices
that are connected to the gateway;

• Leverage the aforementioned data in order to identify whether an attack incident has
occurred in the IoMT edge network, and trigger a corresponding security alert.

The CD component consists of the following modules, whose relations are shown in
Figure 5.

Figure 5. The central detection (CD) component.

“Gateway Data Collection” module: Collects behavior data, regarding the gateway,
on the run-time for the set of features summarized in Table 6, during the sampling period,
and creates a record in CSV format;

Table 6. Summary of features collected by the gateway data collection module of the CD component
and their descriptions.

Feature Description

CPU usage Amount/percentage of used CPU resources
CPU processes Amount of active CPU processes

MEM usage Amount/percentage of used internal memory resources
Disk usage Amount/percentage of used external storage resources
Wi-Fi usage Amount of bandwidth used by the Wi-Fi interface

Set of energy consumption features Set of features regarding energy consumption during the
different modes of the gateway



Electronics 2021, 10, 2562 18 of 25

“Gateway Data Recording” module: Writes the records created by the “gateway data
collection” module in log files in CSV format. Each log file contains a specific number of
records defined by the maximum size of the log file;

“Gateway Dataset Generation” module: Utilizes the log files created by the “gateway
data recording” module and generates a gateway dataset in CSV format. Each gateway
dataset is generated based on a specific number of log files defined by the maximum
number of log files for the given gateway dataset. The value of the maximum number of
log files for the given gateway dataset highly depends on the requirements of the detection
engine (i.e., detection module);

“Network Data Collection” module: Collects data, regarding the traffic passing
through the gateway, on the run-time for the set of features summarized in Table 7, during
the sampling period, and creates a record in CSV format;

Table 7. Summary of features collected by the network data collection module of the CD component,
and their descriptions.

Feature Description

Source IP address Source IP address of the sender endpoint
Destination IP address Destination IP address of the sender endpoint

Packet size Length of packet in bytes
Communication protocol

information features
Features related to the protocol used for the transmission

of the packet

“Network Data Recording” module: Writes the records created by the “network data
collection” module in log files in CSV format. Each log file contains a specific number of
records defined by the maximum size of the log file;

“Network Dataset Generation” module: Uses the log files created by the “network
data recording” module and generates a network dataset in CSV format. Each network
dataset is generated based on a specific number of log files defined by the maximum
number of log files for the given network dataset. The value of the maximum number of
log files for the given network dataset highly depends on the requirements of the detection
engine (i.e., detection module);

“Report Receiving” module: Receives the reports sent by the MDA components
running on every IoMT device that is connected to the gateway. Each received report
contains the device ID in order to know the device from which it originates;

“Data Extraction” module: Extracts the log files that are included in each report that
was received by the “report receiving” module. All of the log files extracted from a given
report originate from the same IoMT device and are associated with the ID of the given
IoMT device;

“IoMT Device Dataset Generation” module: Utilizes the log files that originate from
a specific IoMT device and that were produced by the “data extraction” module in order
to generate an IoMT device dataset in CSV format. The IoMT device dataset is generated
based on a specific number of log files defined by the maximum number of log files for
the given IoMT device dataset. The value of the maximum number of log files for the
given IoMT device dataset highly depends on the requirements of the detection engine
(i.e., detection module). In the case where there are multiple IoMT devices connected to the
gateway, their corresponding IoMT device datasets are generated separately;

“Feature Normalization” module: Receives a gateway dataset, a network dataset, and
one or multiple IoMT device datasets, and performs normalization on the features of the
datasets. Each dataset is normalized independently from the other datasets and, thus, the
module creates the following three different types of normalized datasets in CSV format:
normalized gateway dataset, normalized network dataset, and normalized IoMT device
dataset;

“Detection” module: Receives the three types of normalized datasets and detects
whether or not an intrusion has occurred on the network consisting of the gateway and



Electronics 2021, 10, 2562 19 of 25

its connected IoMT devices. In the case of an intrusion incident, an alarm is triggered.
In principle, this is the core module of the proposed AIDS and leverages ML algorithms
in order to identify known, as well as still unknown, attacks that may target the IoMT
edge network, its IoMT devices, or the gateway. Additionally, since different normalized
datasets are provided to the “detection” module, it can perform detection operations for
each one of the different devices (i.e., gateway and connected IoMT devices) and, thus, can
identify from where an attack originates or which device (i.e., IoMT device or gateway) is
compromised.

7. Performance Evaluation

In this section, we focus on the performance evaluation of the following most popular
ML algorithms for IoT AIDS [13,15], when they are applied for anomaly detection in the
proposed AIDS: decision tree (DT), naïve Bayes (NB), linear regression (LR), random forest
(RF), k-nearest neighbor (KNN), and support vector machines (SVM). Using four-fold cross
validation, we trained and tested these algorithms over the same datasets consisting of (a) a
specific part of the “Train_Test Network” dataset of the “TON_IoT Telemetry” dataset [32],
and (b) the “benign powertrace” dataset and the “malicious powertrace” dataset produced
following the approach in [7].

It is worthwhile to mention that, from the “Train_Test Network” dataset of the
“TON_IoT Telemetry” dataset, we kept only the network records related to the edge
layer of the testbed where the IoT devices are deployed, as described in [15]. For this
reason, the desired network records were isolated from the “Train_Test_Network” dataset
based on the IP address of the sender node and the destination node, and a record was
kept only if the IP address of the sender node or the destination node belonged to the IP
address range of the edge layer. Then, the isolated network records were merged into a
new dataset, which will be referred to as the “Train_Test edge network” dataset.

Moreover, regarding the “benign powertrace” dataset and the “malicious powertrace”
dataset from [7], we merged the two datasets into a new dataset by adding the records
of the second dataset to the end of the records of the first dataset, as both datasets have
the same features. The generated new dataset will be referred to as the “all_powertrace”
dataset.

In our experiments, the Python language version 3.8.2 was used, along with the Scikit-
Learn [38] library. We utilized specific functions of the Scikit-Learn library and a Python
script was created utilizing these functions in order to perform the training and testing of
the ML algorithms. Table 8 presents the functions that we utilized from the Scikit-Learn
package, along with an explanation of how these functions were used.

Table 8. Utilized functions of the Scikit-Learn package, along with a brief explanation of how they
were used.

Function Explanation of Usage

OrdinalEncoder() Pre-processing of the data of the datasets
ColumnTransformer() Pre-processing of the data of the datasets

MinMaxScaler() Normalization of the data of the datasets
train_test_split() Split of a dataset into training and testing parts

DecisionTreeClassifier() Implementation of a decision tree algorithm to train and evaluate
RandomForestClassifier() Implementation of a random forest algorithm to train and evaluate

LogisticRegression() Implementation of a logistic regression algorithm to train and evaluate
GaussianNB() Implementation of a naïve Bayes algorithm to train and evaluate

SVC() Implementation of a support vector machine algorithm to train and evaluate
KNeighborsClassifier() Implementation of a k-nearest neighbor algorithm to train and evaluate

StratifiedKFold() Split of a training part of a dataset into k-folds to perform k-fold cross validation
cross_validate() Performing k-fold cross validation

7.1. Dataset Pre-Processing and Normalisation

It is necessary to prepare the datasets before they are utilized to train and test the ML
algorithms. The preparation of the data includes data pre-processing and data normaliza-



Electronics 2021, 10, 2562 20 of 25

tion. In our case, the pre-processing step involved the removal of unnecessary features and
the conversion of the nominal values of the categorical features to numeric values.

7.1.1. Dataset Pre-Processing

Initially, the feature “ts” was omitted from all records of the “Train_Test edge network”
dataset because this feature may cause some ML algorithms to overfit the training data, as
also highlighted by the authors in [15].

As far as the “all_powertrace” dataset is concerned and similar to the feature “ts”
of the “Train_Test edge network” dataset, the feature “clock_time” was filtered out. In
addition, the features related to the simulation time (i.e., “sim time” feature) or the simula-
tion duration (i.e., “all_cpu”, “all_lpm”, “all_transmit”, “all_listen”, ”all_idle_transmit”,
“all_idle_listen”, and “seqno” features) were filtered out from the “all_powertrace” dataset.
Additionally, the “P” feature was omitted, because it only has a fixed value throughout all
of the collected records of the “all_powertrace” dataset.

Finally, the nominal values of the categorical features of the “Train_Test edge network”
dataset and the “all_powertrace” dataset were converted to numeric values to facilitate
their use by the ML algorithms. For example, if a feature possessed the values of “on”
and “off”, these values were converted to “1” and “0”, respectively. This was achieved by
employing a label-encoding method [17].

7.1.2. Normalization

After the conversion of the values of all nominal features was completed in the pre-
processing step, the data normalization step was then performed to the numeric values
of each feature. If the values of a feature are significantly larger compared to the values
of other features, this may lead to inaccurate results. Thus, data normalization helps to
ensure that features with significantly large values do not outweigh features with smaller
values. To achieve this, all of the features’ values are scaled within the range of [0.0, 1.0] by
performing a min–max normalization process on each feature. This normalization process
is described by the following equation:

z = (x − xmin)/(xmax − xmin) (8)

where z is the normalized value (i.e., after scaling), x is the value before scaling, and xmax
and xmin are the maximum and minimum values of the feature, respectively.

7.2. Training Process of ML Algorithms

The selected ML algorithms were trained and tested separately over (a) the “Train_test
edge network” dataset, and (b) the “all_powertrace” dataset. Initially, each of the two
datasets was split into two parts: the train part and the test part. The train part consisted of
80% of the dataset and the ML algorithms were trained and evaluated with this part. On
the other hand, the test part consisted of 20% of the dataset and was held back for further
evaluation of the models with unseen data. The percentage split of 80% train–20% test
was determined according to [17] as the best ratio to avoid the overfitting problem. After
that, the training process of each ML algorithm over each dataset was performed using the
four-fold cross validation method. According to this method, the training dataset is divided
into four subsets of equal size and the records of each subset are randomly selected. The
training process is repeated four times. Each time, three of the four subsets are utilized for
the training of the ML algorithm and the remaining subset is used for validation. The final
performance results are produced by averaging the results of the four folds [17]. Table 9
presents a summary of the hyperparameters of each of the six ML algorithms when the ML
algorithm requires a hyperparameter to be set.



Electronics 2021, 10, 2562 21 of 25

Table 9. Summary of the hyperparameters of each ML algorithm when the ML algorithm requires a
hyperparameter to be set.

ML Algorithm Hyperparameters

Decision Tree
(1) The Gini index was used to select tree nodes.
(2) Minimum samples per leaf node set to 10

Random Forest

(1) The Gini index was used to select tree nodes.
(2) The minimum samples per leaf node was set to 10.
(3) The random forest consisted of 10 decision trees.

Naïve Bayes The Gaussian variant of the NB algorithm was used.
Logistic Regression -

Support Vector Machine The Gaussian radial basis function (RBF) was set as the kernel function.

K-Nearest Neighbor
(1) The value of K was set to 5.
(2) The Euclidean distance was set as the distance metric.

7.3. Performance Evaluation Results

The selected ML algorithms were trained and tested on the “Train_Test edge network”
dataset and the “all_powertrace” dataset for binary classification, using the four-fold cross
validation method. The performance of the selected ML algorithms was evaluated by the
evaluation metrics of accuracy, precision, recall, and F1-score. The numerical results of the
evaluation metrics for the selected ML algorithms, when applied to the “Train_Test edge
network” dataset, are shown in Table 10 and Figure 6.

Table 10. Evaluation metrics for binary classification for the “Train_Test edge network” dataset.

ML Algorithm Accuracy Precision Recall F1-Score

DT 0.9997 0.9997 0.9991 0.9994
NB 0.3444 0.2791 0.9997 0.4364
LR 0.9870 0.9552 0.9955 0.9750
RF 0.9996 0.9989 0.9995 0.9992

KNN 0.9998 0.9995 0.9997 0.9996
SVM 0.9873 0.9530 0.9993 0.9756

Figure 6. Evaluation metrics for binary classification for the “Train_Test edge network” dataset.



Electronics 2021, 10, 2562 22 of 25

It can be easily observed that almost all of the ML algorithms demonstrate a high
performance for the “Train_Test edge network” dataset. The DT, RF, and KNN algorithms
show an almost perfect accuracy score (i.e., 0,99), followed by the LR and SVM methods
(i.e., 0,98). The same trend can be seen in the precision, recall, and F1-score, which are
extremely high. However, the NB classifier performs significantly worse than the rest of
the algorithms in almost all evaluation metrics. In particular, although the NB method
achieves a very high recall (0,99), it demonstrates a low accuracy (i.e., 0.34), precision (i.e.,
0,28), and F1-score (i.e., 0,44) due to dependencies among the features of the “Train_Test
edge network” dataset.

Furthermore, the “all_powertrace” dataset was also used to train and test the selected
ML algorithms for binary classification, using the four-fold cross validation method. The
performance of the selected ML algorithms was also evaluated by the evaluation metrics of
accuracy, precision, recall, and F1-score. The numerical results of the evaluation metrics for
the selected ML algorithms are shown in Table 11 and Figure 7.

Table 11. Evaluation metrics for binary classification for the “all_powertrace” dataset.

ML Algorithm Accuracy Precision Recall F1-Score

DT 0.9889 0.9742 0.9587 0.9664
NB 0.9613 0.8218 0.9805 0.8942
LR 0.9785 0.9378 0.9326 0.9352
RF 0.9900 0.9718 0.9684 0.9701

KNN 0.9887 0.9752 0.9566 0.9658
SVM 0.9785 0.9375 0.9333 0.9354

Figure 7. Evaluation metrics for binary classification for the “all_powertrace” dataset.

Similarly to the results related to the “Train_Test edge network” dataset, all of the
ML algorithms demonstrated an extremely high accuracy, with the lowest accuracy value
being 0.96. The DT, RF, and KNN classifiers showed an almost perfect precision that was
close to 0.99, whereas the NB, LR, and SVM classifiers demonstrated a high precision that
was between 0.82 and 0.94. Moreover, all of the ML algorithms showed a high recall and
high F1-score, with the lowest values being 0.93, and 0.89 respectively. It is noteworthy to
mention that the performance of NB has improved due to reduced dependencies among
the features of the “all_powertrace” dataset.

The evaluation results demonstrate that the DT, RF, and KNN algorithms are more suit-
able to be used as the core of the detection component (i.e., CD component). Based on the



Electronics 2021, 10, 2562 23 of 25

above tables and figures, the DT, RF, and KNN algorithms presented high values regarding
all of the evaluation metrics (i.e., accuracy, precision, recall, F1-score) while being trained
and testing using either the “Train_Test edge network” dataset or the “all_powertrace”
dataset. In both cases, the lowest values for all of the three algorithms (i.e., DT, RF, KNN)
regarding the accuracy, precision, recall, and F1-score were 0.99, 0.97, 0.96, and 0.97, respec-
tively. Therefore, it is evident that, among the six selected popular ML algorithms, the DT,
RF, and KNN algorithms are the three best algorithms based on their performance.

8. Challenges and Future Work

As future work, we intend to develop a prototype of the proposed AIDS in order
to evaluate its performance in terms of computational overhead on the gateway and the
sensors. In particular, the next first step is the implementation of the central detection (CD)
component of the proposed AIDS, relying on DT, RF, and KNN algorithms for anomaly
detection, on a Raspberry Pi 4 device that plays the role of the gateway in an IoMT network.
The DT, RF, and KNN will be implemented to run on the Raspberry Pi 4 device, and their
computational overhead will be evaluated. In addition, the monitoring and data acquisition
(MDA) component is planned to be implemented for an IoMT sensor (i.e., MTM-CM5000-
MSP sensor) that will be connected to the gateway (i.e., Raspberry Pi 4 Model B device).
The developed MDA component will be evaluated in terms of its computational overhead.

Another direction of our future work is the usage of our proposed AIDS for the
case of multi-class classification. In our work, we have considered binary classification,
meaning that the proposed AIDS is capable of identifying whether there is an attack
incident or not. However, as the proposed AIDS is able to distinguish between normal
and malicious incidents (i.e., binary classification), the next step is the improvement of the
AIDS to support multi-class classification by integrating the ability of discerning which
type of attack correlates to a specific malicious incident in the detection engine of the CD
component, while, at the same time, considering the computational overhead.

In addition, more ML algorithms will be implemented and evaluated in order to
identify those that achieve a high accuracy, precision, recall, and F-score, while, at the same
time, not introducing a high computational cost. It is also worthwhile to mention that the
selection of the appropriate values of the hyperparameters of all ML algorithms under
study will be properly investigated, while simultaneously taking into consideration the
computational cost. The values of the hyperparameters may affect both the performance of
the ML algorithms and their computational overhead. Therefore, extensive simulations
will be carried out as future work in order to identify the appropriate hyperparameter(s)
of the ML algorithms and achieve a balance between the performance and computational
cost.

Finally, it is noteworthy to mention that, since the proposed AIDS is designed to be
deployed in resource-constrained devices, deep learning techniques, which are complex,
heavyweight, and are characterized by a high computational overhead, have not been
considered. However, deep learning techniques, such as those mentioned in [39,40],
could be considered, as future work, in the extension of the autonomous and lightweight
proposed AIDS to a cloud-based AIDS for IoMT edge networks.

9. Conclusions

This paper proposed a new AIDS adapted to the constraints of IoMT networks so
as to constitute an efficient and effective security solution for this type of networks. The
proposed AIDS is to leverage host-based and network-based techniques to reliably monitor
and collect log files from the IoMT devices and the gateway, as well as traffic from the
IoMT edge network, taking into account the computational cost. The detection process of
the proposed AIDS is to be implemented by the detection engine running on the gateway
of the IoMT edge network and relying on machine learning (ML) techniques, considering
the computation overhead, in order to detect abnormalities in the collected data and thus
identify malicious incidents in the IoMT network. To evaluate potential detection ML



Electronics 2021, 10, 2562 24 of 25

algorithms and identify the most appropriate algorithms for the proposed AIDS, we used
(i) the network part of the “TON_IoT Telemetry dataset” [15] and (ii) a dataset that was
produced according to the approach of the authors in [7] to train and test the following
most popular ML algorithms for IoT AIDS: DT, NB, LR, RF, SVM, and KNN. The evaluation
results demonstrate that the DT, RF, and KNN algorithms are more suitable to be used for
the central detection (CD) component of the proposed AIDS. In addition, it is worthwhile
to highlight that the performance of NB demonstrated better results when it was trained
and tested on the “all_powertrace” dataset due to the reduced dependencies among the
features of this dataset.

Author Contributions: Conceptualization and methodology, G.Z., I.E., G.M., K.P., and J.C.R.; soft-
ware, G.Z., I.E., and J.C.R.; validation, G.Z., I.E., J.C.R., and G.M.; investigation, G.Z., I.E., J.C.R.,
and G.M.; resources, G.Z., I.E., J.C.R., and G.M.; writing—original draft preparation, G.Z. and I.E.;
writing—review and editing, I.E., G.M., K.P., and J.R.; visualization, G.Z., J.C.R., and I.E.; supervision,
G.M., K.P., and J.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received external funding.

Acknowledgments: The research work leading to this publication has received funding through the
Moore4Medical project under grant agreement H2020-ECSEL-2019-IA-876190 within ECSEL JU in
collaboration with the European Union’s H2020 Framework Programme (H2020/2014-2020) and
Fundação para a Ciência e Tecnologia (ECSEL/0006/2019).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rodrigues, J.J.P.C.; Segundo, D.B.D.R.; Junqueira, H.A.; Sabino, M.H.; Prince, R.M.I.; Al-Muhtadi, J.; De Albuquerque, V.H.C.

Enabling Technologies for the Internet of Health Things. IEEE Access 2018, 6, 13129–13141. [CrossRef]
2. Papaioannou, M.; Karageorgou, M.; Mantas, G.; Sucasas, V.; Essop, I.; Rodriguez, J.; Lymberopoulos, D. A Survey on Security

Threats and Countermeasures in Internet of Medical Things (IoMT). Trans. Emerg. Telecommun. Technol. 2020, 4049. [CrossRef]
3. Islam, S.M.R.; Kwak, D.; Kabir, M.H.; Hossain, M.; Kwak, K.-S. The Internet of Things for Health Care: A Comprehensive Survey.

IEEE Access 2015, 3, 678–708. [CrossRef]
4. Makhdoom, I.; Abolhasan, M.; Lipman, J.; Liu, R.P.; Ni, W. Anatomy of Threats to the Internet of Things. IEEE Commun. Surv.

Tutor. 2019, 21, 1636–1675. [CrossRef]
5. Zhang, M.; Raghunathan, A.; Jha, N.K. Trustworthiness of Medical Devices and Body Area Networks. Proc. IEEE 2014, 102,

1174–1188. [CrossRef]
6. Karageorgou, M.; Mantas, G.; Essop, I.; Rodriguez, J.; Lymberopoulos, D. Cybersecurity attacks on medical IoT devices for smart

city healthcare services. In IoT Technologies in Smart Cities: From Sensors to Big Data, Security and Trust; Institution of Engineering
and Technology (IET): London, UK, 2020; pp. 171–187.

7. Essop, I.; Ribeiro, J.C.; Papaioannou, M.; Zachos, G.; Mantas, G.; Rodriguez, J. Generating Datasets for Anomaly-Based Intrusion
Detection Systems in IoT and Industrial IoT Networks. Sensors 2021, 21, 1528. [CrossRef]

8. Gope, P.; Hwang, T. BSN-Care: A Secure IoT-Based Modern Healthcare System Using Body Sensor Network. IEEE Sens. J. 2016,
16, 1368–1376. [CrossRef]

9. Alsubaei, F.; Abuhussein, A.; Shiva, S. Security and Privacy in the Internet of Medical Things: Taxonomy and Risk Assessment.
In Proceedings of the 2017 IEEE 42nd Conference on Local Computer Networks Workshops (LCN Workshops), Singapore,
9 October 2017; pp. 112–120.

10. Ribeiro, J.; Saghezchi, F.B.; Mantas, G.; Rodriguez, J.; Abd-Alhameed, R.A. HIDROID: Prototyping a Behavioral Host-Based
Intrusion Detection and Prevention System for Android. IEEE Access 2020, 8, 23154–23168. [CrossRef]

11. Ribeiro, J.; Saghezchi, F.B.; Mantas, G.; Rodriguez, J.; Shepherd, S.J.; Abd-Alhameed, R.A. An Autonomous Host-Based Intrusion
Detection System for Android Mobile Devices. Mob. Netw. Appl. 2019, 25, 164–172. [CrossRef]

12. Ribeiro, J.; Mantas, G.; Saghezchi, F.B.; Rodriguez, J.; Shepherd, S.J.; Abd-Alhameed, R.A. Towards an Autonomous Host-Based
Intrusion Detection System for Android Mobile Devices. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST; Springer: Cham, Switzerland, 2018; Volume 263, pp. 139–148.

13. Asharf, J.; Moustafa, N.; Khurshid, H.; Debie, E.; Haider, W.; Wahab, A. A Review of Intrusion Detection Systems Using Machine
and Deep Learning in Internet of Things: Challenges, Solutions and Future Directions. Electronics 2020, 9, 1177. [CrossRef]

14. Thamilarasu, G.; Odesile, A.; Hoang, A. An Intrusion Detection System for Internet of Medical Things. IEEE Access 2020, 8,
181560–181576. [CrossRef]

15. Alsaedi, A.; Moustafa, N.; Tari, Z.; Mahmood, A.; Anwar, A.N. TON-IoT Telemetry Dataset: A New Generation Dataset of IoT
and IIoT for Data-Driven Intrusion Detection Systems. IEEE Access 2020, 8, 165130–165150. [CrossRef]

16. Kotsiantis, S.B. Decision trees: A recent overview. Artif. Intell. Rev. 2011, 39, 261–283. [CrossRef]

http://doi.org/10.1109/ACCESS.2017.2789329
http://doi.org/10.1002/ett.4049
http://doi.org/10.1109/ACCESS.2015.2437951
http://doi.org/10.1109/COMST.2018.2874978
http://doi.org/10.1109/JPROC.2014.2322103
http://doi.org/10.3390/s21041528
http://doi.org/10.1109/JSEN.2015.2502401
http://doi.org/10.1109/ACCESS.2020.2969626
http://doi.org/10.1007/s11036-019-01220-y
http://doi.org/10.3390/electronics9071177
http://doi.org/10.1109/ACCESS.2020.3026260
http://doi.org/10.1109/ACCESS.2020.3022862
http://doi.org/10.1007/s10462-011-9272-4


Electronics 2021, 10, 2562 25 of 25

17. Géron, A. Hands-On Machine Learning with Scikit-Learn and Tensor Flow: Concepts, Tools, and Techniques to Build Intelligent Systems;
O’Reilly Media: Sebastopol, CA, USA, 2017.

18. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
19. Doshi, R.; Apthorpe, N.; Feamster, N. Machine Learning DDoS Detection for Consumer Internet of Things Devices. In Proceedings

of the 2018 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 24 May 2018; pp. 29–35. [CrossRef]
20. D’Agostini, G. A multidimensional unfolding method based on Bayes’ theorem. Nucl. Inst. Methods Phys. Res. A 1995, 362,

487–498. [CrossRef]
21. Subba, B.; Biswas, S.; Karmakar, S. Intrusion Detection Systems using Linear Discriminant Analysis and Logistic Regression.

In Proceedings of the 2015 Annual IEEE India Conference (INDICON), New Delhi, India, 17–20 December 2015.
22. Huraj, L.; Horak, T.; Strelec, P.; Tanuska, P. Mitigation against DDoS Attacks on an IoT-Based Production Line Using Machine

Learning. Appl. Sci. 2021, 11, 1847. [CrossRef]
23. Moustafa, N.; Hu, J.; Slay, J. A holistic review of Network Anomaly Detection Systems: A comprehensive survey. J. Netw. Comput.

Appl. 2019, 128, 33–55. [CrossRef]
24. Verma, A.; Ranga, V. Machine Learning Based Intrusion Detection Systems for IoT Applications. Wirel. Pers. Commun. 2020, 111,

2287–2310. [CrossRef]
25. Bhuyan, M.H.; Bhattacharyya, D.K.; Kalita, J.K. Network Anomaly Detection: Methods, Systems and Tools. IEEE Commun. Surv.

Tutor. 2013, 16, 303–336. [CrossRef]
26. Suthaharan, S.; Alzahrani, M.; Rajasegarar, S.; Leckie, C.; Palaniswami, M. Labelled data collection for anomaly detection in

wireless sensor networks. In Proceedings of the 2010 Sixth International Conference on Intelligent Sensors, Sensor Networks and
Information Processing, ISSNIP 2010, Brisbane, QLD, Australia, 7–10 December 2010; pp. 269–274.

27. Sivanathan, A.; Gharakheili, H.H.; Loi, F.; Radford, A.; Wijenayake, C.; Vishwanath, A.; Sivaraman, V. Classifying IoT Devices in
Smart Environments Using Network Traffic Characteristics. IEEE Trans. Mob. Comput. 2019, 18, 1745–1759. [CrossRef]

28. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the Internet of
Things for network forensic analytics: Bot-IoT dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [CrossRef]

29. Hamza, A.; Gharakheili, H.H.; Benson, T.A.; Sivaraman, V. Detecting Volumetric Attacks on IoT Devices via SDN-Based
Monitoring of MUD Activity. In Proceedings of the 2019 ACM Symposium on SDN Research, San Jose, CA, USA, 3–4 April 2019;
Association for Computing Machinery: New York, NY, USA, 2019; pp. 36–48.

30. Zachos, G.; Essop, I.; Mantas, G.; Porfyrakis, K.; Ribeiro, J.C.; Rodriguez, J. Generating IoT Edge Network Datasets based on the
TON_IoT Telemetry Dataset. In Proceedings of the 2021 IEEE International Workshop on Computer Aided Modeling and Design
of Communication Links and Networks, Virtual Event, 25–27 October 2021.

31. Node-RED. Available online: https://nodered.org/ (accessed on 13 August 2021).
32. ToN_IoT Datasets | IEEE DataPort. Available online: https://ieee-dataport.org/documents/toniot-datasets (accessed on

19 October 2021).
33. What is VMware NSX? Network Security Virtualization Platform AU. Available online: https://www.vmware.com/au/products/

nsx.html (accessed on 13 August 2021).
34. Stojmenovic, I.; Wen, S. The fog computing paradigm: Scenarios and security issues. In Proceedings of the 2014 Federated

Conference on Computer Science and Information Systems, Warsaw, Poland, 7–10 September 2014; pp. 1–8.
35. Österlind, F.; Dunkels, A.; Eriksson, J.; Finne, N.; Voigt, T. Cross-Level Sensor Network Simulation with COOJA. In Proceedings

of the 2006 31st IEEE Conference on Local Computer Networks, Tampa, FL, USA, 14–16 November 2006; pp. 641–648.
36. Moteiv Corporation Tmote Sky—Ultra Low Power IEEE 802.15.4 Compliant Wireless Sensor Module. Available online: http:

//www.crew-project.eu/sites/default/files/tmote-sky-datasheet.pdf (accessed on 6 September 2021).
37. International Telecommunications Union—Telecommunication Standardization Sector (ITU-T). Recommendation ITU-T Y.2060:

Overview of the Internet of Things. Available online: https://www.itu.int/ITUT/recommendations/rec.aspx?rec=y.2060
(accessed on 19 October 2021).

38. Scikit-Learn. Available online: https://scikit-learn.org/stable/ (accessed on 20 August 2021).
39. Latif, S.; Zou, Z.; Idrees, Z.; Ahmad, J. A Novel Attack Detection Scheme for the Industrial Internet of Things Using a Lightweight

Random Neural Network. IEEE Access 2020, 8, 89337–89350. [CrossRef]
40. Huma, Z.E.; Latif, S.; Ahmad, J.; Idrees, Z.; Ibrar, A.; Zou, Z.; Alqahtani, F.; Baothman, F. A Hybrid Deep Random Neural Network

for Cyberattack Detection in the Industrial Internet of Things. IEEE Access 2021, 9, 55595–55605. [CrossRef]

http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1109/SPW.2018.00013
http://doi.org/10.1016/0168-9002(95)00274-X
http://doi.org/10.3390/app11041847
http://doi.org/10.1016/j.jnca.2018.12.006
http://doi.org/10.1007/s11277-019-06986-8
http://doi.org/10.1109/SURV.2013.052213.00046
http://doi.org/10.1109/TMC.2018.2866249
http://doi.org/10.1016/j.future.2019.05.041
https://nodered.org/
https://ieee-dataport.org/documents/toniot-datasets
https://www.vmware.com/au/products/nsx.html
https://www.vmware.com/au/products/nsx.html
http://www.crew-project.eu/sites/default/files/tmote-sky-datasheet.pdf
http://www.crew-project.eu/sites/default/files/tmote-sky-datasheet.pdf
https://www.itu.int/ITUT/recommendations/rec.aspx?rec=y.2060
https://scikit-learn.org/stable/
http://doi.org/10.1109/ACCESS.2020.2994079
http://doi.org/10.1109/ACCESS.2021.3071766

	Introduction 
	Related Work 
	Anomaly-Based Intrusion Detection Systems (AIDSs) for IoMT 
	Machine Learning Algorithms for IoT Intrusion Detection 
	Decision Tree (DT) 
	Random Forest (RF) 
	Naïve Bayes (NB) 
	Logistic Regression (LR) 
	Support Vector Machine (SVM) 
	K-Nearest Neighbor (KNN) 


	Evaluation Metrics 
	Datasets for AIDS in IoT 
	LWSNDR Dataset 
	A Dataset for Classifying IoT Devices Using Network Traffic Characteristics 
	Bot-IoT Dataset 
	A Dataset for Detecting DoS Attacks on IoT Devices Using Network Traffic Traces 
	ToN_IoT Telemetry Dataset 
	Testbed “Edge” Layer 
	Testbed “Fog” Layer 
	Testbed “Cloud” Layer 
	ToN_IoT Datasets 

	IoT Device Behavior Datasets 

	Scenario Architecture 
	Proposed Anomaly-Based IDS 
	System Description 
	Monitoring and Data Acquisition (MDA) Component 
	Central Detection (CD) Component 

	Performance Evaluation 
	Dataset Pre-Processing and Normalisation 
	Dataset Pre-Processing 
	Normalization 

	Training Process of ML Algorithms 
	Performance Evaluation Results 

	Challenges and Future Work 
	Conclusions 
	References

