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Cryptic transmission of SARS-CoV-2 and the 
first COVID-19 wave

   
Jessica T. Davis1,11, Matteo Chinazzi1,11, Nicola Perra1,2,11, Kunpeng Mu1, Ana Pastore y Piontti1, 
Marco Ajelli1,3, Natalie E. Dean4, Corrado Gioannini5, Maria Litvinova3, Stefano Merler6, 
Luca Rossi5, Kaiyuan Sun7, Xinyue Xiong1, Ira M. Longini Jr8, M. Elizabeth Halloran9,10, 
Cécile Viboud7 & Alessandro Vespignani1 ✉

Considerable uncertainty surrounds the timeline of introductions and onsets of local 
transmission of SARS-CoV-2 globally1–7. Although a limited number of SARS-CoV-2 
introductions were reported in January and February 20208,9, the narrowness of the 
initial testing criteria, combined with a slow growth in testing capacity and porous 
travel screening10, left many countries vulnerable to unmitigated, cryptic 
transmission. Here we use a global metapopulation epidemic model to provide a 
mechanistic understanding of the early dispersal of infections, and the temporal 
windows of the introduction and onset of SARS-CoV-2 local transmission in Europe 
and the United States. We find that community transmission of SARS-CoV-2 was likely 
in several areas of Europe and the United States by January 2020, and estimate that by 
early March, only 1 to 3 in 100 SARS-CoV-2 infections were detected by surveillance 
systems. The modelling results highlight international travel as the key driver of the 
introduction of SARS-CoV-2 with possible introductions and transmission events as 
early as December 2019–January 2020. We find a heterogeneous, geographic 
distribution of cumulative infection attack rates by 4 July 2020, ranging from 0.78%–
15.2% across US states and 0.19%–13.2% in European countries. Our approach 
complements phylogenetic analyses and other surveillance approaches and provides 
insights that can be used to design innovative, model-driven surveillance systems that 
guide enhanced testing and response strategies.

A few weeks after the initial announcement of a cluster of atypical pneu-
monia cases in Wuhan, China, the first confirmed cases of COVID-19 in 
the United States (US) and Europe were detected on January 21, 2020 in 
Washington state1 and on January 24, 2020 in France2. Although many 
more states and countries began reporting initial introductions in the 
following weeks, only a few cases were detected daily during this time 
period (see Fig. 1a), and most countries adopted a testing policy that 
targeted symptomatic individuals with a travel history linked to China. 
Several reports suggest the introduction of SARS-CoV-2 occurred earlier 
than initially recognized3–8, raising questions about the effectiveness 
of the initial testing policies and travel-related restrictions, as well 
as the extent to which the SARS-CoV-2 virus spread through cryptic 
transmission in January and February 2020. In order to address these 
questions, we use the Global Epidemic and Mobility Model (GLEAM), 
a data-driven, stochastic, spatial, and age-structured, metapopula-
tion epidemic model11,12, to study the global dynamic underlying the 
evolution of the COVID-19 pandemic in Europe and the United States 
(US). Our model maps the plausible pathways of the pandemic using 
information available at the early stages of the outbreak and provides 

a global picture of the cryptic phase as well as the ensuing first wave of 
the COVID-19 pandemic.

We consider data concerning the continental US and 30 European 
countries (the full list is reported in Extended Data Table 1). The model 
integrates real time human mobility and population data with a mech-
anistic epidemic model at a global scale, incorporating changes in 
contact patterns and mobility according to the non-pharmaceutical 
interventions (NPIs) implemented in each region. It is calibrated on 
international case introductions out of mainland China at the early 
stage of the pandemic using an Approximate Bayesian Computation 
(ABC) methodology13. The model returns an ensemble of stochastic 
realizations of the global epidemic spread including international 
and domestic infection importations, incidence of infections, and 
deaths at a daily resolution (see the Methods section for details). In 
the following text we provide a detailed discussion of the analyses and 
results concerning European countries and the US states, however, to 
further test and validate our approach, in the supplementary infor-
mation (SI), we report the modeling results for 24 additional coun-
tries that are globally representative, including countries of world  
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regions such as Latin America, the Middle East, Africa, East Asia, and 
Oceania.

In Fig. 1b we show the model estimates of the median daily incidence 
of new infections up to February 21, 2020, for both the US and Europe. 
These values are much larger than the number of officially reported 
cases (see Fig.1a), highlighting the substantial number of potential 
transmission events that may have already occurred before many states 
and countries had implemented testing strategies independent of 
travel history. As validation we compare our model’s estimates of the 
number of infections during the week of March 8, 2020, to the number 
of cases reported during that week within each US state and European 
country with at least 1 reported case (shown in Fig.1b inset). While we 
see a strong correlation between the reported cases and our model’s 
estimated number of infections (Pearson’s correlation coefficient on 
log-values, US: 0.79, p < 0.001; Europe: 0.80, p < 0.001), far fewer cases 
had actually been reported by that time. If we assume that the number 
of reported cases and simulated infections are related through a simple 
binomial sampling process, we find that on average 9 in 1,000 infec-
tions (90%CI [1–35 per 1,000]) and 35 in 1,000 infections (90%CI [4–90 
per 1,000]) were detected by March 8, 2020, in the US and Europe. 
As testing capacity increased, the ascertainment rate grows and our 
estimates increase to detecting 17 in 1,000 infections (90%CI [2–55 per 
1,000]) by March 14, 2020, in the US and 77 in 1,000 infections (90%CI 
[5–166 per 1,000]) in Europe. The estimated ascertainment rates are 
in agreement with independent results based on different statistical 
methodologies14–16. In Fig.1c we show the probability that a city in the US 
or Europe had generated at least 100 infections by February 21, 2020. 
We see that the progression of the virus through the US and Europe is 
both temporally and spatially heterogeneous. While many cities had 
not yet experienced much community transmission by late February, 
a few areas such as New York City or London very likely already had 
local outbreaks.

Onset of local transmission
The model’s ensemble of realizations provides a statistical descrip-
tion of all the potential pandemic histories compatible with the initial 
evolution of the pandemic in China. Rather than describing a specific, 
causal chain of events, we can estimate possible time windows pertain-
ing to the initial of chains of transmission in different geographical 
regions. We define the onset of local transmission for a country or state 
as the earliest date when at least 10 new infections are generated per 
day. This number is chosen because at this threshold the likelihood 
of stochastic extinction is extremely small17,18. As detailed in the SI, 
further calibration on the US states and European countries suggests 
posterior values of R0 ranging from 2.4−2.8. These values are consist-
ent with many other (country dependent) estimates19–24. At the same 
time, given the doubling time of COVID-19 before the implementation 
of public health measures, any variation of a factor 2 around the 10 
infections/day threshold corresponds to a small adjustment of 3− 5 
days to the presented timelines.

In Fig. 2, we show the posterior probability distribution, p(t), of the 
week, t, of the onset of local transmission for 15 US states (a) and Euro-
pean countries (b) (see SI for all states/countries). We also calculate, 
for each country/state, the median date, T, that identifies the first week 
where the cumulative distribution function is larger than 50%. Among 
the US states, California and New York state are the earliest, with a date, 
T, by the week of January 26 (California) and February 2 (New York), 
2020. In Europe, Italy, UK, Germany, and France are the first countries 
with T close to the end of January 2020. However, it is worth noting 
that each distribution, p(t), has a support spanning several weeks. In 
Italy, the 5th and 95th percentiles of the p(t) distribution are the week 
of January 6 and the week of January 30, 2020. These dates also sug-
gest that it is not possible to rule out introductions and transmission 
events as early as December 2019, although the probability is very small.

For each state in the US and each country in Europe we compared 
the order in which they surpassed 100 cumulative infections in the 
model and in the surveillance data (gathered from the John Hopkins 
University Coronavirus Resource Center25). In Extended Data Fig. 1a 
we plot the ordering for states and compute the Kendall rank correla-
tion coefficient τ (see SI for details). The correlation is positive  
(τEU=0.71, p < 0.001 and τUS=0.68, p < 0.001) indicating that, despite 
the detection and testing issues, the expected patterns of epidemic 
diffusion are largely described by the model in both regions.

SARS-CoV-2 introductions
As the model allows the recording of the origin and destination of 
travelers carrying SARS-CoV-2 at the global scale, we can study the 
possible sources of SARS-CoV-2 introductions for each US state and 
European country. More specifically, we record the cumulative num-
ber of introductions in each stochastic realization of the model until 
April 30, 2020. In Fig. 3 we visualize the origin of the introductions 
considering some key geographical regions (e.g., Europe and Asia) 
while keeping the US and China separate and aggregating all the other 
countries (i.e., Others). For both the US and Europe the contribution 
from mainland China is barely visible and the local share (i.e., sources 
within Europe and US) becomes significantly higher across the board. 
Hence, while introduction events in the early phases of the outbreak 
were key to start the local spreading (see details in the SI), the cryp-
tic transmission phase has been sustained largely by internal flows. 
Domestic SARS-CoV-2 introductions through April 30, 2020, account 
for 69% [IQR 60%−81%] of the introductions in California, 78% [IQR 
71%−87%] in Texas, and 69% [IQR 60%−80%] in Massachusetts, which 
is supported by phylogenetic analysis26. European origins account for 
69% [IQR 60%−80%], 84% [IQR 79%−91%], and 58% [IQR 48%−68%] of 
the introductions in Italy, Spain, and the UK. In the SI we report the full 
breakdown for all states and countries.

It is also necessary to distinguish between the full volume of 
SARS-CoV-2 introductions and the intro- duction events that could 
be relevant to the early onset of local transmission in each stochastic 
realization of the model. To this point, it is worth stressing that seed-
ing introductions are different from the actual number of times the 
virus has been introduced to each location with subsequent onward 
transmission. Even after a local outbreak has started, future importa-
tion events may give rise to additional onward transmission forming 
independently introduced transmission lineages of the virus27. In the 
model we can investigate seeding events by recording introduction 
events before the local transmission chains were established. We report 
the results of this analysis in the SI, showing that importations from 
mainland China may be relevant in seeding the epidemic in January, 
but then play a comparatively small role in the COVID-19 expansion 
in the US and Europe due to the travel restrictions imposed to/from 
mainland China after January 23, 2020.

The early timing of the initial introductions and early diffusion pat-
tern of SARS-CoV-2 was driven by air travel. We find a positive correla-
tion (τEU =0.66, p < 0.001 and τUS=0.66, p < 0.001) comparing the 
ordering of states according to when they surpassed 100 cumulative, 
reported cases (referred to as the epidemic order) and their domestic 
and international air travel volume rank (Extended Data Fig. 1B). Sim-
ilar observations have been reported in China, where the initial spread-
ing of the virus outside Hubei was strongly correlated with the traffic 
to/from the province28. Other factors like population size are also cor-
related with both the travel flows (τEU =0.59, p < 0.001 and τUS=0.7,  
p < 0.001) and the epidemic order (τEU=0.46, p < 0.001 and τUS=0.68,  
p < 0.001), which are discussed in detail in the SI. In our model, it is not 
possible to exclude increased contacts in highly populated places 
before social distancing interventions and disentangle this effect from 
increased seeding due to the correlation between travel volume and 
population size.
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COVID-19 burden
Starting in March 2020, the establishment and timing of NPIs as well 
as other epidemiological drivers (i.e., population size and density, 
age-structure etc.) determined the disease burden in the US and 
Europe29–32. We account for these features by calibrating the model 
results, individually, for each US state and European country. More 
precisely, we estimate the posterior distribution of the infection fatality 
ratio (IFR) and infection attack rate in each US state and European coun-
try. To this end, we adopt the ABC approach using as evidence the num-
ber of new deaths reported from March 22, 2020, to June 27, 2020. We 
consider a uniform prior for the average IFR in the range from 0.4% to 
2% that is age stratified proportional to the IFR values reported in Ref. 33.  
We also consider a uniform prior for reporting delays between the date 
of death and reporting ranging from 2 to 22 days in both Europe and 
the US34. Details provided in the SI.

In Fig. 4(A-D, F-I), we report the model fit of the estimated weekly 
deaths of the first wave for selected states and countries. Additional 
model results for all investigated regions including a sensitivity analy-
sis of different calibration methods can be found in the SI. We find a 
strong correlation between the weekly model-estimated deaths and 
the reported values with a Pearson correlation coefficient of 0.99  
(p < 0.001) for both Europe and the US (see Fig. S6). As the data suggest, 
many European countries and US states saw peaks in April and May 
with various decreasing trajectories that depend on the mitigation 
strategies in place. Additionally, we report the estimated posteriors 
for the cumulative infection attack rates and IFRs as of July 4, 2020, in 
European countries experiencing more than 100 total deaths and the 
top 20 states ranked by infection attack rate in the US.

Within Europe, Belgium has the highest estimated infection attack 
rate of 13.2% (90% CI [8.5%−28.3%]) by July 4, 2020, in agreement with 
the results in Ref. 14. Furthermore, by that time Belgium reported the 
highest COVID-19 mortality rate out of the European countries inves-
tigated with 8.5 deaths per 10,000 individuals. However, Italy is esti-
mated to have the highest median IFR of 1.4% (90% CI [0.6%-1.8%]), 
which aligns with other ranges reported in the literature35,36. The US 
states with the highest infection attack rates are located within the 
Northeast and experienced a significant first wave during March-April 
2020. New York and New Jersey are the top two states with infection 
attack rates of 13.4% (90% CI [9.1% − 26.7%]) and 15.2% (90% CI [10.2% 
− 31.3%]), respectively. These numbers are aligned with estimates from 
New York City reported in Ref. 37. In the SI we report summary tables 
with estimated IFRs, infection attack rates, as well as the reproductive 
number in the absence of mitigation measures for all calibrated US 
states and European countries. Additionally, we compare our attack 
rate estimates to the prevalence of individuals with SARS-CoV-2 anti-
bodies from serological studies across the US and Europe (Extended 
Data Fig. 1D). The seroprevalence estimates are compared to the model 
estimates during the same time window the studies were performed 
(details on the seroprevalence data from this figure can be found in 
the Table S8 and Section 9.3 in the SI).

Discussion
The model presented here captures the spatial and temporal hetero-
geneity of the early stage of the pandemic, going beyond the single 
country-level reconstruction. It provides a mechanistic understanding 
of the underlying dynamics of the pandemic’s interconnected evolu-
tion. Furthermore, rather than showing specific evidence for early 
infection in a few locations, our study aims at providing a statistical 
characterization and quantification of the initial transmission pathways 
at a global scale. Our results can be compared to and complement 
analyses based on gene sequencing and travel volumes. We find that 
72% of the early introductions to Italy, before the local outbreak, are 
linked to China, which is in agreement with Ref. 38 highlighting the key 

role of importations between these regions at the beginning of the 
pandemic. Additionally, similar to our findings, Ref. 27 estimates that 
the majority of importation events through April 2020, associated 
with onward transmission in the UK, came from Europe. The contribu-
tions from China are quantified below 1% and limited to the very early 
phase. Furthermore, seeding events from the US are estimated to be 3% 
which aligns with our estimate (8% [IQR 3%−9%]). However, their results 
point to a larger share from Europe (90%) compared to ours (58% [IQR 
48%−68%]) and conversely, we estimate a larger contribution from Asia 
(27% [IQR 19%−35%]). Since our analysis is a statistical description of 
the possible introduction pathways, differences could arise both due 
to our model design, but also from genomic sampling biases39.

The sources of introduction of SARS-CoV-2 infections in Europe and 
the US changed substantially and rapidly through time. This caused 
reactive response strategies, such as issuing travel restrictions target-
ing countries only after local transmission is confirmed, ineffective 
at preventing local outbreaks. Our results suggest that many regions 
in the US and Europe experienced an onset of local transmission in 
January and February 2020, during the time when testing capacity 
was limited. If testing had been more widespread and not restricted 
to individuals with a travel history from China, there would have been 
more opportunities for earlier detection and interventions. In the SI 
we report a counterfactual scenario where we assume broader testing 
specifications not based on the individual travel history and find the 
epidemic progression is considerably delayed (see Section 8 in the SI).

As testing capacity increased and more cases were detected, many 
governments began to issue social distancing guidelines to mitigate 
the spread of SARS-CoV-2. The first European country to implement 
a cordon sanitaire was Italy on February 23, 2020, for a few northern 
cities40. Many other countries followed suit and implemented national 
lockdowns in March, 202030,41, however this was weeks after our model 
estimates that SARS-CoV-2 was introduced and locally spreading. We 
find a strong correlation between the number of cases reported by 
the date of a lockdown/social distancing measure and the cumulative 
infections projected by July, 4, 2020 (Extended Data Fig. 1C), indicat-
ing that the earlier NPIs had been issued, the smaller the COVID-19 
burden experienced during the first wave. This is in agreement with 
other analyses showing that the timing of NPIs is crucial in limiting the 
burden of COVID-1919,29,42–48. Overall, our results strengthen the case for 
preparedness plans with broader indication for testing that are able to 
detect local transmission earlier.

As with all modeling analyses, results are subject to biases from the 
limitations and assumptions within the model as well as the data used 
in its calibration. The model’s parameters, such as generation time, 
incubation period, and the proportion of asymptomatic infections are 
chosen according to the current knowledge of SARS-CoV-2. Although 
the model is robust to variations in these parameters (see the SI for 
the sensitivity analysis), more information on the key characteristics 
of the disease would considerably reduce uncertainties. The model 
calibration does not consider correlations among importations (i.e., 
family travel) and assumes that travel probabilities are age-specific 
across all individuals in the catchment area of each transportation hub.

In light of the assumptions and limitations inherent to this mod-
eling approach, the results are able to complement the analyses from 
sequencing data of SARS-CoV-2 genomes used to reconstruct the early 
epidemic history of the COVID-19 pandemic38. The methods used in 
this analysis offer a blueprint to identify the most likely early spread-
ing dynamics of emerging viruses and they can be used as a real-time 
risk assessment tool. Anticipating the locations where a virus is most 
likely to spread to next could be instrumental in guiding enhanced test-
ing and surveillance activities. The estimated SARS-CoV- importation 
patterns and the cryptic transmission phase dynamics are of potential 
use when planning and developing public health policies in relation 
to international traveling and they could provide important insights 
in assessing the potential risk and impact of emerging SARS-CoV-2 
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variants in regions of the world with limited testing and genomic sur-
veillance resources.
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Fig. 1 | Early picture of the COVID-19 outbreak in Europe and the United 
States. (a) Timelines of the daily reported and confirmed cases of COVID-19 in 
Europe and US. (b) Model-based estimates for the daily number of new 
infections in Europe and US. The model estimates reported are the median 
values with the interquartile range (IQR) obtained with an ABC calibration 
method using n=200,000 independent model realizations. The inset plot 
compares the weekly incidence of reported cases with the median, weekly 

incidence of infections estimated by the model for the week of March 8 − 14, 
2020 for the continental US-states and European countries that reported at 
least 1 case (Europe: n = 30, US: n = 48). Circle size corresponds to the 
population size of each state and country. (c) The probability that a city in 
Europe and the US had generated at least 100 cumulative infections by 
February 21, 2020. Color and circle size are proportional to the probability.
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Fig. 2 | Timing of the onset of local transmission. Posterior distributions of 
the week when each US state (a) or European country (b) first reached 10 locally 
generated SARS-CoV-2 trans- mission events per day. Countries/states are 

ordered by the median date of their posterior distribution. The week of this 
date corresponds to the dates reported on the vertical axis.
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Fig. 3 | Importation sources from the beginning of the outbreak until the 
end of April 2020. Each US state (a) and European country (b) is displayed in a 
clockwise order with respect to the start of the local outbreak (as seen in Fig. 2). 
Importation flows are directed and weighted. We normalize links considering 

the total in-flow for each state so that the sum of importations flows, for each 
state, is one. In the SI we report the complete list of countries contributing as 
importation sources in each geographical region.
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Fig. 4 | The burden of the first wave in Europe and the US. (a-d) Model fit of 
the estimated weekly deaths for selected countries in Europe. (e) Posterior 
distributions of the infection attack rates and infection fatality ratios by July 4, 
2020, for European countries where there were at least 100 reported deaths. 
(f-i) Model fit of the estimated weekly deaths for selected states in the US.  
( j) Posterior distributions of the estimated infection attack rates and infection 

fatality ratios by July 4, 2020 for the top 20 US states (ranked according to their 
infection attack rates). The curves in (a-d,f-i) show the median values and the 
90%CIs. For e and j the outer, lighter boxes represent the 90%CI, the darker, 
inner boxes represent the IQR, and the vertical lines represent the median 
value. Posterior distributions in e and j are the result of the ABC analysis of 
200,000 independent model realizations.
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Methods

Global Epidemic and Mobility Model
The Global Epidemic and Mobility Model, GLEAM, is a stochastic, spa-
tial, age-structured metapopulation model. Previously this model was 
used to characterize the early stage of the COVID-19 epidemic in main-
land China to estimate the effectiveness of travel bans and restrictions49. 
GLEAM divides the global population into more than 3,200 subpopula-
tions in roughly 200 different countries and territories inter-connected 
by realistic air-travel and commuting mobility networks. A subpopu-
lation is defined as the catchment area around major transportation 
hubs. The airline transportation data encompass daily travel data in 
the origin-destination format from the Official Aviation Guide (OAG) 
database50 reflecting actual traffic changes that occurred during the 
pandemic. Ground mobility and commuting flows are derived from the 
analysis and modeling of data collected from the statistics offices of 30 
countries on five continents11,12. The international travel data account 
for travel restrictions and government issued policies. Furthermore, 
the model accounts for the reduction of internal, country-wide mobil-
ity and changes in contact patterns in each country and state in 2020. 
Specific model details are reported in the SI.

SARS-CoV-2 transmission dynamic
The transmission dynamics take place within each subpopulation and 
assume a classic SLIR-like compartmentalization scheme for disease 
progression similar to those used in several large-scale models of 
SARS-CoV-2 transmission15,51–55. Each individual, at any given point in 
time, is assigned to a compartment corresponding to their particu-
lar disease-related state (being, e.g., susceptible, latent, infectious, 
removed)49. This state also controls the individual’s ability to travel 
(details in the SI). Individuals transition between compartments 
through stochastic chain binomial processes. Susceptible individuals 
can acquire the virus through contacts with individuals in the infectious 
category and can subsequently become latent (i.e., infected but not 
yet able to transmit the infection). The process of infection is modeled 
using age- stratified contact patterns at the state and country level56,57. 
Latent individuals progress to the infectious stage at a rate inversely 
proportional to the latent period, and infectious individuals progress 
to the removed stage at a rate inversely proportional to the infectious 
period. The sum of the mean latent and infectious periods defines the 
generation time. Removed individuals are those who can no longer 
infect others. To estimate the number of deaths we consider a uniformly 
distributed prior of the infection fatality ratios (ranging from 0.4% to 
2%) that is age stratified proportional to the values estimated by Ref. 33 
and incorporates reporting delays. The transmission model does not 
assume heterogeneities due to age differences in susceptibility to the 
SARS-CoV-2 infection for younger children (1-10 years old). This is an 
intense area of discussion58–60,61–70. The transmission dynamic and the 
offspring distribution of infectious individuals in the model will depend 
on the specific details of each population, local and global mobility, 
NPIs etc. While overdispersion in transmission varies by location in 
our model, we find that overall, it is consistent with 25% of primary 
infections causing 75% of transmission in our simulations (Fig. S9). 
Additional simulations considering a fixed level of dispersion, informed 
by past studies, result in differences of less than 3 days in onset times 
(Fig. S10; see also the SI for further discussion).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Epidemic surveillance data were collected from the Johns Hopkins 
Coronavirus Resource Center https://coronavirus.jhu.edu/. Proprietary 

airline data are commercially available from OAG (https://www.oag.
com/) and IATA (https://www.iata.org/) databases. Other model inter-
vention data includes Google’s COVID-19 Com- munity Mobility Reports 
available at https://www.google.com/covid19/mobility/ and the Oxford 
COVID-19 Response Tracker available at https://github.com/OxCGRT/
covid-policy-tracker. Source data are provided with this paper.

Code availability
The GLEAM model is publicly available at http://www.gleamviz.org/. 
All data analyses of model results were performed using python 
v3.8 Source data are provided with this paper.
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Extended Data Fig. 1 | Correlation Analysis for European countries and US 
states. (a) The correlation between the ordering of each country/state to reach 
100 infections in the model-estimates and to reach 100 reported cases in the 
surveillance data (Europe: n = 23, US: n = 49). (b) The correlation between the 
ordering of each country/state considering the time needed to reach 100 
reported cases in the surveillance data and the ranking of the combined 
international and domestic air traffic (Europe n = 23, US n = 49). Correlations in 
(a,b) are computed considering the Kendall rank correlation coefficient 
reported with a two-sided p-value, we consider European countries that 
reached at least 100 reported deaths by July 4, 2020 and countries in 
Scandinavia (c) Left: the correlation between the number of cases reported by 
the date of lockdown for European countries (from Table 4 in Ref. 71) and the 
estimated total number of infections by July 4, 2020 (median values, n = 15). 
Right: the correlation between the number of cases reported by March 16, 2020 

(the date the “15 days to slow the spread" guidelines were released in the US  
Ref. 72) for each US state and the estimated total infections by July 4, 2020 
(median values, n = 36). We consider states that reached at least 100 reported 
deaths by July 4, 2020. The circle sizes in (a-c) correspond to the population 
sizes of each country/state. (d) The correlation between the model-estimated 
infection attack rate and the serological prevalence collected from studies, n = 
20. Estimated attack rates are the posterior distributions that are the result of 
the ABC analysis of 200,000 independent model realizations. Data points refer 
to different dates and the locations for which serological surveys were available 
(see table S8 in SI for study descriptions). The model-estimated attack rates use 
the median value, and the error bars represent the 90%CI. The correlations are 
calculated using the Pearson correlation coefficient in (c-d) reported with a 
two-sided p-value.
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Extended Data Table 1 | Regions under investigation
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection

Data analysis The GLEAM model is publicly available at http://www.gleamviz.org/. All data analyses of model results were performed using python v3.8

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Epidemic surveillance data were collected from the Johns Hopkins Coronavirus Resource Center https://coronavirus.jhu.edu/. Proprietary airline data are 
commercially available from OAG (https://www.oag.com/) and IATA (https://www.iata.org/) databases. Other model intervention data includes Google's COVID-19 
Community Mobility Reports available at https://www.google.com/covid19/mobility/ and the Oxford COVID-19 Response Tracker available at https://github.com/
OxCGRT/covid-policy-tracker.
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We use all available data generated by model simulations. We do not generate primary biological or epidemiological data from field 
experiments. 

Data exclusions No data were excluded

Replication All data used are described in the data availability statement. Model generated data were generated synthetically using the GLEAM tool 
documented here: http://www.gleamviz.org/simulator/GLEAMviz_client_manual_v7.0.pdf

Randomization N/A. We did not perform/consider individual subject studies.We did not allocate any individuals to control or experimental groups. 

Blinding N/A. We did not perform/consider individual subject studies. We did not allocate any individuals to control or experimental groups. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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