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ABSTRACT: Weather index insurance (WII) has been a promising innovation that protects smallholder farmers against

drought risks and provides resilience against adverse rainfall conditions. However, the uptake ofWII has been hampered by

high spatial and intraseasonal basis risk. To minimize intraseasonal basis risk, the standard approaches to designing WII

based on seasonal cumulative rainfall have been shown to be ineffective in some cases because they do not incorporate

different water requirements across each phenological stage of crop growth. One of the challenges in incorporating crop

phenology in insurance design is to determine the water requirement in crop growth stages. Borrowing from agronomy, crop

science, and agrometeorology, we adopt evapotranspiration methods in determining water requirements for a crop to

survive in each stage that can be used as a trigger level for a WII product. Using daily rainfall and evapotranspiration data,

we illustrate the use of Monte Carlo risk modeling to price an operational WII and WII-linked credit product. The risk

modeling approach that we develop includes incorporation of correlation between rainfall and evapotranspiration indices

that can minimize significant intertemporal basis risk in WII.
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1. Introduction

In sub-SaharanAfrica (SSA), agriculture is largely practiced

by smallholder farmers, is predominantly rain fed, and is ex-

posed to covariate weather and related risks including frequent

drought leading to significant yield losses and, at times, to total

crop failure (Carter et al. 2014; Leblois and Quirion 2013; Patt

et al. 2010; Shiferaw et al. 2011; Vroege et al. 2021a). Efforts

have been made to mitigate crop yield risks by introducing

insurance products using various forms of weather index in-

surance (WII). These have been favored over ‘‘all peril’’ crop

insurance for a variety of reasons including adverse selection,

moral hazard, and transactional costs (Benami et al. 2021;

Carter et al. 2007; Glauber 2004; Hazell 1992; Skees et al. 1999;

Skees and Barnett 2006; Vroege et al. 2021a). The objective of

WII is to establish a trigger below (or above) which the weather

peril is highly correlated with yield loss. The most common

index is based on cumulative rainfall over a season (Giné and

Yang 2009; Karlan et al. 2014; Shee and Turvey 2012; Shee

et al. 2019) although other notable indices have been proposed

including average area yield (Carter et al. 2007), soil moisture

(Vroege et al. 2021b), heat index (Leppert et al. 2021), vege-

tation indices such as the normalized difference vegetation

index (NDVI) and enhanced vegetation index (EVI; Chantarat

et al. 2013), and commodities prices (Karlan et al. 2011; Shee

and Turvey 2012).

Although promising and showing favorable results where

adopted, index insurance has generally experienced frustratingly

low uptake levels and widespread commercial upscale is yet to

be realized. Two factors have been identified as the cause for the

poor uptake of the products: 1) liquidity constraints, afford-

ability, and willingness to pay among the small-scale farmers

(Ali et al. 2020; Binswanger-Mkhize 2012; Casaburi and Willis

2018; Chantarat et al. 2017; Liu et al. 2020; Smith and Watts

2019); and 2) inherent intertemporal and spatial basis risk

(Barnett andMahul 2007; Jensen andBarrett 2017, 2016;Norton

et al. 2012; Tadesse et al. 2015).

Agricultural and development economists are shifting focus

to index insurance bundled with agricultural loans to address

farmers’ liquidity constraints and affordability issues. Although

promising, the challenges of basis risk remain, which affects

confidence among farmers, insurers, banks, and other stake-

holders in the sector. To minimize intraseasonal basis risk, the

standard approaches to designing WII based on seasonal cu-

mulative rainfall have shown to be ineffective as they do not

incorporate water requirements in each stage of a crop growth

(Bucheli et al. 2020; Shi and Jiang 2016; Turvey 2001; Turvey

et al. 2019). To design effective WII, it is important to consider

crop phenology and water needed for a crop to survive in each

growth stage (Conradt et al. 2015; Dalhaus and Finger 2016;

Dalhaus et al. 2018).

To address problems ofWII (andWII bundled credit) based

on cumulative rainfall, we offer in this paper an alternative

approach. Borrowing from agronomy, crop science, and agro-

meteorology we adapt evapotranspiration methods in deter-

mining water requirements for a crop to survive in each stage

(Allen et al. 1998; Pereira and Alves 2013; Wu 1997) to the

WII problem. Specifically, we evaluate WII using evapotrans-

piration as the triggering event rather than direct rainfall.
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A number of evapotranspiration indices have been identified

as good drought indicators and potentially superior weather

variables that can improve upon the design of WII products

(Bucheli et al. 2020; Enenkel et al. 2018, 2019; Leblois and

Quirion 2013; von Negenborn et al. 2017). Evaporation has the

advantage of weighting soil moisture evaporation in the early

phases of plant development with little canopy cover and

transpiration due to leaf surface expansion and increased

ground cover in later stages. It also has the advantage of cap-

turing the temperature variations and spikes across time and

space, which has been shown to affect yields significantly

(Beguería et al. 2014; Bucheli et al. 2020; Tack Barkley et al.

2017; Tack et al. 2015; Tack Lingenfelser et al. 2017; Vicente-

Serrano et al. 2010).

In this paper, we first present a rainfall index insurance with

specific crop evapotranspiration or water needs as the trigger

variable. Similar products had been alluded to in Leblois and

Quirion’s (2013) review, but the specifics of how aWII contract

designed around specific crop evapotranspiration is absent in

literature. Unlike Bucheli et al. (2020) two evapotranspiration

based indices, our approach does not require historical yield

data and can, therefore, be adapted to sub-Saharan Africa and

other low-income agricultural economies where a high density

of small farms is normally coupled with unavailability of reli-

able historical farm-level and area yield data. Second, we

compare the realized rainfall with a specific crop evapotrans-

piration across four distinct crop growth stages. In doing so, we

can determine rain shortfalls at each growth stage and compute

the corresponding indemnity for that growth stage. The sum of

growth-stage indemnities provides the entire seasonal indem-

nity.We then bundle theWII to a commercial agricultural loan

and hence present an improved risk-contingent credit design.

Last, using ProgramEvaluationResearch Task (PERT)Monte

Carlo distributions, we present a risk modeling approach to

designing a WII and risk-contingent credit (RCC), which are

operational in the Eastern Province of Kenya. The proposed

model uses maize grown in Machakos County, Kenya, as the

underlying crop, but it could be easily adapted for other crops

grown in any other part of the world provided the right

evapotranspiration computation methods are applied.

2. Literature and study background

a. Developments in weather index insurance

and RCC designs

Although linking insurance to credit has been an active de-

bate for over a decade (Binswanger-Mkhize 2012; Carter et al.

2011;Marr et al. 2016;Meyer et al. 2017;Miranda andGonzalez-

Vega 2011; Shee and Turvey 2012; Skees and Barnett 2006;

Skees et al. 2007), there has only been a small number of oper-

ational insurance-linked credit products both in literature and in

the field. Studies specific to bundled, or risk-contingent credit

designs include Giné et al. (2008), Giné and Yang (2009), Shee

and Turvey (2012), Shee et al. (2019), and Turvey et al. (2019).

Giné et al. (2008) and Giné and Yang (2009) discuss and eval-

uate (in India and Malawi, correspondingly) an insurance bun-

dled credit product for farm inputs whose payout is contingent to

rainfall shortfall below crop water needs. They divide the season

into three growth phases, namely, planting, budding/flowering,

and harvesting. Shee and Turvey (2012) definedRCC as a general

term for any credit instrument that imbeds within its structure a

contingent claim, which when triggered transfers part or all of the

borrower’s liability to the lender or integrator/counterparty.

They propose and evaluate an insurance-linked credit prod-

uct based on pulse crops in India where loan repayment re-

duced as pulse-crop prices fall. Turvey et al. (2012) use a

similar approach to evaluate price-linked risk-contingent

credit for dairy farmers in upstate New York based on futures

prices. Karlan et al. (2011) proposed and evaluated a similar

(commodity price contingent) product in Ghana with maize and

garden eggs and set the triggers at 7th percentile of historical

year-long prices formaize and 10th percentile of historical prices

during the harvest period for garden egg. Shee et al. (2019)

document a drought RCC product operational in Machakos

County in Kenya with an indemnity contingent on the perfor-

mance of a cumulative rainfall index with a trigger based on the

15th percentile of historical rainfall measures. The product was

empirically evaluated by Ndegwa et al. (2020) in the first phase

of an RCT implemented in 2017/18. As documented in Turvey

et al. (2019) the cumulative rainfall measure revealed unwork-

able weakness due to intraseasonal basis risk. This required a

redesign based on a multiple-event dynamic trigger model, that

was used in the second implementation of RCC in 2019/20.

Mishra et al. (2020) evaluate the effect of rainfall index insur-

ance on loan application by farmer groups and loan offering by

rural and community banks (RCBs) in Ghana. They bundled

conventional agricultural loans from RCB with existing index

insurance contracts for maize from the Ghana Agricultural

Insurance Programme—a multitrigger WII dividing the season

into three phases, which plays out based on the number of

consecutive dry days during germination, germination to flow-

ering onset, and flowering periods.

A more recent literature has examined the distribution of

rainfall and other weather variables in the form of multiple

events WII across phenological growth stages (Turvey et al.

2019). In their composite WII design, Shi and Jiang (2016)

divided rice growth into six distinctive stages and assumed that

the duration of the growth stages remains unchanged over the

20-yr time series they used to design their product. Working

with wheat from Germany, Dalhaus and Finger (2016) found

that use of crop phenological growth stages reduced temporal

basis risk and hence significantly increased expected utility.

Acknowledging that the start and end of a season and that of

growth stages are not static over the years, Conradt et al. (2015)

proposed a flexible WII design using growing degree-days

(GDD) to determine annual variable start and end dates for

the insured period. They rated the design with wheat from

Kazakhstan and concluded that introduction of flexibility re-

duced basis risk significantly. Dalhaus et al. (2018) conducted a

comparative analysis between using publicly available phe-

nology reports and GDD to determine the start and end of

wheat (in Germany) growth stages and found that use of

phenological reports significantly reduced basis risk while

GDD did not. The somewhat contradicting findings between

Conradt et al. (2015) and Dalhaus et al. (2018) on use of GDD
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is a clear indication that weather variations across the globe

necessitate contextual assessment and documentation of var-

ied approaches of addressing basis risk and hence objectively

chose the locally fitting methods. To address the erratic and

consistent nature of rainfall within a season, Turvey et al.

(2019) proposes a product based on 21-day overlapping cu-

mulative rainfall. They define specific events as 21 fixed days

that are overlapping in measurement but nonoverlapping in

indemnity, which implies a multievent dynamic trigger that can

only indemnify once within a period of 21 days. Although the

start and end of seasons are static in their model, the 21 days

periods are not and starts to count once an indemnity has been

triggered. However, as noted by Odening et al. (2007) and

Odening and Shen (2014), efforts to minimize basis risk often

increases the complexity of theWII products, which can lead to

low insurance uptake. The trade-off between reducing basis

risk and avoiding complexity requires the use of the transpar-

ent and easy to understand designs, which at the same time

mitigates farmers exposure to basis risk (Dalhaus and Finger

2016; Leblois 2014; Patt et al. 2009).

In this study, we present improved WII and RCC designs

where we propose the use of crop evapotranspiration to in-

novatively design a trigger mechanism for rainfall index in-

surance. To minimize intratemporal basis risk, we cumulate

our design variables within Allen et al’s. (1998) four distinct

growth stages, namely, initial, development, mid, and late

stages. These stages have been used for a long time to deter-

mine and schedule irrigation needs but we for the first time

apply the approaches to WII design.

b. The study area

For empirical application and rating of the proposed WII

and RCC designs, we work with historical rainfall and evapo-

transpiration data from 11 distinct divisions of Machakos

County, Kenya. The county is located in the eastern region of

Kenya, and it covers roughly 6000 km2. It is a diverse county

categorized into five agroecological zones, but largely arid

and semiarid, with annual rainfall ranging between 500 and

1300mm (averaging around 700mm) and temperature ranging

between 188 and 298C (Jaetzold et al. 2010; Ministry of

Agriculture, Livestock and Fisheries 2017). Rainfall in this

county is bimodal with the short rains normally coming be-

tweenMarch andMay (first season) and the long rains between

October and December (second season). Agriculture is the

mainstay of livelihoods in Machakos County, employing about

73% of the population and contributing approximately 70% to

the household incomes (Ministry of Agriculture, Livestock and

Fisheries 2017). Approximately 60% of the land is arable,

largely cultivated with food crops such as roots, cereals (pri-

marily maize), and legumes (mostly beans and cow peas).

Production is mostly small-scale subsistence, predominantly

rain fed and subject to recurrent drought.

In Machakos, farmers grow either early maturing (100–

125 days) or extra early maturing (90–110 days) maize varieties.

Extra early maturing varieties continue to gain prominence in

the county due to increasing aridity and poor rainfall distri-

bution where late arrival and early ending of the rains is a

common phenomenon. For the proposed insurance product,

we shall work with the historical long rain season, which occurs

frommid-October to mid-January and consider the extra early

maturing varieties taking 90 days to reach physiological ma-

turity. The model can, however, be adapted to short rain sea-

sons as well as varieties that take longer to reach physiological

maturity.

3. Evapotranspiration approaches in determining water
requirement for crop growth stages

a. Evapotranspiration concept: A case of maize crop

It has been established that for optimal yield, maize requires

500–800mm of water during its total growing period of 90–

110 days for extra early maturing, 125 days for early maturing

and 180 days for late maturing varieties (Critchley et al. 1991).

These are approximate as moisture use varies from farm to

farm, season to season, growth stage to growth stage as well as

day to day. For maize, consumptive use increases with plant

growth where it peaks at flowering and watery grain filling

stages and starts to decline when grain moisture loss starts as

the crop approaches physiological maturity.

Moisture deficit (receiving less than required) at any growth

stage has negative effects on yields but stages such as germi-

nation, flowering, and grain filling aremore critical than others.

The crop water requirement is the amount of water required

by a plant to replenish what has been lost to the atmosphere

through two concomitant but independent natural pro-

cesses, namely, evaporation and transpiration, which com-

bined, result in evapotranspiration. Evaporation is the loss

of moisture from soil surface to the atmosphere while

transpiration is the loss of moisture directly from the crop

via the stomata to the atmosphere. Evaporation is more

important from planting through seedling stage while tran-

spiration becomes more important as plants gain leaves and

cover the ground more and more. Increase in transpiration

due to leaf surface expansion results in reduced direct

evaporation from the soil surface.

Evapotranspiration methods have been widely used for

decades among agronomists, water and agricultural (bio-

systems) engineers and agrometeorologists to determine

crop water requirements and manage water resources in-

cluding irrigation (Wu 1997). Here, irrigation can be defined

by the fraction of crop water requirement not satisfied by

rainfall, soil water storage and groundwater contribution

(Pereira and Alves 2013). In this case, irrigation can be

thought of as an insurance investment against drought but in

reality, maize fields in Kenya and other low-income coun-

tries are rarely irrigated, especially among the smallholder

farmers.

In the context of this paper, the same crop water require-

ment and evapotranspiration approaches will be used in de-

signing the insurance trigger for rainfall index insurance. Our

design has the potential to eliminate basis risk resulting from

erratic rainfall patterns and rainfall-based triggers. The ad-

vantage of this approach is that water deficit will be an indi-

cator of the drought intensity and hence the payout amount.

The water requirement measures can be sequenced along the
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key distinctive crop growth stages to design a multitrigger or

multiple event index insurance.

b. Evapotranspiration computation methods

To estimate crop water requirement using evapotranspira-

tion, the following equation is used for all type of crops in dif-

ferent geographic and agroecological zones (Allen et al. 1998):

ETcrop5K
c
3ETo, (1)

where ETcrop (or ETc) is specific crop evapotranspiration

(mm t21), ETo is the reference crop evapotranspiration (mm

t21), t represents time scale, and Kc is a specified crop factor

that is used as the conversion coefficient to compute/recover a

crop (maize in this case) specific evapotranspiration from the

ETo for a given area and time period. The specific crop coef-

ficients for different growth stages are experimentally obtained

in field trials using

K
c
5
ETcrop

ETo
. (2)

Examples of such experimental field trials include Djaman

et al. (2018), Piccinni et al. (2007), and Piccinni (2009).

Lysimeters are used to measure crop water use (ETcrop)

throughout the growing season. ETo for the same period is

measured directly from a reference crop such as a perennial

grass or computed from weather data using methods such as

Penman–Monteith, Hargreaves, and Blaney–Criddle. In this

study, we use the FAO predetermined crop-specific Kc coef-

ficients available in Table 17 of Allen et al. (1998) for different

crops at different key growth stages.

The reference evapotranspiration (ETo) is the evapotrans-

piration of a disease-free crop grown from a reference surface

that is not short of moisture and fertility (Allen et al. 1998;

Pereira and Alves 2013). Remote sensing reference evapo-

transpiration data is freely available from different weather

and Earth surveillance sites, and, when compared with Kc-

based evapotranspiration estimations, remote sensingmethods

have a strong advantage in spatial accuracy because of the esti-

mation of evapotranspiration for each pixel of a satellite image,

using observed reflected radiation and temperature (Lorite et al.

2018). However, the readily available evapotranspiration data

only dates to 2000. In a situation like ours, where longer historic

data is preferred, reference evapotranspiration can be computed

using some existing methods if the required climate variables,

particularly temperature and extraterrestrial radiation, are avail-

able. Once ETo has been either obtained or computed, it is then

entered into the ETcrop equation above to compute crop

evapotranspiration or the crop water requirement.

There are several empirical approaches to calculate refer-

ence evapotranspiration for a given area that have been tested

and compared for their applicability in different climatic con-

ditions around the globe and appropriate recommendations

made. Of the many, the FAO Penman–Monteith equation

(Allen et al. 1998) is the most recommended but has two

shortcomings; namely, it is a complex method requiring

more climate variables and it ideally should be used with

in situ weather stations data. The paucity of such data in SSA

countries and other low-income countries where weather sta-

tions are few and far between hampers the application of this

method. However, using the meteorological data from nearby

stations, this method ismostly used to calibrate the results from

the other simpler and more pragmatic methods for such re-

gions where physical weather stations data are not available.

There are many alternative methods estimated with both

physical stations and remote sensingmeteorological data. They

come with different features that make them ideal for different

climatic conditions with some of them being limited in terms of

widespread application. Two approaches among them stand

out for consideration in this study. They are Hargreaves

method developed by Hargreaves and Zohrab (1985) and

Blaney–Criddle method developed by Blaney and Criddle

(1962). Both have been widely recommended where only air

temperature data are available and for arid and semiarid areas

(ASALs). They also are straightforward and convenient ap-

proaches to work with. Of the two, Hargreaves method is

considered to be a superior approach in tropical ASALs, and

we chose it for our study (Allen et al. 1998; Maeda et al. 2011;

Tabari 2009; Zhao et al. 2010). Hargreaves ETo is given by

ETo5 0:0023RA(T
max

2T
min

)0:5(T
mean

1 17:8), (3)

where ETo is the reference evapotranspiration (mm day21),

RA is the extraterrestrial radiation, Tmean is mean tempera-

ture, Tmax and Tmin are respectively the maximum and mini-

mum air temperature that is the average of all the daily

maximum or minimum (respectively) temperatures recorded

for the respective time period.

c. Sequencing the ETc and rainfall at key maize
growth stages

In the crop water requirement literature, growth of all crops

from planting to full maturity has been divided into four main

stages, namely, initial, development, midseason, and late-season

stages (Allen et al. 1998). Further, the number of days each crop

takes per stage have been empirically estimated as well as the

keymilestones the crop achieveswithin each stage. Transferable

crop factor (Kc) values for computation of ETcrop from ETo

have also been empirically estimated for specific crops at dif-

ferent growth stages where it is recommended that crop water

requirement be calculated stagewise or for shorter periods, es-

pecially for the determination of the deficit that can be met by

irrigation means. Table 1 shows the growth stages for early and

extra earlymaturingmaize varieties grown in the semiarid areas,

the number of days, and the Kc values for each stage.

We use this information to calculate the stagewise1 water

requirement for maize in all the sub counties of Machakos

1Weekly averaging withHargreavesmethod has also been found

to yield consistent results (Hargreaves and Allen 2003; Wu 1997)

and can yield a superior trigger and cover for the farmers as op-

posed to longer time aggregations such as months or growth pe-

riods. This will, however, be a computationally cumbersomemodel

and where cumulation is used as opposed to moving averages, the

difference may be inconsequential.
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County from 1983 to 2019 and then compare this with the

actual rainfall for the same period and geographic area to

determine whether the maize received enough rainfall and,

if not, determine the deficit in millimeters per meter squared.

We therefore design a multitrigger WII where indemnity

determination is made at growth-stage level. The proposed

design is also in line with latest developments in WII de-

signs where sequencing the weather variables and the index

as opposed to seasonal cumulative is advised (Turvey

et al. 2019).

Figure 1 shows the time series of rainfall and maize evapo-

transpiration using Yathui Division as an example. Rainfall vola-

tility is considerably higher thanmaize evapotranspirationorwater

requirement, which seems to be steady over the years and for all

the growth stages. Figure 2 compares growth-stage cumulation

with seasonal cumulation of rainfall and maize evapotranspiration

for four years (2015–18) using Yatta Division as an example.

Growth-stage cumulations capture the temporal variations that are

lost when cumulation is done at season level. With seasonal cu-

mulation, rainfall receivedwas sufficient tomeet the seasonal-level

maize water requirement for the four years considered. However,

rainfall distribution inMachakos and other ASALs is erratic with

crops frequently experiencing moisture stress in some growth

stages. This can lead to diminished yields that often cannot be

detected by seasonal rainfall cumulations. Yield shortfalls

uncorrelated with the weather index is referred to as basis risk.

d. Weather data sources and processing

Following the Hargreaves method to calculate reference

evapotranspiration, we needed maximum, minimum, and mean

air temperature, alongwith extraterrestrial radiation.Maximum,

minimum, and mean air temperature data were extracted from

ERA5 hourly data on single levels from 1979 to the present

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-

era5-single-levels?tab=overview); ERA5 is a state-of-the-art

climate dataset with a resolution of 0.258, produced by the

European Centre for Medium-Range Weather Forecasts

(ECMWF 2019). As a reanalysis dataset, it couples model data

with observation data to create temporally and spatially

FIG. 1. Yathui Division growth-stage rainfall and ETmaize time series from 1983 to 2019.

TABLE 1.Maize growth stages, number of days, and the associated

Kc values. Allen et al. (1998) provides Kc values and growth-stage

periods based on varieties taking 125 days to reach physiological

maturity. We use this base information to compute the number of

days for other varieties by converting the stagewise number of days

for 125-day varieties as proportions and apportioning them to the

rest accordingly. The Kc values do not change. We augment this

information with our focus group discussions with the community

where we collected the days for various growth stages for maize,

capturing different varieties currently grown.

Growth stage Initial Development Midseason Late season

Kc 0.4 0.8 1.15 0.7

125 days to maturity 20 35 40 30

120 days to maturity 19 34 38 29

110 days to maturity 18 31 35 26

100 days to maturity 16 28 32 24

90 days to maturity 14 25 29 22
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consistent simulations spanning back decades. We access the

ERA5 dataset through Google Earth Engine.2 A shapefile of

divisions administrative boundaries was overlaid on ERA5

variables to capture maximum, minimum, and mean air tem-

perature 2m above the Earth surface. Google Earth Engine

first rasterizes the administrative boundaries to the same scale of

ERA5 data (0.258, i.e., ;30 km), and then aggregates the pixels

of ERA5 data by computing the mean if their centroids are

covered by the boundaries. Temperature data from these sour-

ces come in kelvins. For our calculations, we convert them to

degrees Celsius by subtracting 273.15: [T(8C)5 T(K)2 273.15].

Following the equations and process documented in Allen

et al. (1998), extraterrestrial radiation (RA) for each day of the

year were calculated using the solar constant, the inverse rel-

ative Earth–sun distance, the sunset hour angle, the solar

declination, latitude, and the number of the day in the year.

For latitudes, we use latitudes of the centroids of divisions

boundaries as an approximation. The process of calculating

RA in millimeters per day is shown in Appendix A.

For rainfall, weuseClimateHazardsCenter InfraredPrecipitation

with Station Data (CHIRPS; https://data.chc.ucsb.edu/products/

CHIRPS-2.0/) 0.058 gridded precipitation data covering the

majority of the world (508S–508N) from 1981 to near present

(Funk et al. 2015). It is created by calibrating satellite imagery

utilizing in situ station data, which improves accuracy. We use

the version-2.0 global daily set. The CHIRPS data were pro-

cessed in Google Earth Engine. The administrative boundaries

at divisions level of Machakos County were overlaid on CHIRPS

precipitation data. Google Earth Engine first rasterize the ad-

ministrative boundaries to the same scale of CHIRPS data

(0.058, i.e., ;5.5 km), and then aggregates the pixels of precipi-

tation data if their centroid is covered by the boundaries. The

CHIRPS dataset has one image in ‘‘GeoTIFF’’ format for each

day; for each day, we computed the mean value of all the pixels

located within division and use that as the average precipitation

at the respective division. The function was mapped over all the

desirable dates to create time series daily rainfall data from 1983

to 2019, which were then exported in delimited format. In

summary, average precipitation was extracted for each division

at each day between 1 January 1983 and 31 December 2019.

FIG. 2. Growth stages and seasonal cumulation of rainfall and ETmaize for 2015–18 for Yatta Division.

2 Google Earth Engine is an online platform that not only hosts

an abundant repository of satellite imagery and geospatial datasets

but also provides extraordinary computation power for data pro-

cessing, supported by Google’s cloud infrastructure.
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4. Multitrigger WII and RCC designs

a. Defining the index, strike, and indemnifiable losses

We have growth stages t (1–4) within each season T per year

j. To achieve a sequenced measure of our index and trigger

variables, we work with growth stage t, cumulative rainfall index

I, and maize crop evapotranspiration (ETc) within a specified

season T. This will mitigate intertemporal basis risk significantly

relative to season-level cumulation as has been the norm.

In general terms, a farmer who buys index insurance receives

a payout from the insurer if the index I is less than a pre-

determined strike/trigger level S. In most index insurance de-

sign, the strike level has been set as a percentage of the historical

average of the underlying index variable representing a point

below which a farmer would experience significant losses

warranting a payout.3 We depart from this approach and use

rainfall as our primary index variable and maize crop evapo-

transpiration (ETc) as a trigger variable.

InWII design, yieldYigT can be looked at as a function of the

index, other weather variables vgtT, which may not be captured

by the index, and a host of farm/household idiosyncratic traits

xigtT and unobservable household and farm heterogeneity «igtT:

Y
igT

5 f (I
gtT

,v
gtT

, x
igtT

, «
igtT

): (4)

In our case, IgtT is a rainfall index that represents the actual

rainfall realized in area/division g during the growth stage t in

season T. However, maize crop from division g requires ETcgtT
amount of water during growth stage t for optimum yield, but

in some instances, rainfall falls below the required amount. A

sequenced drought index insurance should be able to measure

the losses incurred in a rain-fed agricultural system when

rainfall falls below the required amount during a specific

growth stage or when (IgtT , EtcgtT). Therefore, growth-stage

rainfall shortage D associated with the choice index I can be

expressed as the difference between the trigger variable ETc

and the realized rainfall index I:

D
gtT

5ETc
gtT

2 I
gtT

. (5)

The rainfall shortfall expression above would detect all

levels of rainfall shortfall and hence trigger a payout even

when rainfall deficiency is not large enough to cause adequate

damage to warrant indemnity.4 It would be an appealing

product to the farmers in terms of level of coverage but the

high indemnity probability results in exorbitantly high

premiums that farmers may not afford or even be willing to

pay (see Shee et al. 2020 for the trade-off between cover-

age and price). To capture economic losses only high

enough to warrant an insurance indemnity and hence lead

to reasonable payout probabilities and premiums, we design a

trigger/strike level S based on ETcgtT and discount it by a

factor t where 0 , t # 1. We therefore propose a rainfall

index insurance based on the rainfall probability distribu-

tion below an evapotranspiration-based trigger S, which is

given by

S
gtT

5ETc
gtT

3 t , (6)

and hence we can express the indemnifiable losses as adjusted

rainfall shortage by

De
gtT 5 (ETc

gtT
3 t)2 I

gtT
5 S

gtT
2 I

gtT
. (7)

For a trigger SgtT, we set our t at 0.3 to best capture cumu-

lative growth-stage rainfall deficiency below 30% of maize

water requirement ETcgtT. A quick check shows 0.49 (49%)

payout probability, which resonates with the study area where

diminished yields due to recurrent droughts is commonplace, a

true reflection of ASALs in Africa. The probability would

come down significantly when the insurance product is based

on data from areas receiving higher and well distributed rain-

fall, and the reverse is true.

In agricultural insurance and finance, one may be interested

in hedging either 1) the capital, and assuming this was bor-

rowed, then RCC is implied, or 2) yield losses where sum in-

sured is based on the estimation of the value of the anticipated

yields in the absence of drought. The choice of what to cover

against drought, either the credit/investment or yields, deter-

mine the tick value, which is the monetary value of each unit

loss, in this case, each millimeter below the trigger SgtT. We

define the tick as the ratio of sum insured to the trigger variable

(ETc). Below, we present a design purely for RCC. This can be

scaled to a farm yield stand-alone insurance product by use of

appropriate tick value.

b. RCC—A design purely for agricultural loans

We define tick value for agricultural credit as

d
gtT

5
f

ETc
gtT

, (8)

where f is the loan principal, the actual amount advanced to

the farmer by a bank for agricultural production at the beginning

of a season, and hence the sum insured. A farmer who took

credit f at the beginning of a season qualifies for an indem-

nity lgtT at the end of each growth stage whenever the cu-

mulative rainfall during growth period t in season T falls

below the trigger SgtT. Following Bucheli et al. (2020),

Martin et al. (2001), Ozaki (2009), and Turvey (2001), the

payout determination of a WII follows the European put

option design and hence the growth-stage indemnity lgtT is

given by

3 For instance, Shee and Turvey (2012) and Shee et al. (2019), in

studies contemporary to this one, proposed RCC and used rainfall

as the index and set the trigger at 15th percentile of the cumulative

rainfall realized at the end of the season. In their improved RCC

model, they developed a dynamic trigger based on 21-day moving

average of historic rainfall records and set the trigger at 60%

(Turvey et al. 2019). Bucheli et al. (2020) compared different in-

dices with lower partial moments set at the level of the respective

index that coincide with 30% of yield for a specific farm.
4 A quick check with historical rainfall and ETc data from 11

subcounties of Machakos County in Kenya produced 0.91 (91%)

indemnity probability, resulting in 32.7 of 36 years covered in the

study (1983–2019).
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l
gtT

5 d
gtT

3max[(S
gtT

2 I
gtT

), 0]. (9)

At the end of the season, a farmer with the multitrigger RCC

will be indemnified according to the sum of all the growth-stage

indemnities within a specified seasonT in division/area/region g:

U
gT

5�
n54

i5t51

fd
gtT

3max[(S
gtT

2 I
gtT

), 0]g5�
n54

i5t51

l
gtT

, (10)

where the insurer deposits the payout in the farmer’s loan ac-

count directly at the end of the loan contract or once the in-

demnity determination has been made.

To compute actuarially fair premiums, we compute the

arithmetic mean of season-level payouts over the years (j 5 1,

j 5 2, . . . , j 5 n 2 1):

r
gTj

5
U

gT,j51
1U

gT,j52
1U

gT,j53
1 � � � 1U

gT(j5n21)

n2 1
, (11)

which can be simplified as

r
gTj

5
1

n2 1
3�

n21

j51

U
gTj

: (12)

Ideally, with microinsurance, a policy holder is required to

pay up the premium amount r to the insurer at the beginning of

the contract, or in this case at the point of taking the loan.

Because many small-scale farmers are liquidity constrained

(Ali et al. 2020; Chantarat et al. 2017; Liu et al. 2020; Smith and

Watts 2019) we add the insurance premium to the loan prin-

cipal (f1 r). The bank then remits the premium amount to the

insurer at the beginning of the season when the loan is taken

and charges standard interest x* on the new composite figure.

We therefore define the present value of loan repayment for

farmer i from division/area g in season T in year j as

8F
igTj

5 (f
igTj

1 r
gTj

)ex*T 2U
gTj

: (13)

c. Risk modeling with PERT Monte Carlo distribution

To achieve greater precision and robustness in the compu-

tation of actuarially fair premiums, we present a risk modeling

approach to designing a WII and RCC and propose the use of

probability distributions from where one can draw infinite

occurrences of different possible rainfall and evapotranspira-

tion outcomes in line with the asymptotic theory. Since both

rainfall and evapotranspiration vary over time and space, we

treat both as random variables. Nevertheless, we have ob-

served an almost perfect and positive spatial correlation for

both variables and negative bivariate correlation between

them (see the correlation matrices in Tables B1, B2, and B3

in appendix B). As such, we apply both spatial and bivariate

correlated probability distributions where we correlate all the

divisions in Machakos and also correlate rainfall and evapo-

transpiration within each division. Using the ‘‘@RISK’’ distri-

bution fitting features, wemodel spatially and bivariate correlated

PERT Monte Carlo distributions for both rainfall and evapo-

transpiration separately, discount the evapotranspiration by our

t term as illustrated in Eq. (6) and hence compute a random in-

demnifiable rainfall shortfall in Eq. (7) {max[(ETcgtT 3 t)2 IgtT,

0]}. Combining the rainfall and evapotranspiration distributions

gives us a new distribution for the indemnifiable rainfall shortfall

with the following four properties:

mean:De
gtT

5E(S
gtT

2 I
gtT

)5E(S
gtT

)2E(I
gtT

)5m
SgtT

2m
IgtT

,

(14)

variance: Var(De
gtT)5E S

gtT
2m

SgtT

� �2
� �

1E I
gtT

2m
IgtT

� �2
� �

,

(15)

covariance: Cov(S
gtT

, I
gtT

)5E½ S
gtT

2m
SgtT

� �
3 I

gtT
2m

IgtT

� ��, and (16)

standard deviation:s
De

gtT

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E S

gtT
2m

SgtT

� �2
� �

1E I
gtT

2m
IgtT

� �2
� �s

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(De

gtT)
q

(17)

Originally developed by Malcolm et al. (1959), PERT is a

continuous probability distribution defined by minimum a,

modem, andmaximum b values that a variable can take, where

the mean of the simulated variable is given by

m5
a1 4m1b

6
. (18)

We find PERT distribution as the appropriate simulation

model for rainfall and evapotranspiration mainly because,

unlike other distributions, it is bounded by their historical

minimum and maximum records and would never drift to in-

finity, which is the case with the two variables. We bank on the

flexibility of PERT, which allows for higher-order moments vis

skewness and kurtosis in distribution curves, to achieve precise

rainfall deficiency and actuarial premiums. Further, in a study

contemporary to this one, PERT distribution were validated

against time series approaches [mainly seasonal autoregressive

integrated moving average (SARIMA) and its variants] where

PERT distribution was found to be more appropriate in rainfall

simulation (Li 2018; Shee et al. 2019). Figures 3 and 4 respec-

tively present, for growth stages 1–4, rainfall and maize evapo-

transpiration PERT distributions based on raw historical data

parameters (minimum, mode, and maximum) for four divisions.

5. An empirical example

Using raw historical rainfall and maize evapotranspiration

data from Machakos County in Kenya and a risk modeling
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framework with @RISK software, we specify PERT Monte

Carlo simulation functions for both weather variables. To

capture sufficient possible values for either, as well as sufficient

possible combinations of both, we run one simulation set with

10 000 iterations. Using their respective equations, we then

compute stagewise random rainfall shortfalls [Eq. (7)], tick

values [Eq. (8)], and indemnities [Eq. (9)]. To mitigate against

intratemporal basis risks, all simulations as well as triggers,

FIG. 3. For growth stages 1–4, PERT distributions for rainfall from four divisions: blue for Central Machakos, red for Yatta, green for

Matungulu, and violet for Kalama. (top left) Growth stage 1 is initial stage, (top right) growth stage 2 is development stage, (bottom right)

growth stage 3 is midstage, and (bottom left) growth stage 4 is late stage.

FIG. 4. As in Fig. 3, but for maize evapotranspiration (ETmaize).
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rainfall shortfalls, and indemnities computations were done

separately for each growth stage. We then sum up all the

stagewise indemnities to get a seasonal indemnity for each it-

eration [Eq. (10)]. Further, we get the mean seasonal indem-

nity from all the iterations that gives us the actuarially fair

premiums. Tomitigate against spatial basis risks, we keep all of

the computations and models at the division level.

a. Rainfall triggers and shortfalls

As already indicated, since both growth-stage rainfall and

evapotranspiration vary over time and space, we treat them as

random variables and hence simulate both. Figure 5 shows the

mean of growth-stage rainfall and Fig. 6 the mean of the trig-

gers from simulation iterations for all the 11 divisions and the

average of them. The spatial correlation across the divisions

can be seen in the similar and almost equal trends. In line with

the raw historical data, the first stage receives the least rainfall,

followed by the fourth stage. The second stage receives the

highest. Figure 7 shows the distributions of simulated rainfall

for Central Machakos rainfall for four growth stages with the

average triggers and the percentage of entries above and below

each trigger indicated. The triggers indicated here are averages

from the iterations and hence should be looked at as indicative

and not the ones the indemnities are based on. The fourth stage

(late) had the highest payout probability where 22.2% of the

cases were below the average trigger. First (initial) stage was

second with 16.3% payout probability followed by third (mid-)

stage, which had 10.5%payout probability. The average trigger

for the second (development) stage was 15.4mm, which was

way below the minimum rainfall amount registered for that

stage. This indicates that, for Central Machakos, there was no

payout triggered for this stage, which is consistent with other

results discussed below.

b. Tick values

As mentioned in section 4b, we define the tick value, the

amount paid for each rainfall mm below the trigger, as the ratio

of sum insured (principal amount for RCC) to crop evapo-

transpiration. In other words, the tick is the unit value of the

amount of water required at each growth stage for the crop to

yield optimally at the end of the season. In line with the reality

where ticks vary across seasons, growth stages, and divisions,

our model calculated a tick value for each growth stage and

iteration that was used to compute the payout for that partic-

ular iteration, which actually represents a complete season. For

illustration, Table 2 presents the mean of ticks across growth

stages for all of the divisions and their average.

c. Growth stages, seasonal indemnities, and premiums

Table 3 shows average growth-stage indemnities for a loan

of KES 10,000 (USD 100),5 which was deemed sufficient for

cultivation of one acre with maize and its main intercrops. The

highest payouts are earned in stage 4, the late stage, with an

average of KES 372. Ndithini Division had the highest

(KES 451) and Kathiani had the least (KES 312). This is

followed by stage 1, the initial stage, with an average of

KES 158, where Central Machakos leads with KES 251 and

Matungulu trails with zero payout at stage 1. Stage 3,

midstage, had the third highest payouts with an average of

KES 140, with Ndithini leading (KES 192) and Kalama

with the least (KES 79). There were, evidently, no in-

demnities triggered in stage 2, the development stage,

where almost all the divisions earned nil payouts apart

from Masinga and Matungulu, which earned negligible

amounts of KES 4 and KES 5, respectively. The results are

in line with stagewise differentiation of the raw historical

rainfall and maize evapotranspiration data as shown in

Fig. 2. The temporospatial variations are also evidently

clear in these results, with substantial payout differences

across stages and divisions.

Figure 8 shows trigger and indemnity structures at

growth-stage levels using Central Machakos as an exam-

ple. We have 11 such structures, one for each division. The

vertical delimiters indicate the average trigger points that

were 4.8, 30.5, and 18.5 mm for initial, mid-, and late

stages, respectively. The horizontal delimiters indicate the

average payouts/indemnities as discussed in Table 3. The

mechanism for the development stage shows no payouts

were triggered as the rainfall for this stage was in almost all

instances sufficient to meet the crop needs.

FIG. 5. Mean of simulated rainfall from the iterations.

FIG. 6. Mean of adjusted maize evapotranspiration/triggers from

the iterations.

5 The exchange rate for Kenya shillings to USD was USD 1 5
KES 100, and the same applies for this paper.
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As discussed throughout this paper, payout determination

and calculation are stagewise but for ease and convenience of

running the product, it is operated at seasonal level with the

summation of the indemnities from all growth stages. To avoid

payouts that do not make financial and economic sense to both

farmers and insurance companies, we impose a minimum

payout (m 5 KES 500) if and only if there was a payout trig-

gered at the end of the season.

Table 4 gives a summary of the product for all 11 divisions of

Machakos County. Payout probability for the product ranges

from 33.14% in Matungulu to 46.83% in Mavoko, with an

average of 40.25%. This is a true depiction of the rainfall and

aridity variations across the divisions and the agroecological

zoning of the county. In our design, we worked with a loan of

KES 10,000, which represents the sum insured, which can be

scaled up or down based on one’s needs. With that, we calcu-

lated actuarially fair premium rates that we believe are suffi-

ciently robust and stable. They range from 5.4% in Matungulu

to 8.1% in Mavoko with an average of 6.9%. For commercial

offering and markup, we set a loading factor of 25%, which is

based on our previous experience with insurers and banks from

the region. This increases the lowest premium to 6.8%, the

highest premium to 10.1%, and the average premium to 8.6%.

The rates may sound somewhat high but are justifiable given

the aridity in these areas as reflected in payout probabilities

that average at 40.25%.

6. Discussion

Uninsured weather risks are a major bottleneck to small-

holders’ productivity and access to investment credit especially

when their anticipated farm produce is the main source of

revenue for loan repayment. The traditional all-peril crop in-

surance has failed among this category of farmers mainly due to

adverse selection, moral hazard, and high transactional costs

from physical assessment of losses. Weather index insurance has

raised the hopes of providing affordable formal insurance to

smallholders by hedging their agricultural production against the

main covariate risks that devastate their farms and livelihoods.

While free of adverse selection and moral hazards limitations,

WII products are faced with the basis risk challenge, which to-

gether with farmers’ liquidity constraint has led to its low uptake.

We contribute to the literature with a new design for an

improved rainfall index insurance that can be applied as stand-

alone insurance product, or as provided in this paper, a

FIG. 7. Simulation output for the four growth stages of rainfall in Central Machakos showing the average trigger (30% of maize

evapotranspiration) for each stage. CentralMachakos is used as an example that is a depiction of simulation distribution outputs for all the

other divisions.

TABLE 2. Average tick values by growth stages and divisions

(identification numbers are in parentheses).

Divisions Stage 1 Stage 2 Stage 3 Stage 4

Central Machakos (208) 685.94 194.95 101.98 190.76

Yathui (213) 667.45 190.53 100.02 187.56

Yatta (214) 662.61 188.74 98.00 183.58

Masinga (225) 659.34 187.17 96.76 180.72

Matungulu (230) 684.12 194.29 99.46 184.94

Kalama (248) 681.92 194.15 102.10 190.91

Kathiani (251) 688.68 195.89 101.72 190.05

Mwala (252) 671.35 191.63 99.68 186.25

Kangundo (263) 683.06 195.09 100.56 187.17

Ndithini (264) 692.14 194.29 96.61 176.72

Mavoko (265) 693.45 195.02 100.37 187.68

Mean 679.10 192.88 99.75 186.03
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bundled risk-contingent credit product. Rainfall is the most

used index for WII in SSA where drought is the most im-

portant covariate risk. First, we improve the triggering

mechanism by introducing the use of crop evapotranspira-

tion (crop water requirement) as a trigger for rainfall index

insurance. We believe this is a more objective way of de-

termining the trigger, especially in SSA and other low-

income countries where reliable historical farm yield data

are entirely unavailable and hence impractical to predict

yield using standard regression methods as is common in

other parts of the world (Bucheli et al. 2020; Conradt et al.

2015; Dalhaus and Finger 2016; Dalhaus et al. 2018; Vroege

et al. 2021b). Evapotranspiration has been identified in

several papers as a potential weather variable in design of

WII but so far there is no substantive product design

particularly where crop evapotranspiration is used without

yield data. Bucheli et al. (2020) compared different WII

designs and conclude that evaporative stress index (ESI)

was most beneficial for wheat farmers in eastern Germany.

The approach would, however, not be applicable in the ab-

sence of accurate farm-level or area average yields, which is

common among smallholders in SSA. von Negenborn et al.

(2017) explored the influence of precipitation and evapo-

transpiration indices on the credit risk of farmers from

Madagascar and found that weather-related part of the

credit risk of farmers can be better explained by evapo-

transpiration than by a precipitation index. They ac-

knowledged the potential for weather index insurance that

is based on an evapotranspiration index. Blakeley et al.

(2020) assessed the applicability of reference evapotrans-

piration and precipitation in designing WII and concluded

that both are not perfect substitutes for monitoring crop

deficits and that there may be space to use both for index

insurance design. Beyond exploring this space, we go farther and

apply Allen et al. (1998) approaches to compute specific crop

evapotranspiration/water requirement from the reference

evapotranspiration and use that as a trigger for rainfall index

insurance. We work with maize grown by smallholders from

Machakos County, Kenya, but the model can be adapted for

any crop grown in any part of the globe.

Second, following Allen et al. (1998), we divide the season

into four distinct crop growth stages and cumulate rainfall

and evapotranspiration at these stages and hence substan-

tially reduce intertemporal basis risk. Allen et al.’s (1998)

approaches of season sequencing and evapotranspiration

have been used for years in irrigation need determination

FIG. 8. Growth-stage trigger and indemnity structures, using Central Machakos as an example, for growth stages (top left) 1, (top right) 2,

(bottom right) 3, and (bottom left) 4.

TABLE 3. Average growth-stage indemnities for all divisions.

Division Stage 1 Stage 2 Stage 3 Stage 4

Central Machakos 251.09 0.00 122.47 344.35

Yathui 190.94 0.00 89.34 397.93

Yatta 179.41 0.00 122.41 438.82

Masinga 162.86 4.33 189.99 411.16

Matungulu 00.00 5.11 187.00 340.55

Kalama 168.13 0.00 78.63 314.87

Kathiani 176.51 0.00 109.40 311.61

Mwala 196.66 0.00 97.21 374.88

Kangundo 166.44 0.00 165.01 337.72

Ndithini 13.01 0.00 191.75 450.86

Mavoko 229.35 0.00 186.27 373.96

Mean 157.67 0.86 139.95 372.43
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and scheduling. As agronomists and biosystems engineers

use the water need to determine irrigation thresholds and

needs, we use it to trigger and compute indemnity.We consider

the start and end of growth stages and seasons to be static over

the years, with the long rain season for Machakos starting

around early October until mid-January the following year.

Literature on reducing intertemporal basis risk by assessing

crop phenological stages is now gaining track (Blakeley et al.

2020; Dalhaus and Finger 2016; Dalhaus et al. 2018; Shi and

Jiang 2016; Turvey et al. 2019). Among the proposed ap-

proaches, we feel Allen et al. (1998) would be a good candidate

since it is applicable to any crop.

Third, we bundle the WII to agricultural loans and hence

present an improvement of the existing RCC. There have

been mixed findings on the up take of insurance bundled

loans with some reporting no effect, some positive effect

(Bellissa et al. 2020; Gallenstein et al. 2021; Mishra et al.

2020; Ndegwa et al. 2020), and others negative effect (Giné
and Yang 2009). Inherent basis risk and complexity of

WII has a negative effect on the uptake of insurance bun-

dled credit. Our proposed design significantly improves the

triggering mechanism and sequences the variables at phe-

notypic growth stages of the underlying crop hence reduc-

ing intertemporal basis risk. Further, the design compares

crop water requirement and realized precipitation that are

straightforward and easily comprehensible to the banks,

insurers, and farmers.

Fourth, we adjust crop evapotranspiration with t 5 0.3 to

only indemnify serious drought where a crop receives below

30% of its water needs at specific stages and impose a min-

imum payout of KES 500 (if triggered at least once) to avoid

meagre payouts that do not make economic and financial

sense. To achieve greater precision in premiums calcula-

tions, we use Monte Carlo simulation with correlated PERT

distribution and generate 10 000 iterations of both rainfall

and crop evapotranspiration. Using @RISK software for

Monte Carlo simulations, we apply spatial correlation as

in Shee et al. (2019) and for the first time apply bivariate

correlation between rainfall and crop evapotranspiration.

This plays a major role in dealing with remaining basis risk

in the WII and RCC design, especially given the spatial and

bivariate correlation observed in the raw historical data.

The design leads to about 40.3% average payout probability

across 11 divisions with the highest being 46.8% and the lowest

33.1%. This is in harmony with the increasing aridity and re-

current drought in the county. Further, the average actuarial

premium rate (before loading) across the divisions was 6.9%

for a loan of KES 10,000. The highest actuarial premium rate

was 8.1%, and the lowest was 5.4%.

7. Conclusions

In this paper, we present improved weather index insurance

and risk-contingent credit designs ideal for the sub-Saharan

Africa and other low-income economies with an abundance of

small farms and absence of reliable yield data. Working with

maize from Machakos County in Kenya as our case study, we

develop a rainfall index insurance whose trigger is the specific

crop evapotranspiration that is equal to crop water require-

ment. We sequence the product at crop phenotypic growth

stages, which mitigates intertemporal basis risk. We also keep

the product designs within divisions to control for spatial basis

risk. We see some significant temporal and spatial variations in

the payouts and premiums but on average, the product leads to

about 40% indemnity probability and about 7% actuarial

premium rate. An indemnity probability of 40% is in line with

the recurrent drought and increasing aridity in the area. We

also consider a premium rate of 7% acceptable given the in-

demnity chances and in comparison with other products of-

fered to farmers in Africa.

Besides literature and research furtherance, our proposed

product has benefits for the insurers, financial institutions,

and farmers. Not only does it complement the available

index insurance products but also substantially improves

the triggering mechanism and hence reduces intertemporal

basis risk. It hence expands and improves the options for

insurers and lenders keen on expanding their portfolios

among farming households, especially the rural smallholders

from low-income countries where yield data is difficult to come

by. This would in return enhance risk management op-

tions and credit access among smallholders, which have

been proven to have investment, productivity, and welfare

benefits for such households. Our proposed product leads

to 40% indemnity probability and 7% actuarial premium

rates. This is, by all means, a favorable product for farmers

and hence, policy makers, insurers, and banks could consider

our design to promote affordable insurance and insurance-

linked credit to smallholder households. Further, policy

makers and development practitioners who have been pro-

moting insurance among the smallholders in the region could

consider our approaches and develop products for specific

crops, considering growth stages to minimize intertemporal

basis risk. It also calls for development of appropriate educa-

tional materials able to cover the main concepts and yet be

simple enough for the farmers in this region who mostly have

low literacy and numeracy levels.

TABLE 4. Seasonal indemnities and insurance premiums for all

divisions.

Divisions

Payout

probabilities

Actuarial

premiums

(KES)

Actuarial

premium

rates

Commercial

premium

rates

Central

Machakos

41.83% 733.3 7.3% 9.2%

Yathui 40.09% 691.6 6.9% 8.6%

Yatta 43.66% 755.1 7.6% 9.4%

Masinga 44.52% 783.8 7.8% 9.8%

Matungulu 33.14% 544.3 5.4% 6.8%

Kalama 35.43% 575.0 5.7% 7.2%

Kathiani 36.29% 611.8 6.1% 7.6%

Mwala 40.17% 683.5 6.8% 8.5%

Kangundo 40.12% 683.7 6.8% 8.5%

Ndithini 40.66% 672.0 6.7% 8.4%

Mavoko 46.83% 806.5 8.1% 10.1%

Avg 40.25% 685.5 6.9% 8.6%
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One of the drawbacks of our models is the absence of his-

torical yield data. It is therefore impossible to empirically proof

basis risk reduction. Most of the modern index insurance

products from the developed economies have the advantage of

accessing farm-level reliable yield data and hence can assess

the influence of the weather variables used on yield and

therefore design more objective indices and triggers. This calls

for the agricultural ministries in this region tomake some effort

to collect, store, and make available reliable yield data. Given

the size and density of farms in the region, it will be rare

that a farm-level insurance product would be developed and

hence area average yield data suffice. Having said that, we

also believe that satellite-based biomass estimates such as

NDVI and EVI could be used as a proxy for crop yield to

assess the quality of our index. This, however, is outside the

scope of this paper and we leave it to future investigations.

Further, an open area of future investigation is how this

product would work with multiple crops or even whole farm

index insurance. Further, future research could assess how

the current debate on allowing for flexibility and annual

variability on the start and end of growth stages and seasons

would work with this approach (Conradt et al. 2015;

Dalhaus et al. 2018). This should, however, not be at the

expense of simplicity in design because complex WII de-

signs face a communication hurdle and hence low accep-

tance and adoption in the field (Dalhaus and Finger 2016;

Giné and Yang 2009; Leblois 2014; Odening et al. 2007;

Odening and Shen 2014; Patt et al. 2009, 2010).
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APPENDIX A

Calculating Extraterrestrial Radiation (Ra)

Extraterrestrial radiation is given by

RA
MJ

5
243 60

p
G

sc
d
r
f[v

s
sin(u) sin(d)]

1 [cos(u) cos(d) sin(v
s
)]g,

where RAMJ is extraterrestrial radiation (MJ m22 day21); Gsc 5
0.0820MJm22min21 is solar constant; p 5 3.151 59 is a mathe-

matical constant; dr is inverse relativeEarth–sun distance given by

dr 5 1 1 0.033 cos[(2p/365)J], where J is the yearday between 1

(1 January) and 365 or 366 (31 December); u is latitude in ra-

dians given by (p/180) 3 decimal degrees of latitude; dr is

solar declination in radians given by 0.409 sin[(2p/365)J 2
1.39]; and vs is sunset hour angle in radians given by arccos

[2tan(u) tan(d)]. The process above gives radiation RAMJ in

megajoules per meter squared per day, which is converted to

millimeters per day by RAmm 5 RAMJ 3 0.408.

APPENDIX B

Correlation Matrices

The full spatial correlation matrices over divisions and

growth stages for rainfall (Table B1) and maize evapotrans-

piration (Table B2) are given here. Also shown are the bivar-

iate correlation matrices for rainfall versus evaporation over

divisions for each growth stage (Table B3).
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