
R-Chain: A Universally Composable Relay
Resilience Framework for Smart Grids

Abubakar Sadiq Sani∗‡, Dong Yuan†, Ke Meng∗, and Zhao Yang Dong∗
∗ School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, Australia

Email: [sadiq.sani, ke.meng, joe.dong]@unsw.edu.au
† School of Electrical and Information Engineering, The University of Sydney, Sydney, Australia

Email: dong.yuan@sydney.edu.au
‡ School of Computing and Mathematical Sciences, University of Greenwich, London, United Kingdom

Email: s.sani@greenwich.ac.uk

Abstract—Smart grids can be exposed to relay attacks (or
wormhole attacks) resulting from weaknesses in cryptographic
operations such as authentication and key derivation associated
with process automation protocols. Relay attacks refer to attacks
in which authentication is evaded without needing to attack the
smart grid itself. By using a universal composability model that
provides a strong security notion for designing cryptographic
operations, we formulate the necessary relay resilience settings for
strengthening authentication and key derivation and enhancing
relay security in process automation protocols in this paper.
We introduce R-Chain, a universally composable relay resilience
framework that prevents bypass of cryptographic operations.
Our framework provides an ideal chaining functionality that in-
tegrates all cryptographic operations such that all outputs from a
preceding operation are used as input to the subsequent operation
to support relay resilience. We apply R-Chain to provide relay
resilience in a practical smart grid process automation protocol,
namely WirelessHART.

Index Terms—relay resilience, universal composability, authen-
tication, key derivation, smart grids.

I. INTRODUCTION

Smart grids are susceptible to relay attacks by which an
active adversary initiates communication between two de-
vices or users to bypass security defences or recover secret
cryptographic keys (see, e.g., [1]). Some process automation
protocols such as WirelessHART [2] for smart grid commu-
nication have been shown to be vulnerable to relay attacks
because of weak authentication and/or cryptographic keys.
While stronger key derivation schemes and authentication
protocols can be applied to mitigate relay attacks, many of
such schemes and protocols have vulnerabilities such as lack of
randomization, inability to verify and validate the computation
time of cryptographic operations, and use of pre-established
shared secret keys. This implies that smart grids rely on
insecure schemes and protocols. An adversary in smart grid,
for example, can use a genuine user as a relay to propagate
relay attacks [1]. Note that the terms “user” and “device” are
often used interchangeably in this paper.

In the wake of relay vulnerability disclosures in several
process automation protocols such as WirelessHART, Modbus
[3] and Foundation Fieldbus [4], the community reacted by

proposing or recommending key derivation schemes or authen-
tication protocols [1], [5]. Furthermore, Distributed Network
Protocol 3 (DNP3) [6] used in smart grids is supported by an
authentication protocol during process automation. However,
our research shows that when an authentication protocol is
not properly integrated with a key derivation scheme, relay
attacks can still be carried out, for example, by deriving shared
secret keys between unauthenticated users. Thus, the lack of
integrating the key derivation scheme and authentication pro-
tocol opens opportunities for relay attacks. Furthermore, such
integration must be carefully designed to prevent the bypassing
of cryptographic operations that support relay resilience.

In this paper, we propose a relay resilience framework, i.e.,
R-Chain, for providing a relay resilience solution using in-
tegrated cryptographic operations, knowledge of computation
time of the operations, and cryptographic timestamps based on
universal composability [7], which allows the modular design
of complex cryptographic protocols. More specifically, our
contributions are as follows: (I) We extend the Kusters’s the-
orem that handles concurrent composition of a fixed number
of protocol systems to handle the chaining of cryptographic
operations. This is a crucial step as many protocols in smart
grids are not able to not ensure relay resilience because of
cryptographic operations bypass. (II) We present an ideal
chaining functionality FCC that uses our new theorem and
supports several cryptographic primitives. (III) We propose
and prove a realization PCC of FCC . (V) We implement R-
Chain. (V) We describe and mitigate relay vulnerabilities in
the WirelessHART protocol.

II. PRELIMINARIES

A. The General Notion of Universal Composability

In universal composability models, we have real and ideal
protocols. An ideal protocol, also known as ideal function-
ality, represents the desired behaviour and intended security
properties of a protocol. The real protocol, also known as real
functionality, represents the protocol to design and analyze
and should be at least as secure as the ideal protocol, i.e., it
realizes the ideal protocol. For the ideal protocol, there exists
an ideal adversary or a simulator while a real adversary exists

for the real protocol, such that there is no environment that
can distinguish between real and ideal settings.

B. Inexhaustible Interactive Turing Machine (IITM) Model

The IITM model [7] with responsive environments from
[8] is a universal composability model that consists of a
general computational model and provides several composi-
tion theorems. The general computational model is defined
by systems of interactive Turing machines. There are three
different types of systems in the IITM model: i) real and
ideal protocols/functionalities; ii) adversaries and simulators;
and iii) environments. The real and ideal protocols and the
environmental systems have an Input/Output (I/O) and network
interfaces or tapes, while the adversarial systems have only
network tapes. We say that the environmental and adversarial
systems are responsive if they immediately respond to so-
called restricting messages on the network. Restricting mes-
sages are represented in the form (Respond, id,m), where id
and m are random bit strings. They are used for enforcing the
natural execution of a protocol in universal composability.

C. Kusters’s Composition Theorem

Kusters’s composition theorem of a fixed number of pro-
tocol systems is one of the theorems provided by the IITM
model. We first recall the definition of simulation-based secu-
rity in universal composability before presenting the theorem.

Definition 1 (Strong simulatability) [7]. Let P and F be
protocol systems with similar I/O interface, i.e., the real and
ideal protocol, respectively. Then, P realizes F (P ≤ F)
if there exists an adversarial system S (an ideal adversary
or a simulator) such that P and S|F have similar external
interfaces and for all environmental systems E, connecting to
the external interface of P (and thus, S|F), it holds true that
E|P ≡ E|S|F .

The Kusters’s composition theorem handles the concurrent
composition of a fixed number of protocol systems.

Theorem 1 [7]. Let P1, ..., Py, F1, ..., Fy be protocol systems
such that P1, ..., Py and F1, ..., Fy only connect with each
other via their I/O interfaces and Pj ≤ Fj , for j ∈ {1, ..., y}.
Then, P1|...|Py ≤ F1|...|Fy .

III. EXTENDED COMPOSITION THEOREM AND NOTION OF
RELAY RESILIENCE

A. Extended Notions of Simulation-Based Security

We extend the definition of strong simulatability. To do this,
we equip the real and ideal protocols/functionalities with a
sequence of cryptographic operations such that an operation
always depends on the preceding one, i.e., the operation relies
on the preceding operation, to prevent bypass of cryptographic
operations and support relay resilience. A sequence of opera-
tions c is of the form c = {c1, c2, ..., cn−1, cn}, where c1, c2,
cn−1, and cn are cryptographic operations and c1 is the first
operation of c and preceding operation of c2 and cn is the last
operation of c. In c, a cryptographic operation, say ci, can be

executed by using all outputs from ci−1 as input. In this case,
we say that ci relies on ci−1, i.e., ci(ci−1).

Definition 2 (Extended strong simulatability). Let P and F
be a real protocol and an ideal protocol, respectively, with
the same I/O interface. Let c be a sequence of cryptographic
operations of P and F . Then, P [c] ≤R F [c] iff every operation
ci in c always rely on the preceding operation ci−1, and there
exists an adversarial system S such that the systems P [c] and
S|F [c] have the same external interface and for all environ-
mental systems E, connecting only to the external interface of
P [c] and S|F [c], it holds true that E|P [c] ≡ E|S|F [c], where
the adversary in E|P [c] is subsumed by E.

B. Extended Composition Theorem

Our extended theorem handles concurrent composition of
a fixed number of protocol systems with a sequence of
cryptographic operations that rely on one another.

Theorem 2. Let P1, P2, F1, F2 be protocol systems with a
sequence c of cryptographic operations c1, c2, and c3 such
that P1 and P2 as well as F1 and F2 only connect with
each other via their I/O interfaces and for every k, Pk[c] ≤R
Fk[c], iff Pk[ci(ci−1)] ≤R Fk[ci(ci−1)], where i ∈ {1, 2, 3}.
Then, P1[c3(c2(c1))]|P2[c3(c2(c1))] ≤R F1[c3(c2(c1))]|
F2[c3(c2(c1))], for k ∈ 1, 2.

Proof Sketch: We prove the theorem for k = 2 and
i = {1, 2, 3}. Let S = S1|S2. Since P1[c] ≤R F1[c]
and P2[c] ≤R F2[c], we have E|P1[c3(c2(c1))] ≡
E|S1|F1[c3(c2(c1))], and E|P2[c3(c2(c1))] ≡
E|S2|F2[c3(c2(c1))]. Based on our definition of extended
notions of simulation-based security, we now obtain

E|P2[c3(c2(c1))]|P1[c3(c2(c1))] ≡ E|S2|F2[c3(c2(c1))]|
S1|F1[c3(c2(c1))] (Definition of S)

C. The Notion of Relay Resilience

Relay resilience is motivated by cryptographic protocols
that despite negotiating an output remain vulnerable to re-
lay attacks. Relay security complements the correctness of
negotiation: A protocol is relay secure when two users always
negotiate a shared secret session key based on their attributes
and knowledge of the computation time of cryptographic
operations and a cryptographic timestamp, which securely
proves that a cryptographic proof was computed at a specific
time. Hence, relay security concerns conditions in which one
device can protect the other device, even if the latter supports
insecure usage of cryptography. However, we have to assume
that some of the mechanisms of the protocol, e.g., encryption
and Pseudo-Random Function (PRF), are strong. On the other
hand, there is no cryptographically approach to prevent an
adversary from carrying out a relay attack if both users
enable a completely insecure negotiation. Our relay resilience
definition is parameterized by attributes of users, a sequence of
cryptographic operations, and cryptographic timestamp from
which we expect relay protection.

Definition 3 (Relay resilience). Let se be a session between
users IDA and IDB with a set of attributes attA and attB , re-
spectively. Let c be a sequence of cryptographic operations in
se using attA and attB to establish a cryptographic timestamp
ctimestamp. Then, se is relay resilient iff se(ctimestamp)
is valid for se(attA.attB .c).

A relay attack means that a session is weaker than the
prescribed one. An agreement on the users’ attributes and
knowledge of the cryptographic operations and cryptographic
timestamps is essential for relay protection. We have relay
protection if the agreement succeeds. Note that only sessions
with two users get relay protection guarantees. The users’
attributes for relay protection play a role similar to authen-
tication while the knowledge of the computation time of
cryptographic operations and cryptographic timestamps play
a key derivation role. These show that relay protection should
depend on inputs to the negotiation and the negotiation itself.

IV. R-CHAIN

In this section, we present R-Chain, which provides an
ideal chaining functionality FCC that supports cryptographic
primitives in smart grids. A smart grid process automation
protocol P can use FCC for its cryptographic operations c.
Then, we can show that P using FCC [c] realizes some ideal
key derivation functionality Fk, i.e., P |FCC [c] ≤R Fk. Once
P |FCC [c] ≤R Fk is proven using the extended composition
theorem (cf. Section III), FCC can be replaced with its
realization PCC (see below), where all the ideal operations
provided by FCC are replaced by their corresponding real
operations. Formally, FCC is a machine with n I/O tapes
and a network tape. The I/O tapes represent different roles
in a process automation protocol while the network tape is
used for communicating with the adversary. In every run
of a system which uses FCC for integrated cryptographic
operations, only one instance of FCC will always be available
to handle all requests for relay resilience support. A user of
FCC is identified by a tuple (ID, sid, r), where ID is the user
identity, sid is a session identifier, and r is the role/tape which
connects the user to FCC , ID, and sid, which is chosen and
managed by process automation protocols. (ID, sid) are used
for prefixing all messages on the I/O tapes so that every user
that sent/receives a message can be identified by FCC .

We parameterize FCC with an ECDH domain parameters
algorithm EDPGen(1η) and a timestamp function f that
takes a message m and outputs a timestamp f(m) = t, where
η is a security parameter. EDPGen(1η) takes η as input
and efficiently computes and returns (p, a, b,G, n, h), where
p is a prime modulus, a and b are curve parameters, G is
a general point, n is the order of G, and h is a co-factor.
Private keys and other secret keys derived from the private
keys in FCC are modelled in such a way that users do not
get the actual secret keys but rather get pointers to such keys
to provide extra protection to the keys (note that before a
message is used with a pointer, the pointer is replaced by
the key it refers to). FCC maintains the actual values of all
secret keys and the pointers that point to these keys, ephemeral

GetRV

CompEPuK

GenPSK

DeriveSKey

r,t

ptri , r, Q, r’, Q’

ptrii , r, r’,

r, t

ptri ,Q

ptrii

ptriv

chain output(s)input(s)

CompP&E VerP/ValT

ptriv , r, r’

t6proof, x, ctimestamp, t3

ptriv , proof, x,

ctimestamp, t3

Fig. 1. A Simple Description of R-Chain.

random values, and cryptographic timestamps in a distributed
database that is created by a Smart Grid Authority (SGA). We
assume that FCC accurately synchronizes its clock with that of
the SGA’s distributed database for timestamp accuracy. FCC
executes EDPGen(1η) upon its first activation and store the
generated (p, a, b,G, n, h). Furthermore, we expect FCC to
receive users’ identities (Users, IDs). Note that the received
information can be made public. The cryptographic commands
that FCC provides to a key derivation initiator (ID, sid, r) and
a key derivation responder (ID

′
, sid

′
, r

′
) on their respective

I/O interfaces are provided in Table I.
In R-Chain, we construct a realization PCC of FCC

by using standard cryptographic schemes to implement all
FCC’s commands. Formally, PCC is a machine that has
the same I/O and network interfaces as FCC . It is pa-
rameterized with the EDPGen(1η) algorithm and a times-
tamp function f with similar properties as FCC , an encryp-
tion scheme Enc(.)/Dec(.), a message authentication code
MAC(.)/VMAC(.), a hash function H(.), and two families
of PRF F and F

′
that take key(s) and salt as input and

output a key. A detailed description of how each of the
commands in FCC is implemented in PCC is provided in Table
II. Furthermore, a simple description of R-Chain is depicted
in Fig. 1, which shows that every output from a preceding
operation is used as input in the subsequent operation. One
could easily see that if the right data is not provided to execute
a command, such command cannot be executed.

V. R-CHAIN IMPLEMENTATION

In this section, we implement R-Chain on low power
wireless sensors, i.e., Tmote Sky mote sensors, which are
widely used in smart grids, and further simulate it using the
Network Simulator 3 (NS-3) tool to show that it meets our
20 msec latency target of smart grid applications such as
distributed energy resources. The details of the simulation
parameters we used in NS-3 are as follows: i) Platform
is Ubuntu 16.04 LTS; ii) Communication medium is Wi-
Fi; iii) Transport layer is UDP; and iv) Communication
range 100 metres. We also consider other standard NS-3
parameters such as measuring network protocols performance

TABLE I
CRYPTOGRAPHIC COMMANDS OF THE IDEAL CHAINING FUNCTIONALITY FCC

Cryptographic Commands

Generate a fresh ephemeral random value [(GetRV)]. The user (ID, sid, r) can request FCC to generate a fresh ephemeral random value r. Upon
receiving this request, FCC forwards the request to the adversary via a restricting message. The adversary is supposed to provide r ∈ {1, ..., nr} at a
timestamp t, where nr is a large randomly selected integer. FCC checks whether r is fresh to prevent ephemeral random value collision. If r already exists
in the database, FCC requests another r until the check succeeds. Then, FCC adds (ID, r, t) to the database and returns (RV, r, t) to the user. Note that
the user (ID

′
, sid

′
, r

′
) can also execute this command.

Generate a fresh ephemeral private and compute its corresponding ephemeral public key [(CompEPuK, r, t)]. The user (ID, sid, r) can request
FCC to generate a fresh ephemeral private d and compute its corresponding ephemeral public key Q. Upon receiving this request, FCC checks whether
(ID, r, t) exists in the database and forwards this request to the adversary via a restricting message if this check succeeds. The adversary is supposed to
provide d ∈ {1, ..., n}. FCC ensures that d is fresh to prevent a private key collision. If d is fresh, FCC stores a pointer ptri that points to d for the user,
uses (p, a, b,G, n, h) to compute a public key Q = d.G, adds (r,Q) and d to the database, and returns (EPuK, ptri, Q) to the user. Note that the user
(ID

′
, sid

′
, r

′
) can also execute this command.

Generate a fresh preshared key [(GenPSK, ptri, r, Q, r
′
, Q

′
)]. The user (ID, sid, r) can request FCC to generate a fresh preshared key. Upon receiving

this request, FCC checks whether (r,Q) and (r
′
, Q

′
) are recorded in the database. If the checks succeed, FCC further checks whether a preshared key

k has been generated by (r,Q, r
′
, Q

′
) and returns a pointer ptrii to k if the check succeeds. Otherwise, FCC generates a new preshared key as follows.

FCC forwards the request to the adversary (via a restricting message to provide a new preshared key k = Fη(H((d.Q
′
), (r

′
, r))) using SHA-256 algorithm

H(.) and PRF F , where d.Q
′

represents an ECDH key. FCC ensures that k is fresh and has been generated as Fη(H((d.Q
′
), (r

′
, r))), adds k and (r, r

′
)

to the database, sets the pointer ptrii to k, and returns (PSKPointer, ptrii) to the user. Note that the user (ID
′
, sid

′
, r

′
) can also execute this command.

Shared secret session key derivation [(DeriveSKey, ptrii, r, r
′
)]. The user (ID, sid, r) can request FCC to derive a shared secret session key ki. Upon

receiving this request, FCC first checks whether (r, r
′
) exists in the database. If the check succeeds, FCC checks whether ki has been derived using pointer

ptrii, r, and r
′
, and outputs the pointer ptriii pointing to ki. Otherwise, FCC forwards this request to the adversary via a restricting message to compute

ki using H(.). FCC ensures that ki is fresh and it is derived as ki = F
′
η(H(k.r.r

′
)). Then, FCC adds ki to the database, stores a new pointer ptriv

pointing to ki for the owners of k and returns (SKeyPointer, ptriv) to the user. Note that the user (ID
′
, sid

′
, r

′
) can also execute this command.

Compute a cryptographic proof and a cryptographic timestamp [(CompP&E, ptriv , r, r
′
)]. This command is provided to only the user (ID, sid, r).

Upon receiving this request to compute a cryptographic proof and a cryptographic timestamp, FCC checks whether ptriv belongs to the user and
(r, r

′
) exists in the database. If these checks succeed, it provides a cryptographic proof proof and a cryptographic timestamp ctimestamp using

an AES 128-bit encryption algorithm Enc(.) and 256-bit MAC algorithm MAC(.). FCC computes proof = MACki (x) at a timestamp t3, where
x = Encki (ki, r, r

′
) and ctimestamp = t3.H(ki, r, r

′
) for the user. Then, FCC stores (proof, x, ctimestamp, t3) for ki in the database, and returns

(P&E, proof, x, ctimestamp, t3) to the user.

Verify a cryptographic proof and validate a cryptographic timestamp [(VerP/ValT, ptriv , proof, x, ctimestamp, t3)]. This command is provided to
only the user (ID

′
, sid

′
, r

′
). Upon receiving this request to verify a cryptographic proof and validate a cryptographic timestamp, FCC first checks whether

ptriv belongs to the user and then uses a 256-bit MAC verification algorithm VMAC(.) and decryption of the AES 128-bit encryption algorithm Dec(.)

to verify proof as follows: i) VMACki (proof, x) = 1? at a timestamp t6; and ii) (ki, r, r
′
) = Decki (x). If the verifications succeed, FCC validates

ctimestamp as follows: i) computes t3.H(ki, r, r
′
) = ctimestamp; and ii) checks whether there exists exactly ctimestamp such that ctimestamp is

stored for ki. If the validations succeed, FCC returns (Validation, t6) to the user. Otherwise, FCC returns (Validation, restricted) to the user.

TABLE II
IMPLEMENTATION OF FCC COMMANDS IN ITS REALIZATION PCC

Implementation of Cryptographic Commands

Generate a fresh ephemeral random value [(GetRV)]. PCC selects r ← {1, ..., nr} at timestamp t and outputs (r, t) to the user.

Generate a fresh ephemeral private and compute its corresponding ephemeral public key [(CompEPuK, r, t)]. PCC checks whether ID, r, and t are
valid, selects d, creates a pointer ptri to d, uses the domain parameters to compute Q = d.G, and outputs (ptri, Q) to the user if the checks succeed.

Generate a fresh preshared key [(GenPSK, ptri, r, Q, r
′
, Q

′
)]. PCC checks whether (r,Q) and (r

′
, Q

′
) are valid and returns (PSKPointer, restricted)

to the user if any of these checks fails. Otherwise, PCC computes k = Fη(H((d.Q
′
), (r

′
, r))), where d is the private key of the user to which the pointer

ptr points to, creates a new pointer ptrii to k, and returns ptrii to the user.

Shared secret session key derivation [(DeriveSKey, ptrii, r, r
′
)]. PCC checks whether r and r

′
are valid, computes ki = F

′
η(H(k.r.r

′
)), creates a

pointer ptriv to ki, and returns ptriv to the user if the checks succeed.

Compute a cryptographic proof and a cryptographic timestamp [(CompP&E, ptriv , r, r
′
)]. PCC checks whether ptriv is recorded for ID and

r and r
′

are valid, computes x = Encki (ki, r, r
′
), proof = MACki (x) at a timestamp t3, and ctimestamp = t3.H(k, r, r

′
) and then returns

(proof, x, ctimestamp, t3) to the user if the checks succeed.

Verify a cryptographic proof and validate a cryptographic timestamp [(VerP/ValT, ptriv , proof, x, ctimestamp, t3)]. PCC verifies whether ptriv is
recorded for ID and VMAC(proof, x) = 1 and (ki, r, r

′
) = Decki (x). If the verifications succeed, PCC validates that t3.H(ki, r, r

′
) = ctimestamp

and then returns t6 to the user if the validation succeeds.

using flow monitor. In R-Chain, the computation time of
AES 128-bit encryption (Tse), AES 128-bit decryption (Tsd),
SHA-256 (Tha), 160-bit point multiplication (Tpm), 256-bit
MAC/VMAC (Thm), and 32-bit random number (Trn) is
0.0017 sec, 0.00167 sec, 0.0091 sec, 1.04 sec, 0.0183 sec,
and 0.0073 msec, respectively. We assess the maximum
computational cost required for R-Chain execution and our
results show that the computational cost required for users ID
(executing the commands GetRV, CompEPuK, GenPSK, De-
riveSKey, and CompP&E) and ID

′
(executing the commands

GetRV, CompEPuK, GenPSK, DeriveSKey, and VerP/ValT)
is 4Trn + 2Tpm + 4Tha + Thm + Tse ≈ 2.13643 sec and
4Trn+2Tpm+4Tha+Thm+Tsd ≈ 2.13639 sec, respectively.
The End-to-End Delay (EED) of R-Chain is ≈ 6.5146 msec.
We can see that the EED is less than our 20 msec latency
target. Thus, R-Chain is fit for the smart grids. Due to page
limit, more details on R-Chain implementation and additional
performance evaluation will be provided in our future work.

VI. CASE STUDY

In this section, we carry out a case study to show the
usefulness of our framework by analysing and enhancing the
WirelessHART protocol [2], which is a communication proto-
col designed for industrial process automation and control and
is meant to provide relay resilience in smart grids. The essen-
tial entities in the WirelessHART protocol network include
network manager, security manager, gateway, field devices
and handheld devices. Security keys in the WirelessHART
protocol are managed and distributed by the network manager
in collaboration with the security manager. For a secure com-
munication session between two devices, the devices request
for a session key, which is used for securing and maintaining
the session. The network manager can broadcast messages to
all the field devices using a similar key. Hence, we deduce that
the WirelessHART protocol also relies on a pre-established
secret key for secure communication. A simple description of
the WirelessHART protocol is depicted in Fig. 2. A malicious
device, say IDB , can perform relay attacks in WirelessHART
protocol by using its knowledge of the session key and
messages sent by the network manager to relay the messages
to an arbitrary device, say IDC . In this case, IDB relays the
messages to IDC in the network. As a result, the message will
be received and executed by IDC . To see this, we consider a
setting of three machines MA(WH), MB(WH), and MC(WH)

to model the roles of the initiator, responder, and arbitrary
node, respectively. An honest initiator instance outputs an
encrypted message m generated using a pre-established secret
key k that is known to an honest responder instance and an
arbitrary node. The responder instance that received m can
forward it to the arbitrary node. The arbitrary node instance
might have received m, which was relayed by the responder.
In this case, the protocol does not guarantee that m is a
relayed message as k is known by the instances. Thus, we
have no security guarantee for k and m, and the responder
can easily let the arbitrary node instance accept m. While
this form of relay attack is not a direct attack against the

Enck(message), rA

Enck(message), rB

IDA IDB

Fig. 2. WirelessHART protocol. Abbreviations: k − pre-established shared
secret key, rA and rB − random values.

protocol, this setting shows that security of the protocol is
not sufficient to mitigate relay attack. To fix this problem in
our setting, we enhance the protocol as follows: i) establish a
preshared key between the responder and arbitrary node using
GetRV, CompEPuK, and GenPSK commands of FCC to avoid
reliance on a pre-established shared secret key and provide a
security guarantee for the preshared key; ii) equip the protocol
with a session key derivation via the DeriveSKey command of
FCC for every communication session between the responder
and arbitrary node to provide a security guarantee for m and
communication session and support relay resilience; and iii)
equip the protocol with CompP&E and VerP/ValT commands
of FCC to provide relay resilience.

VII. CONCLUSION

In this paper, we have proposed R-Chain, a universally
composable relay resilience framework for analyzing relay se-
curity and providing relay resilience in smart grid process au-
tomation protocols. R-Chain extended the Kusters’s universal
composition theorem on a fixed number of protocol systems
and consists of an ideal chaining functionality that provides
integrated cryptographic operations for relay resilience. We
have demonstrated the usefulness of R-Chain in a case study,
namely the WirelessHART protocol. We uncovered some
weaknesses in the relay security of the protocol and used R-
Chain to provide relay resilience by enhancing the security
of the protocols. In future work, we will apply R-Chain
to other smart grid process automation protocols, provide
its detailed performance evaluation, and extend it to further
mitigate ransomware attacks against the smart grids.

REFERENCES

[1] L. Bayou, D. Espes, N. Cuppens-Boulahia, and F. Cuppens, “Security
analysis of wirelesshart communication scheme,” in 9th International
Symposium on Foundations and Practice of Security. Springer, 2016,
Conference Proceedings, pp. 223–238.

[2] F. Group, 2018. [Online]. Available: https://fieldcommgroup.org/
[3] Modbus, “Modbus protocol specification,” 2018. [Online]. Available:

http://www.modbus.org/specs.php
[4] F. Group, “Foundation fieldbus,” 2020. [Online]. Available:

https://fieldcommgroup.org/technologies/foundation-fieldbus
[5] K. Imtiaz and M. J. Arshad, “Security challenges of industrial commu-

nication protocols: Threats vulnerabilities and solutions,” International
Journal of Computer Science and Telecommunications, 2019.

[6] D. U. Group, “Overview of DNP3 protocol,” 2020. [Online]. Available:
https://www.dnp.org/About/Overview-of-DNP3-Protocol

[7] R. Kusters, “Simulation-based security with inexhaustible interactive
turing machines,” in 19th IEEE Computer Security Foundations Workshop
(CSFW’06). IEEE, 2006, pp. 12–pp.

[8] J. Camenisch, R. R. Enderlein, S. Krenn, R. Küsters, and D. Rausch,
“Universal composition with responsive environments,” in International
Conference on the Theory and Application of Cryptology and Information
Security. Springer, 2016, pp. 807–840.

