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ABSTRACT
Recent findings show that smart vehicles can be exposed to relay
attacks resulting from weaknesses in cryptographic operations,
such as authentication and key derivation, or poor implementa-
tion of these operations. Relay attacks refer to attacks in which
authentication is evaded without needing to attack a smart vehicle
itself. They are a recurrent problem in practice. In this paper, we
formulate the necessary relay resilience settings for strengthening
authentication and key derivation and achieving the secure design
and efficient implementation of cryptographic protocols based on
universal composability, which allows the modular design and anal-
ysis of cryptographic protocols. We introduce Crypto-Chain, a relay
resilience framework that extends Kusters’s universal composition
theorem on a fixed number of protocol systems to prevent bypass
of cryptographic operations and avoid implementation errors. Our
framework provides an ideal crypto-chain functionality that sup-
ports several cryptographic primitives. Furthermore, we provide
an ideal functionality for mutual authentication and key deriva-
tion in Crypto-Chain by which cryptographic protocols can use
cryptographic operations, knowledge about the computation time
of the operations, and cryptographic timestamps to ensure relay
resilience. As a proof of concept, we first propose and implement
a mutual authentication and key derivation protocol (𝑀𝐾𝐷) that
confirms the efficiency and relay resilience capabilities of Crypto-
Chain and then apply Crypto-Chain to fix two protocols used in
smart vehicles, namely Megamos Crypto and Hitag-AES/Pro.
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1 INTRODUCTION
Smart vehicles are susceptible to relay attacks [14] by which an
active adversary initiates communication between two devices or
users to bypass security defences or recover secret cryptographic
keys. A number of cryptographic protocols such asMegamos Crypto
[5, 36] used in smart vehicles have been shown to be vulnerable to
relay attacks (see, e.g., [32]) because of weak authentication and/or
cryptographic keys. Stronger key derivation schemes and authen-
tication protocols have thus been proposed for mitigating such
attacks [25, 35, 39]. However, such schemes and protocols have
vulnerabilities such as lack of key update and randomization, use
of pre-established shared secret keys, and use of unreliable timing

information via the inability to verify and validate the computation
time of cryptographic operations. These imply that smart vehicles
rely on insecure cryptographic protocols. An adversary can bypass
the security defences of a car to open the door locks of the car
[36]. Note that in what follow we use the term “user” to refer to a
smart vehicle device like a smart sensor and therefore the “user”
and “device” terms are often used interchangeably.

Cryptographic protocols have proven important in mitigating
relay attacks in smart vehicles. For example, in the wake of relay
vulnerability disclosures in the Megamos Crypto, the community
reacted by either proposing key derivation schemes or authentica-
tion protocols [34], [12]. However, our research shows that when
an authentication protocol is not properly integrated with a key
derivation scheme, relay attacks can still be carried out, for exam-
ple, by deriving shared secret keys between unauthenticated users.
Thus, the lack of intertwining key derivation scheme and authen-
tication protocols opens opportunities for relay attacks. However,
such integration must be carefully designed to avoid relying on
weak cryptographic primitives and prevent the bypassing of cryp-
tographic operations that support relay resilience.

Surprisingly, there has been very little formal workaround inter-
twining key derivation schemes and authentication protocols (with
the support of the computation time of cryptographic operations
and cryptographic timestamps) in modern relay resilience solutions
for smart vehicles. Recent approaches either provide key derivation
schemes (based on pre-stored passwords or pre-established shared
secret keys) or authentication protocols for relay resilience [25, 38]
but not both. Other work has focused on the implementation of at-
tacks and provided some countermeasures such as access control re-
strictions and generation of secret keys [14, 36]. All such approaches
neither guarantee relay resilience nor can protect from certain relay
attacks that can occur when an unauthenticated user derives a key.
This is a major issue because lack of authentication is fertile ground
for relay attacks. Recent relay attacks have shown the exploitation
of unauthenticated users supporting unauthenticated key deriva-
tion or negotiation. In this work, we aim to address these issues
by investigating the problem of relay resilience in cryptographic
protocols of smart vehicles and providing a novel relay resilience
solution using integrated cryptographic operations, knowledge of
computation time of the operations, and cryptographic timestamps
based on universal composability [18, 22], which allows the modu-
lar design of complex cryptographic protocols (see Section 4.1 for a
description of cryptographic timestamps).
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Figure 1: Megamos Crypto authentication protocol.

1.1 Motivating Example
We start with a motivating example. Consider the Megamos Crypto
authentication protocol [34] in smart cars for negotiating an output
from a pseudo-random function (PRF) family for authentication
as shown in Figure 1. In the first message, 𝐼𝐷𝐴 (say, an electronic
vehicle immobilizer) presents a random number and one part of
its PRF output; in the second message, 𝐼𝐷𝐵 (say, a transponder car
key) indicates one part of its PRF output. The goal of this protocol
is to compute (𝑋,𝑌 ) and (𝑋 ′, 𝑌 ′) and verify that𝑌 = 𝑌

′
so that 𝐼𝐷𝐵

authenticates its identity to 𝐼𝐷𝐴 . The Megamos Crypto succeeds
under normal circumstances. However, consider a scenario where
an adversary 𝐼 is using relay attack devices 𝐷𝐼 .1 and 𝐷𝐼 .2 (for cap-
turing low frequency (LF) or radio frequency (RF) signals) located
between 𝐼𝐷𝐴 and 𝐼𝐷𝐵 and 𝐼𝐷𝐴 sends the first message to 𝐼𝐷𝐵 . This
leads to a relay attack (see Figure 2), where 𝐼 can use 𝐷𝐼 .1 to receive
the signal from 𝐼𝐷𝐴 and transmit it to 𝐷𝐼 .2 and further use 𝐷𝐼 .2 to
transmit the signal to 𝐼𝐷𝐵 and compromise the connection between
𝐼𝐷𝐴 and 𝐼𝐷𝐵 .

A few techniques have been adopted by protocol designers tomit-
igate such attacks. We identified three common approaches based
on a review of widely deployed protocols. The first approach, ex-
emplified by Hitag-AES/Pro [31] from NXP, is to use a proprietary
Advanced Encryption Standard (AES) 128-bit algorithm during
authentication. The second approach relies on a password pre-
stored in the memory of a device and is best exemplified by Atmel’s
ATA5795C [3]. The third approach relies on a pre-established shared
secret key and is best exemplified by the Hitag-AES/Pro. All these
approaches have various advantages and disadvantages. For exam-
ple, Hitag-AES/Pro fails to use PRF during authentication and is
thus prone to relay attacks. Inputs of authentication features in
Megamos Crypto also lead to relay attack. Besides, ATA5792 relies
solely on pre-stored password which leads to eavesdropping of
exchanged data. Furthermore, the protocols are not secure in arbi-
trary adversarial environments, i.e., they lack universal composition
properties [6], [19].

1.2 Overview of our approach
We give a definition of relay resilience that models the intuitive and
desirable property for cryptographic protocols such as Megamos
Crypto: To mitigate relay attack on a particular protocol, it is suffi-
cient to chain all cryptographic operations and prove the validity of
the computation time of cryptographic operations and cryptographic
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Figure 2: Relay Attacks on Megamos Crypto authentication
protocol.

timestamps. Our work builds on the definition of strong simulata-
bility in the universal composability and composition theorem of
Kusters [22, 23] used to model a fixed number of protocol systems in
the universal composability model. In a protocol system, users can
bypass cryptographic operations and still be able to continue a pro-
tocol execution. As a result, cryptographic operations to mitigate
relay attacks may not be executed. Our solution is to incorporate
relay resilience in the definition to ensure that (i) the user or an
adversary cannot force the execution of preferred cryptographic
operations and that (ii) a universally composable relay resilience
guarantee is established.

We consider mutual multi-factor authentication and key ex-
change between users. These users each have their own identities
and can express knowledge of computation time of cryptographic
operations and cryptographic timestamps and show their intent
to negotiate a shared secret session key. The factors used for au-
thentication include the identity of a user, ephemeral random value,
ephemeral public and private keys, and a combination of these
factors. By ephemeral we mean that the values and keys are used
for a single protocol execution and discarded after completion of
a key derivation and usage. To formally define relay resilience,
we introduce relay protection cryptographic primitives, such as
dynamic multi-factor authentication (𝐷𝑀𝐴), which operates on
a user’s identity and attributes (such as ephemeral random val-
ues, timestamps, and ephemeral public keys), and knowledge-based
key exchange (𝐾𝐾𝐸), which operates on establishing an authenti-
cated preshared key based on Elliptic Curve Diffie-Hellman (ECDH)
key exchange and the user’s attributes. We expect relay resilience
support from the 𝐷𝑀𝐴 and 𝐾𝐾𝐸 primitives.

We also introduce a mutual authentication and key derivation
functionality that maps two users’ identities and attributes to derive
a shared secret session key and compute a cryptographic proof/a
cryptographic timestamp for negotiating an output and proving
the negotiation, respectively (see Section 4.1 for a description of
cryptographic proof). Intuitively, our definition says that a protocol
is relay secure if two users, starting from their attributes and knowl-
edge of computation time of cryptographic operations satisfying

2



𝐷𝑀𝐴 and 𝐾𝐾𝐸 to a commonly established timestamp, can only ne-
gotiate a shared secret session key determined by the functionality,
even in the presence of an adversary.

We adopt the following approach to apply our definition to
real-world protocols in smart vehicles. Rather than analyzing the
entire protocol, we first extract the authentication procedure and/or
key derivation procedure which capture the main relay-protection
mechanisms of the protocol. Then, we prove that either or both
procedures are complete for relay security.

1.3 Summary of our contributions
To the best of our knowledge, Crypto-Chain is the first frame-
work to simultaneously offer dynamic multi-factor mutual authen-
tication and key derivation with integrated cryptographic opera-
tions, knowledge of computation time of the operations, and cryp-
tographic timestamps for relay resilience in smart vehicles. Our
primary contribution is a novel relay resilience framework, i.e.,
Crypto-Chain, for smart vehicles. We devise a methodology to ana-
lyze the relay security of complex protocols by analyzing only the
authentication and/or key derivation procedures of the protocol.
More specifically, our contributions are as follows: (I) We extend
Kusters’s theorem that handles concurrent composition of a fixed
number of protocol systems to handle chainings of cryptographic
operations. (II) We present an ideal crypto-chain functionality 𝐹𝐶𝐶
that uses our new theorem and supports several cryptographic
primitives, such as 𝐷𝑀𝐴 and 𝐾𝐾𝐸. (III) We propose and prove
a realization 𝑃𝐶𝐶 of 𝐹𝐶𝐶 . (IV) We propose an ideal functionality
for mutual authentication and key derivation 𝐹𝑀𝐾𝐷 . (V) We use
Crypto-Chain, which consists of 𝐹𝐶𝐶 and 𝐹𝑀𝐾𝐷 , to construct the
first mutual authentication and key derivation protocol (𝑀𝐾𝐷)
based on 𝐷𝑀𝐴 and 𝐾𝐾𝐸 for relay resilience in smart vehicles. We
further implement and analyse𝑀𝐾𝐷 . (VI) We describe and mitigate
relay vulnerabilities in Megamos Crypto and Hitag-AES/Pro.

1.4 Outline of the paper
In Section 2, we briefly review the IITMmodel, which represents the
universal composability model we use in this paper, and Kusters’s
composition theorem we extend in this paper. In Section 3, we
present our extended composition theorem, formally define relay
resilience, and introduce our threat model. In Section 4, we present
Crypto-Chain. In Section 5, we present 𝑀𝐾𝐷 . In Section 6, we
implement and analyse 𝑀𝐾𝐷 . In Section 7, we present our case
studies. In Section 8, we discuss related work. In Section 9, we
conclude and give suggestions for future work. Further details are
provided in the appendix.

2 UNIVERSAL COMPOSABILITY
In this section, we briefly recall the general notion of universal com-
posability, the IITM model [18, 22] with responsive environments
from [6], and the Kusters’s composition theorem. In universal com-
posability models, we have real and ideal protocols/functionalities.
An ideal protocol, also known as ideal functionality, represents the
desired behaviour and intended security properties of a protocol.
The real protocol, also known as real functionality, represents the
protocol to design and analyze and should be at least as secure as
the ideal protocol, i.e., it realizes the ideal protocol. For the ideal

protocol, there exists an ideal adversary or a simulator while a
real adversary exists for the real protocol, such that there is no
environment that can distinguish between real and ideal settings.

The IITM model is a universal composability model that consists
of a general computational model and provides several composition
theorems. The general computational model is defined by systems
of interactive Turing machines. An interactive Turing machine (or
a machine) is defined as a probabilistic polynomial-time Turing
machine with named bidirectional tapes. In a system of IITMs of
the form 𝑇𝑀 = 𝑀1 |...|𝑀𝑘 |!𝑀

′
1 |...|!𝑀

′

𝑘
, where 𝑀𝑖 and 𝑀

′
𝑗
are ma-

chines and ! indicates that an unbounded number of fresh copies
of machines may be generated in a run of 𝑇𝑀 . A machine𝑀1 can
be triggered by another machine𝑀

′
1 if𝑀

′
1 receives a message on a

tape that connects them. Two systems 𝑌 and 𝑍 are called indistin-
guishable, i.e., 𝑌 ≡ 𝑍 , if the difference between the probability that
𝑌 outputs 1 on a special tape and the probability that 𝑍 outputs 1
is negligible. There are three different types of systems in the IITM
model: i) real and ideal protocols/functionalities; ii) adversaries and
simulators; iii) and environments. The real and ideal protocols and
the environmental systems have input/output (I/O) and network
interfaces or tapes, while the adversarial systems have only net-
work tapes. We say that the environmental and adversarial systems
are responsive if they immediately respond to so-called restricting
messages on the network. Restricting messages are represented in
the form (Respond, 𝑖𝑑,𝑚), where 𝑖𝑑 and𝑚 are random bit strings.
They are used for enforcing a natural execution of a protocol by
preventing the adversary from disrupting or interfering with the
protocol execution. In general, restricting messages improves the
expressivity of universal composability models.

Kusters’s composition theorem of a fixed number of protocol
systems is one of the theorems provided by the IITM model. We
first recall the definition of simulation-based security in universal
composability before presenting the theorem.
Definition 1 (Strong simulatability) [22]. Let 𝑃 and 𝐹 be protocol
systems with similar I/O interface, i.e., the real and ideal protocol,
respectively. Then, 𝑃 realizes 𝐹 (𝑃 ≤ 𝐹 ) if there exists an adversarial
system 𝑆 (an ideal adversary or a simulator) such that 𝑃 and 𝑆 |𝐹
have similar external interfaces and for all environmental systems E,
connecting to the external interface of 𝑃 (and thus, 𝑆 |𝐹 ), it holds true
that 𝐸 |𝑃 ≡ 𝐸 |𝑆 |𝐹 .

Kusters’s composition theorem handles the concurrent composi-
tion of a fixed number of protocol systems is presented below.
Theorem 1 [22]. Let 𝑃1, ..., 𝑃𝑦, 𝐹1, ..., 𝐹𝑦 be protocol systems such
that 𝑃1, ..., 𝑃𝑦 and 𝐹1, ..., 𝐹𝑦 only connect with each other via their I/O
interfaces and 𝑃 𝑗 ≤ 𝐹 𝑗 , for 𝑗 ∈ {1, ..., 𝑦}. Then, 𝑃1 |...|𝑃𝑦 ≤ 𝐹1 |...|𝐹𝑦 .

More complex systems can be constructed by combining other
composition theorems of the IITM model in [22, 23].

3 EXTENDED COMPOSITION THEOREM,
NOTION OF RELAY RESILIENCE, AND
THREAT MODEL

In this section, we extend the notions of simulation-based security,
state and provide proof of our extended composition theorem, and
provide a threat model.
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3.1 Extended Notions of Simulation-Based
Security

We extend the definition of strong simulatability. To do this, we
equip the real and ideal protocols/functionalities with a sequence
of cryptographic operations such that an operation always depends
on the preceding one, i.e., the operation relies on the preceding
operation, to prevent bypass of cryptographic operations and sup-
port relay resilience. A sequence of operations 𝑐 is of the form
𝑐 = {𝑐1, 𝑐2, ..., 𝑐𝑛−1, 𝑐𝑛}, where 𝑐1, 𝑐2, 𝑐𝑛−1, and 𝑐𝑛 are cryptographic
operations and 𝑐1 is the first operation of 𝑐 and preceding operation
of 𝑐2 and 𝑐𝑛 is the last operation of 𝑐 . In 𝑐 , a cryptographic operation,
say 𝑐𝑖 , can be executed by using all outputs from 𝑐𝑖−1 as input. In
this case, we say that (i) 𝑐𝑖 relies on 𝑐𝑖−1, i.e., 𝑐𝑖 (𝑐𝑖−1) and (ii) 𝑐𝑖−1 is
excecuted before 𝑐𝑖 . To ensure that 𝑐𝑖−1 is executed first, 𝑐𝑖 requires
unique outputs from 𝑐𝑖−1 execution. If the order of the execution
between 𝑐𝑖−1 and 𝑐𝑖 is changed, 𝑐𝑖 cannot be successfully executed
as the inputs required for its execution are incomplete.
Definition 2 (Extended strong simulatability). Let 𝑃 and 𝐹 be
a real protocol and an ideal protocol, respectively, with the same I/O
interface. Let 𝑐 be a sequence of cryptographic operations of 𝑃 and
𝐹 . Then, 𝑃 [𝑐] ≤𝑅 𝐹 [𝑐] iff every operation 𝑐𝑖 in 𝑐 always rely on the
preceding operation 𝑐𝑖−1, and there exists 𝑆 such that the systems 𝑃 [𝑐]
and 𝑆 |𝐹 [𝑐] have the same external interface and for all environmental
systems 𝐸, connecting only to the external interface of 𝑃 [𝑐] and 𝑆 |𝐹 [𝑐],
it holds true that 𝐸 |𝑃 [𝑐] ≡ 𝐸 |𝑆 |𝐹 [𝑐], where the adversary in 𝐸 |𝑃 [𝑐]
is subsumed by 𝐸.

3.2 Extended Composition Theorem
Our extended composition theorem handles the concurrent com-
position of a fixed number of protocol systems with a sequence of
cryptographic operations that rely on one another.
Theorem 2. Let 𝑃1, 𝑃2, 𝐹1, 𝐹2 be protocol systems with a sequence 𝑐 of
cryptographic operations 𝑐1, 𝑐2, and 𝑐3 such that 𝑃1 and 𝑃2 as well as
𝐹1 and 𝐹2 only connect with each other via their I/O interfaces and for
every 𝑘 , 𝑃𝑘 [𝑐] ≤𝑅 𝐹𝑘 [𝑐], iff 𝑃𝑘 [𝑐𝑖 (𝑐𝑖−1)] ≤𝑅 𝐹𝑘 [𝑐𝑖 (𝑐𝑖−1)], where 𝑖 ∈
{1, 2, 3}. Then, 𝑃1 [𝑐3 (𝑐2 (𝑐1))] |𝑃2 [𝑐3 (𝑐2 (𝑐1))] ≤𝑅 𝐹1 [𝑐3 (𝑐2 (𝑐1))] |
𝐹2 [𝑐3 (𝑐2 (𝑐1))], for 𝑘 ∈ 1, 2.

Proof Sketch: We prove the theorem for 𝑘 = 2 and 𝑖 = {1, 2, 3}.
Let 𝑆 = 𝑆1 |𝑆2. Since 𝑃1 [𝑐] ≤𝑅 𝐹1 [𝑐] and 𝑃2 [𝑐] ≤𝑅 𝐹2 [𝑐], we have
𝐸 |𝑃1 [𝑐3 (𝑐2 (𝑐1))] ≡ 𝐸 |𝑆1 |𝐹1 [𝑐3 (𝑐2 (𝑐1))], and 𝐸 |𝑃2 [𝑐3 (𝑐2 (𝑐1))] ≡
𝐸 |𝑆2 |𝐹2 [𝑐3 (𝑐2 (𝑐1))]. Based on our definition of extended notions of
simulation-based security, we now obtain

𝐸 |𝑃2 [𝑐3 (𝑐2 (𝑐1))] |𝑃1 [𝑐3 (𝑐2 (𝑐1))] ≡
𝐸 |𝑆2 |𝐹2 [𝑐3 (𝑐2 (𝑐1))] |𝑆1 |𝐹1 [𝑐3 (𝑐2 (𝑐1))]

≡ 𝐸 |𝑆 |𝐹1 [𝑐3 (𝑐2 (𝑐1))] |𝐹2 [𝑐3 (𝑐2 (𝑐1))] (Definition of 𝑆)

3.3 Notion of Relay Resilience
Relay resilience is motivated by cryptographic protocols such as
Megamos Crypto that despite negotiating an output remain vul-
nerable to attacks. Although we expect the protocol negotiation
to be correct and hold unconditionally as its session is complete,
design and implementation errors may break it. For instance, PRF

does not offer resilience to relay attacks on Megamos Crypto but
still support the negotiation of an output. An implementation of
Megamos Crypto in which an initiator, say device 𝐼𝐷𝐴 , accepts a
random number would also fail to mitigate relay attacks. Note that
the term “session” refers to communications between two users.

Relay security complements the correctness of a negotiation: A
protocol is relay secure when two users always negotiate a shared
secret session key based on their attributes and knowledge of the
computation time of cryptographic operations and a cryptographic
timestamp, which securely proves that a cryptographic proof was
computed at a specific time. Hence, relay security concerns con-
ditions in which one device can protect the other device, even if
the latter supports insecure usage of cryptography. However, we
have to assume that some of the mechanisms of the protocol, e.g.,
encryption and PRF, are strong. Our relay resilience definition is
parameterized by attributes of users, sequence of cryptographic
operations, and cryptographic timestamp from which we expect
relay protection.
Definition 3 (Relay resilience). Let 𝑠 be a session between users
𝐼𝐷𝐴 and 𝐼𝐷𝐵 with a set of attributes 𝑎𝑡𝑡𝐴 and 𝑎𝑡𝑡𝐵 , respectively. Let
𝑐 be a sequence of cryptographic operations in 𝑠 using 𝑎𝑡𝑡𝐴 and 𝑎𝑡𝑡𝐵
to establish a cryptographic timestamp 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 . Then, 𝑠 is relay
resilient iff 𝑠 (𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝) is valid for 𝑠 (𝑎𝑡𝑡𝐴 .𝑎𝑡𝑡𝐵 .𝑐).

A relay attack means that a session is weaker than the prescribed
one. Agreement on the users’ attributes and knowledge of the
cryptographic operations and cryptographic timestamps is essential
for relay protection. We have relay protection if the agreement
succeeds. Note that only sessions with two users, i.e., initiator and
responder, get relay protection guarantees. The users’ attributes
for relay protection play a role similar to mutual authentication,
while the knowledge of the computation time of cryptographic
operations and cryptographic timestamps play a key derivation
role. These show that relay protection should depend on inputs to
the negotiation and the negotiation itself.

3.4 Threat Model
In this paper, we use the Dolev-Yao attacker model [13] as our threat
model. In the Dolev-Yao attacker model, an adversary may be an
outsider or a legitimate device. The adversary can eavesdrop, forge,
and relay messages. The adversary in the real world cannot guess
and calculate secret values, secret keys, and pointers to the secret
keys.

4 CRYPTO-CHAIN
In this section, we present our relay resilience framework, Crypto-
Chain, which consists of 𝐹𝐶𝐶 and 𝐹𝑀𝐾𝐷 as mentioned in the intro-
duction. In Crypto-Chain, 𝐹𝐶𝐶 is used for cryptographic operations
while 𝐹𝑀𝐾𝐷 is used for mutual authentication and key derivation
between two users in smart vehicles.

4.1 Ideal Crypto-chain Functionality for
Cryptographic Primitives

Our ideal crypto-chain functionality 𝐹𝐶𝐶 supports cryptographic
primitives such as our 𝐷𝑀𝐴 and 𝐾𝐾𝐸 for enabling relay resilience
in smart vehicles. 𝐷𝑀𝐴 is similar to authentication, except that it
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provides dynamic multi-factor authentication, where authentica-
tion is performed on a per-session basis such that only the identity
of a user always remains the same and other features of the user
change. The existing ECDH key exchange is similar to 𝐾𝐾𝐸, except
that 𝐾𝐾𝐸 provides a key exchange with authentication. In 𝐷𝑀𝐴,
every key derivation user in smart vehicles verifies the identity and
other attributes of its key derivation partner and then uses 𝐾𝐾𝐸
to generate authenticated preshared key before deriving a shared
secret session key. Note that the ECDH key exchange is used as
an underlying cryptographic primitive in 𝐹𝐶𝐶 to support key ex-
change. A real-world protocol 𝑃 can use 𝐹𝐶𝐶 for its cryptographic
operations 𝑐 . Then, we can show that 𝑃 using 𝐹𝐶𝐶 [𝑐] realizes some
ideal key derivation functionality 𝐹 , i.e., 𝑃 |𝐹𝐶𝐶 [𝑐] ≤𝑅 𝐹 . Once
𝑃 |𝐹𝐶𝐶 [𝑐] ≤𝑅 𝐹 is proven using the extended composition theorem
(cf. Section 3), 𝐹𝐶𝐶 can be replaced with its realization 𝑃𝐶𝐶 (see
below), where all the ideal operations provided by 𝐹𝐶𝐶 are replaced
by the corresponding real operations. On a high level, the main
guarantees provided by 𝐹𝐶𝐶 are as follows: i) for dynamic mutual
multi-factor authentication, 𝐹𝐶𝐶 guarantees that only honest users
can be authenticated and on a per-session basis; ii) for key exchange,
𝐹𝐶𝐶 guarantees that only honest and authenticated users can ex-
change preshared keys; and iii) for key derivation, 𝐹𝐶𝐶 guarantees
that only honest and authenticated owners of a preshared key can
get access to the shared secret session keys derived from it.

Formally, 𝐹𝐶𝐶 is a machine with 𝑛 I/O tapes and a network
tape, where the I/O tapes represent different roles in a real-world
protocol while the network tape is used for communicating with the
adversary. In every run of a system that uses 𝐹𝐶𝐶 for cryptographic
operations, only one instance of 𝐹𝐶𝐶 will always be available to
handle all requests for relay resilience support. A user of 𝐹𝐶𝐶 in
smart vehicles is identified by a tuple (𝐼𝐷, 𝑠𝑖𝑑, 𝑙), where 𝐼𝐷 is the
user identity, 𝑠𝑖𝑑 is a session identifier, and 𝑙 is the role/tape which
connects the user to 𝐹𝐶𝐶 , 𝐼𝐷 , and 𝑠𝑖𝑑 , which is chosen and managed
by real-world protocols. (𝐼𝐷, 𝑠𝑖𝑑) are used for prefixing all messages
on the I/O tapes so that every user that sent/receives a message
can be identified by 𝐹𝐶𝐶 . We say that a message𝑚 is a restricting
message when the message (Respond, 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑,𝑚) is sent on the
network to ensure that the adversary always responds to all requests
and cannot interfere with the run of 𝐹𝐶𝐶 .

We parameterize 𝐹𝐶𝐶 with an ECDH domain parameters
𝐸𝐷𝑃𝐺𝑒𝑛(1𝜂 ) algorithm and a timestamp function 𝑓 that takes a
message𝑚 and outputs a timestamp 𝑓 (𝑚) = 𝑡 . We require that 𝑓 is
efficiently computable and provides a regular timestamp for timing
executions of cryptographic operations as well as sending, receiv-
ing and transmitting messages. 𝐸𝐷𝑃𝐺𝑒𝑛(1𝜂 ) is used to generate
the ECDH domain parameters, where 𝜂 is a security parameter.
The algorithm takes 𝜂 as input and efficiently computes and re-
turns (𝑝, 𝑎, 𝑏,𝐺, 𝑛, ℎ), where 𝑝 is a prime modulus, 𝑎 and 𝑏 are curve
parameters, 𝐺 is a general point, 𝑛 is the order of 𝐺 , and ℎ is a
co-factor. Private keys and other secret keys derived from the pri-
vate keys in 𝐹𝐶𝐶 are modelled in such a way that users do not
get the actual secret keys but rather get pointers to such keys to
provide extra protection to the keys. Note that before a message is
used with a pointer, the pointer is replaced by the key it refers to.
𝐹𝐶𝐶 maintains the actual values of all secret keys and the pointers
that point to these keys, ephemeral random values, cryptographic
proofs, and cryptographic timestamps in a database that is created

by a smart vehicle trusted entity (𝑆𝑇𝐸). It also uses the database to
prevent any collision (i.e., if a new unknown private key is provided,
then it does not already exist in the database) or guessing (i.e., if
a new known private key is provided, then it already exists in the
database). We assume that 𝐹𝐶𝐶 synchronizes its clock with that of
the 𝑆𝑇𝐸’s database using a clock discipline algorithm [29], which
corrects and updates clock time for timestamp accuracy. We note
that: (I) As the clock synchronization can be carried out prior to
a protocol activation, this makes it difficult for an attacker to by-
pass the clock synchronization component. (II) The clock discipline
algorithm is supported by Network Time Protocol (NTP), which
uses an authentication mechanism to prevent manipulations by the
attacker.
𝐹𝐶𝐶 executes 𝐸𝐷𝑃𝐺𝑒𝑛(1𝜂 ) upon its first activation and store

the generated domain parameters (𝑝, 𝑎, 𝑏,𝐺, 𝑛, ℎ). Furthermore, we
expect 𝐹𝐶𝐶 to receive users’ identities (Users, 𝐼𝐷𝑠). When the ac-
tivation is complete, 𝐹𝐶𝐶 either returns control to the adversary
if the first message/response was received on a network tape or
continues to process the original message that activated it if the
first message/response was received on the I/O tape. The cryp-
tographic commands that 𝐹𝐶𝐶 provides to a key derivation ini-
tiator (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) and a key derivation responder (𝐼𝐷′, 𝑠𝑖𝑑′, 𝑙 ′) on
their respective I/O interfaces are as follows: (I) Generate a fresh
ephemeral random value (GetRV), which is provided to both
(𝐼𝐷, 𝑠𝑖𝑑, 𝑙) and (𝐼𝐷′, 𝑠𝑖𝑑′, 𝑙 ′) and returns (RV, 𝑟 , 𝑡) to the user at the
end of its execution, where 𝑟 is an ephemeral random value and 𝑡
is timestamp of computing 𝑟 . (II) Generate a fresh ephemeral
private and compute its corresponding ephemeral public
key (CompEPuK, 𝑟 , 𝑡), which is provided to both (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) and
(𝐼𝐷′, 𝑠𝑖𝑑′, 𝑙 ′) and returns (EPuK, 𝑝𝑡𝑟𝑖 , 𝑄) to the user at the end of
its execution, where the pointer 𝑝𝑡𝑟𝑖 points to an ephemeral private
key 𝑑 and 𝑄 = 𝑑.𝐺 is the corresponding ephemeral public key of 𝑑 .
(III) Generate a fresh preshared key (GenPSK, 𝑝𝑡𝑟𝑖 , 𝑟 ,𝑄, 𝑟

′
, 𝑄
′),

which is provided to both (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) and (𝐼𝐷′, 𝑠𝑖𝑑′, 𝑙 ′) and returns
(PSKPointer, 𝑝𝑡𝑟𝑖𝑖 ) to the user at the end of its execution, where
the pointer 𝑝𝑡𝑟𝑖𝑖 points to a new preshared key 𝑘 = 𝐹𝜂 (𝐻 ((𝑑.𝑄

′),
(𝑟 ′, 𝑟 ))) and 𝑘 is computed using SHA-256 hash algorithm 𝐻 (.)
and PRF 𝐹 , and 𝑑.𝑄

′
represents an ECDH key. (IV) Shared se-

cret session key derivation (DeriveSKey, 𝑝𝑡𝑟𝑖𝑖 , 𝑟 , 𝑟
′), which is

provided to only (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) and returns (SKeyPointer, 𝑝𝑡𝑟𝑖𝑣) to the
user at the end of its execution, where the pointer 𝑝𝑡𝑟𝑖𝑣 points to a
shared secret session key 𝑘𝑖 = 𝐹

′
𝜂 (𝐻 (𝑘.𝑟 .𝑟

′)), and 𝑟 ′ is an ephemeral
random values of another user. (V) Compute a cryptographic
proof and a cryptographic timestamp (CompP&E, 𝑝𝑡𝑟𝑖𝑣, 𝑟 , 𝑟

′),
which is provided to only (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) and returns (P&E, 𝑝𝑟𝑜𝑜 𝑓 , 𝑥,
𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑡3) to the user at the end of its execution, where𝑝𝑟𝑜𝑜 𝑓 =

𝑀𝐴𝐶𝑘𝑖 (𝑥) is a cryptographic proof computed at timestamp 𝑡3 and it
uses an AES 128-bit encryption algorithm 𝐸𝑛𝑐 (.) and 256-bit MAC
algorithm𝑀𝐴𝐶 (.), 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 = 𝑡3 .𝐻 (𝑘𝑖 , 𝑟 , 𝑟

′) is a cryptographic
timestamp, and 𝑥 = 𝐸𝑛𝑐𝑘𝑖 (𝑘𝑖 , 𝑟 , 𝑟

′). (VI) Verify a cryptographic
proof and validate a cryptographic timestamp (VerP/ValT,
𝑝𝑡𝑟𝑖𝑣, 𝑝𝑟𝑜𝑜 𝑓 , 𝑥, 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑡3), which is provided to only
(𝐼𝐷′, 𝑠𝑖𝑑′, 𝑙 ′) and returns (Validation, 𝑡6) to the user at the end of
its execution, where 𝑝𝑟𝑜𝑜 𝑓 is verified via 𝑉𝑀𝐴𝐶𝑘𝑖 (𝑝𝑟𝑜𝑜 𝑓 , 𝑥) = 1?
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at a timestamp 𝑡6 and (𝑘𝑖 , 𝑟 , 𝑟
′) = 𝐷𝑒𝑐𝑘𝑖 (𝑥), and 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 is val-

idated via 𝑡3 .𝐻 (𝑘𝑖 , 𝑟 , 𝑟
′) = 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 . The description of the six

above commands is provided in Appendix A. Note that the combina-
tion of authentication mechanisms in GetRV, CompEPuK, GenPSK,
DeriveSKey, CompP&E, and VerP/ValT commands represent the
𝐷𝑀𝐴, while the combination of authentication and key exchange
mechanisms in CompEPuk and GenPSK commands represent the
𝐾𝐾𝐸.

A user of 𝐹𝐶𝐶 can request for the corruption status of any of its
pointers or keys and the environment can request whether the keys
of a user is stored as corrupted. In the real and ideal worlds, the
environment ensures that a key has the same corruption status. 𝐹𝐶𝐶
assumes that every user knows the inputs to be provided for every
command. One could easily see that if the right data is not provided
to execute a command, such command cannot be executed.

We now construct a realization 𝑃𝐶𝐶 of 𝐹𝐶𝐶 by using standard
cryptographic schemes to implement all commands/operations of
𝐹𝐶𝐶 . Formally, 𝑃𝐶𝐶 is a machine that has the same I/O and network
interfaces as 𝐹𝐶𝐶 . It is parameterized with the 𝐸𝐷𝑃𝐺𝑒𝑛(1𝜂 ) algo-
rithm and timestamp function 𝑓 with similar properties as 𝐹𝐶𝐶 ,
three encryption schemes

∑
𝑎𝑢𝑡ℎ𝑒𝑛𝑐 ,

∑
𝑢𝑛𝑎𝑢𝑡ℎ𝑒𝑛𝑐 , and

∑
𝑝𝑢𝑏𝑒𝑛𝑐 for

authenticated symmetric key encryption, unauthenticated sym-
metric key encryption, and public key encryption, respectively,
a mac scheme

∑
𝑀𝐴𝐶 , two families of PRF 𝐹 = {𝐹𝜂 }𝜂∈𝑁 and

𝐹
′
= {𝐹 ′𝜂 }𝜂∈𝑁 that take key(s) and salt as input and output a key

(see [19] for formal definition of these primitives).
To activate 𝑃𝐶𝐶 for the first time, we expect 𝑃𝐶𝐶 to receive some

message 𝑚 and then initializes itself by executing 𝐸𝐷𝑃𝐺𝑒𝑛(1𝜂 )
and storing the results before processing𝑚. 𝑃𝐶𝐶 maintains infor-
mation in a similar way as 𝐹𝐶𝐶 . It keeps track of the ephemeral
random values, keys, and pointers to (i) determine which type of
cryptographic primitive to execute with a given ephemeral ran-
dom value, key, and pointer, for example, 𝐹 is used for deriving
preshared keys from ECDH keys and salts, while 𝐹

′
is used for

deriving shared secret session key from preshared keys and salts
and to (ii) provide strong security guarantees that all the values
and keys are fresh. The implementation of the 𝐹𝐶𝐶 ’s commands in
𝑃𝐶𝐶 is provided in Appendix B. Note that the commands GetRV,
CompEPuK, GenPSK, DeriveSKey, CompP&E, and VerP/ValT re-
turns (𝑟, 𝑡), (𝑝𝑡𝑟𝑖 , 𝑄), 𝑝𝑡𝑟𝑖𝑖 , 𝑝𝑡𝑟𝑖𝑣 , (𝑝𝑟𝑜𝑜 𝑓 , 𝑥, 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑡3), and 𝑡6,
respectively to the user executing the command at the end of its
execution.

We now show that 𝑃𝐶𝐶 realizes 𝐹𝐶𝐶 . To show this, we want
to state and prove our theorem that 𝑃𝐶𝐶 [𝑐] realizes 𝐹𝐶𝐶 [𝑐]. We
want to use standard cryptographic assumptions for this proof as
these assumptions provide security guarantees. Additionally, we
want to use the Decisional Diffie-Hellman (DDH) assumption [28],
[1] to prove that the simulator in this proof 𝑃𝐶𝐶 [𝑐] ≤𝑅 𝐹𝐶𝐶 [𝑐]
provides 𝑘𝑖 and 𝑘

′
𝑖
for uncorrupted and corrupted shared secret

session key, respectively. To capture the expected properties of
𝑃𝐶𝐶/𝐹𝐶𝐶 , we restrict the environment in this proof not to cause
commitment problem [7] and key cycles [4], i.e., it’s a well-behaved
environment, as many real-world protocols satisfy the conditions
of the well-behaved environment and thus if these protocols are
analyzed using 𝐹𝐶𝐶 , then 𝐹𝐶𝐶 can be replaced with 𝑃𝐶𝐶 afterwards.

We introduce a machine 𝑀∗ to ensure that the conditions are
satisfied by the environment. In the following theorem, 𝑀∗ is in-
serted between the I/O interface of 𝑃𝐶𝐶/𝐹𝐶𝐶 and the environment.
𝑀∗ forwards all messages while checking that the conditions are
satisfied. If any of the two conditions is not met,𝑀∗ stops the for-
warding of messages and blocks all communications going forward.
We now obtain the following theorem:
Theorem 3. Let

∑
𝑎𝑢𝑡ℎ𝑒𝑛𝑐 ,

∑
𝑢𝑛𝑎𝑢𝑡ℎ𝑒𝑛𝑐 ,

∑
𝑝𝑢𝑏 be encryption schemes,∑

𝑀𝐴𝐶 be a MAC scheme, 𝐸𝐷𝑃𝐺𝑒𝑛(1𝜂 ) be an algorithm as above,
𝐹
′
be a family of pseudo-random functions, and 𝐹 be a family of

pseudorandom functions for 𝐸𝐷𝑃𝐺𝑒𝑛. Let 𝑃𝐶𝐶 be parameterized with
these algorithms. Let 𝐹𝐶𝐶 be parameterized with an ECDH domain
parameters algorithm 𝐸𝐷𝑃𝐺𝑒𝑛 and a timestamp function 𝑓 . Let 𝑐
be a sequence of cryptographic operations of 𝑃𝐶𝐶 and 𝐹𝐶𝐶 such that
every operation 𝑐𝑖 in 𝑐 always rely on the preceding operation 𝑐𝑖−1.
Then, the following holds true

𝑀∗ |𝑃𝐶𝐶 [𝑐] ≤𝑅 𝑀∗ |𝐹𝐶𝐶 [𝑐]

if 𝑃𝐶𝐶 [𝑐𝑖 (𝑐𝑖−1)] ≤𝑅 𝐹𝐶𝐶 [𝑐𝑖 (𝑐𝑖−1)],
∑
𝑀𝐴𝐶 is IND-CPA and INT-

CTXT secure,
∑
𝑢𝑛𝑎𝑢𝑡ℎ𝑒𝑛𝑐 and

∑
𝑝𝑢𝑏 is IND-CCA2 secure,

∑
𝑀𝐴𝐶 is

UF-CMA secure, 𝐸𝐷𝑃𝐺𝑒𝑛 always outputs random primes for field
order 𝑝 and groups with 𝑛 ≥ 2 and such that the DDH assumption
holds true for 𝐸𝐷𝑃𝐺𝑒𝑛.

We provide a proof sketch of this theorem in Appendix C.

4.2 Ideal Functionality for Mutual
Authentication and Key Derivation

The main idea of our ideal functionality for mutual authentica-
tion and key derivation 𝐹𝑀𝐾𝐷 is that authenticated users can
send key derivation requests to 𝐹𝑀𝐾𝐷 to start a mutual authen-
tication and key derivation by deriving a session key, a crypto-
graphic proof, and a cryptographic timestamp to ensure relay
resilience. Formally, 𝐹𝑀𝐾𝐷 is a machine that has two I/O tapes,
one network tape, and another two I/O tapes for connecting to
𝐹𝐶𝐶 , which is used by 𝐹𝑀𝐾𝐷 for as a subroutine for cryptographic
operations. We parameterize 𝐹𝑀𝐾𝐷 with symmetric key of type
𝑠𝑘𝑒𝑦 ∈ {𝑎𝑢𝑡ℎ𝑒𝑛𝑐 − 𝑘𝑒𝑦,𝑢𝑛𝑎𝑢𝑡ℎ𝑒𝑛𝑐 − 𝑘𝑒𝑦}, maximum end-to-end
delay (EED) for messages sent from a key derivation initiator to
a responder𝑚𝑎𝑥.𝑒𝑒𝑑1, maximum end-to-end delay for messages
sent from a key derivation responder to the initiator 𝑚𝑎𝑥.𝑒𝑒𝑑2,
and expected time of completing a mutual authentication and key
derivation session 𝑒𝑡 .𝑚𝑘𝑑 , which refers to the amount of time ex-
pected for all cryptographic operations associated with computing
and verifying a cryptographic proof to be executed. 𝑠𝑘𝑒𝑦 represents
the type of key that can be output after successful mutual authenti-
cation and key derivation. Note that maximum EED refers to the
average time taken by the messages to reach the destination from
the source. Similar to 𝐹𝐶𝐶 , the sessions for all users are handled by
𝐹𝑀𝐾𝐷 and every user participating in the mutual authentication
and key derivation can be identified by (𝐼𝐷, 𝑠𝑖𝑑, 𝑙), where 𝑙 specifies
the role of the user, i.e., 𝑙 ∈ {𝐴, 𝐵}. 𝐹𝑀𝐾𝐷 also uses the 𝐼𝑇𝐸’s data-
base for any check or verification. Furthermore, messages from/to
every I/O tape are prefixed with (𝐼𝐷, 𝑠𝑖𝑑) to prevent any user from
claiming to be another user.
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𝐹𝑀𝐾𝐷 manages sessions of users and global sessions: A user
(𝐼𝐷, 𝑠𝑖𝑑, 𝑙) can send start a mutual authentication and key deriva-
tion. The adversary/simulator groups sessions of an initiator 𝐴
and a responder 𝐵 to form global sessions. 𝐹𝑀𝐾𝐷 makes two as-
sumptions when analyzing timestamps of messages: i) Her clock
and 𝐹𝐶𝐶 ’s clock, as well as the initiator clock and responder clock,
move-in relative synchrony while users are in a global session; and
ii) network speed is symmetric, i.e., the data speed from initiator to
the responder as well as the data speed from the responder back to
the initiator are the same. 𝐹𝑀𝐾𝐷 maintains several key deriva-
tion states 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 , 𝑠𝑡𝑎𝑟𝑡𝑒𝑑𝑀𝐾𝐷 , 𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑀𝐾𝐷 , 𝑐𝑙𝑜𝑠𝑒𝑑𝑀𝐾𝐷 ,
and 𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑 for mutual authentication and key derivation and
provides seamless transitions between states to prevent broken
authentication. The initial state of every user (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) is set as
𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 . In 𝐹𝑀𝐾𝐷 , we keep the information of every user in an
active session as a secret to support the security of mutual authenti-
cation and key derivation. Note that one can observe that a session
is active by monitoring the network of the user. Furthermore, as
long as a user is not in the state 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 or 𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑 , 𝐹𝑀𝐾𝐷
answers such a user’s request without contacting the adversary.
However, if the user is in the state 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 or 𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑 , 𝐹𝑀𝐾𝐷
asks the adversary about any request received by sending a restrict-
ing message.

To provide relay resilience, 𝐹𝑀𝐾𝐷 uses the EED of a message
or a data packet from an initiator to a responder 𝑒𝑒𝑑1, EED of
a data packet from the responder to the initiator 𝑒𝑒𝑑2, the com-
putation time of cryptographic operations at the responder 𝑐𝑐𝑒2,
and computation time of cryptographic operations at the initia-
tor 𝑐𝑐𝑒1. Note that the computation times of the above operations
are not known in advance and as such an attacker cannot carry
out attacks that change these times and thus cannot mount De-
nial of Service (DoS) attacks for the users. In a scenario where the
attacker has estimated these times before doing the DoS attacks,
we use 𝐸𝑛𝑐 (.) and𝑀𝐴𝐶 (.) to authenticate timestamps (see below)
and provide timestamps confidentiality, integrity, and authenticity
thereby preventing the attacker from carrying out such attacks.
The conditions for relay resilience in the smart vehicles are as fol-
lows: i) 𝑒𝑒𝑑1 is directly proportional to 𝑒𝑒𝑑2 based on 𝑚𝑎𝑥.𝑒𝑒𝑑1
and𝑚𝑎𝑥.𝑒𝑒𝑑2, respectively; ii) 𝑒𝑒𝑑2 is directly proportional to 𝑒𝑒𝑑1
based on 𝑚𝑎𝑥.𝑒𝑒𝑑2 and 𝑚𝑎𝑥.𝑒𝑒𝑑1, respectively; iii) 𝑐𝑐𝑒2 ≈ 𝑐𝑐𝑒1;
and iv) 𝑐𝑐𝑒1 + 𝑐𝑐𝑒2 + 𝑒𝑒𝑑1 + 𝑒𝑒𝑑2 ≤ 𝑒𝑡 .𝑚𝑘𝑑 . If the above conditions
hold, this shows that the mutual authentication and key derivation
is complete and thus provides relay resilience (cf. Section 3.3). Note
that if the attacker introduced a DoS attack by delays, the above
conditions cannot be satisfied and thus such an attack is mitigated.
The operations provided by 𝐹𝑀𝐾𝐷 to mutual authentication and
key derivation protocols are as follows:

• A user (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) with state 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 can start a mutual
authentication and key derivation by sending a message
𝑚 = (InitKE, 𝐼𝐷′,𝑚𝑖 ), where 𝐼𝐷

′
is user identity of the in-

tended key derivation responder and 𝑚𝑖 is a random bit
string that can be used by the realization in the key deriva-
tion protocol. Upon receiving 𝑚, 𝐹𝑀𝐾𝐷 checks that both
users are not yet part of a global session and 𝐼𝐷 and 𝐼𝐷

′
ex-

ist in the database and sets 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟 (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) = 𝐼𝐷′ if the
checks succeed. Then, 𝐹𝑀𝐾𝐷 forwards (𝑚, (𝐼𝐷, 𝑠𝑖𝑑, 𝑙)) to the

adversary via a restricting message. The adversary responds
by sending (CreateGroupSession, (𝐼𝐷𝐴, 𝑠𝑖𝑑𝐴), (𝐼𝐷𝐵, 𝑠𝑖𝑑𝐵))
to 𝐹𝑀𝐾𝐷 . Then, 𝐹𝑀𝐾𝐷 sets the state of the users to
𝑠𝑡𝑎𝑟𝑡𝑒𝑑𝑀𝐾𝐷 , stores that (𝐼𝐷𝐴, 𝑠𝑖𝑑𝐴, 𝐴) and (𝐼𝐷𝐵, 𝑠𝑖𝑑𝐵, 𝐵)
are in the same global session, and sends 𝑂𝑘𝑎𝑦 to the adver-
sary.
• A user (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) with 𝑠𝑡𝑎𝑡𝑒 (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) = 𝑠𝑡𝑎𝑟𝑡𝑒𝑑𝑀𝐾𝐷 can
use (CompEED1, 𝑡1, 𝑡2) to request 𝐹𝑀𝐾𝐷 to compute the EED
𝑒𝑒𝑑1 of a message using receiving time 𝑡2 and sending time
of the message 𝑡1. In this case, 𝐹𝑀𝐾𝐷 first computes 𝑒𝑒𝑑1 =
𝑡2 − 𝑡1 and checks whether 𝑒𝑒𝑑1 ≤ 𝑚𝑎𝑥.𝑒𝑒𝑑1. If the check
succeeds, 𝐹𝑀𝐾𝐷 returns (EED1, 𝑒𝑒𝑑1) to the user. Otherwise,
it returns (EED1, 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑) to the user.
• A user (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) with 𝑠𝑡𝑎𝑡𝑒 (𝐼𝐷𝐴, 𝑠𝑖𝑑𝐴, 𝐴) = 𝑠𝑡𝑎𝑟𝑡𝑒𝑑𝑀𝐾𝐷

can get secured timestamps by sending a request
(GetTimestamps, 𝑦, 𝑧, 𝑝𝑡𝑟𝑖𝑖 ) to 𝐹𝑀𝐾𝐷 . If 𝑘 is recorded in the
database as a preshared key of user 𝐼𝐷𝐴 via the pointer 𝑝𝑡𝑟𝑖𝑖 ,
𝐹𝑀𝐾𝐷 uses the 𝐷𝑒𝑐 (.) and 𝑉𝑀𝐴𝐶 (.) algorithms provided
by the adversary to decrypt𝑦 = 𝐸𝑛𝑐𝑘 (𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑡2, 𝑡3) and
verify 𝑧 = 𝑀𝐴𝐶𝑘 (𝑦), respectively, and returns
(Timestamps, 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑡2, 𝑡3) to the user. Furthermore,
the user can also use 𝐹𝑀𝐾𝐷 to get access to 𝐹𝐶𝐶 commands
such as GetRV, CompEPuK, GenPSK, DeriveSKey, and
VerP/ValT. As soon as a response of VerP/ValT execution is
received, 𝐹𝑀𝐾𝐷 sets 𝑠𝑡𝑎𝑡𝑒 (𝐼𝐷𝐴, 𝑠𝑖𝑑𝐴, 𝐴) := 𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑀𝐾𝐷 .
• A user (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) with 𝑠𝑡𝑎𝑡𝑒 (𝐼𝐷𝐵, 𝑠𝑖𝑑𝐵, 𝐵) = 𝑠𝑡𝑎𝑟𝑡𝑒𝑑𝑀𝐾𝐷

can use 𝐹𝑀𝐾𝐷 to access 𝐹𝐶𝐶 commands such as GetRV,
GetEPuK, GenPSK, DeriveSKey, and CompP&E. 𝐹𝑀𝐾𝐷 for-
wards the responses it received from 𝐹𝐶𝐶 to the user while
internally keeps track of all values, keys, and pointers associ-
ated with the user. Furthermore, the user can use
(SecureTimestamps, 𝑡2, 𝑡3, 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑝𝑡𝑟𝑖𝑖 ) to request
𝐹𝑀𝐾𝐷 to secure the timestamps related to computation time
of cryptographic operations using timestamps 𝑡2 and 𝑡3, cryp-
tographic timestamp 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 , and the preshared key 𝑘 to
which the pointer 𝑝𝑡𝑟𝑖𝑖 points. If 𝑘 is recorded in the database
as a preshared key of user 𝐼𝐷𝐵 , 𝐹𝑀𝐾𝐷 uses the 𝐸𝑛𝑐 (.) and
𝑀𝐴𝐶 (.) algorithms provided by the adversary to compute
𝑦 = 𝐸𝑛𝑐𝑘 (𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑡2, 𝑡3) and 𝑧 = 𝑀𝐴𝐶𝑘 (𝑦), respectively.
Then, 𝐹𝑀𝐾𝐷 returns (Timestamps, 𝑦, 𝑧) to the user and sets
𝑠𝑡𝑎𝑡𝑒 (𝐼𝐷𝐵, 𝑠𝑖𝑑𝐵, 𝐵) := 𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑀𝐾𝐷 .
• A user (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) with 𝑠𝑡𝑎𝑡𝑒 (𝐼𝐷𝐴, 𝑠𝑖𝑑𝐴, 𝐴) = 𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑀𝐾𝐷
can use (CompEED2, 𝑡4, 𝑡5) to request 𝐹𝑀𝐾𝐷 to compute the
EED 𝑒𝑒𝑑2 of a data packet from its key derivation partner (i.e.,
responder) using receiving time 𝑡5 and sending time of the
message 𝑡4. In this case, 𝐹𝑀𝐾𝐷 computes 𝑒𝑒𝑑2 = 𝑡5 − 𝑡4, and
then checks whether 𝑒𝑒𝑑2 ≤ 𝑚𝑎𝑥.𝑒𝑒𝑑2. If the check succeeds,
𝐹𝑀𝐾𝐷 returns (EED2, 𝑒𝑒𝑑2) to the user. Otherwise, it returns
(EED2, 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑) to the user.
• A user (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) with 𝑠𝑡𝑎𝑡𝑒 (𝐼𝐷𝐴, 𝑠𝑖𝑑𝐴, 𝐴) = 𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑀𝐾𝐷
can use (CompCCE, 𝑡0, 𝑡1, 𝑡2, 𝑡4, 𝑡5, 𝑡6) to request 𝐹𝑀𝐾𝐷 to
verify the computation time of cryptographic operations at
the responder 𝑐𝑐𝑒2 and computation time of cryptographic
operations at the initiator 𝑐𝑐𝑒1 using timestamps 𝑡0, 𝑡1, 𝑡2,
𝑡4, 𝑡5, and 𝑡6, where 𝑡0 = 𝑡𝐴 is generated from execution of
GetRV command. In this case, 𝐹𝑀𝐾𝐷 computes 𝑐𝑐𝑒2 = 𝑡4−𝑡2
and 𝑐𝑐𝑒1 = (𝑡6 − 𝑡5) + (𝑡1 − 𝑡0), and verifies that 𝑐𝑐𝑒2 ≈ 𝑐𝑐𝑒1.
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If the verification succeeds, 𝐹𝑀𝐾𝐷 returns (CCE, 𝑐𝑐𝑒2, 𝑐𝑐𝑒1)
to the user. Otherwise, it returns (CCE, 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑) to the
user.
• A user (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) with 𝑠𝑡𝑎𝑡𝑒 (𝐼𝐷𝐴, 𝑠𝑖𝑑𝐴, 𝐴) = 𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑀𝐾𝐷
can use (VerETimeMKD, 𝑐𝑐𝑒2, 𝑐𝑐𝑒1, 𝑒𝑒𝑑1, 𝑒𝑒𝑑2) to request
𝐹𝑀𝐾𝐷 to verify the expected time of completing a mutual
authentication and key derivation session 𝑒𝑡 .𝑚𝑘𝑑 using 𝑐𝑐𝑒2,
𝑐𝑐𝑒1, 𝑒𝑒𝑑1, and 𝑒𝑒𝑑2. Upon receiving this request, 𝐹𝑀𝐾𝐷
computes 𝑚𝑘𝑑 = 𝑐𝑐𝑒2 + 𝑐𝑐𝑒1 + 𝑒𝑒𝑑1 + 𝑒𝑒𝑑2 and verifies
𝑚𝑘𝑑 ≤ 𝑒𝑡 .𝑚𝑘𝑑 . If this verification succeeds, 𝐹𝑀𝐾𝐷 returns
𝑂𝑘𝑎𝑦 to the user and sets 𝑠𝑡𝑎𝑡𝑒 (𝐼𝐷𝐴, 𝑠𝑖𝑑𝐴, 𝐴) := 𝑐𝑙𝑜𝑠𝑒𝑑𝑀𝐾𝐷
to provide relay protection. Then, it notifies the adversary
via a restrictingmessage (ClosedSession, (𝐼𝐷, 𝑠𝑖𝑑, 𝑙)) and for-
wards the response to the user. Thus, the user loses access
to all values, keys, pointers, and commands.
• A user (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) with 𝑠𝑡𝑎𝑡𝑒 (𝐼𝐷𝐵, 𝑠𝑖𝑑𝐵, 𝐵) = 𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑀𝐾𝐷
can use 𝐹𝑀𝐾𝐷 to close her session by sending a request
(CloseSession, (𝐼𝐷, 𝑠𝑖𝑑, 𝑙)). Upon receiving this request,
𝐹𝑀𝐾𝐷 sets 𝑠𝑡𝑎𝑡𝑒 (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) := 𝑐𝑙𝑜𝑠𝑒𝑑𝑀𝐾𝐷 , notifies the ad-
versary via a restricting message (CloseSession, (𝐼𝐷, 𝑠𝑖𝑑, 𝑙))
and sends 𝑂𝑘𝑎𝑦 to the user after receiving the adversary’s
response. As the session has been closed, the user no longer
has access to keys, pointers, values, and commands.
• A user (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) with state 𝑐𝑙𝑜𝑠𝑒𝑑𝑀𝐾𝐷 or 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 can
be corrupted by the adversary since the user has no access
to any values, keys, pointers, and commands. Upon receiv-
ing𝑚 = (Corrupt, (𝐼𝐷, 𝑠𝑖𝑑, 𝑙)), 𝐹𝑀𝐾𝐷 sets 𝑠𝑡𝑎𝑡𝑒 (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) :=
𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑 . Furthermore, the user can ask for its corruption
status and then 𝐹𝑀𝐾𝐷 sends a restricting message
(CorruptionStatus, (𝐼𝐷, 𝑠𝑖𝑑, 𝑙)) to the adversary. In this case,
𝐹𝑀𝐾𝐷 forwards the response to the user. Hence, these two
scenarios represent a simple corruption model of 𝐹𝑀𝐾𝐷 .

𝐹𝑀𝐾𝐷 models relay resilience upon the successful execution of
VerETimeMKD since the attributes of the users and knowledge of
computation time of cryptographic operations and cryptographic
timestamps hold. Note that since the adversary does not have access
to any keys after mutual authentication and key derivation, 𝐹𝑀𝐾𝐷
models perfect forward secrecy to enhance relay resilience.

An uncorrupted user can be paired with a corrupted user by the
adversary, however, the corrupted user will not get access to the
session key in 𝐹𝐶𝐶 . Furthermore, we restrict the corruptionmodel to
improve the use of 𝐹𝑀𝐾𝐷 by real-world protocols in smart vehicles.
This restriction does not affect the expressivity of our functionality
as session keys derived from many real-world protocols are usually
short-lived and thus the chance for corruption is negligible.

5 MUTUAL AUTHENTICATION AND KEY
DERIVATION PROTOCOL (𝑀𝐾𝐷)

In this section, we present ourmutual authentication and key deriva-
tion protocol𝑀𝐾𝐷 with relay-resilience security properties such as
mutual multi-factor authentication, key exchange, and key deriva-
tion as depicted in Figure 3.𝑀𝐾𝐷 is the first protocol to use a full-
fledged formal framework, i.e., Crypto-Chain, for relay resilience in
smart vehicles. Formally,𝑀𝐾𝐷 uses 𝐹𝐶𝐶 to perform cryptographic
operations and realizes 𝐹𝑀𝐾𝐷 . We use two machines𝑀𝐴(𝑀𝐾𝐷) and

QA , rA , t1

IDA IDB

CompEED1, t1, t2 : eed1

GetRV : rB in {1,…,nr}, tB  

CompEPuK, rB , tB : ptrB , QB 

GenPSK, ptrB ,rA ,QA , rB , QB : ptrii

DeriveSKey, ptrii , rA , rB : ptriv 

CompP&E, ptriv , rA , rB  : proof, x, ctimestamp, t3 

SecureTimestamps, t2 , t3 ,ctimestamp, ptrii  : y, z 
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Figure 3: Mutual Authentication and Key Derivation Protocol
(𝑀𝐾𝐷).

𝑀𝐵 (𝑀𝐾𝐷) to model the role of key derivation initiator𝐴 and respon-
der 𝐵 of our protocol. Only one instance of𝑀𝐴(𝑀𝐾𝐷)/𝑀𝐵 (𝑀𝐾𝐷) for
every user (𝐼𝐷, 𝑠𝑖𝑑) is available in the run of𝑀𝐾𝐷 to execute the
protocol from Figure 3. At the end of the protocol run, the instances
generate a preshared key 𝑘 , derive a shared secret session key 𝑘𝑖 ,
deliver pointers to these keys, and compute cryptographic proof
𝑝𝑟𝑜𝑜 𝑓 and cryptographic timestamp 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 . Furthermore, the
instances allow the user to use 𝐹𝐶𝐶 to perform cryptographic opera-
tions with the keys in an ideal manner. We provide the theorem and
proof of𝑀𝐾𝐷 in Appendix D, which shows that𝑀𝐾𝐷 is a secure
universally composable relay resilience mutual authentication and
key derivation protocol.

6 IMPLEMENTATION AND ANALYSES OF𝑀𝐾𝐷
In this section, we conduct some experiments to implement 𝑀𝐾𝐷
on Tmote Sky mote sensors [10], which are widely used in smart
vehicles, and then analyse the efficiency and relay resilience capa-
bilities of𝑀𝐾𝐷 . Tmote Sky mote sensors such as CM5000, XM1000,
and CM4000 are low power wireless sensors that are interopera-
ble with many IEEE 802.15.4 devices, offer a high data rate, and
support stability and implementation of time synchronization. We
implement 𝑀𝐾𝐷 on the sensors to provide insights about its ac-
tual deployment in the smart vehicles as well as demonstrate the
efficiency of Crypto-Chain. We connect the sensors to a MacBook
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Table 1: Computation time of cryptographic algorithms in
Crypto-Chain

Cryptographic Algorithm Tmote Sky mote sensors
AES 128-bit symmetric encryption 0.00170 𝑠
AES 128-bit symmetric decryption 0.00167 𝑠
SHA-256 hash algorithm 0.0091 𝑠
160-bit ECC point multiplication 1.0400 𝑠
keyed-Hash MAC-SHA256 0.0183 𝑠
32-bit random number 0.0073𝑚𝑠

Pro (2.3Ghz, Intel Core i5 processor, 8GM memory) for our im-
plementation as follows. Firstly, we implement Crypto-Chain’s
cryptographic algorithms such as the AES 128-bit encryption algo-
rithm. Note that the cryptographic algorithms are lightweight and
are used in this paper to support the practical implementation of
Crypto-Chain in smart vehicles. The components used in our exper-
iment are provided in Appendix E. All programs implementing the
cryptographic algorithms are written in nesC language [15] and we
implement the algorithms under the TinyOS operating system [16].
The computation time of each cryptographic algorithm is presented
in Table 1 for brevity. The breakdown of the number of bits and
computation time of cryptographic operations in our experiments
are given as follow: (I) Generate an ephemeral random value and
public key − 576 bits for 1.04002 𝑠 ; (II) Compute End-to-End Delay
- 64 bits for 0.0146 𝑚𝑠; (III) Generate preshared secret key - 448
bits for 0.01823 𝑠; (IV) Compute a cryptographic timestamp - 960
bits for 0.03824 𝑠 ; (V) Validate a cryptographic timestamp - 960 bits
for 0.03819 𝑠; (VI) Secure timestamps - 768 bits for 0.02909 𝑠; (VI)
Get timestamps - 768 bits for 0.02908 𝑠; and (VII) Verify expected
time of completing 𝑀𝐾𝐷 - 224 bits for 0.05122𝑚𝑠 . Lastly, we as-
sess the maximum computational cost required for𝑀𝐾𝐷 execution
between two users (i.e., initiator and responder) and our results
show the following: (I) The responder requires ≈ 1.1255 𝑠 , which
can also be derived using (𝑡4 − 𝑡2) as per the above computation
time; and (II) The initiator requires ≈ 1.1256 𝑠 , which can also be
derived using ((𝑡6 − 𝑡5) + (𝑡1 − 𝑡0)) as per the above computation
time. Thus, the computation time of cryptographic operations at
the responder 𝑐𝑐𝑒2 is ≈ 1.1255 𝑠 and the computation time of all
cryptographic operations at the initiator 𝑐𝑐𝑒1 is ≈ 1.1256 𝑠 .

We simulate𝑀𝐾𝐷 using the widely accepted network simulation
tool, Network Simulator 3 (NS-3) [9] to measure its EED and further
validate its relay resilience. The details of the simulation parameters
we used in NS-3 are as follows: i) Platform is Ubuntu 18.04 LTS;
ii) Communication medium is Wi-Fi; iii) Channel model is P2P;
iv) Transport layer is UDP; v) constant speed is ≈ 3 ∗ 108 𝑚𝑠−1
(speed of light); and vi) distance is 100𝑚. We also consider other
standard NS-3 parameters such as measuring network protocols
performance using a flow monitor. The maximum size of message
to be transmitted by the key derivation initiator and responder is
(𝑄𝐴, 𝑟𝐴, 𝑡1) ≈ 384 𝑏𝑖𝑡𝑠 and (𝑄𝐵, 𝑟𝐵, 𝑝𝑟𝑜𝑜 𝑓 , 𝑥,𝑦, 𝑧, 𝑡4) ≈ 1, 760 𝑏𝑖𝑡𝑠 ,
respectively. The EED of𝑀𝐾𝐷 is ≈ 8.2573𝑚𝑠 . We can see that the
EED is less than ourmaximum 10𝑚𝑠 latency target of smart vehicles
applications systems such as cooperative driving and automated
overtaking [24, 33]. Hence, 𝑀𝐾𝐷 is suitable and fit for the smart

vehicles and it further validates the efficiency of Crypto-Chain
(based on the transmitted messages). Furthermore, we consider
the impact of different distances on EED and our results show
that longer distances increase the EED. We recommended that
each of the initiator and responder should have a maximum EED
(supported by the size of the message) to verify the EED of the
message received and the responder should verify the computation
time of cryptographic operations (see below) to prevent an attacker
from tampering or shortening the distance of communication.

We utilize the EED result and computation time of cryptographic
operations to further mitigate relay attacks using 𝑀𝐾𝐷 . Taking
values from our simulation, 𝑒𝑒𝑑1, which represents the EED of the
data packet of size 384 𝑏𝑖𝑡𝑠 from 𝐼𝐷𝐴 to 𝐼𝐷𝐵 , is 7.8374𝑚𝑠 , and 𝑒𝑒𝑑2,
which represents the EED of the data packet of size 1, 536 𝑏𝑖𝑡𝑠 from
𝐼𝐷𝐵 to 𝐼𝐷𝐴 is 7.9066𝑚𝑠 . Recall, 𝑒𝑡 .𝑚𝑘𝑑 = 𝑐𝑐𝑒1 + 𝑐𝑐𝑒2 + 𝑒𝑒𝑑1 + 𝑒𝑒𝑑2
(cf. Section 4). Hence, 𝑒𝑡 .𝑚𝑘𝑑 = 1.1255 𝑠 + 1.1256 𝑠 + 7.8374𝑚𝑠 +
7.9066𝑚𝑠 = 2.2668 𝑠 . Note that the EED increases as the size of
a message increases. We consider the above results as the actual
EEDs required for mutual authentication and key derivation based
on our simulation settings, i.e.,𝑚𝑎𝑥.𝑒𝑒𝑑1 = 7.8374𝑚𝑠 ,𝑚𝑎𝑥.𝑒𝑒𝑑2 =
7.9066𝑚𝑠 , and 𝑒𝑡 .𝑚𝑘𝑑 = 2.2668 𝑠 .

To show relay resilience using𝑀𝐾𝐷 , we use one our sensors (i.e.,
CM4000) as an attacker 𝐼 to relay data packets between 𝐼𝐷𝐴 (i.e.,
XM1000) and 𝐼𝐷𝐵 (i.e., CM5000) in our simulation. The 𝑒𝑒𝑑1𝐼 with
route 𝐼𝐷𝐴 → 𝐼 → 𝐼𝐷𝐵 is 8.0086𝑚𝑠 and 𝑒𝑒𝑑2𝐼 with route 𝐼𝐷𝐵 →
𝐼 → 𝐼𝐷𝐴 is 8.1293𝑚𝑠 . This shows that: (A) 𝑒𝑒𝑑1𝐼 > 𝑚𝑎𝑥.𝑒𝑒𝑑1; (B)
𝑒𝑒𝑑2𝐼 > 𝑚𝑎𝑥.𝑒𝑒𝑑2; (C) 𝑒𝑒𝑑1𝐼 is not directly proportional to 𝑒𝑒𝑑2𝐼
based on 𝑚𝑎𝑥.𝑒𝑒𝑑1 and 𝑚𝑎𝑥.𝑒𝑒𝑑2, respectively; (D) 𝑒𝑒𝑑2𝐼 is not
directly proportional to 𝑒𝑒𝑑1𝐼 based on𝑚𝑎𝑥.𝑒𝑒𝑑2 and𝑚𝑎𝑥.𝑒𝑒𝑑1;
and (E) 𝑐𝑐𝑒1 + 𝑐𝑐𝑒2 + 𝑒𝑒𝑑1𝐼 + 𝑒𝑒𝑑2𝐼 > 𝑒𝑡 .𝑚𝑘𝑑 . Thus, we conclude
that (i) since 𝑒𝑒𝑑1𝐼 > 𝑚𝑎𝑥.𝑒𝑒𝑑1, CompEED1’s execution at 𝐼𝐷𝐵 will
return restricted to provide relay resilience and that (ii) suppose
𝑒𝑒𝑑1𝐼 < 𝑚𝑎𝑥.𝑒𝑒𝑑1 and any of “B”, “C”, and “D” above holds true,
the mutual authentication and key derivation session will also be
restricted at 𝐼𝐷𝐴 to provide relay resilience. The above simulation
and conclusion further validates the relay resilience capabilities of
Crypto-Chain based on the transmitted messages and EED values.
Note that: (I) Our implementation and analyses focus on demon-
strating the efficiency of our framework via satisfying our 10𝑚𝑠
latency target and illustrating its relay resilience capability. (II) Our
framework can be supported by an NTP software that operates in
each hardware. Any software/hardware modifications will be based
on the NTP to provide the highest clock accuracy.

7 CASE STUDIES
In this section, we carry out two case studies to show the application
of our framework.

7.1 Megamos Crypto
The Megamos Crypto [5] is a symmetric cryptosystem. It is one of
the most widely deployed smart vehicle immobilizer systems used
in many Honda, Audi, Fiat, and Volkswagen cars. This system is
designed to act as a vehicle anti-theft solution between a vehicle
and a car key. These devices have a microprocessor chip that in-
corporates the Megamos Crypto. We extracted and described the
authentication protocol in the Megamos Crypto in Figure 1. It is
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based on a pre-established shared secret key and PRF. We model the
Megamos Crypto in our framework using two machines𝑀𝐴(𝑀𝐶)
and𝑀𝐵 (𝑀𝐶) to model the initiator (i.e., the vehicle) and responder
(i.e., the car key) roles, respectively. These machines have a sim-
ilar I/O interface as 𝐹𝑀𝐾𝐷 and each of them has a network tape.
They use 𝐹𝐶𝐶 as a function to perform cryptographic operations.
In every run of the Megamos Crypto, there is only one instance of
𝑀𝐴(𝑀𝐶)/𝑀𝐵 (𝑀𝐶) per user (𝐼𝐷, 𝑠𝑖𝑑) executing the protocol as de-
picted in Figure 1 to negotiate a random number for authenticating
the identity of the responder.

The Megamos Crypto does not mitigate relay attacks and thus
cannot realize 𝐹𝑀𝐾𝐷 . To see this, we consider the following set-
ting: an honest initiator authenticates an honest responder that
provided a random value 𝑟𝐵 . The responder instance might have
received a genuine public key and a random value, say (𝑄𝐴, 𝑟𝐴)
in the first message of the protocol. The Megamos Crypto does
not guarantee that (i) the initiator and responder sent (𝑄𝐴, 𝑟𝐴)
and 𝑟𝐵 , respectively, and that (ii) an attacker did not relay (𝑄𝐴, 𝑟𝐴)
and 𝑟𝐵 . The attacker can relay 𝑟𝐵 and (𝑄𝐴, 𝑟𝐴) as a relay attack
does not manipulate the messages transmitted between the initia-
tor and responder. Thus, we have no security guarantee for the
transmitted messages and the attacker can easily let the initiator
and responder accept 𝑟𝐵 and (𝑄𝐴, 𝑟𝐴), respectively. While this is
not a direct attack on the protocol, it shows that the security of
the Megamos Crypto is not sufficient to mitigate relay attacks. The
fixes for this problem in our setting are given as follows: i) enhance
the first message of the protocol with a timestamp, i.e., introduce
a timestamp 𝑡1 and equip the protocol with CompEED1 operation
of 𝐹𝑀𝐾𝐷 to compute EED; and ii) equip the protocol with all the
commands of 𝐹𝐶𝐶 and VerETimeMKD operation of 𝐹𝑀𝐾𝐷 to avoid
the reliance on pre-established shared secret key for authentication
in the Megamos Crypto and provide mutual authentication and
key derivation security guarantees. Thus, using 𝐹𝑀𝐾𝐷 provides
an Enhanced Megamos Crypto as described in the above fixes. The
Enhanced Megamos Crypto theorem is provided in Appendix F.

7.2 Hitag-AES/Pro
The Hitag-AES/Pro [31] is a smart vehicle immobilizer transpon-
der based on AES 128-bit encryption algorithm. We extract the
authentication protocol in Hitag-AES/Pro as depicted in Figure 4. It
is meant to provide mutual authentication during communication
between a reader and a transponder using a pre-established shared
secret key. We model the initiator (i.e., the reader) and responder
(i.e., the transponder in a car key) in a similar way to the Megamos
Crypto, except that we have two machines 𝑀𝐴(𝐻𝑃 ) and 𝑀𝐵 (𝐻𝐵)
modelling the initiator and responder, respectively, of the Hitag-
AES/Pro. At the end of the execution of this protocol, the instances
exchange messages to authenticate each other in an ideal manner.
While Hitag-AES/Pro is widely used in the automotive industry, im-
plementing AES 128-bit encryption algorithm does not guarantee
relay resilience as a relay attack can still be performed irrespective
of the cryptographic algorithms deployed. Thus, Hitag-AES/Pro
does not realize 𝐹𝑀𝐾𝐷 . To show this: we consider a setting where
the honest initiator decrypts the fourth message𝑚 of the protocol,
i.e., 𝐷𝑒𝑐𝑘 (𝑚) = 𝐷𝑒𝑐𝑘 (𝐸𝑛𝑐𝑘 (𝑛𝑅, 𝑃𝑊𝐷𝐵)), received from the honest
responder as per Figure 4. If𝑚 was sent or not sent by the responder,

auth

IDB

IDA IDB

Enck(nR , nT)

Enck(nR , PWDB)

Figure 4: Hitag-AES/Pro Authentication Protocol. Abbrevia-
tions: 𝑎𝑢𝑡ℎ − authentication request, 𝑛𝑅 , 𝑛𝑇 − random nonces,
𝑘 − pre-established shared secret key, 𝑃𝑊𝐷𝐵 − responder
password.

the initiator will still decrypt the message and act according to the
protocol execution because the 𝐸𝑛𝑐𝑘 (.)/𝐷𝑒𝑐𝑘 (.) do not guarantee
any relay resilience and we have no relay resilience guarantee for
𝐸𝑛𝑐𝑘 (.), 𝐷𝑒𝑐𝑘 (.), and𝑚. Similar to the Megamos Crypto, this is not
a direct attack on the protocol but rather shows that the security of
𝐸𝑛𝑐 (.)/𝐷𝑒𝑐 (.) is not sufficient to prove that a protocol is resilience
against a relay attack.

A fix for this problem in our setting is to have a cryptographic
proof during 𝐸𝑛𝑐𝑘 (.) and verify the proof during 𝐷𝑒𝑐𝑘 (.) using
ComP&E and VerP/ValT commands of 𝐹𝐶𝐶 , respectively, and then
use VerETimeMKD operation of 𝐹𝑀𝐾𝐷 to validate the expected
time of completing the protocol execution. This allows the en-
hancement of the protocol using 𝐹𝑀𝐾𝐷 which yields an Enhanced
Hitag-AES/Pro. Other commands of 𝐹𝑀𝐾𝐷 and 𝐹𝐶𝐶 can also be used
in the protocol. This Enhanced Hitag-AES/Pro theorem is provided
in Appendix G.

8 RELATEDWORK
The role of relay attacks in exploits against cryptographic protocols
in smart vehicles has been widely recognized with the practical
implementation of the attacks in [14, 34, 36]. We adopt the practical
implementation in [36] and then focus on proving relay security as
a form of relay resilience solution and enhancement to the existing
related work. Verdult et al. [35] discussed effective authentication
protocol for mitigating relay attacks. The protocol relies on the
AES 128-bit encryption algorithm, which is already implemented
in ATA5795C and Hitag-AES/Pro. However, the AES 128-bit en-
cryption algorithm does not solve the problem of relay attacks as
encrypted data can be relayed without decrypting it, i.e., relay at-
tacks are independent of the cipher used in designing the protocol.
Similarly, using authentication for relay resilience is frequently
discussed in [25, 26, 39] and poor implementation of authentication
protocols can expose the applications to relay attack due to imple-
mentation errors such as lack of key update and randomization
during authentication.

Verdult et al. [36] proposed some measures to mitigate relay
attacks. These measures include randomly generating secret keys,
redesigning weak ciphers, and using immobilizers that implement
AES 128-bit encryption algorithm. Relay attacks can still be per-
formed in the presence of secret keys and AES 128-bit encryption
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algorithm because they do not depend on manipulation or interpre-
tation of plaintexts or ciphertexts. One of the key countermeasures
presented in [36] to mitigate relay attacks is implementing asym-
metric cryptography for data authentication. However, authenti-
cation alone is not sufficient to mitigate a relay attack. Wan et al.
[38] proposed to use key derivation schemes for car appliances to
provide relay resilience and prevent the use of vehicles without
permission. Key derivation countermeasures against relay attacks
can inadvertently increase attack vectors. For instance, derived keys
that rely on pre-established secret keys and weak cryptographic
primitives introduce weak keys flaw to the car appliances.

Francillon et al. number[14] proposed mitigation measures to
prevent relay attacks on passive keyless entry and start (PKES)
systems in smart cars. These measures include shielding the key
in the key case, removing the battery from the key, access control
restrictions, temporary disabling of the PKES systems via software
modification, and removing the battery from the key fob via hard-
ware modification. Overall, their solution relies on RF distance
bounding, which has been extensively studied in [20, 21] to provide
accurate measurement of distance for relay attack prevention. How-
ever, the solution affects the availability of the PKES systems as the
operation of the systems is disabled to execute countermeasures,
and the solution lacks cryptographic soundness to implement all
the basic relay resilience security properties such as authentication.
Note that a number of distance bounding protocols have been pro-
posed to mitigate relay attacks [17, 30]. However, these protocols
are vulnerable to distance hijacking attack [11]. To protect against
distance hijacking, the protocols are encouraged to use different
incompatible hardware for distance measurement. While this pro-
tection measure is applicable in the real world, the dispersed and
fast-changing nature of smart vehicles’ environments with many
different and similar hardware that can communicate with each
other makes it difficult for its extensive real-world deployment.

Li et al. [27] proposed a smartphone-enabled user context de-
tection system for relay attack mitigation. The system relies on
the direction assumption that a vehicle owner is either walking
towards the vehicle or is inside the vehicle to mitigate relay attacks.
Considering that relay attacks can be carried out irrespective of
the walking direction or position of the vehicle owner, this shows
that the system is unable to mitigate relay attacks when the vehi-
cle receives a start instruction from other directions. In this case,
the authentication mechanism of the system can be evaded by an
attacker. Ahmad et al. [2] presented a secure passive keyless en-
try and start method using machine learning. While the method
supports the detection of relay attacks in a challenge-response set-
ting between a key fob and a vehicle, it does not support mutual
authentication between the devices, i.e., the key fob and the vehicle.
We note that it is very important to apply mutual authentication
between the devices to mitigate authentication evasion. Wang et
al. [37] proposed a context-based secure keyless entry system that
supports communication over Bluetooth between the key fob and
vehicle. The system grants access to the vehicle via a connection
established between the key fob and the vehicle using information
extracted from the surrounding environment. At the end of the
connection establishment, the vehicle generates a signature for the
key fob. However, the system relies on public and private keys
issued by either an authority or another device for generating the

signature thereby presenting a single point of failure and intro-
ducing extra communication and computational overheads. Thus,
the system does not support key derivation for signature between
the key fob and vehicle. Choi et al. [8] proposed a sound-based
proximity-detection method for relay attack mitigation on PKES
systems. However, the method presents a single point of failure to
the systems because of the reliance on a preshared key to perform
authentication between the key fob and vehicle. Besides, such a
reliance makes the implementation of the method very difficult and
expensive in real-world environments.

In this paper, we argue thatmutual authentication and key deriva-
tion are required to verify user identity and derive a shared secret
session key, respectively. Besides, mutual authentication is applied
to prevent an attacker from interfering with the transmitted mes-
sages between two users. Our framework, which is built irrespective
of hardware compatibility, uses the combination of cryptographic
operations, knowledge of the computation time of the operations,
and cryptographic timestamps to mitigate relay attacks based on
universal composability. While many of the above existing solu-
tions did not prove relay security of their work, mitigation solutions,
or countermeasures to guarantee that negotiable values, keys, or
proofs are resilience against relay attack [35, 36], we prove relay
protection for smart vehicles. Our result allows proving relay secu-
rity as long as we restrict the smart vehicles to our cryptographic
operations, knowledge of the computation time of the operations,
and cryptographic timestamps. Our framework provides a strong
form of relay security for users of smart vehicles. Two users that
authenticate each other and derive a shared secret session key in
our framework can obtain strong relay resilience guarantees.

9 CONCLUSION AND FUTUREWORK
In this paper, we put forward a universally composable framework,
Crypto-Chain, to analyze relay security of many real-world proto-
cols in smart vehicles and provide relay resilience solution with the
support of an extended Kusters’s universal composition theorem
on a fixed number of protocol systems. Crypto-Chain consists of
an ideal crypto-chain functionality 𝐹𝐶𝐶 for cryptographic opera-
tions and an ideal functionality for mutual authentication and key
derivation 𝐹𝑀𝐾𝐷 . 𝐹𝐶𝐶 models various cryptographic primitives,
including our new 𝐷𝑀𝐴 and 𝐾𝐾𝐸. These primitives can be com-
bined and used to negotiate a shared secret session key for relay
resilience support. 𝐹𝑀𝐾𝐷 is supported by 𝐹𝐶𝐶 ’s cryptographic op-
erations, knowledge of the computation time of the cryptographic
operations, and cryptographic timestamps.

We have provided a mutual authentication and key derivation
protocol 𝑀𝐾𝐷 to further validate the beneficial use of Crypto-
Chain for the design of relay resilience cryptographic protocols in
the smart vehicles. We have implemented𝑀𝐾𝐷 and validated its
performance and relay resilience capabilities. We further demon-
strated the usefulness of Crypto-Chain in two case studies, namely
Megamos Crypto and Hitag-AES/Pro. We have uncovered some
weaknesses in the relay security of the protocols and used Crypto-
Chain to provide relay resilience by enhancing the security of the
protocols. In future work, we will apply Crypto-Chain to other
real-world protocols and extend it to further mitigate ransomware
attacks in smart vehicles.
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APPENDIX
A Cryptographic commands of 𝐹𝐶𝐶
The description of the above (GetRV), (CompEPuK), (VerP/ValT),
and (VerP/ValT) commands are listed in Table 2.

B Implementation of 𝐹𝐶𝐶 commands in 𝑃𝐶𝐶
The implementation of cryptographic commands of 𝐹𝐶𝐶 in its real-
ization 𝑃𝐶𝐶 is provided in Table 3.

C Proof Sketch of Theorem 3
The simulator 𝑆 in this proof provides 𝑘 for an uncorrupted pre-
shared key from ECDH key and 𝑘

′
for corrupted one. This proof

consists of several hybrid systems where parts of the realization
are replaced with their ideal versions and the probability that an
environment can distinguish these replacements is negligible, and
then every preceding operation relies on its succeeding operation
in the hybrid systems, which are as follows: In the first step, we de-
fine a hybrid system 𝑃1

𝐶𝐶
where all real asymmetric operations and

ephemeral random values including timestamps are replaced with
their ideal versions and further rely on one another. The security of
this step can be reduced to the security of asymmetric operations.
In the second step, we define a hybrid system 𝑃2

𝐶𝐶
where handling

of private keys is replaced with the ideal version. 𝑃2
𝐶𝐶

relies on
𝑃1
𝐶𝐶

and prevents the guessing and collisions of private keys such
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Table 2: Cryptographic Commands of the ideal crypto-chain functionality 𝐹𝐶𝐶

Cryptographic Commands

Generate a fresh ephemeral random value [(GetRV)]. This command is provided to both (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) and (𝐼𝐷′, 𝑠𝑖𝑑′, 𝑙 ′). The user
(𝐼𝐷, 𝑠𝑖𝑑, 𝑙) can request 𝐹𝐶𝐶 to generate an ephemeral random value. Upon receiving this request, 𝐹𝐶𝐶 forwards the request to the adversary
via a restricting message. The adversary is supposed to provide an ephemeral random value 𝑟 ∈ {1, ..., 𝑛𝑟 } at a timestamp, say 𝑡 , where 𝑛𝑟
is a large randomly selected integer. 𝐹𝐶𝐶 checks that 𝑟 is fresh to prevent ephemeral random value collision. If 𝑟 is not fresh, i.e., 𝑟 already
exists in the database, 𝐹𝐶𝐶 asks the adversary for another 𝑟 until the check succeeds. Then, 𝐹𝐶𝐶 adds (𝐼𝐷, 𝑟, 𝑡) to the database and returns
(RV, 𝑟 , 𝑡) to the user.

Generate a fresh ephemeral private and compute its corresponding ephemeral public key [(CompEPuK, 𝑟 , 𝑡)]. This command is
provided to both (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) and (𝐼𝐷′, 𝑠𝑖𝑑′, 𝑙 ′). The user (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) can request 𝐹𝐶𝐶 to compute an uncorrupted ephemeral public key 𝑄
using an ephemeral random value 𝑟 and a timestamp 𝑡 . Upon receiving this request, 𝐹𝐶𝐶 verifies that (𝐼𝐷, 𝑟, 𝑡) exists in the database and
forwards this request to the adversary via a restricting message if this verification succeeds. The adversary is supposed to provide a fresh
ephemeral private key 𝑑 ∈ {1, ..., 𝑛}. 𝐹𝐶𝐶 ensures that 𝑑 is fresh to prevent a private key collision. If 𝑑 is fresh, i.e., 𝑑 does not exist in the
database, 𝐹𝐶𝐶 stores a pointer 𝑝𝑡𝑟𝑖 that points to 𝑑 for the user, uses the generated domain parameters (𝑝, 𝑎, 𝑏,𝐺, 𝑛, ℎ) to compute a public
key 𝑄 = 𝑑.𝐺 , adds (𝑟,𝑄) and 𝑑 to the database, and returns (EPuK, 𝑝𝑡𝑟𝑖 , 𝑄) to the user. Otherwise, if 𝑑 is not fresh, 𝐹𝐶𝐶 asks the adversary
again for a new 𝑑 until the check succeeds thereby preventing private key guessing.

Generate a fresh preshared key [(GenPSK, 𝑝𝑡𝑟𝑖 , 𝑟 ,𝑄, 𝑟
′
, 𝑄
′)]. This command is provided to both (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) and (𝐼𝐷′, 𝑠𝑖𝑑′, 𝑙 ′). The user

(𝐼𝐷, 𝑠𝑖𝑑, 𝑙) can request 𝐹𝐶𝐶 to generate a new preshared key from the pointer 𝑝𝑡𝑟𝑖 pointing to the private key 𝑑 , ephemeral random values
𝑟 and 𝑟

′
, and public keys 𝑄 and 𝑄

′
. Upon receiving this request, 𝐹𝐶𝐶 first verifies that (𝑟,𝑄) and (𝑟 ′, 𝑄 ′) are recorded in the database

and then returns (PSK, 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑) if any of these verifications fail. Then, 𝐹𝐶𝐶 checks whether a preshared key 𝑘 has been generated
by (𝑟,𝑄, 𝑟 ′, 𝑄 ′), where 𝑄 = 𝑑.𝐺 and returns a pointer 𝑝𝑡𝑟𝑖𝑖 to 𝑘 if the verification succeeds. Otherwise, 𝐹𝐶𝐶 generates a new preshared
key as follows. 𝐹𝐶𝐶 forwards the request to the adversary (via a restricting message (ProvidePSK, 𝑢𝑛𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑, 𝑑,𝑄 ′)) to provide a new
preshared key 𝑘 = 𝐹𝜂 (𝐻 ((𝑑.𝑄

′), (𝑟 ′, 𝑟 ))) using SHA-256 hash algorithm 𝐻 (.) and PRF 𝐹 , where 𝑑.𝑄 ′ represents an ECDH key. 𝐹𝐶𝐶 ensures
that 𝑘 is fresh and has been generated as 𝑘 = 𝐹𝜂 (𝐻 ((𝑑.𝑄

′), (𝑟 ′, 𝑟 ))), adds 𝑘 and (𝑟, 𝑟 ′) to the database, sets the pointer 𝑝𝑡𝑟𝑖𝑖 to 𝑘 , and
returns (PSKPointer, 𝑝𝑡𝑟𝑖𝑖 ) to the user.

Shared secret session key derivation [(DeriveSKey, 𝑝𝑡𝑟𝑖𝑖 , 𝑟 , 𝑟
′)]. This command is provided to both (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) and (𝐼𝐷′, 𝑠𝑖𝑑′, 𝑙 ′). The

user (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) can request 𝐹𝐶𝐶 to derive a shared secret session key 𝑘𝑖 using 𝑘 to which the pointer 𝑝𝑡𝑟𝑖𝑖 points to and ephemeral random
values 𝑟 and 𝑟

′
. Upon receiving this request, 𝐹𝐶𝐶 first checks whether 𝑟 and 𝑟

′
exist in the database and returns (SKeyPointer, 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑)

to the user if any of the checks fails. 𝐹𝐶𝐶 derives 𝑘𝑖 as follows: 𝐹𝐶𝐶 checks whether 𝑘𝑖 has been derived using 𝑝𝑡𝑟𝑖𝑖 , 𝑟 , and 𝑟
′
, and outputs

the pointer 𝑝𝑡𝑟𝑖𝑖𝑖 pointing to 𝑘𝑖 . Otherwise, 𝐹𝐶𝐶 forwards this request to the adversary via a restricting message to compute 𝑘𝑖 . The
adversary uses 𝐻 (.) and a PRF 𝐹

′
to provide 𝑘𝑖 = 𝐹

′
𝜂 (𝐻 (𝑘.𝑟 .𝑟

′)). 𝐹𝐶𝐶 ensures that 𝑘𝑖 is fresh and it is derived as 𝑘𝑖 = 𝐹
′
𝜂 (𝐻 (𝑘.𝑟 .𝑟

′)). Then,
𝐹𝐶𝐶 adds 𝑘𝑖 to the database, stores a new pointer 𝑝𝑡𝑟𝑖𝑣 pointing to 𝑘𝑖 for the owners of 𝑘 and returns (SKeyPointer, 𝑝𝑡𝑟𝑖𝑣) to the user.

Compute a cryptographic proof and a cryptographic timestamp [(CompP&E, 𝑝𝑡𝑟𝑖𝑣, 𝑟 , 𝑟
′)]. This command is provided to only

(𝐼𝐷, 𝑠𝑖𝑑, 𝑙). The user (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) can request 𝐹𝐶𝐶 to compute a cryptographic proof 𝑝𝑟𝑜𝑜 𝑓 and a cryptographic timestamp 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝
using ephemeral random values 𝑟 and 𝑟

′
, and the session key 𝑘𝑖 to which the pointer 𝑝𝑡𝑟𝑖𝑣 points. Upon receiving this request, 𝐹𝐶𝐶

checks whether 𝑝𝑡𝑟𝑖𝑣 belongs to the user and 𝑟 and 𝑟
′
exist in the database. If these checks succeed, it provides proof by encrypting and

MACing (𝑘𝑖 , 𝑟 , 𝑟
′) under an AES 128-bit encryption algorithm 𝐸𝑛𝑐 (.) and 256-bit MAC algorithm 𝑀𝐴𝐶 (.) provided by the adversary.

𝐹𝐶𝐶 computes the cryptographic proof as 𝑝𝑟𝑜𝑜 𝑓 = 𝑀𝐴𝐶𝑘𝑖 (𝑥) at a timestamp 𝑡3, where 𝑥 = 𝐸𝑛𝑐𝑘𝑖 (𝑘𝑖 , 𝑟 , 𝑟
′) and the cryptographic

timestamp as 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 = 𝑡3 .𝐻 (𝑘𝑖 , 𝑟 , 𝑟
′) for the user. Then, 𝐹𝐶𝐶 stores (𝑝𝑟𝑜𝑜 𝑓 , 𝑥, 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑡3) for 𝑘𝑖 in the database, and returns

(P&E, 𝑝𝑟𝑜𝑜 𝑓 , 𝑥, 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑡3) to the user.

Verify a cryptographic proof and validate a cryptographic timestamp [(VerP/ValT, 𝑝𝑡𝑟𝑖𝑣, 𝑝𝑟𝑜𝑜 𝑓 , 𝑥, 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑡3)]. This command
is provided to only (𝐼𝐷′, 𝑠𝑖𝑑′, 𝑙 ′). The user (𝐼𝐷′, 𝑠𝑖𝑑′, 𝑙 ′) can request 𝐹𝐶𝐶 to verify a cryptographic proof 𝑝𝑟𝑜𝑜 𝑓 and validate a cryptographic
timestamp 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 using 𝑘𝑖 to which 𝑝𝑡𝑟𝑖𝑣 points, ciphertext 𝑥 , and a timestamp 𝑡3. Upon receiving this request, 𝐹𝐶𝐶 first verifies that
𝑝𝑡𝑟𝑖𝑣 belongs to the user, and then uses a MAC verification algorithm 𝑉𝑀𝐴𝐶 (.) and decryption of the AES 128-bit encryption algorithm
𝐷𝑒𝑐 (.) provided by the adversary to verify 𝑝𝑟𝑜𝑜 𝑓 . 𝐹𝐶𝐶 verifies 𝑝𝑟𝑜𝑜 𝑓 as follows: i) 𝑉𝑀𝐴𝐶𝑘𝑖 (𝑝𝑟𝑜𝑜 𝑓 , 𝑥) = 1? at a timestamp 𝑡6; and ii)
(𝑘𝑖 , 𝑟 , 𝑟

′) = 𝐷𝑒𝑐𝑘𝑖 (𝑥). If the verifications succeed, 𝐹𝐶𝐶 validates 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 as follows; i) computing 𝑡3 .𝐻 (𝑘𝑖 , 𝑟 , 𝑟
′) = 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝; and ii)

there exists exactly 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 such that 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 is stored for 𝑘𝑖 . If the validations succeed, 𝐹𝐶𝐶 returns (Validation, 𝑡6) to the user.
Otherwise, 𝐹𝐶𝐶 returns restricted to the user.
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Table 3: Implementation of 𝐹𝐶𝐶 commands in its realization 𝑃𝐶𝐶

Implementation of Cryptographic Commands

Generate a fresh ephemeral random value [(GetRV)]. 𝑃𝐶𝐶 selects 𝑟 ← {1, ..., 𝑛𝑟 } at timestamp 𝑡 and outputs (𝑟, 𝑡) to the user.

Generate a fresh ephemeral private and compute its corresponding ephemeral public key [(CompEPuK, 𝑟 , 𝑡)]. 𝑃𝐶𝐶 checks
whether 𝐼𝐷 , 𝑟 , and 𝑡 are valid, selects 𝑑 ← {1, ..., 𝑛}, creates a pointer 𝑝𝑡𝑟𝑖 to 𝑑 , uses the domain parameters (𝑝, 𝑎, 𝑏,𝐺, 𝑛, ℎ) to compute
𝑄 = 𝑑.𝐺 , and outputs (𝑝𝑡𝑟𝑖 , 𝑄) to the user if the checks succeed.

Generate a fresh preshared key [(GenPSK, 𝑝𝑡𝑟𝑖 , 𝑟 ,𝑄, 𝑟
′
, 𝑄
′)]. 𝑃𝐶𝐶 checks whether (𝑟,𝑄) and (𝑟 ′, 𝑄 ′) are valid and returns

(PSKPointer, 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑) to the user if any of these checks fails. Otherwise, 𝑃𝐶𝐶 computes 𝑘 = 𝐹𝜂 (𝐻 ((𝑑.𝑄
′), (𝑟 ′, 𝑟 ))), where 𝑑 is the

private key of the user to which the pointer 𝑝𝑡𝑟 points to, creates a new pointer 𝑝𝑡𝑟𝑖𝑖 to 𝑘 , and returns 𝑝𝑡𝑟𝑖𝑖 to the user.

Shared secret session key derivation [(DeriveSKey, 𝑝𝑡𝑟𝑖𝑖 , 𝑟 , 𝑟
′)]. 𝑃𝐶𝐶 checks whether 𝑟 and 𝑟

′
are valid, computes 𝑘𝑖 = 𝐹

′
𝜂 (𝐻 (𝑘.𝑟 .𝑟

′)),
creates a pointer 𝑝𝑡𝑟𝑖𝑣 to 𝑘𝑖 , and returns 𝑝𝑡𝑟𝑖𝑣 to the user if the checks succeed.

Compute a cryptographic proof and a cryptographic timestamp [(CompP&E, 𝑝𝑡𝑟𝑖𝑣, 𝑟 , 𝑟
′)]. 𝑃𝐶𝐶 checks whether 𝑝𝑡𝑟𝑖𝑣 is recorded for

𝐼𝐷 and 𝑟 and 𝑟
′
are valid, computes 𝑥 = 𝐸𝑛𝑐𝑘𝑖 (𝑘𝑖 , 𝑟 , 𝑟

′), 𝑝𝑟𝑜𝑜 𝑓 = 𝑀𝐴𝐶𝑘𝑖 (𝑥) at a timestamp 𝑡3, and 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 = 𝑡3 .𝐻 (𝑘, 𝑟, 𝑟
′) and then

returns (𝑝𝑟𝑜𝑜 𝑓 , 𝑥, 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑡3) to the user if the checks succeed.

Verify a cryptographic proof and validate a cryptographic timestamp [(VerP/ValT, 𝑝𝑡𝑟𝑖𝑣, 𝑝𝑟𝑜𝑜 𝑓 , 𝑥, 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑡3)]. 𝑃𝐶𝐶 verifies
whether 𝑝𝑡𝑟𝑖𝑣 is recorded for 𝐼𝐷 and 𝑉𝑀𝐴𝐶 (𝑝𝑟𝑜𝑜 𝑓 , 𝑥) = 1 (at a timestamp 𝑡6) and (𝑘𝑖 , 𝑟 , 𝑟

′) = 𝐷𝑒𝑐𝑘𝑖 (𝑥). If the verifications succeed, 𝑃𝐶𝐶
validates that 𝑡3 .𝐻 (𝑘𝑖 , 𝑟 , 𝑟

′) = 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 and then returns 𝑡6 to the user if the validation succeeds.

that any distinguishing environment on 𝑃2
𝐶𝐶

is reduced to the DDH
assumption. In the third step, we define another hybrid system
𝑃3
𝐶𝐶

where real preshared key generation is replaced with an ideal
version. 𝑃3

𝐶𝐶
relies on 𝑃2

𝐶𝐶
and 𝑃3

𝐶𝐶
does not prevent the guessing

or collisions of preshared keys, which are provided by the simulator
as presented above. In step four, we define a hybrid argument 𝑃4

𝐶𝐶
where real symmetric encryption and shared secret session key
derivation operations are replaced with their ideal versions and
guessing and collisions of keys are prevented. Besides, 𝑃4

𝐶𝐶
relies

on 𝑃3
𝐶𝐶

. The security of this step can be reduced to the security of
encryption and key derivation schemes. In step five, we replace real
MACs with their ideal versions using a hybrid system 𝑃5

𝐶𝐶
. While

𝑃5
𝐶𝐶

relies on 𝑃4
𝐶𝐶

, the security of this step can be reduced to the
security of the MAC scheme. We combine all the five steps above
and deduce that the simulator is responsive. This concludes the
proof sketch of this theorem.

D Theorem and Proof of𝑀𝐾𝐷
The following theorem states that the 𝑀𝐾𝐷 is a secure univer-
sally composable relay resilience mutual authentication and key
derivation protocol.
Theorem4. Let𝑀𝐴(𝑀𝐾𝐷) and𝑀𝐵 (𝑀𝐾𝐷) be themachines modelling
the𝑀𝐾𝐷 as described above, let 𝑐 be a sequence of cryptographic op-
erations of 𝑃𝐶𝐶 and 𝐹𝐶𝐶 such that every operation 𝑐𝑖 in 𝑐 always rely
on the preceding operation 𝑐𝑖−1, and let 𝐹𝑀𝐾𝐷 be the ideal function-
ality for mutual authentication and key derivation with parameter
𝑠𝑘𝑒𝑦 = 𝑎𝑢𝑡ℎ𝑒𝑛𝑐 − 𝑘𝑒𝑦. Then, the following holds true:

𝑀𝐴(𝑀𝐾𝐷) |𝑀𝐵 (𝑀𝐾𝐷) |𝐹𝐶𝐶 [𝑐] ≤𝑅 𝐹𝑀𝐾𝐷

Proof: We say that a user 𝐼𝐷 is corrupted if its preshared key
is corrupted. An instance (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) is corrupted if it outputs cor-
rupted when asked for its corruption status by the environment.
An instance is explicitly corrupted if its control is taken over by
the adversary. We define a responsive simulator 𝑆 and show that
𝐸 |𝑀𝐴(𝑀𝐾𝐷) |𝑀𝐵 (𝑀𝐾𝐷) |𝐹𝐶𝐶 [𝑐] ≡ 𝐸 |𝑆 |𝐹𝑀𝐾𝐷 for all environments
𝐸 ∈ 𝐸𝑛𝑣𝑅 (𝑀𝐴(𝑀𝐾𝐷) |𝑀𝐵 (𝑀𝐾𝐷) |𝐹𝐶𝐶 [𝑐]). Note that 𝑆 fulfils the run-
time conditions and immediately responds to restricting messages
as long as the environment 𝐸 does the same with overwhelming
probability. 𝑆 internally simulates the protocol
𝑀𝐴(𝑀𝐾𝐷) |𝑀𝐵 (𝑀𝐾𝐷) |𝐹𝐶𝐶 [𝑐], uses 𝐹𝑀𝐾𝐷 to keep the corruption
statuses of user instances, synchronizes the simulated instances
of 𝑀𝐴(𝑀𝐾𝐷)/𝑀𝐵 (𝑀𝐾𝐷) . To model the protocol, 𝑆 needs to first
initialize 𝐹𝐶𝐶 by sending a message to 𝐹𝐶𝐶 . In response, 𝑆 receives
domain parameters (𝑝, 𝑎, 𝑏,𝐺, 𝑛, ℎ) and cryptographic operations 𝑐
and then uses the parameters and operations to simulate 𝐹𝐶𝐶 . Then,
𝑆 requests the environment 𝐸 for the cryptographic algorithms re-
quired in the execution of 𝐹𝐶𝐶 .

If 𝐹𝑀𝐾𝐷 indicates that a user (𝐼𝐷, 𝑠𝑖𝑑, 𝑙) has started a mutual
authentication and key derivation based on 𝑐𝑖 (𝑐𝑖−1), 𝑆 updates its
internal simulation accordingly. If an ephemeral random value 𝑟𝐵
and public key𝑄𝐵 = 𝑑𝐵 .𝐺 are accepted by an uncorrupted initiator
instance (𝐼𝐷𝐴, 𝑠𝑖𝑑𝐴, 𝐴) and the initiator outputs a pointer 𝑝𝑡𝑟𝑖𝑣 to a
shared secret session key 𝑘𝑖 , then 𝑆 instructs 𝐹𝑀𝐾𝐷 to create a ses-
sion from (𝐼𝐷𝐴, 𝑠𝑖𝑑𝐴, 𝐴) and the responder instance (𝐼𝐷𝐵, 𝑠𝑖𝑑𝐵, 𝐵)
that created encryption and MAC in the second message of the
protocol. Then, 𝐹𝐶𝐶 will ask 𝑆 to provide the session key value
and 𝑆 provides and uses the same value in its simulation. Finally, 𝑆
instructs 𝐹𝑀𝐾𝐷 to output the session key pointer for (𝐼𝐷𝐴, 𝑠𝑖𝑑𝐴, 𝐴).
If 𝑆 receives a message that some instance has closed its session, 𝑆
updates its internal simulation accordingly and returns 𝑂𝑘𝑎𝑦. To
process messages for/from corrupted instances, 𝑆 uses its internal
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simulation. Due to the use of restricting messages, we say that all
operations performed by 𝐹𝐶𝐶 are always successful and have no
side effects on𝑀𝐴(𝑀𝐾𝐷) or𝑀𝐵 (𝑀𝐾𝐷) .

Furthermore, we argue that the simulation is perfect in the case of
an honest initiator instances during mutual authentication and key
derivation and in the case of an honest responder instances during
mutual authentication and key derivation. Firstly, let (𝐼𝐷𝐴, 𝑠𝑖𝑑𝐴, 𝐴)
be an honest instance of 𝑀𝐴 that wants to establish a mutual au-
thentication and key derivation session with user 𝐼𝐷

′
. The instance

will use 𝐹𝐶𝐶 to generate ephemeral random values, encrypt and
decrypt messages, create and verify MACs, generate preshared
keys via ECDH keys, and derive shared secret session keys, and
compute cryptographic proof and cryptographic timestamp. We
need to argue that 𝑆 finds an honest responder instance that can
be paired with (𝐼𝐷𝐴, 𝑠𝑖𝑑𝐴, 𝐴) and further ensure relay resilience: If
a session key pointer is output by (𝐼𝐷𝐴, 𝑠𝑖𝑑𝐴, 𝐴) within the max-
imum computation time of 𝑀𝐾𝐷 , this shows that (𝐼𝐷𝐴, 𝑠𝑖𝑑𝐴, 𝐴)
must have accepted the second message and validated the expected
time of completing the𝑀𝐾𝐷 , and the derived key must still be un-
corrupted. Otherwise, the protocol would stop and block according
to our corruption model. Thus, there exists some instance of 𝐼𝐷

′
,

say (𝐼𝐷′, 𝑠𝑖𝑑′, 𝑙 ′), that provided the cryptographic proof 𝑝𝑟𝑜𝑜 𝑓 =

𝑀𝐴𝐶𝑘𝑖 (𝑥) and 𝑥 = 𝐸𝑛𝑐𝑘𝑖 (𝑘𝑖 , 𝑟𝐴, 𝑟𝐵), where 𝑘𝑖 = 𝐹
′
𝜂 (𝐻 (𝑘.𝑟𝐴 .𝑟𝐵)),

𝑘 = 𝐹𝜂 (𝐻 ((𝑑𝐴 .𝑄𝐵), (𝑟𝐵, 𝑟𝐴))), 𝑄𝐵 = 𝑑𝐵 .𝐺 , timestamp 𝑡3 and cryp-
tographic timestamp 𝑐𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 = 𝑡3 .𝐻 (𝑘𝑖 .𝑟𝐴 .𝑟𝐵). Note that 𝑑𝐴
is the private key of (𝐼𝐷𝐴, 𝑠𝑖𝑑𝐴, 𝐴) and 𝑑𝐵 is the private key of
(𝐼𝐷′, 𝑠𝑖𝑑′, 𝑙 ′). This shows that (𝐼𝐷′, 𝑠𝑖𝑑′, 𝑙 ′) is uncorrupted. As 𝐼𝐷′

is uncorrupted, the instance cannot be explicitly corrupted by the ad-
versary. We now argue that (𝐼𝐷′, 𝑠𝑖𝑑′, 𝑙 ′) is a responder, i.e., 𝑙 ′ = 𝐵:
If 𝑙
′
= 𝐴, then 𝑧 would imply that (𝐼𝐷′, 𝑠𝑖𝑑′, 𝑙 ′) received and ac-

cepted the first message of the protocol (𝑄𝐴, 𝑟𝐴, 𝑡1) provided by
an uncorrupted instance of 𝐼𝐷𝐴 , where 𝑄𝐴 = 𝑑𝐴 .𝐺 and 𝑑𝐴 is the
private key of the instance 𝐼𝐷𝐴 . However, as 𝑑𝐴/𝑄𝐴 is ideally com-
puted and cryptographic operations are integrated, there is only
one instance that would provide and send such a message, namely
(𝐼𝐷𝐴, 𝑠𝑖𝑑𝐴, 𝐴), which does not output any encryption or MAC be-
fore accepting the first message. This implies 𝑙

′
= 𝐵. We observe

that as 𝑑𝐴/𝑄𝐴 and 𝑑𝐵/𝑄𝐵 are ideally computed and validated, the
session key, cryptographic proof, and cryptographic timestamp
derived from them will be considered uncorrupted in 𝐹𝐶𝐶 and only
(𝐼𝐷𝐴, 𝑠𝑖𝑑𝐴, 𝐴) and (𝐼𝐷

′
, 𝑠𝑖𝑑

′
, 𝑙
′) can get a pointer to the session key

and know the cryptographic proof and cryptographic timestamp
which corresponds to the behavior of 𝐹𝑀𝐾𝐷 .

Lastly, let (𝐼𝐷𝐵, 𝑠𝑖𝑑𝐵, 𝐵) be an uncorrupted instance of𝑀𝐵 (𝐷𝐾𝐷)
that wants to establish a mutual authentication and key derivation
sessionwith 𝐼𝐷

′
. We need to show that (𝐼𝐷𝐵, 𝑠𝑖𝑑𝐵, 𝐵) is already part

of a session in 𝐹𝐴𝐾𝐷 when it outputs a session key pointer and every
operation and action up to that point can be perfectly simulated. We
observe that if such a pointer is output by (𝐼𝐷𝐵, 𝑠𝑖𝑑𝐵, 𝐵) within the
maximum computation time ofMKD, this shows that it has accepted
the first message of the protocol and 𝐼𝐷

′
must still be uncorrupted.

This shows that there is an instance of 𝐼𝐷
′
, say (𝐼𝐷′, 𝑠𝑖𝑑′, 𝑙 ′), that

provided and sent the message (𝑄𝐴, 𝑟𝐴, 𝑡𝐴), where 𝑄𝐴 = 𝑑𝐴 .𝐺 ,
where 𝑑𝐴 is the private key of (𝐼𝐷′, 𝑠𝑖𝑑′, 𝑙 ′). Thus, this instance
is uncorrupted. We now argue that this instance is an initiator,
i.e., 𝑙

′
= 𝐼 : Suppose 𝑙

′
= 𝑅, the instance (𝐼𝐷′, 𝑠𝑖𝑑′, 𝑙 ′) cannot have

received its first message of the protocol before (𝐼𝐷𝐵, 𝑠𝑖𝑑𝐵, 𝐵) has
received its first message of the protocol. Thus, 𝑙

′
= 𝐼 . We argue that

as (𝐼𝐷′, 𝑠𝑖𝑑′, 𝑙 ′) has derived a session key and cryptographic proof
via its accepted second message of the protocol, it has completed its
part of the mutual authentication and key derivation. Furthermore,
the instance (𝐼𝐷𝐵, 𝑠𝑖𝑑𝐵, 𝐵) is the only instance that can encrypt
and MAC proof in the second message of the protocol as 𝑑𝐵/𝑄𝐵
is unique and ideal computed and cryptographic operations are
integrated, thus (𝐼𝐷′, 𝑠𝑖𝑑′, 𝑙 ′) is in a session with (𝐼𝐷𝐵, 𝑠𝑖𝑑𝐵, 𝐵).
Note that as both instances use the same uncorrupted private keys
𝑑𝐴 and 𝑑𝐵 to derive a session key and cryptographic proof and 𝑑𝐴 ≠

𝑑𝐵 , these instances will output pointers to the same uncorrupted
session key and cryptographic proof. Thus, the simulation is perfect
in this case.

We note that other cases such as honest instances after mutual
authentication and key derivation as well as corrupted instances
are omitted due to page limit.

By Theorem 3, we can now replace 𝐹𝐶𝐶 [𝑐] by its realization
𝑃𝐶𝐶 [𝑐] which yields that the 𝑀𝐾𝐷 when using the actual cryp-
tographic operations is a universally composable relay resilience
mutual authentication and key derivation protocol.
Proposition 1. Let𝑀𝐴(𝑀𝐾𝐷) and𝑀𝐵 (𝑀𝐾𝐷) be machines as defined
above, let 𝐹𝐶𝐶 [𝑐] and 𝑃𝐶𝐶 [𝑐] be as in Theorem 3 and 𝑀∗ enforces
well-behaved environments. Then, the following holds true:

𝑀∗ |𝑀𝐴(𝑀𝐾𝐷) |𝑀𝐵 (𝑀𝐾𝐷) |𝑃𝐶𝐶 [𝑐] ≤𝑅 𝑀∗ |𝐹𝑀𝐾𝐷 |𝐹𝐶𝐶 [𝑐]

Proof: This proposition follows easily from Theorem 2, Theorem
3, and Theorem 4 that the machines𝑀𝐴(𝑀𝐾𝐷) and𝑀𝐵 (𝑀𝐾𝐷) con-
stitute a well-behaved environment when combined with𝑀∗ and
any other environment 𝐸.

E Photograph of Crypto-Chain Implementation
Figure 5 presents the photography of Crypto-Chain implementation
in our laboratory. This figure shows the components that are used
in our implementation.

F Theorem and Proof Sketch of the Enhanced
Megamos Crypto

The following theorem states that the Enhanced Megamos Crypto is
a secure universally composable relay resilience mutual authenti-
cation and key derivation protocol.
Theorem 5. Let𝑀𝐴(𝑀𝐶) and𝑀𝐵 (𝑀𝐶) be the machines modeling the
Enhanced Megamos Crypto as described above. Let 𝑐 be a sequence of
cryptographic operations of 𝑃𝐶𝐶 and 𝐹𝐶𝐶 such that every operation
𝑐𝑖 in 𝑐 always rely on the preceding operation 𝑐𝑖−1, and let 𝐹𝑀𝐾𝐷 be
the ideal functionality for mutual authentication and key derivation
with parameter 𝑠𝑘𝑒𝑦 = 𝑎𝑢𝑡ℎ𝑒𝑛𝑐 −𝑘𝑒𝑦. Then, the following holds true:

𝑀𝐴(𝑀𝐶) |𝑀𝐵 (𝑀𝐶) |𝐹𝐶𝐶 [𝑐] ≤𝑅 𝐹𝑀𝐾𝐷
Proof Sketch: The proof sketch of this theorem is straightforward

and does not require any probabilistic reasoning. The simulator 𝑆
in this proof internally simulates the protocol 𝑀𝐴(𝑀𝐶) |𝑀𝐵 (𝑀𝐶) |
𝐹𝐶𝐶 [𝑐], uses instances 𝑀𝐴(𝑀𝐶) and 𝑀𝐵 (𝑀𝐶) , and show that

15



(a)

(b)

(c)

(d) (e)
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(h)

Figure 5: Photograph of Crypto-Chain Implementation in
our laboratory. Notations: (a) MacBook Pro, (b)/(h) CM3000
sensor, (c)/(e) CM5000 sensor, (d)/(f) CM4000 sensor, (g)
XM1000 sensor.

𝐸 |𝑀𝐴(𝑀𝐶) |𝑀𝐵 (𝑀𝐶) |𝐹𝐶𝐶 [𝑐] ≡ 𝐸 |𝑆 |𝐹𝑀𝐾𝐷 for all environments 𝐸 ∈
𝐸𝑛𝑣𝑅 (𝑀𝐴(𝑀𝐶) |𝑀𝐵 (𝑀𝐶) |𝐹𝐶𝐶 [𝑐]). Just as the 𝑀𝐾𝐷 , by Theorem 3,
we can replace 𝐹𝐶𝐶 [𝑐] with its realization 𝑃𝐶𝐶 [𝑐] which yields that
the Enhanced Megamos Crypto is a secure universally composable
relay resilience mutual authentication and key derivation protocol.
Proposition 2. Let 𝑀𝐴(𝑀𝐶) and 𝑀𝐵 (𝑀𝐶) be machines as defined
above, let 𝐹𝐶𝐶 [𝑐] and 𝑃𝐶𝐶 [𝑐] be as in Theorem 3 and 𝑀∗ enforces
well-behaved environments. Then, the following holds true:

𝑀∗ |𝑀𝐴(𝑀𝐶) |𝑀𝐵 (𝑀𝐶) |𝑃𝐶𝐶 [𝑐] ≤𝑅 𝑀∗ |𝐹𝑀𝐾𝐷 |𝐹𝐶𝐶 [𝑐]

Proof: It can be seen easily from Theorem 2, Theorem 3, and
Theorem 5 that 𝑀∗ |𝑀𝐴(𝑀𝐶) |𝑀𝐵 (𝑀𝐶) constitutes a well-behaved
environment when combined with 𝐸.

G Theorem and Proof Sketch of the Enhanced
Hitag-AES/Pro

The following theorem states that the Enhanced Hitag-AES/Pro is a
secure universally composable relay resilience mutual authentica-
tion and key derivation protocol.
Theorem 6. Let𝑀𝐴(𝐻𝑃 ) and𝑀𝐵 (𝐻𝑃 ) be the machines modelling the
Enhanced Hitag-AES/Pro that encrypt and MAC messages, decrypts
and VMAC messages, provide/verify cryptographic proof, and verifies
expected time of completing the protocol execution. Let 𝑐 be a sequence
of cryptographic operations of 𝑃𝐶𝐶 and 𝐹𝐶𝐶 such that every operation
𝑐𝑖 in 𝑐 always rely on the preceding operation 𝑐𝑖−1, and let 𝐹𝑀𝐾𝐷 be
the ideal functionality for mutual authentication and key derivation
with parameter 𝑠𝑘𝑒𝑦 = 𝑎𝑢𝑡ℎ𝑒𝑛𝑐 −𝑘𝑒𝑦. Then, the following holds true:

𝑀𝐴(𝐻𝑃 ) |𝑀𝐵 (𝐻𝑃 ) |𝐹𝐶𝐶 [𝑐] ≤𝑅 𝐹𝑀𝐾𝐷
The proof of this theorem is similar to the MKD and Megamos

Crypto, except that, 𝑆 internally simulates the protocol 𝑀𝐴(𝐻𝑃 ) |
𝑀𝐵 (𝐻𝑃 ) |𝐹𝐶𝐶 [𝑐], synchronizes the simulated instances of

𝑀𝐴(𝐻𝑃 )/𝑀𝐵 (𝐻𝑃 ) , and keeps the corruption statuses of user in-
stances using 𝐹𝑀𝐾𝐷 . 𝑆 shows that 𝐸 |𝑀𝐴(𝐻𝑃 ) |𝑀𝐵 (𝐻𝑃 ) |𝐹𝐶𝐶 [𝑐] ≡
𝐸 |𝑆 |𝐹𝑀𝐾𝐷 for all environments𝐸 ∈ 𝐸𝑛𝑣𝑅 (𝑀𝐴(𝐻𝑃 ) |𝑀𝐵 (𝐻𝑃 ) |𝐹𝐶𝐶 [𝑐]).
Just as in the MKD and Megamos Crypto, 𝐹𝐶𝐶 [𝑐] can be replaced
with 𝑃𝐶𝐶 [𝑐] which yields that the Enhanced Hitag-AES/Pro is a se-
cure universally composable relay resilience mutual authentication
and key derivation protocol.
Proposition 3. Let 𝑀𝐴(𝐻𝑃 ) and 𝑀𝐵 (𝐻𝑃 ) be machines as defined
above, let 𝐹𝐶𝐶 [𝑐] and 𝑃𝐶𝐶 [𝑐] be as in Theorem 3 and 𝑀∗ enforces
well-behaved environments. Then, the following holds true:

𝑀∗ |𝑀𝐴(𝐻𝑃 ) |𝑀𝐵 (𝐻𝑃 ) |𝑃𝐶𝐶 [𝑐] ≤𝑅 𝑀∗ |𝐹𝑀𝐾𝐷 |𝐹𝐶𝐶 [𝑐]

Proof: Using Theorem 2, Theorem 3, and Theorem 7, it can be
seen easily that𝑀∗ |𝑀𝐴(𝐻𝑃 ) |𝑀𝐵 (𝐻𝑃 ) creates a well-behaved envi-
ronment with any environment 𝐸.
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