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Abstract Human brain connectivity yields significant potential as a noninvasive biomarker.

Several studies have used fMRI-based connectivity fingerprinting to characterize individual patterns

of brain activity. However, it is not clear whether these patterns mainly reflect neural activity or the

effect of physiological and motion processes. To answer this question, we capitalize on a large data

sample from the Human Connectome Project and rigorously investigate the contribution of the

aforementioned processes on functional connectivity (FC) and time-varying FC, as well as their

contribution to subject identifiability. We find that head motion, as well as heart rate and breathing

fluctuations, induce artifactual connectivity within distinct resting-state networks and that they

correlate with recurrent patterns in time-varying FC. Even though the spatiotemporal signatures of

these processes yield above-chance levels in subject identifiability, removing their effects at the

preprocessing stage improves identifiability, suggesting a neural component underpinning the

inter-individual differences in connectivity.

Introduction
Functional magnetic resonance imaging (fMRI) is based on the blood-oxygenation-level-dependent

(BOLD) contrast mechanism (Ogawa et al., 1990), and is widely viewed as the gold standard for

studying brain function because of its high spatial resolution and non-invasive nature. The BOLD sig-

nal exhibits low frequency (~0.01–0.15 Hz) fluctuations that are synchronized across different regions

of the brain, a phenomenon known as functional connectivity (FC). FC has been observed even in

the absence of any explicit stimulus or task, giving rise to the so-called resting-state networks (RSNs)

(Biswal et al., 1995; Fox and Raichle, 2007; Smith et al., 2009). Initially, FC was viewed as a sta-

tionary phenomenon (static FC) and was commonly measured as the correlation between brain

regions over an entire scan. However, several researchers challenged this assumption (Chang and

Glover, 2010; Sakoğlu et al., 2010), and recent studies have been focusing on FC dynamics, quanti-

fied over shorter time scales than the scan duration (time-varying FC) (Hutchison et al., 2013;

Lurie et al., 2020).

Although the neurophysiological basis of resting-state FC measured with fMRI is not yet fully

understood, many studies have provided evidence to support its neuronal origin. For instance, in ani-

mal models, a strong association between spontaneous BOLD fluctuations and neural activity, in par-

ticular band-limited local field potentials and firing rates, has been reported (Logothetis et al.,

2001; Schölvinck et al., 2010; Shmuel and Leopold, 2008; Thompson et al., 2013b). Furthermore,

a recent study suggested a close correspondence between windowed FC calculated from simulta-

neously recorded hemodynamic signals and calcium transients (Matsui et al., 2019). In human
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studies, direct measurements of macroscale neural activity have revealed a spatial correlation struc-

ture similar to that of spontaneous BOLD fluctuations (Brookes et al., 2011; Hacker et al., 2017;

He et al., 2008; Hipp et al., 2012; Kucyi et al., 2018), even during transient (50–200 ms) events

(Baker et al., 2014a; Hunyadi et al., 2019; Vidaurre et al., 2018). Therefore, it is widely assumed

that resting-state FC measured using BOLD fMRI reflects spontaneous co-fluctuations of the underly-

ing neuronal networks.

However, BOLD signals rely on changes in local cerebral blood flow (CBF) to infer underlying

changes in neuronal activity, and according to a recent study, at least 50% of the spontaneous

hemodynamic signal is unrelated to ongoing neural activity (Winder et al., 2017). For instance, sys-

temic physiological functions can induce variations in global and local CBF, which in turn result in

BOLD signal fluctuations. In particular, low frequency variations in breathing activity (Birn et al.,

2008b; Birn et al., 2006; Power et al., 2017), arterial blood pressure (Whittaker et al., 2019), arte-

rial CO2 concentration (Prokopiou et al., 2019; Wise et al., 2004), and heart rate (Chang et al.,

2009; Shmueli et al., 2007) are known to account for a considerable fraction of variance of the

BOLD signal, presumably through changes in CBF. In addition, the BOLD signal intensity is distorted

by high-frequency physiological fluctuations, such as cardiovascular pulsation and breathing, through

displacement of the brain tissues and perturbations of the B0 magnetic field (Dagli et al., 1999;

Glover et al., 2000). Further, head motion is well-known to have a substantial impact on fMRI

through partial volume, magnetic inhomogeneity and spin-history effects (Friston et al., 1996;

Power et al., 2012). These non-neuronal factors may introduce common variance components in

signals recorded from different brain regions and subsequently induce spurious correlations between

these areas (Chen et al., 2020). Therefore, to account for motion-related and physiological con-

founds, nuisance regressors are typically obtained using model-based and data-driven techniques,

and regressed out from the fMRI data before further analysis (Caballero-Gaudes and Reynolds,

2017).

Static and time-varying resting-state FC have shown promise for providing concise descriptions of

how the brain changes across the lifespan (Battaglia et al., 2020; Chan et al., 2014; Ferreira et al.,

2016; Geerligs et al., 2015; Sala-Llonch et al., 2015; Xia et al., 2019), and to assay neural differen-

ces that are associated with disease (Baker et al., 2014b; Chen et al., 2017; Damaraju et al., 2014;

Demirtaş et al., 2016; Drysdale et al., 2017; Du et al., 2016; Gratton et al., 2019; Hahamy et al.,

2015; Mash et al., 2019; Morgan et al., 2017; Xia et al., 2018). However, recent studies assessing

the performance of a large range of preprocessing strategies found that there is always a trade-off

between adequately removing confounds from fMRI data and preserving the signal of interest

(Ciric et al., 2017; Kassinopoulos and Mitsis, 2021a; Parkes et al., 2018). Importantly, these stud-

ies found that widely used techniques for the preprocessing of fMRI data may not efficiently remove

physiological and motion artifacts. The latter raises a concern, as it is still not clear how nuisance fluc-

tuations may impact the outcome of FC studies.

Several studies have examined whether physiological fluctuations across the brain could give rise

to structured spatial patterns that resemble common RSNs, based on the evidence that vascular

responses following systemic changes are spatially heterogenous (Chang et al., 2009; Pinto et al.,

2017), or account for the observed time-varying interactions between RSNs. For instance,

Bright and Murphy, 2015 applied independent component analysis (ICA) to the fraction of the fMRI

data explained by nuisance regressors related to head motion and physiological variability and

revealed a characteristic network structure similar to previously reported RSNs. Similarly,

Tong et al., 2013; Tong and Frederick, 2014 found significant contributions of systemic fluctuations

on ICA time courses related to the visual, sensorimotor and auditory networks. Recently,

Chen et al., 2020 generated BOLD data containing only slow respiratory-related dynamics and

showed that respiratory variation can give rise to apparent neurally-related connectivity patterns.

Further, recent investigations have shown that physiological confounds can modulate time-varying

FC measures (Chang et al., 2013; Nalci et al., 2019; Nikolaou et al., 2016). These results suggest

that changes in brain physiology, breathing patterns, heart rhythms and head motion across ses-

sions, within-subject or across populations, may introduce artifactual inter-individual and group-

related differences in FC independent of any underlying differences in neural activity. For instance,

cardiac autonomic dysregulation has been associated to a variety of psychiatric disorders

(Alvares et al., 2016; Benjamin et al., 2020), which could in principle lead to group differences in

connectivity patterns between patients and controls if the effects of heart rate are not accounted
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for. Therefore, the disentanglement of the neural and physiological correlates of resting-state FC is

crucial for maximizing its clinical impact.

While the previous findings provide evidence for the dual-nature of RSNs in both static and time-

varying scenarios, only specific physiological processes and/or particular brain networks were evalu-

ated in each of the aforementioned studies. A more holistic assessment of the impact of these non-

neural processes on FC measures is needed to better understand whether and how systemic fluctua-

tions, as well as head or breathing motion affect inter-individual and group differences. Importantly,

the wide range of possible preprocessing strategies needs to be reassessed taking into consider-

ation the effects of several non-neural processes on FC measures rather than accounting only for the

effects of a specific process (e.g. head motion).

The varying efficiency of different preprocessing pipelines with respect to removing the effect of

physiological fluctuations and motion has also implications for studies investigating properties of FC

at the individual level. Recent studies have shown that connectivity profiles vary substantially

between individuals, acting as an identifying fingerprint (Finn et al., 2015; Miranda-

Dominguez et al., 2014) that is stable over long periods of time (Horien et al., 2019). However, the

high subject discriminability of connectivity profiles may arise partly as a result of physiological pro-

cesses (Batchvarov et al., 2002; Golestani et al., 2015; Malik et al., 2008; Pinna et al., 2007;

Pitzalis et al., 1996; Power et al., 2020; Reland et al., 2005) and head motion (Van Dijk et al.,

2012; Zeng et al., 2014) being highly subject-specific. Evidence supporting this hypothesis comes

from studies showing that the mean of intraclass correlation values of functional connections, associ-

ated to test-retest reliability across sessions, is reduced when a relatively aggressive pipeline is used

(Birn et al., 2014; Kassinopoulos and Mitsis, 2021a; Parkes et al., 2018), suggesting that artifacts

exhibit high subject specificity. However, the relation between subject discrimination and inter-indi-

vidual differences in physiological processes and head motion has yet to be addressed.

In the present work, we capitalize on 3T resting-state fMRI data from the Human Connectome

Project (HCP) to uncover the whole-brain connectome profiles of systemic low-frequency oscillations

(SLFOs) associated with heart rate and breathing patterns, cardiac pulsatility, breathing motion and

head motion on estimates of static and time-varying FC. To quantify the contributions of physiologi-

cal processes and head motion on FC, we employ model-based techniques with externally recorded

physiological measurements, and subsequently generate nuisance datasets that only contain non-

neural fluctuations. Using these datasets, we provide a comprehensive examination of the regional

variability of the impact of the considered nuisance processes on the BOLD signal, as well as an

investigation of the group consistency and inter-individual differences of their characteristic signa-

tures on FC. We further evaluate several fMRI preprocessing strategies to assess the extent to which

different techniques remove the physiological and motion FC signatures from the fMRI data. Finally,

we investigate the potential effect of physiological processes and head motion on individual discrim-

inability in the context of connectome fingerprinting.

Using the proposed approach, we show that SLFOs and head motion have a larger impact on FC

measures compared to breathing motion and cardiac pulsatility, and we highlight the functional con-

nections that are more prone to exhibiting biases. Furthermore, our findings suggest that the recur-

rent whole-brain connectivity patterns observed in time-varying FC can be partly attributed to

SLFOs and head motion. Finally, we show that connectome fingerprinting accuracies are higher

when non-neural confounds are reduced, suggesting a neural component underpinning the individ-

ual nature of FC patterns.

The codes that were employed to carry out the analyses described in the present study are pub-

licly available and can be found on github.com/axifra/Nuisance_signatures_FC. (copy archived at

swh:1:rev:52781e743d4b4eb491b9330210dac52dcd46fd10), Xifra-Porxas, 2021a.

Results

Contributions of nuisance processes to the BOLD signal
We examined regional differences in the influence of physiological processes and head motion to

the BOLD signal. The physiological processes evaluated here were breathing motion, cardiac pulsa-

tility, and SLFOs associated with changes in heart rate and breathing patterns (see Materials and

methods – Nuisance processes evaluated). Scans with LR and RL phase encoding were examined
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separately as it has been suggested that breathing motion artifacts vary across scans with different

phase encoding directions (Raj et al., 2001), and thus we aimed to examine whether other pro-

cesses such as head motion demonstrate a similar dependence. The contributions of each nuisance

process on BOLD signal fluctuations were quantified as the correlation between the nuisance fluctua-

tions of the process in question, modeled using externally recorded physiological measurements,

and the BOLD fluctuations ’cleaned’ of all other nuisance fluctuations (denoted as rnuis in the Materi-

als and methods section – Isolation of nuisance fluctuations from fMRI data, see also Figure 7). We

computed these contributions for each scan and then tested for the presence of consistent patterns

across scans with the same phase encoding direction (significance testing using inter-subject surro-

gates, two-sample t-test, p<0.05, Bonferroni corrected).

The results showed distinct regional patterns for each of the nuisance processes. SLFOs mostly

affected sensory regions, including the visual and somatosensory cortices (particularly of the face)

(Figure 1A). Phase encoding was not found to modulate the magnitude of the SLFOs contributions

on the BOLD signal (Figure 1A). Head motion exhibited the largest effect in the somatosensory and

visual cortices (Figure 1B). Intriguingly, the effect in the visual cortex was highest in the right hemi-

sphere for LR phase encoding, but highest in the left hemisphere for RL phase encoding

(Figure 1B). Breathing motion effects were more pronounced in prefrontal, parietal and temporal

brain regions (Figure 1C). Further, breathing motion had a much larger impact on the left hemi-

sphere when the phase encoding was LR, whereas the reverse pattern was observed for RL phase

encoding (Figure 1C). Cardiac pulsatility was highest in regions such as the visual and auditory corti-

ces, as well as the insular cortex (Figure 1D).

Physiological and head motion signatures in static FC
To examine the effect of physiological fluctuations and head motion in static FC, we developed a

framework that quantifies the extent to which functional connections are influenced by a nuisance

process at the individual scan level. Briefly, synthetic datasets were generated for each scan based

on the contributions of the examined nuisance processes within each ROI (see Materials and meth-

ods – Isolation of nuisance fluctuations from fMRI data). These datasets retained the variance

explained by nuisance fluctuations and replaced the remaining variance (often considered as the

‘neural’ variance) with random signals generated through an autocorrelated process. This framework

allowed us to compute FC matrices that illustrate the whole-brain connectome profiles arising from

the nuisance processes of interest (see Materials and methods – Estimation of static and time-varying

functional connectivity).

The group-averaged static FC matrices across all 1568 scans revealed consistent whole-brain con-

nectome patterns for SLFOs, head motion and breathing motion (Figure 2A–C). SLFO-based con-

nectivity profiles exhibited strong positive correlations for all edges of the FC matrix, particularly for

edges within the visual network, as well as between the visual network and the rest of the brain

(Figure 2A). Head motion mainly influenced functional connections within the visual and sensorimo-

tor networks, as well as edges within the DMN (Figure 2B). Note that even though areas in both the

visual and sensorimotor networks were influenced by motion artifacts (Figure 1B), we did not

observe strong correlations between the two aforementioned networks. This is not entirely surpris-

ing, as two brain areas may be associated with a different linear combination of head motion nui-

sance regressors and, thus, the correlation between the region-specific motion-induced fluctuations

can in principle be around zero. Breathing motion exhibited an intriguing chess-like pattern, with

both positive and negative correlations (Figure 2C, lower triangular matrix). Based on this observa-

tion, we subsequently reordered the ROIs with respect to their hemisphere, which revealed that pos-

itive correlations were mostly confined between ROIs of the same hemisphere, whereas correlations

between hemispheres were close to zero or even negative (Figure 2C, upper triangular matrix).

Even when scans with LR and RL phase encoding were averaged separately, both hemispheres

exhibited increased within-hemisphere connectivity (Figure 2—figure supplement 1C). Nonethe-

less, the connectome profile of breathing motion exhibited clear differences between phase encod-

ing directions, whereas all other nuisance processes did not exhibit perceivable differences

(Figure 2—figure supplement 1). Finally, cardiac pulsatility did not exhibit a characteristic spatial

pattern and the group-averaged correlation values were low, suggesting that it does not affect static

FC in a systematic manner across subjects (Figure 2D).
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Capability of preprocessing strategies to remove the nuisance
signatures on static FC
To examine the capability of various preprocessing strategies to reduce the effects introduced by

physiological processes and head motion on static FC, we computed for each scan the similarity of

the connectome profile that arises from a nuisance process with the connectome profile calculated

from preprocessed fMRI data (considered as the ‘neural’ profile). This similarity reflects the extent to

which the ‘neural’ connectome profile extracted after a specific denoising strategy is confounded by

Figure 1. Contributions of nuisance processes to the resting-state BOLD signal. T-score maps of the correlation

between each nuisance process and BOLD fMRI fluctuations (raw data) for (A) SLFOs, (B) head motion, (C)

breathing motion, and (D) cardiac pulsatility, computed within each parcel of the Gordon atlas (nonparametric

permutation test, p<0.05, FDR corrected). The tests were performed for each phase encoding separately. The

physiological fluctuations were obtained from simultaneous external recordings. These results illustrate the cortical

regions most affected by each nuisance process.
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Figure 2. Whole-brain connectome patterns induced by nuisance processes and effect of preprocessing strategies. (A–D) Group averaged nuisance FC

matrices across all 1568 scans for (A) SLFOs, (B) head motion, (C) breathing motion, and (D) cardiac pulsatility. The lower triangular matrices show the

FC value for each network pair. The upper triangular matrices show FC values from the lower triangular averaged within network pairs (A, B, D panels),

or the FC value for each network pair reordered according to left/right hemisphere (C panel). These results demonstrate that nuisance fluctuations

Figure 2 continued on next page
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physiological and head motion artifacts. A distribution of the similarity values across scans, in this

case Pearson’s correlation coefficients, is shown in Figure 2E–H for each preprocessing strategy and

nuisance process. We found that SLFOs, head motion and breathing motion had the strongest influ-

ence on static FC, based on the similarity of their connectome profiles with the ‘neural’ connectome

profiles from the raw data (Figure 2E–H).

The signature induced by SLFOs remained after the MildA, MildB, and FIX pipelines were

applied, but was greatly reduced by the WM50 and WM200 strategies (Figure 2E). The observation

that FIX, which is a rather aggressive preprocessing strategy, was unable to remove most of the

SLFOs is consistent with recent studies showing that global artifactual fluctuations are still prominent

after FIX denoising (Burgess et al., 2016; Glasser et al., 2018; Kassinopoulos and Mitsis, 2019;

Power et al., 2018; Power et al., 2017). Notably, GSR seemed to be an effective technique for

removing the physiological signature from SLFOs on static FC, albeit for some scans it appeared to

introduce a negative correlation between the SLFOs and ‘neural’ FC matrices (Figure 2E). This effect

was greater when the global signal was computed across the whole brain in volumetric space, com-

pared to across vertices in surface space (Figure 2—figure supplement 2A). The effect of the signa-

ture related to head motion was reduced with more aggressive preprocessing strategies, but none

of the examined approaches completely eradicated the head motion effects in static FC (Figure 2F).

GSR slightly reduced the similarity between the head motion and ‘neural’ connectome profiles. The

signature induced by breathing motion was greatly reduced by all preprocessing strategies, and par-

ticularly by FIX denoising, which yielded almost chance level (Figure 2G). Still, none of the prepro-

cessing strategies entirely eliminated the breathing motion signature in static FC. The confounds

introduced by cardiac pulsatility were overall small and effectively removed by the FIX, WM50, and

WM200 strategies (Figure 2H). GSR did not have any effect on the removal of breathing motion and

cardiac pulsatility connectome profiles.

Finally, we evaluated the addition of model-based nuisance regressors to the preprocessing strat-

egies. Specifically, we added the physiological regressors used to model SLFOs (Kassinopoulos and

Mitsis, 2019), cardiac pulsatility and breathing motion (Glover et al., 2000). We found that includ-

ing the regressor that models SLFOs reduces their effect on static FC for all preprocessing strategies

apart from WM50 and WM200, but, in contrast to GSR, the similarity remains well above chance levels

(Figure 2—figure supplement 3A). Including the RETROICOR regressors related to breathing

motion considerably reduced the breathing motion signature in the raw data and when only using

GSR as a preprocessing method; however, none of the preprocessing strategies benefited from

including these regressors (Figure 2—figure supplement 3C). On the contrary, including the RET-

ROICOR regressors related to cardiac pulsatility completely removed the effect of the latter for the

raw data and the MildA and MildB strategies (Figure 2—figure supplement 3D), suggesting that

conservative preprocessing strategies greatly benefit by adding the model-based regressors for car-

diac pulsatility.

Figure 2 continued

induce heterogeneous whole-brain connectivity profiles which, if unaccounted for, can result in biased estimates functional connectivity. (E–H)

Distribution of Pearson correlation coefficients across all 1568 scans between the ‘neural’ FC matrix for different preprocessing strategies and nuisance

FC matrices associated to (E) SLFOs, (F) head motion, (G) breathing motion, and (H) cardiac pulsatility. Correlation values were Fisher z transformed.

SLFOs, head motion and breathing motion were found to confound the FC matrices more severely (E–G). GSR effectively removed the effects of

SLFOs, while more aggressive preprocessing pipelines mitigated the effects of head motion, breathing motion and cardiac pulsatility.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Whole-brain connectome patterns induced by nuisance processes, separately for scans with LR and RL phase encoding.

Figure supplement 2. Effectiveness of preprocessing strategies in reducing the whole-brain connectivity profiles effects of SLFOs for two different
global signal calculation methods.

Figure supplement 3. Effectiveness of preprocessing strategies in reducing the whole-brain connectivity effect of each nuisance process, with and
without including model-based regressors.

Figure supplement 4. Investigating the negative correlations between the ‘neural’ and SLFOs signatures after GSR.

Figure supplement 5. Whole-brain connectome patterns induced by nuisance processes and effect of preprocessing strategies, using the Seitzman
atlas.
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Connectome-based identification of individuals
We next investigated the extent to which FC matrices associated to physiological processes and

head motion can identify an individual subject, and whether the accuracy of connectome-based fin-

gerprinting is inflated by the examined nuisance processes (see Materials and methods – Connec-

tome-based identification of individual subjects).

We initially considered all the edges of the FC matrices for subject identification (Gordon atlas:

40,755 edges). Accuracy was above chance for all database-target combinations for the nuisance

processes, with rates up to 40% (Figure 3A). Breathing motion exhibited an intriguing bimodal dis-

tribution: database-target pairs that had the same phase encoding yielded much higher identifica-

tion rates than database-target pairs with different phase encodings, even if the latter were acquired

on the same day. This effect was also observed, although to a lesser extent, for cardiac pulsatility

and head motion.

Identification accuracy was much higher for the ‘neural’ datasets compared to the nuisance data-

sets, with rates ranging from 52% to 99% (Figure 3B). The MildA, MildB, and FIX techniques consid-

erably improved the accuracy compared to the raw data, and the WM50 and WM200 techniques

significantly outperformed all other preprocessing strategies. GSR considerably improved identifica-

tion accuracy for the MildA, MildB and FIX strategies. Furthermore, we observed that for the raw

data, database-target pairs from different days with the same phase encoding showed identification

rates as high as the ones from the same day but different phase encoding. In contrast, for all other

preprocessing strategies the database-target pairs from the same day were always higher.

We subsequently tested identification accuracy on the basis of within and between edges of spe-

cific functional networks to examine whether certain functional connections had a more pronounced

contribution to individual subject discriminability. Results for the nuisance datasets are shown in

Figure 4A, where it can be seen that nuisance processes yielded a markedly lower identification

accuracy when using specific edges compared to using all edges (Figure 3A). Furthermore, func-

tional connections between networks seemed to contribute more to the subject discriminability of

SLFOs compared to connections within brain networks (p<0.001, Wilcoxon rank-sum).

Regarding the ‘neural’ datasets, we focused on the most aggressive strategies, namely FIX and

WM200. Networks of ‘top-down’ control (FPN, CO, DAN, VAN), as well as the DMN, yielded higher

identification accuracy compared to sensorimotor processing networks (Visual, SMd, Aud) for all pre-

processing strategies (Figure 4B). These results indicate that FC patterns in higher order association

cortices (‘top-down’ control networks) tend to be distinctive for each individual, whereas primary

sensory and motor regions (processing networks) tend to exhibit similar patterns across individuals,

consistent with previous studies (Finn et al., 2015; Gratton et al., 2018; Horien et al., 2019). We

then tested for differences in identification accuracy between the raw data vs. FIX and WM200 data

(Figure 4C, p<0.05, Bonferroni corrected, Wilcoxon rank-sum). FIX denoising significantly increased

the subject discriminability of connections within and between several top-down control networks,

but significantly decreased the subject discriminability of connections between the FPN and SMd, as

well as the FPN and Aud networks. Conversely, WM200 denoising significantly increased the subject

discriminability of connections within and between all top-down control networks, connections within

the Visual and SMd networks, and connections of the DAN with the Visual and SMd network.

Physiological and head motion signatures in time-varying FC and the
effect of preprocessing strategies
To examine the effect of physiological processes and head motion on time-varying FC estimates, we

computed functional connectivity dynamics (FCD) matrices (Hansen et al., 2015) using the gener-

ated nuisance and ‘neural’ datasets from each scan, whereby each FCD matrix captures the temporal

evolution of FC patterns within a scan. We subsequently computed the similarity of the nuisance and

‘neural’ FCD matrices at the individual level to examine the capability of various preprocessing strat-

egies to reduce the confounds introduced by physiological processes and head motion on time-vary-

ing FC. A distribution of the similarity values, in this case Pearson’s correlation coefficients, is shown

in Figure 5 for each preprocessing strategy and nuisance process. We observed that the temporal

evolution of FC patterns from SLFOs and head motion were similar to the ones observed in the raw

data. An illustration of this similarity is shown in Figure 6 for six subjects. On the other hand, the dis-

tribution of similarity values for breathing motion and cardiac pulsatility FCD matrices was around

Xifra-Porxas, Kassinopoulos, et al. eLife 2021;10:e62324. DOI: https://doi.org/10.7554/eLife.62324 8 of 36

Research article Neuroscience

https://doi.org/10.7554/eLife.62324


Figure 3. Connectome fingerprinting results. (A) Fingerprinting accuracy obtained using the static FC matrices from the generated nuisance datasets

whereby non-neural fluctuations were isolated from the BOLD data. Above-chance level accuracy values were obtained for all nuisance processes,

suggesting some degree of subject specificity in whole-brain connectivity profiles arises from nuisance fluctuations. (B) Fingerprinting accuracy obtained

using the static FC matrices generated from each of the preprocessing strategies evaluated. The pairs of resting-state scans are indicated with different

symbols, depending on whether they belong to the same or different day session, as well as whether they have the same phase encoding. Higher

fingerprinting accuracy values were observed for white matter denoising approaches (WM50, WM200) compared to milder pipelines and FIX denoising.

Both mild and more aggressive pipelines yielded higher subject discriminability for pairs of scans acquired on the same day. GSR increased the

fingerprinting accuracy of milder strategies and FIX denoising.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure 3 continued on next page
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zero, indicating the absence of systematic effects on ‘neural’ FCD matrices (Figure 5). Including

model-based regressors in the preprocessing pipelines led to a small decrease in the similarity

between neural and SLFOs FCD matrices, particularly for mild pipelines and FIX without GSR, even

Figure 3 continued

Figure supplement 1. Schematic of the methodology for connectome fingerprinting.

Figure supplement 2. Connectome fingerprinting results for the Seitzman atlas.

Figure 4. Connectome fingerprinting results using edges within and between networks. (A) Fingerprinting accuracy for SLFOs, head motion, breathing

motion and cardiac pulsatility, averaged across all database-target pairs. (B) Fingerprinting accuracy for the raw data, FIX and WM200 pipelines,

averaged across all database-target pairs. (C) Significant differences in fingerprinting accuracy obtained when using the FIX and WM200 pipelines as

compared to the raw data (p<0.05, Bonferroni corrected, Wilcoxon rank-sum). Connectivity profiles within and between top-down control networks

(FPN, CO, VAN, DAN) and DMN yielded higher identification accuracy compared to connectivity profiles within and between sensorimotor processing

networks (Visual, SMd, Aud).
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Figure 5. Effectiveness of preprocessing strategies in reducing functional connectivity dynamics (FCD) profiles

induced by physiological and motion processes. Distribution of Pearson correlation coefficients across all 1568

scans between the ‘neural’ functional connectivity dynamics (FCD) matrix after each preprocessing pipeline and

nuisance FCD matrices associated to (A) SLFOs, (B) head motion, (C) breathing motion, and (D) cardiac pulsatility.

Figure 5 continued on next page
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though these decreased similarity values were still above chance levels (Figure 5—figure supple-

ment 1A).

None of the preprocessing pipelines was able to vanish the effects of SLFOs and head motion.

However, these effects were considerably reduced by the WM50 and WM200 strategies (Figure 5A–

B, Figure 6). FIX denoising was the least successful strategy in terms of reducing the SLFOs’ signa-

ture (Figure 5A, Figure 6), similarly to static FC (Figure 2E), and only achieved the same levels of

performance as other strategies after GSR. However, even after GSR none of the strategies reached

chance levels (Figure 5A), in contrast with the static FC results (Figure 2E). GSR led also to a slight

reduction in the similarity between the head motion and ‘neural’ FCD matrices (Figure 5B), as in the

case of static FC (Figure 2F).

Discussion
In this work, we characterized the effects of physiological processes and head motion on static and

time-varying estimates of functional connectivity measured with BOLD fMRI. While the BOLD signal

is considered a proxy of neural activity via changes in local blood oxygenation, physiological pro-

cesses and motion artifacts can also induce variations in the BOLD signal, which can in turn lead to

confounds in estimates of functional connectivity. Here, we developed an innovative framework to

characterize the spatial signature of head motion and physiological processes (cardiac and breathing

activity) on estimates of functional connectivity. Our results demonstrated that functional connectiv-

ity measures can be influenced by non-neural processes. Specifically, we identified stereotyped

whole-brain functional connectivity profiles for SLFOs, head motion and breathing motion

(Figure 2A–C), suggesting that these processes introduce a systematic bias in estimates of functional

connectivity if they are not properly accounted for. Furthermore, we provided evidence that recur-

ring patterns in time-varying FC can be attributed, to some extent, to SLFOs and head motion (Fig-

ure 5, Figure 6). We also assessed the performance of several state-of-the-art preprocessing

strategies in mitigating the effects of nuisance processes, and showed that more aggressive prepro-

cessing strategies such as FIX (Salimi-Khorshidi et al., 2014) and WM denoising

(Kassinopoulos and Mitsis, 2021a) combined with GSR were the most effective with regard to

removing the effects of non-neural processes for both static and time-varying FC analyses

(Figure 2E–H, Figure 5, Figure 6). Finally, we evaluated the potential subject specificity of the con-

nectivity profiles associated with physiological and motion confounds, along with their role as hypo-

thetical contributors to connectome fingerprinting accuracy. Interestingly, we found that these non-

neural functional connectivity patterns are to some extent subject specific (Figure 3A); however,

fMRI data corrected for these confounds increased identification accuracy in connectome fingerprint-

ing (Figure 3B), suggesting that the inter-individual differences in FC that facilitate subject identifica-

tion are strongly neural and do not largely stem from physiological processes or head motion.

Spatially heterogeneous contributions of nuisance processes to the
BOLD signal
It is well established that head and breathing motion affect areas at the edges of the brain (Jo et al.,

2010; Patriat et al., 2015; Satterthwaite et al., 2013), whereas cardiac pulsatility affects areas near

the large cerebral arteries just above the neck (Glover et al., 2000; Kassinopoulos and Mitsis,

Figure 5 continued

Correlation values were Fisher z transformed. Results shown in the top row of each subpanel (raw data) suggest

that SLFOs and head motion most severely confound the FC matrices, whereas breathing motion and cardiac

pulsatility do not induce artifactual dynamics. None of the examined strategies completely eliminated these

effects.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Effectiveness of preprocessing strategies in reducing functional connectivity dynamics
(FCD) profiles induced by physiological and motion processes, with and without including model-based
regressors.

Figure supplement 2. Effectiveness of preprocessing strategies in reducing functional connectivity dynamics
(FCD) profiles induced by physiological and motion processes, using the Seitzman atlas.
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2021b). These observations are based on studies that typically examine the brain regions affected

by the aforementioned sources of noise on a voxel-wise basis. However, at the voxel level we cannot

easily assess whether the average fMRI signal from atlas-based ROIs includes significant contribu-

tions from these nuisance processes. In principle, it could be the case that the dynamics of artifacts

associated with a specific nuisance process demonstrate significant variability across voxels, and as a

Figure 6. Functional connectivity dynamics (FCD) profiles associated with SLFOs and head motion resemble patterns commonly attributed to neural

processes. Illustrative examples of FCD matrices from specific HCP subjects as obtained from the fMRI data for several pre-processing pipelines (rows

1–6), as well as from SLFOs and head motion (rows 7 and 8, respectively). All the examples are from the HCP scan Rest1_LR. These examples show a

clear resemblance between FCD matrices computed from the ‘neural’ datasets and the nuisance processes (SLFOs and head motion). Note that the

size of FCD matrices is W�W, where W is the number of sliding windows within a scan.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Examples of functional connectivity dynamics (FCD) profiles.
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result their effects cancel out when averaging voxels within an ROI. In the present study, we assessed

the impact and regional variation of these nuisance processes in the Gordon parcellation

(Gordon et al., 2016), a widely used atlas in the literature.

SLFOs related to changes in heart rate and breathing patterns were found to affect mostly sen-

sory regions including the visual and somatosensory cortices (particularly of the face) (Figure 1A),

which correspond to regions with a high density of veins (Bernier et al., 2018; Huck et al., 2019).

The spatial pattern of SLFOs is very similar to statistical maps reported in prior works, which have

highlighted brain regions highly correlated with the global signal (Billings and Keilholz, 2018;

Glasser et al., 2016; Li et al., 2019a; Power et al., 2017; Tong et al., 2013; Zhang et al., 2020).

This is not surprising, since the global signal is strongly driven by fluctuations in heart rate and

breathing patterns (Birn et al., 2006; Chang and Glover, 2009a; Falahpour et al., 2013;

Kassinopoulos and Mitsis, 2019; Shmueli et al., 2007). Moreover, we show evidence that SLFOs

and cardiac pulsatility do not affect the same brain regions, consistent with (Chen et al., 2019;

Kassinopoulos and Mitsis, 2019; Tong and Frederick, 2014). Specifically, cardiac pulsatility was

more dominant in regions such as the insular and auditory cortices, which align with cortical

branches of the middle cerebral artery (Figure 1D) and are the regions with highest arterial density

(Bernier et al., 2018).

Regarding head motion, previous studies found that its effect was more pronounced in prefron-

tal, sensorimotor, and visual brain regions (Satterthwaite et al., 2013; Yan et al., 2013). However,

these studies did not remove breathing artifacts from the realignment parameters, which are present

even in single-band datasets (Gratton et al., 2020), and thus were unable to disentangle whether a

specific type of motion affected particular brain regions. In the present work, we regressed out

breathing motion from the realignment parameters, and observed that sensorimotor and visual areas

were strongly affected by head motion (Figure 1B), whereas breathing motion artifacts were more

pronounced in the prefrontal cortex and brain regions in the parietal and temporal cortices

(Figure 1C). Furthermore, Yan et al. showed that framewise displacement was positively correlated

with sensory regions and negatively correlated with prefrontal regions. Collectively, these findings

suggest that most regions exhibit an increase in the BOLD signal due to head and breathing motion,

whereas the prefrontal cortex may exhibit a decrease in the BOLD signal likely due to breathing-

related chest movements.

Physiological and head motion signatures in static FC
Head motion is considered the biggest source of confound for FC fMRI studies and there is a signifi-

cant effort from the neuroimaging community toward developing and evaluating preprocessing

strategies that mitigate its effects (Ciric et al., 2017; Parkes et al., 2018; Power et al., 2015). On

the other hand, while it has been shown that SLFOs affect the default-mode network (Birn et al.,

2014; Birn et al., 2008a; Chang and Glover, 2009a), and high frequency cardiac and breathing arti-

facts influence the BOLD signal (Glover et al., 2000; Power, 2019), a systematic investigation of the

effects of physiological processes in the context of whole-brain FC is lacking in the literature. In the

present study, we evaluated collectively the impact of the aforementioned sources of noise on

whole-brain fMRI resting-state FC.

Our results revealed that all four nuisance datasets exhibited mainly positive correlations between

ROIs (Figure 2A–D), suggesting that the presence of nuisance fluctuations in a conventional fMRI

dataset typically leads to a shift of correlation values toward more positive numbers. In other words,

in the case of an fMRI dataset that has not been corrected for nuisance fluctuations, two ROIs for

which neural-related fluctuations are negatively correlated could be found to be positively correlated

due to the presence of similar nuisance fluctuations in the ROIs. Furthermore, we observed that

SLFOs and head motion confounded FC to a larger degree compared to breathing motion and car-

diac pulsatility (Figure 2E–H).

Our results suggest that SLFOs due to spontaneous changes in heart rate or breathing patterns

inflate connectivity (toward more positive values) across the whole brain but particularly for edges

within the visual network, as well as edges between the visual and the rest of the networks

(Figure 2A). It is well known that the visual cortex is characterized by the highest venous density

(Bernier et al., 2018), possibly due to its functional importance (Collins et al., 2010). In addition, it

has been shown that brain regions with higher vascular density exhibit larger amplitude of spontane-

ous BOLD fluctuations (Vigneau-Roy et al., 2014). Therefore, it is likely that the structure of the
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SLFOs’ connectome profile may largely reflect the underlying vascular architecture. The effect of

SLFOs on static FC was considerably reduced after WM denoising, while additionally performing

GSR almost removed this effect (Figure 4E). Notably, FIX denoising without GSR was unable to

remove the confounds introduced by SLFOs, which is consistent with recent studies showing that

global artifactual fluctuations are still prominent after FIX denoising (Burgess et al., 2016;

Glasser et al., 2018; Kassinopoulos and Mitsis, 2019; Power et al., 2018; Power et al., 2017).

Head motion was found to influence the connectivity within the visual and sensorimotor networks

(Figure 2B), in line with previous studies (Power et al., 2012; Satterthwaite et al., 2012; Van Dijk

et al., 2012). Our results showed that only regressing out the realignment parameters and average

WM/CSF signals (with or without expansion terms) is not sufficient to remove the effects of head

motion (Figure 2F, MildA and MildB pipelines), which is consistent with findings in Parkes et al.,

2018. Among all preprocessing strategies, WM denoising yielded the largest reduction of motion

effects (Figure 2F). The two pipelines WM50 and WM200 refer to the removal of 50 and 200 white

matter regressors from the data (i.e. principal components obtained from the white matter compart-

ment). In our previous study, we showed that while both pipelines yielded high large-scale network

identifiability compared to other pipelines, the more aggressive WM200 resulted in a larger reduction

of motion artifacts compared to WM50 (Kassinopoulos and Mitsis, 2021a). The results of the current

study also show a stronger reduction of head motion effects for the former compared to the latter

(Figure 2F), which may explain the higher accuracy in connectome fingerprinting observed for the

pipeline WM200 compared to WM50 (Figure 3B).

A natural concern regarding the head motion connectome profile is that it may reflect motor-

related activity (Yan et al., 2013). Even though motor-related neural activity would be expected to

lag the instantaneous motion traces due to the sluggishness of the hemodynamic response, we can-

not exclude the scenario that the head motion connectome profile reflects the neural correlates of

the executed movements and eye adjustments to fixate on the cross. Nonetheless, even if prepro-

cessing strategies remove neural activity associated with spontaneous head movements, this source

of neural activity is typically of no interest in resting-state fMRI studies.

Furthermore, we provide evidence that head and breathing motion do not affect functional con-

nectivity in the same manner. Specifically, breathing motion was found to inflate within-hemisphere

connectivity (Figure 2C). This bias seems to arise as a result of factitious motion rather than real

motion of the head, since it is related to the LR/RL phase encoding direction (see section 4.4 for

more details). All preprocessing strategies yielded a substantial reduction of artifacts related to

breathing motion, with FIX denoising being the most effective (Figure 2G).

In our dataset, cardiac pulsatility did not seem to have a large effect on FC, neither in cortical nor

subcortical regions (Figure 2D, Figure 2—figure supplement 5D), and its effect was entirely

removed with more aggressive pipelines such as FIX and WM denoising (Figure 2H), as well as with

model-based techniques (Figure 2—figure supplement 3D). However, it has been recently reported

that the 3T HCP dataset has poor temporal signal-to-noise ratio in the subcortex (Ji et al., 2019;

Seitzman et al., 2020). Therefore, it is possible that we may have underestimated the effect of car-

diac pulsatility in functional connections involving subcortical regions.

It is important to note that our proposed methodology assumes that the stereotyped nuisance

connectome profiles do not resemble the true neural connectome profiles. However, in principle,

nuisance fluctuations could give rise to similar spatial patterns as neurally-driven fluctuations. A

recent study by Bright et al., 2020 provided evidence that physiological fluctuations (end-tidal CO2)

give rise to networks that spatially resemble neurally driven networks linked to working memory and

visual stimuli. The authors suggested that this phenomenon may be due to the vasculature adapting

to the neural network architecture, as vascular and neuronal growth processes evolve concurrently

during development (Quaegebeur et al., 2011). These findings suggest a possible caveat of our

methodology when assessing pre-processing strategies, as pipelines that yield the lowest similarity

between nuisance and ‘neural’ FC matrices might also remove some signal of interest. Nonetheless,

the pre-processing strategies that were found in this study to reduce the nuisance effects the most

(i.e. FIX and WM denoising combined with GSR) have been shown to demonstrate the highest

improvement in large-scale network identifiability in an earlier study (Kassinopoulos and Mitsis,

2021a). In addition, these pipelines were found to exhibit the highest accuracy in connectome fin-

gerprinting (Figure 3B). These results suggest that they are able to adequately remove the effects

of nuisance processes while also preserving the signal of interest.
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Physiological and head motion signatures in time-varying FC
The investigation of neural dynamics using resting-state fMRI is a promising avenue of research that

has gained increasing attention lately (Hutchison et al., 2013; Lurie et al., 2020). Yet, there is skep-

ticism regarding its validity and underlying origins. For instance, variations in FC over shorter time-

scales (i.e. minutes) could largely be explained by sampling error, acquisition artifacts and subject

arousal (Hindriks et al., 2016; Laumann et al., 2017; Savva et al., 2020), as well as head motion

and physiological processes (Nalci et al., 2019; Nikolaou et al., 2016).

In the present study, we sought to evaluate whether non-neural fluctuations could partly explain

the recurrent connectivity patterns observed in fMRI studies. To this end, we computed time-

resolved FC dynamics (Hansen et al., 2015) for all four nuisance datasets, and assessed their similar-

ity with time-resolved FC dynamics obtained from fMRI data preprocessed employing widely used

denoising strategies (‘neural’ datasets). The FC dynamics of head motion and SLFOs datasets were

markedly similar to the FC dynamics observed in preprocessed fMRI data (Figure 5A–B), albeit the

similarity was smaller compared to static FC (Figure 2E–F). When observing the time-resolved FC

matrices (Figure 6), it becomes apparent that a large component of variability in FC patterns is due

to non-neural processes, and that these patterns remain after implementing popular preprocessing

pipelines such as MildA, MildB and FIX. These results are aligned with the observation that even

after regressing out nuisance processes from the BOLD signal, correlations between time-varying FC

measures and nuisance fluctuations remain (Nalci et al., 2019). WM denoising was found to be the

most efficient strategy in terms of mitigating the influence of nuisance processes on time-varying FC

(Figure 5A–B).

After WM denoising, variability in FC patterns was greatly diminished (Figure 6), even when those

patterns could not be directly associated with any nuisance process (Figure 6—figure supplement

1). These results can be interpreted in two ways that are not mutually exclusive: (1) A significant frac-

tion of the variability in FC patterns is a result of non-neural confounds and WM denoising is able to

remove most of these confounds. This is supported by the fact that many other nuisance processes,

which we did not examine here (e.g. arterial blood pressure, CO2 concentration, scanner instabil-

ities), can influence the BOLD signal and time-varying FC patterns (Nikolaou et al., 2016;

Whittaker et al., 2019; Wise et al., 2004). (2) WM denoising removes a considerable fraction of var-

iance of neural origin. Future work with concurrent direct measurements of neuronal activity (e.g.

electroencephalography, calcium imaging) and additional physiological recordings would be instru-

mental for resolving to which extent time-varying FC is the result of underlying neural dynamics.

While head motion and SLFOs were found to be strongly associated to recurrent connectivity pat-

terns, breathing motion and cardiac pulsatility do not seem to be a main concern for time-varying

FC studies (Figure 5C–D). Likely, the effects of breathing motion and cardiac pulsatility do not influ-

ence time-varying FC, because their effect on the BOLD signal does not change from window to win-

dow, possibly due to their quasi-periodic nature. In contrast, the levels of head motion vary across

time windows, which can modulate time-varying FC patterns. Heart rate and breathing patterns can

be relatively constant during some time periods, whereby SLFOs are not expected to influence the

BOLD signal and, in turn, the FC measures across time windows. On the other hand, in other instan-

ces heart rate and breathing patterns may change considerably over time, whereby SLFOs are

expected to influence the BOLD signal and thus modulate the FC measures across time windows. In

other words, ROIs sensitive to head motion and SLFOs are likely to exhibit a time-varying signal-to-

noise ratio depending on the presence of these sources of noise, which eventually leads to con-

founds in time-varying FC measures.

Importantly, neither data-driven nor model-based preprocessing strategies were able to

completely remove these confounds (Figure 5—figure supplement 1). It was only recently that

researchers have started to examine the performance of pre-processing pipelines in the context of

time-varying FC (Lydon-Staley et al., 2019), albeit with a focus on motion effects, thus more work is

needed to identify effective data cleaning strategies for resting-state time-varying FC studies.

Global signal regression
The practice of removing the GS from fMRI data (i.e. GSR) has been adopted by many fMRI investi-

gators as it has been linked to head motion artifacts and fluctuations in heart rate and breathing pat-

terns (Birn et al., 2006; Byrge and Kennedy, 2018; Chang and Glover, 2009a; Falahpour et al.,
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2013; Kassinopoulos and Mitsis, 2019; Power et al., 2018; Power et al., 2014; Shmueli et al.,

2007). Further, GSR has been shown to increase the neuronal-hemodynamic correspondence of FC

measures extracted from BOLD signals and electrophysiological high gamma recordings

(Keller et al., 2013), as well as strengthen the association between FC and behavior (Li et al.,

2019b). On the other hand, studies capitalizing on EEG-fMRI data have reported an association

between the GS amplitude and vigilance measures (Wong et al., 2016; Wong et al., 2013) and indi-

vidual differences in the global signal topography have been related to behavior and cognition

(Li et al., 2019a). Thus, as there is evidence that GSR may remove neuronal-related activity in addi-

tion to nuisance-related fluctuations, GSR still remains a controversial pre-processing step (Liu et al.,

2017; Murphy et al., 2009; Murphy and Fox, 2017).

Our results provide evidence that, in the context of static FC, GSR removes physiological fluctua-

tions related to SLFOs and to a lesser extent head motion artifacts (Figure 2E–F). Note that GSR

does not account for breathing motion artifacts (Figure 2G) but rather changes in breathing patterns

and deep breaths, which are related to SLFOs and possibly the head motion component at ~0.12 Hz

(Power et al., 2019). Furthermore, GSR improved connectome fingerprinting accuracy (Figure 3B),

which suggests that by removing nuisance fluctuations due to SLFOs and head motion, GSR enhan-

ces the individual specificity of connectivity profiles. Overall, our results suggest that the strong

reduction in the effects of SLFOs and head motion achieved by GSR outweighs the possible loss of

neuronal-driven fluctuations when examining FC patterns. GSR is particularly important when using

ICA-based noise correction techniques such as FIX and AROMA (Pruim et al., 2015; Salimi-

Khorshidi et al., 2014), since ICA components related to SLFOs frequently exhibit similar spatial

patterns and frequency profile to neural components and thus are classified as non-artifactual and

remain in the data after denoising.

For some scans, GSR led to a negative similarity between the SLFOs and neural signatures

(Figure 2E). Further investigation revealed that scans that exhibited a negative SLFOs-neural similar-

ity after GSR were scans where a large fraction of the GS variance was attributed to SLFOs (Fig-

ure 2—figure supplement 4A). In contrast, scans with low correlation between GS and SLFOs,

which are likely scans with fairly constant cardiac and breathing rhythms, were not affected by GSR.

In addition, we observed that in the case of scans with negative SLFOs-neural similarity after GSR,

the estimated SLFOs signature yielded relatively low contributions to the somatosensory and audi-

tory network compared to other networks (Figure 2—figure supplement 4B, left), while these two

networks exhibited high correlation values for the neural signature after GSR (Figure 2—figure sup-

plement 4B, right). In contrast, scans whose SLFOs-neural similarity was close to zero after GSR (Fig-

ure 2—figure supplement 4C) did not exhibit increased FC in the somatosensory and auditory

networks (Figure 2—figure supplement 4D). Thus, the different levels of correlation in these two

networks, as compared to other networks, were likely responsible for the negative GS-SLFOs similar-

ity after GSR. A possible explanation for the low contribution of SLFOs in the somatosensory and

auditory networks is the use of a single global regressor for the estimation of the SLFOs signature,

which does not account for variability in the dynamics of SLFOs across brain regions. Interestingly,

the primary sensory areas that belong to the two aforementioned networks were also reported in

the work by Chen et al., 2020 as exhibiting a different respiration response function (RRF) compared

to other areas. These findings suggest that modeling SLFOs at the individual level could potentially

be improved if spatial variability in RRF is also accounted for. Moreover, these results indicate that

the effects of SLFOs cannot be corrected equally well in all areas solely by regressing out the GS. It

should be noted, though, that the RRF spatial variability reported by Chen et al., 2020 was

observed at the group level using a relatively flexible model with 10 free parameters. Future studies

are still needed to address how the SLFOs can be modeled at the individual level in a manner that

takes into consideration both subject and spatial specificity, while avoiding overfitting. Related to

this, we also observed that the negative SLFOs-neural similarity was substantially decreased when

GSR is combined with white matter denoising, which may suggest that the nuisance regressors

obtained from white matter can reduce fluctuations induced by SLFOs in all areas, including primary

sensory areas, better than GSR alone.

Regarding time-varying FC, GSR did not reduce the effect of nuisance processes equally well

compared to static FC (Figure 2E–F vs. Figure 5A–B). Nonetheless, a recent study evaluating pre-

processing strategies in the context of time-varying FC showed that incorporating GSR in the pre-

processing improved the identification of modularity in functional networks (Lydon-Staley et al.,
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2019). This may indicate that GSR was able to remove nuisance processes that we did not evaluate

in the current study. These processes may be related to scanner instabilities, CO2 concentration

(Power et al., 2017; Wise et al., 2004) and finger skin vascular tone (Kassinopoulos and Mitsis,

2021b; Özbay et al., 2019), which are known to be reflected on the GS.

Despite the effectiveness of GSR in reducing nuisance confounds from the data, we cannot

exclude the possibility of removing some neuronal-related fluctuations. Alternatives to GSR that

have been proposed to remove global artifacts include time delay analysis using ‘rapidtide’

(Tong et al., 2019), removal of the first principal component from the fMRI data (Carbonell et al.,

2011), removal of fluctuations associated to large clusters of coherent voxels (Aquino et al., 2020),

and the use of temporal ICA (Glasser et al., 2018), albeit the latter is only applicable to datasets

with a large number of subjects such as the HCP.

The effect of phase encoding direction in connectivity
Earlier studies have demonstrated that chest wall movements due to breathing perturb the B0 field

(Raj et al., 2001; Raj et al., 2000; Van de Moortele et al., 2002), which has consequences on EPI

fMRI data. While this phenomenon is not fully understood, it seems to have two main effects that

are observable along the phase encoding direction: (1) Breathing causes factitious motion of the

fMRI volumes in the phase encoding direction (Raj et al., 2001; Raj et al., 2000). This effect has

sparkled attention recently, since it has been recognised that it may have critical implications for

motion correction when performing censoring (i.e. removal of motion-contaminated fMRI volumes)

in multi-band (Fair et al., 2020; Power et al., 2019) and single-band (Gratton et al., 2020) data. (2)

Breathing induces artifacts on voxel timeseries that depend on the location of those voxels along

the phase encoding direction (Raj et al., 2001; Raj et al., 2000). Our results provide further evi-

dence in support of the latter effect. Specifically, we found that depending on the phase encoding

direction (LR or RL), breathing motion artifacts were more pronounced in the left or right hemisphere

respectively (Figure 1C). Moreover, we observed that breathing motion increased within-hemisphere

connectivity for both phase encoding scan types (Figure 2C, Figure 2—figure supplement 1C),

which implies that breathing induces artifactual fluctuations that are to a certain extent different

between hemispheres. However, note that the connectome profile of breathing motion exhibited

some differences between the two phase encoding directions (Figure 2—figure supplement 1C),

which explains the higher connectome fingerprinting accuracy in the breathing motion dataset when

examining pairs of scans with the same phase encoding direction, compared to scans with different

phase encoding direction (Figure 3A).

Our results point to a systematic effect of breathing on static FC through variations in the B0 mag-

netic field. Importantly, this systematic bias is contingent on the phase encoding direction, which

seems to indicate that factitious rather than real motion is the predominant source of respiration-

related motion artifacts in fMRI, as has been previously suggested (Brosch et al., 2002; Raj et al.,

2001). Even though common preprocessing pipelines greatly reduce these effects, they do not elim-

inate them (Figure 2G). Thus, studies that consider datasets with different phase encodings, should

be aware of the effect of phase encoding on FC, especially if data from different groups have been

acquired with different phase encodings.

Individual discriminability
Test-retest reliability is important for establishing the stability of inter-individual variation in fMRI FC

across time. However, apart from neural processes, nuisance processes can also have an impact on

test-retest reliability, given the subject-specific nature of physiological processes (Batchvarov et al.,

2002; Golestani et al., 2015; Malik et al., 2008; Pinna et al., 2007; Pitzalis et al., 1996;

Power et al., 2020; Reland et al., 2005) and head motion (Van Dijk et al., 2012; Zeng et al.,

2014). This leads to the concerning notion that nuisance processes may be artifactually driving the

reports of high reliability in FC measures. For instance, it has been reported that the median of intra-

class correlation values across functional connections, which is a metric of test-retest reliability, is

reduced when a relatively aggressive pipeline is used (Birn et al., 2014; Parkes et al., 2018). Fur-

thermore, motion can classify subjects at above-chance levels (Horien et al., 2019), and breathing

motion is more prominent in older individuals and those with a higher body mass index
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(Gratton et al., 2020). In the present study, we examined the potential effect of nuisance processes

on subject discriminability using connectome fingerprinting.

Whole-brain identification
To assess the individual discriminability of nuisance processes, we performed connectome finger-

printing analysis using the generated nuisance datasets. All nuisance processes exhibited identifica-

tion accuracy above chance level (Figure 3A). Pairs of scans with the same phase encoding yielded

higher identification accuracy than pairs of scans with different phase encoding (Figure 3A). This

effect is particularly evident for breathing motion, and to a lesser extent cardiac pulsatility and head

motion. This observation suggests that not only these confounds exert a distinctive artifactual spatial

pattern that is dependent on the phase encoding direction, which can be also observed upon careful

examination of Figure 1B–D, but also that this artifactual pattern is to a certain degree subject-spe-

cific. On the other hand, the subject discriminability of SLFOs is not modulated by phase encoding

(Figure 3A). Given the nature of SLFOs (i.e. they affect the BOLD signal through changes in CBF),

the high subject discriminability of SLFOs suggests a certain degree of idiosyncrasy that is possibly

related to the vascular architecture of an individual. Overall, our results suggest that there is some

degree of subject discriminability in nuisance processes.

Identification accuracies of ‘neural’ datasets were very high for all preprocessing strategies

(Figure 3B), in line with previous studies (Finn et al., 2015; Horien et al., 2019). WM denoising,

which was found to be the most effective strategy for reducing confounds due to head motion and

physiological fluctuations (Figure 2E–H), yielded also the highest accuracy in connectome finger-

printing (Figure 3B), suggesting that the high subject discriminability observed in the HCP data is

not due to the presence of confounds. Interestingly, the increased accuracy observed in the nuisance

datasets for scans with the same phase encoding (Figure 3A) was also observed in the case of the

raw data (Figure 3B). In contrast, for the rest of the pipelines the difference in accuracy between

pairs of scans from different days with the same or different phase encoding direction vanishes

(Figure 3B). This is likely because of the reduction of nuisance effects, mainly breathing motion arti-

facts. Note also that for both mild and aggressive pipelines, pairs of scans from the same day exhib-

ited higher accuracies compared to pairs of scans from different days, which cannot be attributed to

potential residuals of nuisance fluctuations (Figure 3A). Possible explanations for this finding are

that the functional connectome of a subject reflects some aspects of their vigilance levels

(Tagliazucchi and Laufs, 2014; Thompson et al., 2013a; Wang et al., 2016), mind-wandering (Gon-

zalez-Castillo et al., 2019; Gorgolewski et al., 2014; Kucyi, 2018; Kucyi and Davis, 2014), or the

effect of time of day (Hodkinson et al., 2014; Jiang et al., 2016; Orban et al., 2020;

Shannon et al., 2013), which can differ across sessions. Overall, the high connectome-based identifi-

cation accuracies reported in the literature do not appear to be driven by nuisance confounds, sug-

gesting a neural origin underpinning the inter-individual differences in connectivity. Nonetheless, it

is worth pointing out that subject variability in the magnitude of functional connections has been

shown to arise as a result of spatial topographical variability in the location of functional regions

across individuals (Bijsterbosch et al., 2018), which could also explain the high subject discriminabil-

ity observed in fMRI-based connectomes.

Network-based identification
We observed that edges within association cortices (e.g. parts of the frontoparietal, default mode,

and cinguloopercular systems) exhibited the highest subject specificity (Figure 4B), consistent with

previous studies (Finn et al., 2015; Gratton et al., 2018; Horien et al., 2019; Mueller et al., 2013;

Seitzman et al., 2019; Vanderwal et al., 2017). The fact that association cortices are the most evo-

lutionarily recent (Zilles et al., 1988) and are thought to be involved in higher level functions

(Cole et al., 2014; Cole et al., 2013; Dosenbach et al., 2007; Gratton et al., 2017; Raichle, 2015)

has been posited as a possible reason for the high identification accuracy yielded by these networks.

On the other hand, it has also been speculated that medial frontal and frontoparietal networks

exhibit the highest identification accuracy as a result of being less prone to distortions from suscepti-

bility artifacts (Horien et al., 2019; Noble et al., 2017). If the latter was the case, we would expect

to see decreased accuracy for these networks when probing the nuisance datasets. However, we did

not observe such a tendency for any of the nuisance processes evaluated (Figure 4A), and
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preprocessing strategies that successfully removed nuisance processes yielded enhanced subject dis-

criminability of control networks and the DMN (Figure 4C). These results seem to indicate that the

basis of the high identification rates for association cortices is of neural origin, and thus that resting-

state fMRI-based connectome fingerprinting can capture idiosyncratic aspects of cognition reflected

on the resting-state functional characteristics of the association cortex.

Conclusions
The current study introduces a novel framework for assessing the effects of the main fMRI confounds

on static and time-varying FC. Our results suggest that head motion and systemic BOLD fluctuations

associated to changes in heart rate and breathing patterns cause systematic biases in static FC and

result in recurrent patterns in time-varying FC. Data-driven techniques based on decomposing the

data into principal or independent components (PCA, ICA), combined with GSR, lead to the stron-

gest reduction of the aforementioned effects. Importantly, these preprocessing strategies also

improve connectome-based subject identification, indicating that the high subject discriminability

reported in the literature is not attributable to nuisance processes.

Materials and methods

Human Connectome Project (HCP) dataset
The resting-state fMRI data analysed in this study are from the S1200 release of the 3T HCP dataset

(Smith et al., 2013; Van Essen et al., 2013), which consists of young, healthy twins and siblings

(age range: 22–36 years). The HCP dataset includes, among others, resting-state data acquired on 2

different days, during which subjects were instructed to keep their eyes open and fixated on a cross-

hair. Each day included two consecutive 15 min resting-state runs, acquired with left-to-right (LR)

and right-to-left (RL) phase encoding direction. During each fMRI run, 1200 frames were acquired

using a gradient-echo echo-planar imaging (EPI) sequence with a multiband factor of 8, spatial reso-

lution of 2 mm isotropic voxels, and a TR of 0.72 s. Further details of the data acquisition parameters

can be found in previous publications (Smith et al., 2013; Van Essen et al., 2012). Concurrently

with fMRI images, cardiac and respiratory signals were measured using a standard Siemens pulse

oximeter placed on the fingertip and a breathing belt placed around the chest, with a 400 Hz sam-

pling rate.

We only considered subjects who had available data from all four runs, and excluded subjects

based on the quality of the physiological recordings (see section 5.2.1 below for details). Pulse oxim-

eter and respiratory belt signals from ~1000 subjects were first visually inspected to determine their

quality, since their traces are often not of sufficient quality for reliable peak detection (Power, 2019).

The selection process resulted in a final dataset with 392 subjects (ID numbers provided in Supp.

Material).

Preprocessing
Preprocessing of physiological recordings
After selecting subjects with good quality traces, the pulse wave was processed to automatically

detect beat-to-beat intervals (RR), and the heart rate signal was further computed as the inverse of

the time differences between pairs of adjacent peaks and converted to units of beats-per-minute

(bpm). Heart rate traces were visually checked to ensure that outliers and abnormalities were not

present. An outlier replacement filter was used to eliminate spurious changes in heart rate when

these changes were found to be due to sporadic noisy cardiac measurements (for more details see

Supp. Figures 1 and 2 from Kassinopoulos and Mitsis, 2019). We also excluded subjects with a

heart rate of exactly 48 bpm and lack of heartbeat interval variability, as they have been pointed out

as outliers in recent studies (Orban et al., 2020; Valenza et al., 2019). The signal from the breathing

belt was detrended linearly, visually inspected and corrected for outliers using a replacement filter.

Subsequently, it was low-pass filtered at 5 Hz and Z-scored. The respiratory flow, proposed in

Kassinopoulos and Mitsis, 2019 as a robust measure of the absolute flow of inhalation and exhala-

tion of a subject at each time point, was subsequently extracted by applying further smoothing on

the breathing signal (moving average filter of 1.5 s window) and, subsequently, computing the
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square of the derivative of the smoothed breathing signal. Finally, heart rate and respiratory flow

time-series were re-sampled at 10 Hz.

An example code (Preprocess_Phys.m) showing the detailed specifications of the algorithms used

during the preprocessing of the physiological signals is available on github.com/mkassinopoulos/

PRF_estimation/.

Preprocessing of fMRI data: assessing the impact of nuisance correction
strategies
From the HCP database we downloaded the minimally preprocessed data described in

Glasser et al., 2013 and the FIX-denoised data, both in volume and surface space. Briefly, the mini-

mal preprocessing pipeline included removal of spatial distortion, motion correction via volume re-

alignment, registration to the structural image, bias-field correction, 4D image intensity normaliza-

tion by a global mean, brain masking, and non-linear registration to MNI space. Further steps to

obtain surface data were volume to surface projection, multimodal inter-subject alignment of the

cortical surface data (Robinson et al., 2014), and 2 mm (FWHM) surface-constrained smoothing.

Additional steps following minimal preprocessing to obtain the FIX-denoised data were de-trending

using a mild high-pass filter (2000 s), head motion correction via 24 parameter regression, and

denoising via spatial ICA followed by an automated component classifier (FMRIB’s ICA-based

X-noiseifier, FIX) (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). Minimal spatial smoothing

(FWHM = 4 mm) was applied to the downloaded minimally preprocessed and FIX-denoised volumet-

ric data. Both minimally preprocessed and FIX-denoised data were parcellated employing the Gor-

don atlas across 333 regions of interest (ROIs) (Gordon et al., 2016) and the Seitzman atlas across

300 ROIs (Seitzman et al., 2020), using the surface and volume space data, respectively. ROIs that

did not belong to a brain network were disregarded, hence a total of 286 ROIs (Gordon atlas) and

285 ROIs (Seitzman atlas) were retained for further analyses. The main differences between these

two brain parcellations, apart from being computed on the surface and volume space respectively,

are that the ROIs in the Gordon atlas do not have the same size, whereas in the Seitzman atlas the

ROIs are all spheres of 8 mm diameter, and that the Gordon atlas only includes cortical regions,

whereas the Seitzman atlas includes cortical and subcortical regions. The results from the Gordon

atlas are presented in the main manuscript whereas the results from the Seitzman atlas can be found

in the Supplementary Material (Figure 2—figure supplement 5, Figure 3—figure supplement 2,

Figure 5—figure supplement 2). Further, the parcellated data were high-pass filtered at 0.01 Hz.

In addition to the FIX-denoising strategy, several other data-driven preprocessing techniques

were evaluated to assess the extent to which they were able to remove physiological and motion-

driven confounds (Table 1). We chose pipelines that had been used in the landmark FC studies of

Finn et al., 2015 and Laumann et al., 2017. These were denoted as ‘mild’ pipelines, since they

regress out considerably fewer components compared to FIX. Further, we also included two more

aggressive pipelines that were found to outperform previously proposed techniques in terms of net-

work identifiability (Kassinopoulos and Mitsis, 2021a). Nuisance regression was performed after

the minimally preprocessed data had been parcellated to reduce computational time. All

Table 1. Preprocessing strategies examined.

All strategies were evaluated with and without global signal regression (GSR).

Preprocessing strategy Acronym Regressors included

Minimally preprocessed HCP data Raw data None

FIX-denoised HCP data FIX ICA-based technique combined with an automated component classifier (Salimi-Khorshidi et al.,
2014)

Pipeline used in Finn et al., 2015, Nature
Neuroscience

MildA Mean time-series of the white matter and CSF voxels (2); realignment parameters and their first
derivatives (12)

Pipeline used in Laumann et al., 2017,
Cerebral Cortex

MildB Mean time-series of the white matter and CSF voxels and their derivatives (4); realignment
parameters and their first derivatives, quadratic terms, and squares of derivatives (24)

Pipeline proposed by Kassinopoulos and
Mitsis, 2021a, bioRxiv

WM50 50 PCA components from white matter voxels

WM200 200 PCA components from white matter voxels
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preprocessing strategies were evaluated with and without global signal regression (GSR), since the

latter is still somewhat controversial (Liu et al., 2017; Murphy et al., 2009; Murphy and Fox,

2017). To facilitate the comparison between preprocessing strategies, the minimally preprocessed

data were also evaluated, yielding in total 12 preprocessing strategies. Given that the minimal pre-

processing pipeline consists of only the initial steps for fMRI denoising, for simplicity in the results

we refer to these data as raw data. The regressors included in each preprocessing strategy can be

found in Table 1. Note that for the pipeline from Laumann et al., 2017 the derivative of the global

signal was also regressed out. The global signal for the surface and volumetric data was computed

as the average fMRI timeseries across vertices and the whole brain respectively.

Nuisance processes evaluated
The following four nuisance processes were considered (Table 2):

Systemic low frequency oscillations (SLFOs)
SLFOs refer to non-neuronal global BOLD fluctuations. Major sources of SLFOs are spontaneous

fluctuations in the rate or depth of breathing (Birn et al., 2006) and fluctuations in heart rate

(Chang et al., 2009; Shmueli et al., 2007). The former mainly exert their effects via changing the

concentration of arterial CO2, which is a potent vasodilator, altering CBF and thus the BOLD fMRI

signal (Birn et al., 2008a; Birn et al., 2008b; Chang and Glover, 2009b; Prokopiou et al., 2019;

Wise et al., 2004), Importantly, there is evidence that SLFOs are a more substantial source of physi-

ological noise in BOLD fMRI compared to high frequency cardiac pulsatility and breathing motion

artifacts (Tong et al., 2019; Tong and Frederick, 2014). In this study, SLFOs were modeled follow-

ing a framework proposed in our previous work (Kassinopoulos and Mitsis, 2019 scripts available

on github.com/mkassinopoulos/PRF_estimation/). Briefly, the extracted heart rate and respiratory

flow signals were fed into an algorithm that estimated scan-specific physiological response functions

(PRFs). This algorithm estimates PRF curves that maximize the correlation between their convolution

with heart rate and respiratory flow and the global signal of the same scan, while ensuring that the

shapes of the PRF curves are physiologically plausible. The heart rate and respiratory flow signals

were subsequently convolved with their respective PRFs and added to each other, yielding time-

series that reflect the total effect of SLFOs (Figure 7—figure supplement 1A). These time-series

were used in the current study as the physiological regressor related to SLFOs.

Cardiac pulsatility
Pulsatility of blood flow in the brain can cause pronounced modulations of the BOLD signal

(Noll and Schneider, 1994), which tend to be localized along the vertebrobasilar arterial system and

the sigmoid transverse and superior sagittal sinuses (Dagli et al., 1999; Kassinopoulos and Mitsis,

2019). We modeled fluctuations induced by cardiac pulsatility using six regressors obtained with 3rd

order RETROICOR (Glover et al., 2000), based on the pulse oximeter signal of each scan.

Breathing Motion
Chest movements during the breathing cycle generate head motion in the form of head nodding by

mechanical linkage through the neck, but also factitious motion (also known as pseudomotion)

Table 2. Nuisance processes examined.

SLFOs Cardiac pulsatility Breathing motion Head motion

Recordings Pulse oximeter, breathing belt, fMRI
global signal

Pulse oximeter Breathing belt fMRI

Signals
employed

Heart rate, respiratory flow, global
signal

Cardiac cycle Breathing cycle Realignment parameters and
derivatives

Model Kassinopoulos and Mitsis, 2019,
NeuroImage

3rd order RETROICOR Glover et al.,
2000, NeuroImage

3rd order RETROICOR
Glover et al., 2000,
NeuroImage

-

Number of
regressors

1 6 6 12
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through small perturbations of the B0 magnetic field caused by changes in abdominal volume when

air enters the lungs (Power et al., 2019; Raj et al., 2001; Van de Moortele et al., 2002). We mod-

eled breathing-induced fluctuations using six regressors obtained with 3rd order RETROICOR

(Glover et al., 2000), based on the respiratory signal of each scan.

Head motion
Subject motion produces substantial signal disruptions in fMRI studies (Friston et al., 1996;

Power et al., 2012) and is a major confound when evaluating connectivity differences between

groups with dissimilar tendencies for motion (Makowski et al., 2019; Satterthwaite et al., 2012;

Van Dijk et al., 2012). We quantified head motion using the six realignment parameters as well as

their temporal first derivatives provided by the HCP. The six physiological regressors related to

breathing motion were regressed out from the realignment parameters and their derivatives, since

true and factitious motion due to breathing is reflected on the realignment parameters (Fair et al.,

2020).

All nuisance regressors were high-pass filtered at 0.01 Hz to ensure similar spectral content with

the fMRI data and thus avoid reintroduction of nuisance-related variation (Bright et al., 2017;

Hallquist et al., 2013). The regressors were then normalized to zero mean and unit variance. Fig-

ure 7—figure supplement 2 demonstrates the spectral content of each nuisance process, as well as

the effect of regressing out breathing motion from the realignment parameters. Physiological and

motion traces from three illustrative scans, along with fMRI carpet plots, can be found in Figure 7—

figure supplement 3. Nuisance traces and carpet plots from all subjects are available on figshare

(Xifra-Porxas et al., 2021b).

Isolation of nuisance fluctuations from fMRI data
We propose a framework to isolate nuisance fluctuations for each of the aforementioned processes,

which reflects the physiologically-driven fluctuations and head motion artifacts observed in the fMRI

data (Figure 7). A similar methodology was used in Bright and Murphy, 2015 to investigate

whether preprocessing strategies remove variance associated to resting-state networks.

Initially, the contribution of each nuisance process on the ROI time-series was quantified using a

generalised linear model, formulated as:

y tð Þ ¼ b0 þbSLFOsxSLFOs tð ÞþbCPxCP tð ÞþbBMxBM tð ÞþbHMxHM tð Þþ " tð Þ (1)

bCP ¼ b1

CP � � � b6

CP

� �
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where y are ROI time-series from the minimally preprocessed data, xSLFOs is the physiological

regressor modeling SLFOs, xCP tð Þ are the 6 physiological regressors modeling cardiac pulsatility,

xBM tð Þ are the 6 physiological regressors modeling breathing motion, xHM tð Þ are the 12 regressors

modeling head motion, b0;bSLFOs;bCP;bBM ;bHMf g denote the parameters to be estimated, and " is

the error (or residual). As can be seen, all four nuisance processes (25 regressors in total) were

included simultaneously in the regression to model the BOLD signal fluctuations in a specific ROI.

Note that no significant collinearity was observed between the 25 regressors (Figure 7—figure sup-

plement 4).

For each nuisance process, the estimated values b̂ were multiplied by their corresponding regres-

sors and added together to obtain the fluctuations of the nuisance process of interest (ŷNPI tð Þ) within

a specific ROI, and a ’clean’ time-series was calculated via removal of all other nuisance processes

(ŷNPIþNeur tð Þ), as follows:

SLFOs : ŷNPI tð Þ ¼ b̂SLFOsxSLFOs tð Þ (2)

ŷNPIþNeur tð Þ ¼ y tð Þ� b̂0 � b̂CPxCP tð Þ� b̂BMxBM tð Þb̂HMxHM tð Þ (3)
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Cardiacpulsatility : ŷNPI tð Þ ¼ b̂CPxCP tð Þ (4)

ŷ
NPIþNeur

tð Þ ¼ y tð Þ� b̂0 � b̂SLFOsxSLFOs tð Þ� b̂BMxBM tð Þ� b̂HMxHM tð Þ (5)

Figure 7. Graphical summary of the proposed framework for isolating the fluctuations for each physiological process. For each scan, the ROI time-

series are modeled using the regressors related to systemic low frequency oscillations (SLFOs), cardiac pulsatility (CP), breathing motion (BM), and head

motion (HM). Subsequently, the fraction of BOLD variance explained by each nuisance process is isolated and employed to generate synthetic datasets

that only contain nuisance fluctuations.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Illustration of methodology for modeling systemic low frequency oscillations (SLFOs) using the traces of heart rate and breathing
activity.

Figure supplement 2. Power spectral densities of the nuisance processes evaluated in the present study.

Figure supplement 3. Nuisance traces from three illustrative scans.

Figure supplement 4. Collinearity across nuisance regressors.

Figure supplement 5. Histogram of autoregressive coefficients.
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Breathingmotion : ŷNPI tð Þ ¼ b̂BMxBM tð Þ (6)

ŷ
NPIþNeur

tð Þ ¼ y tð Þ� b̂0 � b̂SLFOsxSLFOs tð Þ� b̂CPxCP tð Þ� b̂HMxHM tð Þ (7)

Head motion : ŷNPI tð Þ ¼ b̂HMxHM tð Þ (8)

ŷ
NPIþNeur

tð Þ ¼ y tð Þ� b̂0 � b̂SLFOsxSLFOs tð Þ� b̂CPxCP tð Þ� b̂BMxBM tð Þ (9)

In this manner, we generated ‘cleaned’ ROI time-series (ŷNPIþNeur tð Þ) in which all considered noisy

fluctuations were removed except the ones corresponding to the specific nuisance process being

evaluated. The next step was to quantify the contribution of the latter to the remaining fluctuations

within each ROI. To achieve this, the estimated nuisance signal was correlated to the ‘clean’ ROI

time-series:

rnuis ¼ corr ŷNPI tð Þ; ŷNPIþNeur tð Þð Þ (10)

Subsequently, the estimated nuisance signal was subtracted from the ‘clean’ ROI time-series to

obtain what is typically considered the ‘neural’ time-series. These time-series were correlated to the

‘clean’ time-series to quantify the contribution of the ‘neural’ variations to the total ROI signal

fluctuations:

ŷNeur tð Þ ¼ ŷNPIþNeur tð Þ� ŷNPI tð Þ (11)

rneur ¼ corr ŷNeur tð Þ; ŷNPIþNeur tð Þð Þ (12)

Afterwards, nuisance datasets for each process were created by scaling the estimated nuisance

signal within each ROI with its corresponding correlation coefficient rnuis and a first order autoregres-

sive (AR(1)) process (y(t)) scaled with r_neur. We used an AR(1) model as it has been shown to be

able to capture both the static and time-varying FC structure of resting-state fMRI data

(Liégeois et al., 2017). This is expressed as:

yNuis tð Þ ¼ rnuisZ ŷNPI tð Þ½ �þ rneurZ  tð Þ½ � (13)

 tð Þ ¼ a1 t� 1ð Þþ � tð Þ (14)

where Z �½ � denotes normalization to zero mean and unit variance. The coefficient a1 was randomly

sampled from a distribution of coefficients generated through fitting an AR(1) model to the real

fMRI data (Figure 7—figure supplement 5).

Thus, this framework generated four synthetic nuisance datasets that contained the isolated fluc-

tuations from each of the nuisance processes evaluated. In a sense, the ROI time-series in each nui-

sance dataset are equivalent to the term ŷNPIþNeur tð Þ, with the ‘neural’ fluctuations replaced by

random autocorrelated processes. These time-series were used to characterize the connectome pro-

file of the nuisance processes without the presence of neurally related signals, while maintaining the

noise-to-signal ratio between physiological/motion-related noise and ‘neural’ signal intact. Note that

if the nuisance datasets consisted solely of artifactual fluctuations without the AR(1) process added,

this would result in an overestimation of the correlation fraction attributed to the nuisance processes

that was present in the experimental fMRI data. This can be easily understood in the case of two ROI

time-series that are weakly driven by SLFOs. As the contribution of this nuisance process to the

aggregate ROI time-series would be small, the parameter bSLFOs in Equation 2 for both ROIs would

be relatively small as well. However, without the addition of autocorrelated processes, the correla-

tion of the time-series yNPI associated with these two ROIs would be 1.00 (or �1.00 depending on

the signs of the corresponding beta parameters) as Pearson’s correlation is a metric that is blind to

the variance of the signals, thereby overestimating the contribution of SLFOs to the FC between

those ROIs.
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Estimation of static and time-varying functional connectivity (FC)
Using the pre-processed fMRI data from each of the 12 pipelines (see section 5.2.2), henceforth

called ’neural’ datasets, and the 4 nuisance datasets, we performed Pearson correlation analyses

between brain regions over the whole scan (static FC) and within sliding windows (time-varying FC).

To quantify time-varying FC, the entire scan was split up into 62 sliding windows of 43.2 sec (60 sam-

ples) duration, with 70% overlap in time. Subsequently, for each scan, we computed the functional

connectivity dynamics (FCD) matrix (Hansen et al., 2015), which is a symmetric matrix in which the

entries i; jð Þ correspond to the Pearson correlations between the upper triangular elements of the FC

matrices in windows i and j. The size of the FCD matrix was W �W, where W is the number of win-

dows (62). Thus, while the static FC matrix characterizes the spatial structure of resting activity, the

FCD matrix captures the temporal evolution of connectome correlations.

The analyses resulted in 32 matrices for each subject (Figure 8): four static FC and 4 FCD nui-

sance matrices (one for each physiological process considered), as well as 12 static FC and 12 FCD

‘neural’ matrices (one for each preprocessing strategy evaluated). To quantify the influence of the

nuisance processes on static FC and FCD for each preprocessing strategy, similarities between pairs

of nuisance and ‘neural’ matrices were evaluated by correlating their upper triangular values. Note

that for the FCD matrices, upper triangular elements corresponding to the correlation between

Figure 8. Illustration of the 32 connectivity matrices computed per scan. For both static and time-varying FC analyses, four nuisance connectivity

matrices were computed using the generated nuisance datasets, as well as 12 ‘neural’ connectivity matrices corresponding to the 12 pre-processing

strategies evaluated (note that each of the six strategies listed in Table 1 was assessed with and without GSR). Static FC matrices were computed as

the correlation across brain regions using the whole scan. Time-varying FC analysis constructed time-resolved connectivity matrices as the correlation

between static FC matrices within sliding windows, known as functional connectivity dynamics (FCD) matrices (Hansen et al., 2015).
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overlapping windows were disregarded because of high correlation by design (see block diagonal in

Figure 8). All correlation values were Fisher z transformed.

Connectome-based identification of individuals
We implemented a connectome-based identification of individual subjects using the static FC matri-

ces to investigate the potential effect of ’nuisance fingerprints’ on the degree of subject specificity

in individual FC metrics. The identification procedure, known as connectome fingerprinting, has

been described in detail previously (Finn et al., 2015). Briefly, a database was first created consist-

ing of all subjects’ FC matrices from a particular resting-state scan (Figure 3—figure supplement

1B). An FC matrix from a specific subject and different resting-state scan was then selected and

denoted as the target (Subjx). Pearson correlation coefficients r1; . . . ; rNð Þ were computed between

the upper triangular values of the target FC matrix and all the FC matrices in the database. If the

highest correlation coefficient corresponded to a pair of FC matrices from the same subject, a suc-

cessful identification was indicated (IDSubjx ¼ 1); otherwise, it was marked as an incorrect identifica-

tion (IDSubjx ¼ 0). The identification test was repeated such that each subject serves as the target

subject once, and then the ID values were averaged across subjects to obtain the identification accu-

racy of the database-target pair. This process was repeated until tests between all scanning sessions

were performed. In total, 12 database-target combinations were computed (Figure 3—figure sup-

plement 1A). Identification was performed using the whole brain connectivity matrix, as well as

based on edges from within and between networks. In the latter case, networks containing less than

10 ROIs were excluded from the analysis.

The connectome fingerprinting analysis was performed independently for each physiological pro-

cess, as well as for each preprocessing strategy, using the generated FC matrices (Figure 8). This

analysis was only performed on static FC matrices and not time-varying FC matrices because recur-

rent patterns of connectivity observed in the FCD matrices are not expected to occur at similar time

instances between scans.

Statistics
To assess the significance of the results, surrogate nuisance datasets were generated via inter-sub-

ject surrogates (Lancaster et al., 2018), using fMRI data recorded from one subject’s scan and phys-

iological signals recorded from a different subject’s scan (in the case of the head motion dataset,

volume realignment parameters were employed). Note that when creating each surrogate dataset,

only the nuisance process being examined was replaced by signals from a different subject, whereas

all other nuisance regressors remained the same. This procedure was repeated 1000 times for each

nuisance process, where each surrogate dataset consisted of permuting the nuisance signals across

subjects. A null distribution for each brain region was computed by estimating the mean contribu-

tion to BOLD across subjects for each surrogate nuisance dataset, leading to a distribution of 1000

values. Subsequently, the significance of the nuisance contributions to the BOLD signal were

assessed by comparing the observed contribution (mean across subjects) to the corresponding null

distribution for each ROI. The significance level at p < 0.05 was corrected for multiple comparisons

using false discovery rate (FDR). Furthermore, the similarity between the nuisance and ’neural’ FC

matrices was compared against the similarity obtained using surrogate nuisance FC matrices. Note

that for visualization purposes, similarity values identified as outliers (> 3 SD) are not displayed in

Figure 2.

To assess the significance of the fingerprinting analysis, we performed nonparametric permuta-

tion testing as in Finn et al., 2015. Briefly, the described fingerprinting analysis was repeated for all

scans and database-target combinations, but for the identification test, the subject identity in the

database set was permuted. In this way, a ‘successful’ identification was designated when the high-

est correlation coefficient was between the FC matrices of two different subjects. As expected, for

all the nuisance and ‘neural’ datasets, the identification accuracy estimated with nonparametric per-

mutation testing was around 0.3%, which corresponds to the probability of selecting a specific sub-

ject from a group of 392 subjects when the subject is selected at random.
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Demirtaş M, Tornador C, Falcón C, López-Solà M, Hernández-Ribas R, Pujol J, Menchón JM, Ritter P, Cardoner
N, Soriano-Mas C, Deco G. 2016. Dynamic functional connectivity reveals altered variability in functional
connectivity among patients with major depressive disorder. Human Brain Mapping 37:2918–2930.
DOI: https://doi.org/10.1002/hbm.23215

Dosenbach NUF, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RAT, Fox MD, Snyder AZ, Vincent JL,
Raichle ME, Schlaggar BL, Petersen SE. 2007. Distinct brain networks for adaptive and stable task control in
humans. PNAS 104:11073–11078. DOI: https://doi.org/10.1073/pnas.0704320104

Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, Fetcho RN, Zebley B, Oathes DJ, Etkin A,
Schatzberg AF, Sudheimer K, Keller J, Mayberg HS, Gunning FM, Alexopoulos GS, Fox MD, Pascual-Leone A,
Voss HU, Casey BJ, et al. 2017. Resting-state connectivity biomarkers define neurophysiological subtypes of
depression. Nature Medicine 23:28–38. DOI: https://doi.org/10.1038/nm.4246

Xifra-Porxas, Kassinopoulos, et al. eLife 2021;10:e62324. DOI: https://doi.org/10.7554/eLife.62324 30 of 36

Research article Neuroscience

https://doi.org/10.1016/j.neuroimage.2011.02.054
https://doi.org/10.1109/TBME.2002.1010854
https://doi.org/10.1109/TBME.2002.1010854
https://doi.org/10.1089/brain.2016.0435
https://doi.org/10.1016/j.neuroimage.2017.12.082
https://doi.org/10.1016/j.neuroimage.2016.12.018
https://doi.org/10.1089/brain.2011.0065
https://doi.org/10.1073/pnas.1415122111
https://doi.org/10.1016/j.neuroimage.2008.09.029
https://doi.org/10.1016/j.neuroimage.2012.11.038
https://doi.org/10.1016/j.neuroimage.2012.11.038
https://doi.org/10.1016/j.neuroimage.2009.05.012
https://doi.org/10.1016/j.neuroimage.2009.05.012
https://doi.org/10.1016/j.neuroimage.2009.04.048
https://doi.org/10.1016/j.neuroimage.2009.12.011
https://doi.org/10.1002/hbm.23764
http://www.ncbi.nlm.nih.gov/pubmed/28792117
https://doi.org/10.1016/j.neuroimage.2019.02.008
https://doi.org/10.1016/j.neuroimage.2020.116707
https://doi.org/10.1016/j.neuroimage.2017.03.020
https://doi.org/10.1038/nn.3470
https://doi.org/10.1038/nn.3470
https://doi.org/10.1177/1073858414525995
http://www.ncbi.nlm.nih.gov/pubmed/24622818
https://doi.org/10.1073/pnas.1010356107
https://doi.org/10.1006/nimg.1998.0424
https://doi.org/10.1016/j.nicl.2014.07.003
https://doi.org/10.1016/j.nicl.2014.07.003
https://doi.org/10.1002/hbm.23215
https://doi.org/10.1073/pnas.0704320104
https://doi.org/10.1038/nm.4246
https://doi.org/10.7554/eLife.62324


Du Y, Pearlson GD, Yu Q, He H, Lin D, Sui J, Wu L, Calhoun VD. 2016. Interaction among subsystems within
default mode network diminished in schizophrenia patients: A dynamic connectivity approach. Schizophrenia
Research 170:55–65. DOI: https://doi.org/10.1016/j.schres.2015.11.021

Fair DA, Miranda-Dominguez O, Snyder AZ, Perrone A, Earl EA, Van AN, Koller JM, Feczko E, Tisdall MD, van
der Kouwe A, Klein RL, Mirro AE, Hampton JM, Adeyemo B, Laumann TO, Gratton C, Greene DJ, Schlaggar
BL, Hagler DJ, Watts R, et al. 2020. Correction of respiratory artifacts in MRI head motion estimates.
NeuroImage 208:116400. DOI: https://doi.org/10.1016/j.neuroimage.2019.116400, PMID: 31778819

Falahpour M, Refai H, Bodurka J. 2013. Subject specific BOLD fMRI respiratory and cardiac response functions
obtained from global signal. NeuroImage 72:252–264. DOI: https://doi.org/10.1016/j.neuroimage.2013.01.050

Ferreira LK, Regina AC, Kovacevic N, Martin MG, Santos PP, Carneiro CG, Kerr DS, Amaro E, McIntosh AR,
Busatto GF. 2016. Aging effects on Whole-Brain functional connectivity in adults free of cognitive and
psychiatric disorders. Cerebral Cortex 26:3851–3865. DOI: https://doi.org/10.1093/cercor/bhv190,
PMID: 26315689

Finn ES, Shen X, Scheinost D, Rosenberg MD, Huang J, Chun MM, Papademetris X, Constable RT. 2015.
Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nature
Neuroscience 18:1664–1671. DOI: https://doi.org/10.1038/nn.4135

Fox MD, Raichle ME. 2007. Spontaneous fluctuations in brain activity observed with functional magnetic
resonance imaging. Nature Reviews Neuroscience 8:700–711. DOI: https://doi.org/10.1038/nrn2201

Friston KJ, Williams S, Howard R, Frackowiak RSJ, Turner R. 1996. Movement-Related effects in fMRI time-series.
Magnetic Resonance in Medicine 35:346–355. DOI: https://doi.org/10.1002/mrm.1910350312

Geerligs L, Renken RJ, Saliasi E, Maurits NM, Lorist MM. 2015. A Brain-Wide Study of Age-Related Changes in
Functional Connectivity. Cerebral Cortex 25:1987–1999. DOI: https://doi.org/10.1093/cercor/bhu012

Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, Xu J, Jbabdi S, Webster M,
Polimeni JR, Van Essen DC, Jenkinson M. 2013. The minimal preprocessing pipelines for the Human
Connectome Project. NeuroImage 80:105–124. DOI: https://doi.org/10.1016/j.neuroimage.2013.04.127

Glasser MF, Smith SM, Marcus DS, Andersson JLR, Auerbach EJ, Behrens TEJ, Coalson TS, Harms MP, Jenkinson
M, Moeller S, Robinson EC, Sotiropoulos SN, Xu J, Yacoub E, Ugurbil K, Van Essen DC. 2016. The Human
Connectome Project’s neuroimaging approach. Nature Neuroscience 19:1175–1187. DOI: https://doi.org/10.
1038/nn.4361

Glasser MF, Coalson TS, Bijsterbosch JD, Harrison SJ, Harms MP, Anticevic A, Van Essen DC, Smith SM. 2018.
Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data.
NeuroImage 181:692–717. DOI: https://doi.org/10.1016/j.neuroimage.2018.04.076

Glover GH, Li T-Q, Ress D. 2000. Image-based method for retrospective correction of physiological motion
effects in fMRI: RETROICOR. Magnetic Resonance in Medicine 44:162–167. DOI: https://doi.org/10.1002/1522-
2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E

Golestani AM, Chang C, Kwinta JB, Khatamian YB, Jean Chen J. 2015. Mapping the end-tidal CO2 response
function in the resting-state BOLD fMRI signal: Spatial specificity, test–retest reliability and effect of fMRI
sampling rate. NeuroImage 104:266–277. DOI: https://doi.org/10.1016/j.neuroimage.2014.10.031

Gonzalez-Castillo J, Caballero-Gaudes C, Topolski N, Handwerker DA, Pereira F, Bandettini PA. 2019. Imaging
the spontaneous flow of thought: Distinct periods of cognition contribute to dynamic functional connectivity
during rest. NeuroImage 202:116129. DOI: https://doi.org/10.1016/j.neuroimage.2019.116129

Gordon EM, Laumann TO, Adeyemo B, Huckins JF, Kelley WM, Petersen SE. 2016. Generation and Evaluation of
a Cortical Area Parcellation from Resting-State Correlations. Cerebral Cortex 26:288–303. DOI: https://doi.org/
10.1093/cercor/bhu239

Gorgolewski KJ, Lurie D, Urchs S, Kipping JA, Craddock RC, Milham MP, Margulies DS, Smallwood J. 2014. A
Correspondence between Individual Differences in the Brain’s Intrinsic Functional Architecture and the Content
and Form of Self-Generated Thoughts. PLOS ONE 9:e97176. DOI: https://doi.org/10.1371/journal.pone.
0097176

Gratton C, Neta M, Sun H, Ploran EJ, Schlaggar BL, Wheeler ME, Petersen SE, Nelson SM. 2017. Distinct Stages
of Moment-to-Moment Processing in the Cinguloopercular and Frontoparietal Networks. Cerebral Cortex 27:
2403–2417. DOI: https://doi.org/10.1093/cercor/bhw092

Gratton C, Laumann TO, Nielsen AN, Greene DJ, Gordon EM, Gilmore AW, Nelson SM, Coalson RS, Snyder AZ,
Schlaggar BL, Dosenbach NUF, Petersen SE. 2018. Functional Brain Networks Are Dominated by Stable Group
and Individual Factors, Not Cognitive or Daily Variation. Neuron 98:439–452. DOI: https://doi.org/10.1016/j.
neuron.2018.03.035

Gratton C, Koller JM, Shannon W, Greene DJ, Maiti B, Snyder AZ, Petersen SE, Perlmutter JS, Campbell MC.
2019. Emergent Functional Network Effects in Parkinson Disease. Cerebral Cortex 29:2509–2523. DOI: https://
doi.org/10.1093/cercor/bhy121

Gratton C, Dworetsky A, Coalson RS, Adeyemo B, Laumann TO, Wig GS, Kong TS, Gratton G, Fabiani M, Barch
DM, Tranel D, Miranda-Dominguez O, Fair DA, Dosenbach NUF, Snyder AZ, Perlmutter JS, Petersen SE,
Campbell MC. 2020. Removal of high frequency contamination from motion estimates in single-band fMRI
saves data without biasing functional connectivity. NeuroImage 217:116866. DOI: https://doi.org/10.1016/j.
neuroimage.2020.116866, PMID: 32325210

Griffanti L, Salimi-Khorshidi G, Beckmann CF, Auerbach EJ, Douaud G, Sexton CE, Zsoldos E, Ebmeier KP,
Filippini N, Mackay CE, Moeller S, Xu J, Yacoub E, Baselli G, Ugurbil K, Miller KL, Smith SM. 2014. ICA-based
artefact removal and accelerated fMRI acquisition for improved resting state network imaging. NeuroImage 95:
232–247. DOI: https://doi.org/10.1016/j.neuroimage.2014.03.034

Xifra-Porxas, Kassinopoulos, et al. eLife 2021;10:e62324. DOI: https://doi.org/10.7554/eLife.62324 31 of 36

Research article Neuroscience

https://doi.org/10.1016/j.schres.2015.11.021
https://doi.org/10.1016/j.neuroimage.2019.116400
http://www.ncbi.nlm.nih.gov/pubmed/31778819
https://doi.org/10.1016/j.neuroimage.2013.01.050
https://doi.org/10.1093/cercor/bhv190
http://www.ncbi.nlm.nih.gov/pubmed/26315689
https://doi.org/10.1038/nn.4135
https://doi.org/10.1038/nrn2201
https://doi.org/10.1002/mrm.1910350312
https://doi.org/10.1093/cercor/bhu012
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1038/nn.4361
https://doi.org/10.1038/nn.4361
https://doi.org/10.1016/j.neuroimage.2018.04.076
https://doi.org/10.1002/1522-2594(200007)44:1%3C162::AID-MRM23%3E3.0.CO;2-E
https://doi.org/10.1002/1522-2594(200007)44:1%3C162::AID-MRM23%3E3.0.CO;2-E
https://doi.org/10.1016/j.neuroimage.2014.10.031
https://doi.org/10.1016/j.neuroimage.2019.116129
https://doi.org/10.1093/cercor/bhu239
https://doi.org/10.1093/cercor/bhu239
https://doi.org/10.1371/journal.pone.0097176
https://doi.org/10.1371/journal.pone.0097176
https://doi.org/10.1093/cercor/bhw092
https://doi.org/10.1016/j.neuron.2018.03.035
https://doi.org/10.1016/j.neuron.2018.03.035
https://doi.org/10.1093/cercor/bhy121
https://doi.org/10.1093/cercor/bhy121
https://doi.org/10.1016/j.neuroimage.2020.116866
https://doi.org/10.1016/j.neuroimage.2020.116866
http://www.ncbi.nlm.nih.gov/pubmed/32325210
https://doi.org/10.1016/j.neuroimage.2014.03.034
https://doi.org/10.7554/eLife.62324


Hacker CD, Snyder AZ, Pahwa M, Corbetta M, Leuthardt EC. 2017. Frequency-specific electrophysiologic
correlates of resting state fMRI networks. NeuroImage 149:446–457. DOI: https://doi.org/10.1016/j.
neuroimage.2017.01.054

Hahamy A, Behrmann M, Malach R. 2015. The idiosyncratic brain: distortion of spontaneous connectivity
patterns in autism spectrum disorder. Nature Neuroscience 18:302–309. DOI: https://doi.org/10.1038/nn.3919

Hallquist MN, Hwang K, Luna B. 2013. The nuisance of nuisance regression: Spectral misspecification in a
common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity.
NeuroImage 82:208–225. DOI: https://doi.org/10.1016/j.neuroimage.2013.05.116

Hansen ECA, Battaglia D, Spiegler A, Deco G, Jirsa VK. 2015. Functional connectivity dynamics: Modeling the
switching behavior of the resting state. NeuroImage 105:525–535. DOI: https://doi.org/10.1016/j.neuroimage.
2014.11.001

He BJ, Snyder AZ, Zempel JM, Smyth MD, Raichle ME. 2008. Electrophysiological correlates of the brain’s
intrinsic large-scale functional architecture. PNAS 105:16039–16044. DOI: https://doi.org/10.1073/pnas.
0807010105, PMID: 18843113

Hindriks R, Adhikari MH, Murayama Y, Ganzetti M, Mantini D, Logothetis NK, Deco G. 2016. Can sliding-window
correlations reveal dynamic functional connectivity in resting-state fMRI? NeuroImage 127:242–256.
DOI: https://doi.org/10.1016/j.neuroimage.2015.11.055

Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK. 2012. Large-scale cortical correlation structure of
spontaneous oscillatory activity. Nature Neuroscience 15:884–890. DOI: https://doi.org/10.1038/nn.3101

Hodkinson DJ, O’Daly O, Zunszain PA, Pariante CM, Lazurenko V, Zelaya FO, Howard MA, Williams SCR. 2014.
Circadian and Homeostatic Modulation of Functional Connectivity and Regional Cerebral Blood Flow in
Humans under Normal Entrained Conditions. Journal of Cerebral Blood Flow & Metabolism 34:1493–1499.
DOI: https://doi.org/10.1038/jcbfm.2014.109

Horien C, Shen X, Scheinost D, Constable RT. 2019. The individual functional connectome is unique and stable
over months to years. NeuroImage 189:676–687. DOI: https://doi.org/10.1016/j.neuroimage.2019.02.002
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