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Abstract

A lattice Boltzmann method with moment-based boundary conditions is used to compute flow in the

slip regime. Navier-Maxwell slip conditions and Burnett-order stress conditions that are consistent with

the discrete velocity Boltzmann equation are imposed locally on stationary and moving boundaries. Micro

Couette and micro lid driven driven cavity flows are studied numerically at Knudsen and Mach numbers of

the order O(10−1). The Couette results for velocity and the deviatoric stress at second order in Knudsen

number are in excellent agreement with analytical solutions and the cavity results are in excellent agreement

with existing data. The algorithm is shown to compute nonequilibrium effects in the pressure that are in very

good agreement with DSMC simulations of the Boltzmann equation but not captured by the Navier-Stokes

equations.
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I. INTRODUCTION

The study of flows in micro-devices has received much attention in recent years [1–4]. In

micro-devices the Knudsen number Kn (the ratio between the mean free path of particles and a

characteristic macroscopic lengthscale) and the Mach number Ma (the ratio of the flow speed to

the speed of sound) are typically of the order O(10−1). This is known as the slip flow regime and

it exhibits phenomena that is not captured by the Navier-Stokes equations. This includes narrow

(O(Kn) wide) slip boundary layers in the macroscopic velocity, known as Knudsen layers [2],

and non-equilibrium effects in the pressure tensor [5]. To fully capture the flow one can solve the

Boltzmann equation

∂ f
∂ t

+ c ·∇ f =−1
τ
( f − f (e)), (1)

where f = f (x,c, t) is the particle velocity distribution function with velocity c at position x and

time t. The right hand side is the BGK collision term, which assumes the relaxation of f to the

Maxwell-Boltzmann equilibrium f (e) over the collisional timescale τ .

Solving equation (1) is challenging due to its high dimensionality. Simpler, lower dimensional,

macroscopic equations of motion are thought to be good approximate descriptions of slip flow

outside of the boundary layers as long as appropriate boundary conditions are used [6]. The three

non-dimensional numbers that characterise the macroscopic flow are the Reynolds, Mach, and

Knudsen numbers, which are connected by von Kármán’s relation and defined to be

Re =
ρuH

µ
, Ma =

u
a
, Kn =

√
πγ

2
Ma
Re

, (2)

where u is the characteristic flow velocity, ρ is the density of the fluid, H the macroscopic length

scale and µ is the dynamic viscosity. The speed of sound in the fluid is a =
√

γRT where γ is the

ratio of specific heats for an ideal monatomic gas (taken to be 5/3) and R and T are the gas constant

and absolute temperature. Later we will use the ideal equation of state for pressure, p = ρRT . The

Navier-Stokes equations with Navier-Maxwell slip boundary conditions are often solved in favour

of the Boltzmann equation [7]. Here, provided the velocity in the bulk flow is accurately captured,

one sacrifices capturing the narrow boundary layer in favour of ease of analysis or computation.

The Navier-Stokes equations can be recovered from an asymptotic expansion of (1) to first

order in Kn� 1. Thus by modelling the slip flow regime using the Navier-Stokes equations one is

ignoring physical contributions to non-conserved hydrodynamic moments at higher order in Kn, as
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well as the Knudsen velocity boundary layer. These contributions can be seen and understood by

taking moments in the hydrodynamic reference frame, that is with respect to the peculiar velocity.

Defining the peculiar velocity ξξξ = c− u, one can obtain from (1) the evolution of the pressure

tensor P =
∫

ξξξξξξ f dξξξ [8]

∂tPαβ +∂γ

(
uγ∂γPαβ +Qαβγ

)
+Pαγ

∂uβ

∂xγ

+Pγβ

∂uα

∂xγ

=−1
τ

(
Pαβ −P(e)

αβ

)
(3)

where Q =
∫

ξξξξξξξξξ f dξξξ . This level of detail can be appreciable for moderate Knudsen numbers (as

discussed below) but can not be predicted by the Navier-Stokes model.

The importance of flows in microdevices with moving boundaries has seen the development of

numerical methods for macroscopic equations in the slip flow regime and also numerical solvers

for the Boltzmann equation [9–13]. Of particualr interest here, Mizzi et al. [5] computed solutions

to the Navier-Stokes-Fourier equations in micro lid driven cavity flow and compared them with

their DSMC results for the Boltzmann equation. Importantly, they found that while the Navier-

Stokes-Fourier model could predict the velocity field well outside of kinetic boundary layers, it

could not compute accurate solutions to other aspects of flow in the slip regime. In particular, and

in agreement with Jiang et. al. [14], they showed that the non-equilibrium effects of the Knudsen

number were strong near the moving wall and in the vicinity of the corners, with the Navier-

Stokes and DSMC solvers predicting considerably different pressures. Mizzi et al. [5] argued for

alternative solution methods to be developed. We show in this article that the lattice Boltzmann

equation with moment-based boundary conditions can accurately capture the pressure distribution

in the slip flow regime where the Navier-Stokes-Fourier equations could not.

The lattice Boltzmann method (LBM) may be considered an intermediate approach to comput-

ing slip flow. Its discrete particle velocity set restricts it to capturing only the first few moments

of the Boltzmann equation (1) and, for standard integer lattices at least, it cannot capture kinetic

effects in the velocity field [15]. However, the LBM will capture the bulk flow with a high degree

of accuracy when supplemented with appropriate slip boundary conditions [16, 17]. Furthermore,

and despite being primary used as a Navier-Stokes solver, it can compute the pressure tensor, viz

the deviatoric stress, from kinetic theory with an isothermal equation of state, even with a small

number of degrees of freedom [18]. The application of the LBM to the slip flow regime has re-

ceived a lot of attention [16, 17, 19–25], but most studies used “kinetic-style" boundary conditions

that are prone to inaccuracies in the slip at the boundaries - see Verhaeghe et. al. [17] and Reis

and Dellar [16] for an overview. A two-relaxation-time collision operator can be used to remove
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or minimise such artefacts, allowing for a far more robust scheme [26, 27], yet the timescale of

the relaxation of the third order moment required to minismise the error is too long to capture the

deviatoric stress at appreciable Knudsen numbers [28]. Alternatively, a novel technique for imple-

menting boundary conditions in the lattice Boltzmann method was proposed by Bennett [29] and

used to impose the Navier-Maxwell conditions precisely for slip flow in microchannels by Reis

and Dellar [16]. This methodology does not produce any artificial slip and can be used with any

lattice Boltzmann collision operator [30–32]. It can also be used to impose boundary conditions

that are consistent with the deviatoric stress and has been shown to predict non-Navier-Stokes

behaviour [28, 33], but until now this has not been used to compute the slip-flow regime. Here

we show that the LBM with consistent moment-based boundary conditions can accurately com-

pute flow in the slip regime, including subtle effects in the pressure that the Navier-Stokes-Fourier

systems cannot capture.

The remainder of the article is orgnaised as follows. In Section II we discuss the lattice Boltz-

mann framework for the slip flow regime, and we explain the boundary conditions and their im-

plementation in Section III. Numerical results for micro Couette and mico lid driven cavity flows

are shown in sections IV and V, respectively, and concluding remarks are made in Section VI.

II. THE LATTICE BOLTZMANN METHODOLOGY

The discrete velocity Boltzmann equation with a BGK collision operator with relaxation time

τ is

∂ fi

∂ t
+ ci ·∇ fi =−

1
τ
( fi− f (0)i ), (4)

where fi represents the particle distribution function with discrete particle velocity ci. Here, the

truncated discrete velocity set {ci|i = 0, ...,8} forms the integer D2Q9 lattice shown in Figure 1.

The prescribed equilibria, f (0)i , are [34, 35]

f (0)i (x, t) = ωiρ

(
1+3ci ·u+

9
2
(ci ·u)2− 3

2
u2
)
, (5)

with lattice weights

ωi =


4/9, if i = 0,

1/9, if i = 1, . . . ,4,

1/36, if i = 5, . . . ,8.

(6)
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FIG. 1. The nine particle velocities and the D2Q9 lattice.

Macroscopic observables are obtained by taking discrete velocity moments of fi. The first three

moments are the hydrodynamic mass, momentum, and momentum flux, respectively:

ρ = ∑
i

fi; ρu = ∑
i

fici; ΠΠΠ = ∑
i

ficici, (7)

and mass and momentum are conserved by collisions:

ρ = ∑
i

f (0)i ; ρu = ∑
i

f (0)i ci. (8)

The remaining moments are non-hydrodynamic moments (or “ghost moments") and are given by

Qxxy = ∑
i

ficiyc2
ix, Qxyy = ∑

i
ficixc2

iy, Sxxyy = ∑
i

fic2
ixc2

iy. (9)

A. Macroscopic equations

Taking the first three moments of the discrete Boltzmann equation (4) yields exact conservation

laws for mass and momentum, and a partial differential equation for the evolution of the flux of

momentum,

∂tρ +∇ ·ρu = 0, (10)

∂tρu+∇ ·ΠΠΠ = 0, (11)

∂tΠΠΠ+∇ ·Q =−1
τ
(ΠΠΠ−ΠΠΠ

(0)), (12)

where ΠΠΠ(0) =∑i f (0)i cici is the equilibrium momentum flux tensor and, from equation (5), is known

to be

ΠΠΠ
(0) =

ρ

3
I+ρuu. (13)
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We identify the pressure as p = ρ/3 = ρRT , i.e an ideal equation of state. The right hand side of

equation (12) includes the deviatoric stress ΓΓΓ = ΠΠΠ0−ΠΠΠ, which one usually approximates to first

order in relaxation time τ (or Knudsen number) using a Chapman-Enskog analysis. Instead, the

stress can be obtained by taking moments with respect to the discrete peculiar velocity ξξξ i = ci−u.

The pressure tensor P = ∑i fiξξξ iξξξ i in discrete kinetic theory evolves according to the same PDE

found in classical kinetic theory, i.e equation (3), although without enough degrees of freedom

to specify Q completely [8, 18, 36]. Following Dellar [18], the deviatoric stress with the D2Q9

lattice isothermal equation of state, p = ρRT = ρ/3, is ΓΓΓ = ρ/3I−P and is governed by

Γαβ + τ

(
∂ tΓαβ +uγ∂ γΓαβ +Γαγ∂ γuβ +Γβγ∂ γuα

)
= µ(∂ β uα +∂ αuβ ), (14)

where µ = ρτ/3 is the dynamic viscosity. It has been assumed that the third order moment remains

close to its equilibrium, which is O(Ma3), and thus has been neglected (and we note that the

equilibrium part of Q is zero in continuous kinetic theory) [18]. It is noted again that this is an

isothermal LBM.

Clearly, the stress embedded in the D2Q9 discrete velocity model includes contributions be-

yond what is captured by the Navier-Stokes equations. The Navier-Stokes relation would only

be recovered if the terms multiplied by τ on the left hand side of equation (14) vanish. Instead,

the stress includes nonequilibrium effects from the Boltzmann equation. While these contributions

may be negligible for very small Knudsen numbers, they can be appreciable in the slip flow regime

or when τ is not small [16, 28].

B. From discrete Boltzmann to lattice Boltzmann

To solve equation (4) numerically we integrate both sides along a characteristic for time, ∆t, to

obtain

fi(x+ ci∆t, t +∆t)− fi(x, t) =−
1
τ

∫
∆t

0

(
fi− f (0)i

)
ds. (15)

The integral on the right side is approximated using the Trapezoidal rule to give a fully discrete

and implicit system of algebraic equations:

fi(x+ ci∆t, t +∆t)− fi(x, t) =

− ∆t
2τ

(
fi(x+ ci∆t, t +∆t)− f (0)i (x+ ci∆t, t +∆t)

)
− ∆t

2τ

(
fi(x, t)− f (0)i (x, t)

)
+O(∆t3). (16)
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This second order implicit system is converted into an explicit algorithm using He’s et.al. [37]

variable change

f̄i(x, t) = fi(x, t)+
∆t
2τ

(
fi(x, t)− f (0)i (x, t)

)
, (17)

to obtain the second order in space and time lattice Boltzmann equation for f̄i:

f̄i(x+ ci∆t, t +∆t)− f̄i(x, t) =−
∆t

(τ +∆t/2)

(
f̄i(x, t)− f (0)i (x, t)

)
+O(∆t3). (18)

Recall that the grid spacing and time step are connected by the lattice speed c = (∆x/∆t)� 1.

Density, momentum and momentum flux are computed from f̄i using the variable change (17),

ρ = ∑
i

fi = ∑
i

f̄i, ρu = ∑
i

f̄ici = ∑
i

fici, (19)

ΠΠΠ = ∑
i

f̄icici = ∑
i

fi +∑
i

∆t
2τ

(
fi− f (0)i

)
=

(2τ +∆t)
2τ

ΠΠΠ− ∆t
2τ

ΠΠΠ
(0). (20)

Thus, the deviatoric stress is given in terms of barred quantities as

ΓΓΓ =ΠΠΠ
0−ΠΠΠ =

2τ

(
ΠΠΠ(0)−ΠΠΠ

)
(2τ +∆t)

. (21)

III. HYDRODYNAMIC BOUNDARY CONDITIONS FOR THE SLIP FLOW REGIME

Modelling microflows at small Knudsen numbers with macroscopic conservation laws can cap-

ture phenomena outside of the velocity boundary layers provided suitable boundary conditions are

used. We consider flat walls that may move tangentially only. In the slip flow regime, the tangen-

tial velocity at a wall can be modelled with the Navier-Maxwell condition, which says the amount

of slippage is proportional to the shear at the wall [6],

ux =Um−σKnH
∂ux

∂y

∣∣∣∣
wall

. (22)

Here, we have taken the liberty to let the subscripts x and y denote the tangential and normal

directions at a flat wall, respectively. In equation (22) Um is the velocity of the wall and σ is

the (streamwise momentum) accommodation coefficient. In what follows we use σ = 1. The

coefficient KnH, where H is the characteristic macroscopic lengthscale, defines the mean free

path. The kinematic condition states that uy = 0.

In Section II A we saw that the stress embedded in the lattice Boltzmann model is given by

equation (14). At a boundary we assume there is no dependence on time nor tangential coordinate,
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∂t = ∂x = 0. Noting that the normal velocity is zero by the kinematic condition, the components

of stress at a boundary are

Γxx +2τΓxy
∂ux

∂y
= 0, (23)

Γyy = 0, (24)

Γxy−µ
∂ux

∂y
= 0. (25)

Equations (24)-(25) represent the shear stress and the normal component of the stress at a bound-

ary respectively, and they are the same as in the Navier-Stokes equations. Equation (23) shows

the tangential component of the stress at a boundary. This would be zero in the Navier-Stokes

equation but at O(τ2) it is proportional to the square of the shear. Thus special consideration of

the tangential stress at the boundary is needed in lattice Boltzmann computations.

A. Moment-based boundary conditions for the lattice Boltzmann equation

The moment-based approach for implementing boundary conditions for the lattice Boltzmann

equation is a general methodology that imposes constraints directly and precisely upon moments

of the LBE and then translates them into conditions for the unknown distribution functions at a

boundary [29]. The unknowns are the incoming fi (or f̄i), i.e the fi with velocity ci pointing into

the fluid domain, and clearly one should have as many boundary moment conditions as there are

unknown fi, and these moments need to be linearly independent at a boundary. For the D2Q9

lattice with boundaries aligned with grid points three conditions are needed for three unknowns.

We proceed by illustrating the method using a horizontal boundary at the north of the domain.

Here, the functions f̄4, f̄7, and f̄8 are unknown and need to be supplied to the algorithm (see Figure

1). These unknowns appear in the moments in one of three linear combinations, as shown in Table

I. Thus one must impose a condition on one moment from each row of Table I and then solve

for the unknown fi (noting the definitions given in equations (7) and (9)). For the second order

discretisation (18), the conditions need to be expressed in terms of “barred" quantities using the

transformation (17). Considering we are computing solutions to hydrodynamic flow equations we

choose to impose hydrodynamic constraints. For the slip flow regime considered here we have

conditions for the two components of momentum,

ρuy = 0, ρux = ρUm−ρσKnH
∂ux

∂y

∣∣∣∣
wall

, (26)
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Moments Combination of unknowns at north boundary

ρ,ρuy,Πyy f4 + f7 + f8

ρux,Πxy,Qxyy f7− f8

Πxx,Qxxy,Sxxyy f7 + f8

TABLE I. Moment combinations for unknown fi at the north boundary.

and also the tangential component of the momentum flux (and hence stress) - the only hydrody-

namic moment in the final row of Table I.

Equation (23) for the tangential stress can be rewritten using equation (25) as

Γxx =−
2τ

µ
Γ

2
xy, (27)

and since Γxx = Π
(0)
xx −Πxx, we have the boundary condition for the momentum flux moment of

the LBE:

Πxx =
ρ

3
+ρu2

x +
2τ

µ
Γ

2
xy. (28)

This condition, together with the two in equation (26), give our three linear independent moment

constraints at the boundary. Using the transformation (17), these are easily converted into condi-

tions on “barred" moments:

ρuy = 0,

ρux = ρUm +
2τρσKnH
µ(2τ +1)

Πxy,

Πxx =
ρ

3
+ρu2

x +
4τ2

µ(2τ +1)
Π

2
xy,

(29)

where we have used equations (21) and (25) to write the shear derivative in terms of locally-

available moments (noting that Π
(0)
xy = ρuxuy = 0 at the boundary). The moments ρ and Πxy in the

boundary conditions above can be written in terms of imposed conditions and known (incoming)

distribution functions:

ρ = ρuy + f̄0 + f̄1 + f̄3 +2( f̄2 + f̄5 + f̄6);

= f̄0 + f̄1 + f̄3 +2( f̄2 + f̄5 + f̄6);

Πxy =−ρux + f̄1− f̄3 +2 f̄5−2 f̄6.
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Simply solving the linear system (29) for the three unknowns yields

f̄4 =−Πxx + f̄1 + f̄3 + f̄2 +2( f̄5 + f̄6),

f̄7 =
1
2
(
Πxx−ρux

)
− f̄3− f̄6,

f̄8 =
1
2
(
ρux +Πxx

)
− f̄1− f̄5.

(30)

We note that most previous applications of moment-based boundary conditions [16, 29, 30, 38–

40] impose a Navier-Stokes stress condition, Γxx = 0 at a boundary but this has been shown to be

inconsistent with the underlying moment system [28, 33].

IV. MICRO-COUETTE FLOW

We use the lattice Boltzmann equation to compute solutions to planar micro-Couette flow with

the Navier-Maxwell slip condition (22) and Burnett stress condition (23) imposed on the top and

bottom boundaries using the moment-based approach described in Section III A. The top wall

moves horizontally with velocity Um while the parallel bottom wall, which is a distance H away,

is stationary. The domain is periodic in the flow direction. Four different values of the Knudsen

number are used: Kn = 0.01, 0.05, 0.1 and 0.2; and our results are compared with the analytical

solution of the Navier-Stokes equations with the aforementioned boundary conditions, assuming

the flow is steady (∂t = 0), incompressible (ρ = constant), and unidirectional (u = u(y)):

u(y) =
Um

(1+2Kn)

((
y
H

)
+Kn

)
. (31)

In the plots that follow the velocity has been scaled with the wall moving velocity, Um, and the

normal coordinate with the channel height, H.

Figure 2 plots the numerical and analytical solution for the velocity when Kn = 0.05. For

clarity of visualisation, a 1× 17 grid is used in the plot but errors smaller than O(10−10) were

observed on just 3 grid points. Figure 3 plots the velocity profiles at different Kn and shows the

increasing slip at the boundaries as we increase the Knudsen number. In all cases the LBM results

are grid independent, agree well with the benchmark data [22, 23, 25] and, moreover, with the

analytical solution.

Figure 4 plots the computed and analytical solution of the tangential component of the devi-

atoric stress down the center of the channel, Γxx(0.5,y), when Kn = 0.05 and Ma = 0.09. The
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FIG. 2. Numerical and analytical solutions for the velocity in micro-Couette flow with Kn = 0.05 and

Ma = 0.09.

analytical solution is

Γxx =−2τµ

(
Um

H(1+2Kn)

)2

, (32)

where we have used equation (14) noting that the flow is steady (∂t = 0), unidirectional (u = u(y)),

and the flow velocity is given by equation (31). The computed solution with the Navier-Stokes

stress condition Γxx = 0 that has often been used with the moment-based approach [16, 30, 38,

39, 41] is also shown. The resolution is the same as above and the results are grid independent.

The figure illustrates the excellent agreement between the numerical and analytical solutions for

Γxx using the Navier-Maxwell slip (22) and stress moment-based boundary conditions (23). We

remark that when the Navier-Stokes condition is used the stress is constrained to be zero at the

boundaries, and this is in contradiction the the underling PDE moment system, and hence the

spurious numerical boundary layers observed in Figure 4.

V. MICRO LID-DRIVEN CAVITY FLOW

The methodology is applied to two dimensional micro-lid driven cavity flow, with the top wall

of a square box of side L moving horizontally with constant velocity Um while the other bound-

aries are stationary, see Figure 5. The Navier-Maxwell slip condition (22) and the Burnett stress

condition (23) are applied to all boundaries. A grid of size 65× 65 was used in the simulations
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FIG. 3. Velocity profiles of mico-Couette flow at Kn =0.01, 0.05, 0.1, 0.2 with Ma = 0.09.
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FIG. 4. Numerical and analytical solutions for the deviatoric stress Γxx(0.5,y) in micro-Couette flow with

Kn = 0.05 and Ma = 0.09. Numerical results for the consistent Burnett-order (23) and inconsistent Navier-

Stokes (Γxx = 0) order stress boundary conditions are shown.

shown here with no discernible differences in the velocity field on finer grids and second order

convergence has been observed from 17×17 grids. In the plots that follow the velocity has been

scaled with the moving wall velocity, Um, and the coordinates with the channel height, L.

Figures 6 and 7 show the effect of the Knudsen number on the behaviour of the velocity when

the Mach number is fixed at Ma = 0.09. The wall slippage increases with Kn and the respective

12



y

x

B

DA

C

mU

FIG. 5. Schematic diagram of lid-driven cavity flow

turning points are smaller in magnitude, in agreement with existing results [9, 11, 22, 25].

We plot in Figure 8 the streamlines when Kn = 0.1 and 0.001; the latter being used to highlight

vanishingly small slip lengths. The secondary vortices in the corners that appear for the case

of no-slip are not detected when there is significant wall slip (increasing Knudsen number), and

the location of the primary vortex travel towards the centre of the cavity as we increase Kn, in

agreement with the results of Ogata and Kawaguchi [9]. For more quantitative measures, Table

II show the maximum value of the primary stream function, Ψmax, and its location. Our data

shows that Ψmax decreases when the Knudsen number increases with fixed Ma (meaning that Re

is decreasing by von-Kármán’s relation, equation (2)), and the location of the maximum stream

function creeps downwards with higher Kn and thus more slip.

Finally, the normalised pressure P = p/p0 along the surface of the cavity when Kn = 0.05

is shown in Figure 9, and when Kn = 0.1 in Figure 10. In these figures the coordinate S refers

to the distance along the perimeter of the cavity in the clockwise direction from the origin (0,0),

denoted by A in Figure 5. A 129×129 grid was used and no discernible difference was observed

on finer grids. The influence of the Knudsen number and rarefaction on the pressure distribution

is seen and in agreement with Jian et al [14]. Moreover, our results are in very good quantitative

agreement with the hard sphere DSMC results of Mizzi et.al. [5]. The computed solutions of the

Navier-Stokes-Fourier equations with slip conditions of Mizzi et.al. [5] are also shown in Figures

9 and 10. It is noteworthy that the solutions based on the Navier-Stokes-Fourier model, which has
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FIG. 6. Horizontal velocity profiles ux(x,0.5) at different Knudsen numbers when Ma = 0.09.
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FIG. 7. Vertical velocity profiles uy(0.5,y) at different Knudsen numbers when Ma = 0.09.

the normal pressure tensor −pI, over predicts the pressure greatly, whereas the lattice Boltzmann

model with the prescribed boundary conditions has a pressure evolution equation that agrees with

kinetic theory and computes solutions in agreement with the DSMC results.

VI. CONCLUSION

The lattice Boltzmann method has been used to compute near-continuum flow. Navier-Maxwell

slip velocity conditions and Burnett-order deviatoric stress conditions were imposed on moving

and stationary boundaries to capture Knudsen phenomena using a moment-based approach. Al-
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FIG. 8. Streamlines in micro lid driven cavity flow when Ma = 0.09 and Kn = 0.1 (left) and Kn = 0.001.

Kn Ψmax (x,y)

0.001 0.1047 (0.60, 0.73)

0.01 0.0951 (0.50, 0.77)

0.05 0.0789 (0.50, 0.74)

0.10 0.0681 (0.50, 0.71)

0.20 0.0635 (0.49, 0.63)

TABLE II. The maximum value of the streamfunction and its location for various Kn when Ma = 0.09.

though the lattice Boltzmann method does not compute Knudsen boundary layers, it can predict

the slip flow regime outside of these boundary layers very well. This has previously been shown

for pressure driven micro channel flows using the moment-based approach by Reis and Dellar

[16] and extended here to more complicated flows and boundaries. The influence of the Knudsen

number on the behaviour of the micro lid driven cavity has been examined, with the cross chan-

nel velocity profiles flattening and the primary vortex creeping towards the cavity centre as Kn

increases.

Furthermore, the D2Q9 lattice Boltzmann can compute subtle kinetic phenomena in its non-

conserved hydrodynamic moments, even though it does not capture Knudsen boundary layers. The

pressure tensor embedded in the moments of the LBM approximates that of the BGK Boltzmann
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FIG. 9. Non dimensional pressure distribution P= p/p0 along the cavity walls when Kn = 0.05 and Ma =

0.09. Mizzi’s et al. [5] DSMC (line) and Navier-Stokes-Fourier (dashed) results are also shown

.
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FIG. 10. Non dimensional pressure distribution P= p/p0 along the cavity walls when Kn = 0.1 and Ma =

0.09. Mizzi’s et al. [5] DSMC (line) and Navier-Stokes-Fourier (dashed) results are also shown

equation when the Mach number is small but fixed and the flow is isothermal with the equation

of state p = ρRT [18, 28, 33]. Spurious numerical boundary layers in computations of the stress

can appear in simple flows if constraints inconsistent with the pressure tensor are imposed but

these can be removed using the moment-based method. We remark that all results presented here

converged under mesh refinement with fixed non-dimensional numbers.
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We have shown that the LBM can predict near-wall nonequilibrium phenomena in the pressure.

Where simulations of the Navier-Stokes-Fourier equations over predict the pressure considerably,

the LBM computations are in very good agreement with the DSMC results of Mizzi et. al [5].

While the model considered here does not include temperature, extending the methodology to

thermal flows is a prospect for future work, and following Krastins et. al. [32], the extension to

other lattices in three-dimensions is relatively straightforward.
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